

# PRODUCT/PROCESS CHANGE NOTIFICATION

PCN IPD-PWR/12/7506 Dated 10 Oct 2012

IPAK and Short IPAK in ECOPACK 2, graded Moulding
Compound Assembly capacity expansion - Nantong Fujitsu
Microelectronics (China) Subcontractor

#### **Table 1. Change Implementation Schedule**

| Forecasted implementation date for change                                                    | 05-Oct-2012 |
|----------------------------------------------------------------------------------------------|-------------|
| Forecasted availability date of samples for customer                                         | 05-Oct-2012 |
| Forecasted date for <b>STMicroelectronics</b> change Qualification Plan results availability | 05-Oct-2012 |
| Estimated date of changed product first shipment                                             | 09-Jan-2013 |

#### **Table 2. Change Identification**

| Product Identification<br>(Product Family/Commercial Product) | see attached list                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type of change                                                | Package assembly location change, Testing location change                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Reason for change                                             | To increase capacity on IPAK and Short IPAK package                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Description of the change                                     | Continuing in the program to introduce ECOPACK 2, graded Moulding Compound products and in order to be ready to support the market demand of Power MOSFET Transistors, the products listed in this PCN will be manufactured also in Nantong Fujitsu Microelectronics (China) Subcontractor. Products are in agreement with ST standards and guarantee the same quality and the electrical characteristics as the current production. Devices used for qualification are available as samples. |
| Change Product Identification                                 | 1st two digits of the traceability code are "GF"                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Manufacturing Location(s)                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

**47/**.

| Та | ble | 3 | I ist | of | Attac | hmer | nts |
|----|-----|---|-------|----|-------|------|-----|
|    |     |   |       |    |       |      |     |

| Customer Part numbers list |  |
|----------------------------|--|
| Qualification Plan results |  |

| Customer Acknowledgement of Receipt                       | PCN IPD-PWR/12/7506 |
|-----------------------------------------------------------|---------------------|
| Please sign and return to STMicroelectronics Sales Office | Dated 10 Oct 2012   |
| □ Qualification Plan Denied                               | Name:               |
| □ Qualification Plan Approved                             | Title:              |
|                                                           | Company:            |
| ☐ Change Denied                                           | Date:               |
| □ Change Approved                                         | Signature:          |
| Remark                                                    |                     |
|                                                           |                     |
|                                                           |                     |
|                                                           |                     |
|                                                           |                     |
|                                                           |                     |
|                                                           |                     |
|                                                           |                     |
|                                                           |                     |
| l .                                                       |                     |

**47/**.

#### **DOCUMENT APPROVAL**

| Name                | Function          |
|---------------------|-------------------|
| Mottese, Anna       | Marketing Manager |
| Aleo, Mario-Antonio | Product Manager   |
| Falcone, Giuseppe   | Q.A. Manager      |

**A7**/.

#### Dear Customer,

Please be informed that IPAK and Short IPAK Package, manufactured in ST sites, will be also produced in Nantong Fujitsu Microelectronics (China) Subcontractor, according to the program to introduce ECOPACK 2 grade products.

The involved product series and affected packages are listed in the table below:

| Product Family           | Package    | Commercial<br>Product / Series |
|--------------------------|------------|--------------------------------|
| Power MOSEET Transisters | Short IPAK | STUXXX-S                       |
| Power MOSFET Transistors | IPAK       | STUxxx/STDxxx-1                |

#### Qualification program and results availability:

The reliability test report is provided in attachment to this document.

#### Samples availability:

Samples of the test vehicle devices will be available on request starting from week 40-2012. Any other sample request will be processed and scheduled by Power Transistor Division upon request.

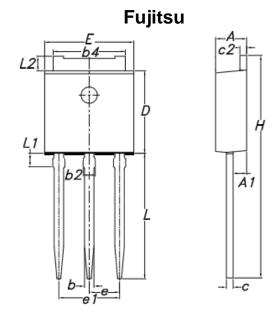
| Product Family           | Part Number - Test Vehicle             |  |
|--------------------------|----------------------------------------|--|
| Power MOSFET Transistors | STU7NM60N<br>STD4NK60Z-1<br>STU60N3LH5 |  |

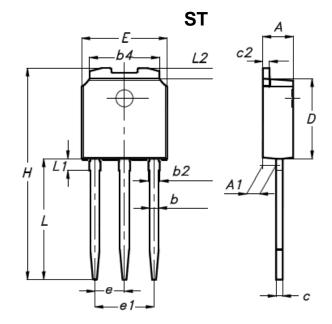
#### **Change implementation schedule:**

The production start and first shipments will be implemented according to our work in progress and materials availability:

| Product Family           | 1st Shipments     |
|--------------------------|-------------------|
| Power MOSFET Transistors | From Week 01-2013 |

Lack of acknowledgement of the PCN within 30 days will constitute acceptance of the change. After acknowledgement, lack of additional response within the 90 days period will constitute acceptance of the change (Jedec Standard No. 46-C). In any case, first shipments may start earlier with customer written agreement.

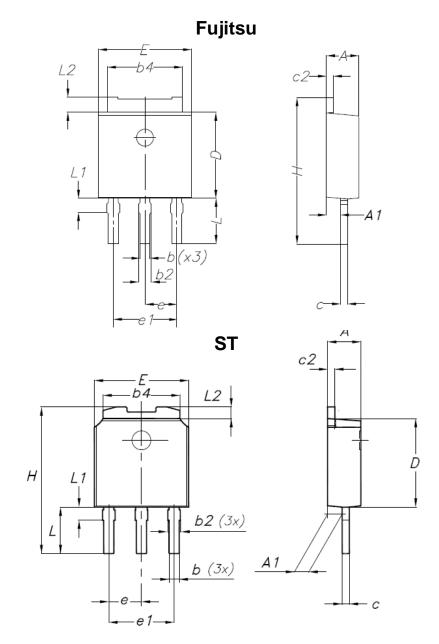

#### Marking and traceability:


Unless otherwise stated by customer specific requirement, traceability of IPAK and Short IPAK ECOPACK 2 graded moulding compound products, manufactured in Nantong Fujitsu Microelectronics (China), will be ensured by the 1<sup>st</sup> two digits of the traceability code "GF".

Sincerely Yours.

# IPAK package comparison Fujitsu Vs ST

|        | FUJITSU |          |           | ST   |      |      |  |
|--------|---------|----------|-----------|------|------|------|--|
| SYMBOL |         | IPAK     | IPAK      |      | IPAK |      |  |
|        | MIN     | NOM      | NOM MAX   |      | NOM  | MAX  |  |
| Α      |         | 2.3 2.35 |           | 2.2  | -    | 2.35 |  |
| A1     | 0.9     | 1        | 1.1       | 0.9  | -    | 1.1  |  |
| b      | 0.58    | -        | 0.79      | 0.64 | -    | 0.9  |  |
| b2     | -       | -        | 0.9       | -    | -    | 0.95 |  |
| b4     | 5.23    | 5.33     | 5.43      | 5.2  | -    | 5.4  |  |
| С      | 0.46    | ı        | 0.59      | 0.45 | -    | 0.6  |  |
| c2     | 0.46    | ı        | 0.59      | 0.48 | -    | 0.6  |  |
| D      | 6       | 6.1      | 6.2       | 6    | -    | 6.15 |  |
| E      | 6.5     | 6.6      | 6.7       | 6.4  | -    | 6.55 |  |
| е      |         | 2.25     |           | -    | 2.28 | -    |  |
| e1     | 4.4     | 4.5      | 4.6       | 4.4  | -    | 4.6  |  |
| Н      |         | 16.48    |           | _    | 16.1 | -    |  |
| L      | 9       | 9.3      | 9.6       | 9    | -    | 9.4  |  |
| L1     | 0.8     | 1        | 1.2       | 0.8  | -    | 1.2  |  |
| L2     |         | 1.08     | 1.08 1.25 |      | 0.8  | 1    |  |








# Short IPAK package comparison Fujitsu Vs ST

|        | FUJITSU    |       |         | ST         |      |      |
|--------|------------|-------|---------|------------|------|------|
| SYMBOL | Short IPAK |       |         | Short IPAK |      |      |
|        | MIN        | NOM   | NOM MAX |            | NOM  | MAX  |
| Α      | 2.2        | 2.3   | 2.35    | 2.2        | -    | 2.35 |
| A1     | 0.9        | 1     | 1.1     | 0.9        | -    | 1.1  |
| b      | 0.58       | -     | 0.79    | 0.64       | -    | 0.9  |
| b2     | -          | -     | 0.9     | -          | -    | 0.95 |
| b4     | 5.23       | 5.33  | 5.43    | 5.2        | -    | 5.4  |
| С      | 0.46       | -     | 0.59    | 0.45       | -    | 0.6  |
| c2     | 0.46       | -     | 0.59    | 0.48       | -    | 0.6  |
| D      | 6          | 6.1   | 6.2     | 6          | -    | 6.15 |
| E      | 6.5        | 6.6   | 6.7     | 6.4        | -    | 6.55 |
| е      |            | 2.25  |         | -          | 2.25 | -    |
| e1     | 4.4        | 4.5   | 4.6     | 4.4        | -    | 4.6  |
| Н      | 10.08      | 10.38 | 10.68   | 9.8        | 10.4 | -    |
| L      | 3          | 3.2   | 3.4     | 3          | -    | 3.4  |
| L1     | 0.8        | 1     | 1.2     | 0.8        | -    | 1.2  |
| L2     |            | 1.08  | 1.25    | -          | 0.8  | 1    |









## **Reliability Report**

IPAK and Short IPAK in ECOPACK 2, Graded Molding Compound Assembly capacity expansion – Nantong Fujitsu Microelectronics (China) Subcontractor

**General Information** 

**Product Lines:** M260 - EZ62 - 5H33

Product Families: Power MOSFET

**P/Ns:** STU7NM60N (M260)

STD4NK60Z-1 (EZ62) STU60N3LH5 (5H33)

Product Group: IMS - IPD

**Product division:** Power Transistor Division

Package: IPAK

Silicon Process techn.: MDmesh™ II, SuperMESH™,

STripFET™ V

Locations

Wafer Diffusion Ang Mo Kio (SINGAPORE) –

Plants: M5 Catania (ITALY)

EWS Plants: Ang Mo Kio (SINGAPORE) –

M5 Catania (ITALY)

Assembly plant: Nantong Fujitsu

Microelectronics (China)

Reliability Lab: IMS-IPD Catania Reliability

Lab.

#### **DOCUMENT INFORMATION**

| Ī | Version | Date           | Pages | Prepared by | Approved by | Comment     |
|---|---------|----------------|-------|-------------|-------------|-------------|
|   | 1.0     | September 2012 | 9     | C. Cappello | G.Falcone   | First issue |

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.



# IMS (Industrial & Multisegment Sector) IPD (Industrial, Power and Discretes) Group Quality and Reliability

Rel 11-12

#### **TABLE OF CONTENTS**

| 1 | APPI  | LICABLE AND REFERENCE DOCUMENTS | .:  |
|---|-------|---------------------------------|-----|
| 2 | GLO   | SSARY                           |     |
|   |       | ABILITY EVALUATION OVERVIEW     |     |
|   | 3.1   | OBJECTIVES                      | .(  |
|   | 3.2   | Conclusion                      | .:  |
| 4 | DEVI  | CE CHARACTERISTICS              | .4  |
|   | 4.1   | DEVICE DESCRIPTION              | . 4 |
|   | 4.2   | CONSTRUCTION NOTE               | . 4 |
| 5 | TES1  | TS RESULTS SUMMARY              | . 7 |
|   | 5.1   | TEST VEHICLE                    | . 7 |
|   | 5.2   | RELIABILITY TEST PLAN SUMMARY   | . 7 |
| 6 | ANN   | EXES 6.0                        | . ( |
|   | 6 1Tr | ESTS DESCRIPTION                | c   |

# IMS (Industrial & Multisegment Sector) IPD (Industrial, Power and Discretes) Group Quality and Reliability

Rel 11-12

#### 1 APPLICABLE AND REFERENCE DOCUMENTS

| Document reference | Short description                                       |  |
|--------------------|---------------------------------------------------------|--|
| JESD47             | Stress-Test-Driven Qualification of Integrated Circuits |  |
|                    |                                                         |  |

#### 2 GLOSSARY

| DUT | Device Under Test |
|-----|-------------------|
| SS  | Sample Size       |
| HF  | Halogen Free      |

#### **3 RELIABILITY EVALUATION OVERVIEW**

#### 3.1 **Objectives**

Qualification of the IPAK and Short IPAK package graded Molding Compound manufactured in Nantong Fujitsu Microelectronics (China).

#### 3.2 **Conclusion**

Qualification Plan requirements have been fulfilled without exception. It is stressed that reliability tests have shown that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the products and safe operation, which is consequently expected during their lifetime.



#### **4 DEVICE CHARACTERISTICS**

### 4.1 **Device description**

N-channel Power MOSFET

### 4.2 Construction note

D.U.T.: STU7NM60N LINE: M260 PACKAGE: IPAK

| Wafer/Die fab. information       |                             |  |
|----------------------------------|-----------------------------|--|
| Wafer fab manufacturing location | Ang Mo Kio (Singapore)      |  |
| Technology                       | MDmesh <sup>™</sup> II      |  |
| Die finishing back side          | Ti/Ni/Au                    |  |
| Die size                         | 2410 x 2400 μm <sup>2</sup> |  |
| Metal                            | Al/Si                       |  |
| Passivation type                 | Nitride                     |  |

| Wafer Testing (EWS) information           |                        |
|-------------------------------------------|------------------------|
| Electrical testing manufacturing location | Ang Mo Kio (Singapore) |
| Test program                              | WPIS                   |

| Assembly information                |                           |  |
|-------------------------------------|---------------------------|--|
| Assembly site                       | NANTONG FUJITSU (China)   |  |
| Package description                 | IPAK                      |  |
| Molding compound                    | HF Epoxy Resin            |  |
| Frame material                      | Raw Copper - Ni on T-post |  |
| Die attach process                  | Soft Solder               |  |
| Die attach material                 | Pb/Ag/Sn                  |  |
| Wire bonding process                | Ultrasonic                |  |
| Wires bonding materials             | Al 5 mils Gate            |  |
|                                     | Al 5 mils Source          |  |
| Lead finishing/bump solder material | Pure Tin                  |  |

| Final testing information |                         |
|---------------------------|-------------------------|
| Testing location          | NANTONG FUJITSU (China) |
| Tester                    | JUNO                    |



D.U.T.: STD4NK60Z-1 LINE: EZ62 PACKAGE: IPAK

| Wafer/Die fab. information       |                             |  |
|----------------------------------|-----------------------------|--|
| Wafer fab manufacturing location | Ang Mo Kio (Singapore)      |  |
| Technology                       | SuperMESH™                  |  |
| Die finishing back side          | Ti/Ni/Ag                    |  |
| Die size                         | 3186 x 2654 µm <sup>2</sup> |  |
| Metal                            | Al/Si                       |  |
| Passivation type                 | Nitride                     |  |

| Wafer Testing (EWS) information           |                        |  |
|-------------------------------------------|------------------------|--|
| Electrical testing manufacturing location | Ang Mo Kio (Singapore) |  |
| Test program                              | WPIS                   |  |

| Assembly information                |                           |  |
|-------------------------------------|---------------------------|--|
| Assembly site                       | NANTONG FUJITSU (China)   |  |
| Package description                 | IPAK                      |  |
| Molding compound                    | HF Epoxy Resin            |  |
| Frame material                      | Raw Copper - Ni on T-post |  |
| Die attach process                  | Soft Solder               |  |
| Die attach material                 | Pb/Ag/Sn                  |  |
| Wire bonding process                | Ultrasonic                |  |
| Wires bonding materials             | Al 5 mils Gate            |  |
|                                     | Al 5 mils Source          |  |
| Lead finishing/bump solder material | Pure Tin                  |  |

| Final testing information |                         |
|---------------------------|-------------------------|
| Testing location          | NANTONG FUJITSU (China) |
| Tester                    | JUNO                    |



D.U.T.: STU60N3LH5 LINE: 5H33 PACKAGE: IPAK

| Wafer/Die fab. information       |                             |  |
|----------------------------------|-----------------------------|--|
| Wafer fab manufacturing location | M5 Catania (ITALY)          |  |
| Technology                       | STripFET™ V                 |  |
| Die finishing back side          | Ti/Ni/Ag                    |  |
| Die size                         | 2300 x 1750 μm <sup>2</sup> |  |
| Metal                            | Al/Cu                       |  |
| Passivation type                 | None                        |  |

| Wafer Testing (EWS) information           |                    |  |  |  |  |
|-------------------------------------------|--------------------|--|--|--|--|
| Electrical testing manufacturing location | M5 Catania (ITALY) |  |  |  |  |
| Test program                              | WPIS               |  |  |  |  |

| Assembly information                |                           |  |  |  |
|-------------------------------------|---------------------------|--|--|--|
| Assembly site                       | NANTONG FUJITSU (China)   |  |  |  |
| Package description                 | IPAK                      |  |  |  |
| Molding compound                    | HF Epoxy Resin            |  |  |  |
| Frame material                      | Raw Copper - Ni on T-post |  |  |  |
| Die attach process                  | Soft Solder               |  |  |  |
| Die attach material                 | Pb/Ag/Sn                  |  |  |  |
| Wire bonding process                | Ultrasonic                |  |  |  |
| Wires bonding materials             | Al 5 mils Gate            |  |  |  |
|                                     | Al 10 mils Source         |  |  |  |
| Lead finishing/bump solder material | Pure Tin                  |  |  |  |

| Final testing information |                         |  |  |
|---------------------------|-------------------------|--|--|
| Testing location          | NANTONG FUJITSU (China) |  |  |
| Tester                    | JUNO                    |  |  |



#### **5** TESTS RESULTS SUMMARY

#### 5.1 **Test vehicle**

| Lot # | Process/ Package | Product Line | Comments     |
|-------|------------------|--------------|--------------|
| 1     | STU7NM60N        | M260         | Power MOSFET |
| 2     | STU7NM60N        | M260         | Power MOSFET |
| 3     | STU7NM60N        | M260         | Power MOSFET |
| 4     | STD4NK60Z-1      | EZ62         | Power MOSFET |
| 5     | STU60N3LH5       | 5H33         | Power MOSFET |

#### 5.2 Reliability test plan summary

Lot. 1÷3 - D.U.T.: STU7NM60N LINE: M260 PACKAGE: IPAK

| Test F |    | Std ref.        | Conditions          | ions SS        | Stone   | Failure/SS |       |       |
|--------|----|-----------------|---------------------|----------------|---------|------------|-------|-------|
| Test   | PC | Sta rei.        | Conditions          | 3              | Steps   | Lot 1      | Lot 2 | Lot 3 |
|        |    | JESD22          |                     | 77 x           | 168 H   |            |       |       |
| HTRB   | Ν  | A-108           | T.A.=150℃ Vdss=480V | 3 lots         | 500 H   | 0/77       | 0/77  | 0/77  |
|        |    | 71 100          |                     | 0.00           | 1000 H  |            |       |       |
|        |    | JESD22          | _                   | 77 x           | 168 H   |            |       |       |
| HTGB   | Ν  | A-108           | TA = 150℃ Vgss= 30V | 3 lots         | 500 H   | 0/77       | 0/77  | 0/77  |
|        |    |                 |                     |                | 1000 H  |            |       |       |
|        | ١  | JESD22          |                     | 77 x           | 168 H   | o /==      | o /== | o /   |
| HTSL   | N  | A-103           | TA = 150℃           | 3 lots         | 500 H   | 0/77       | 0/77  | 0/77  |
|        |    |                 |                     |                | 1000 H  |            |       |       |
|        | ١  | JESD22          | Ta=85℃ Rh=85%,      | 77 x           | 168 H   | o /==      | o /== | o /   |
| H3TRB  | N  | A-101           | Vdd=100V            | 3 lots         | 500 H   | 0/77       | 0/77  | 0/77  |
|        |    |                 |                     |                | 1000 H  |            |       |       |
|        |    | IFODOO          | TA 0500 TO 45000    | 77             | 100 cy  |            |       |       |
| TC     | Ν  | JESD22          | TA=-65℃ TO 150℃     | 77 x           | 200 cy  | 0/77       | 0/77  | 0/77  |
|        |    | A-104           | (1 HOUR/CYCLE)      | 3 lots         | 500 cy  |            |       |       |
|        |    |                 |                     |                | 1000 cy |            |       |       |
| TF/IOL | N  | Mil-STD 750D    | ΔTc=+105℃           | 20 x           | 5K cy   | 0/20       | 0/20  | 0/20  |
| IF/IOL | IN | Method 1037     | Δ1C=+105 C          | 3 lots         | 10K cy  | 0/20       | 0/20  | 0/20  |
| AC     | N  | JESD22<br>A-102 | TA=121℃ – PA=2 ATM  | 77 x<br>3 lots | 96 H    | 0/77       | 0/77  | 0/77  |



#### Lot. 4 - D.U.T.: STD4NK60Z-1 LINE: EZ62 PACKAGE: IPAK

| PC Std ref Conditions |                                         | 2                                                                                          | Stans                                                                                                                                                                                                                                           | Failure/SS                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|-----------------------|-----------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| . 0                   | ota rei.                                | Conditions                                                                                 | 00                                                                                                                                                                                                                                              | Oteps                                                                                                                                                                                                                                                                                                           | Lot 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                       | IESDaa                                  |                                                                                            | 77 v                                                                                                                                                                                                                                            | 168 H                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Ν                     |                                         | T.A.=150℃ Vdss=480V                                                                        |                                                                                                                                                                                                                                                 | 500 H                                                                                                                                                                                                                                                                                                           | 0/77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                       | A-100                                   |                                                                                            | 1 101                                                                                                                                                                                                                                           | 1000 H                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                       | IESD22                                  | 77 v                                                                                       | 168 H                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Ν                     |                                         | TA = 150℃ Vgss= 30V                                                                        |                                                                                                                                                                                                                                                 | 500 H                                                                                                                                                                                                                                                                                                           | 0/77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                       | A-100                                   |                                                                                            | 1 101                                                                                                                                                                                                                                           | 1000 H                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                       | IESD22                                  | $1\Delta - 1509$                                                                           | 77 v                                                                                                                                                                                                                                            | 168 H                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Ν                     |                                         |                                                                                            |                                                                                                                                                                                                                                                 | 500 H                                                                                                                                                                                                                                                                                                           | 0/77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                       | 71 100                                  |                                                                                            | 0 1013                                                                                                                                                                                                                                          | 1000 H                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                       | JESD22 Ta=85℃ Rh=85%,<br>A-101 Vdd=100V | 77 v                                                                                       | 168 H                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| N                     |                                         |                                                                                            | 1 lot                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                 | 0/77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                       |                                         |                                                                                            |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                       |                                         |                                                                                            |                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| N                     | JESD22<br>A-104                         | TA=-65℃ TO 150℃<br>(1 HOUR/CYCLE)                                                          | 77 x<br>1 lot                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                               | 0/77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                       |                                         |                                                                                            |                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                       | _                                       |                                                                                            |                                                                                                                                                                                                                                                 | 1000 cy                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| N                     | _                                       | ΔTc=+105℃                                                                                  | 20 x<br>1 lot                                                                                                                                                                                                                                   | 5K cy                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                       |                                         |                                                                                            |                                                                                                                                                                                                                                                 | 10K cv                                                                                                                                                                                                                                                                                                          | 0/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                       |                                         |                                                                                            |                                                                                                                                                                                                                                                 | TOIL Cy                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| N                     |                                         | TA=121℃ – PA=2 ATM                                                                         |                                                                                                                                                                                                                                                 | 96 H                                                                                                                                                                                                                                                                                                            | 0/77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                       | Z                                       | N JESD22 A-108  N JESD22 A-103  N JESD22 A-101  N JESD22 A-101  N Mil-STD 750D Method 1037 | N JESD22 A-108 T.A.=150℃ Vdss=480V  N JESD22 A-108 TA = 150℃ Vgss= 30V  N JESD22 A-103 TA = 150℃  N JESD22 A-101 Ta=85℃ Rh=85%, Vdd=100V  N JESD22 A-101 TA=-65℃ TO 150℃ (1 HOUR/CYCLE)  N Mil-STD 750D ΔTc=+105℃  N JESD22 TA=-121℃ - PA=2 ATM | N JESD22 TA=150°C Vdss=480V 77 x 1 lot  N JESD22 TA = 150°C Vgss= 30V 77 x 1 lot  N JESD22 TA = 150°C Vgss= 30V 77 x 1 lot  N JESD22 TA=85°C Rh=85%, 77 x 1 lot  N JESD22 TA=65°C TO 150°C 77 x 1 lot  N JESD22 TA=65°C TO 150°C 77 x 1 lot  N Mil-STD 750D ΔTc=+105°C 1 lot  N JESD22 TA=121°C = PA=2 ΔTM 77 x | N JESD22 A-108  TA = 150°C Vdss=480V  N JESD22 A-108  TA = 150°C Vgss=30V  TA = 150°C  TA = |  |

#### Lot. 5 - D.U.T.: STU60N3LH5 LINE: 5H33 PACKAGE: IPAK

| РС                                 | Std ref.        | Conditions                                                                                                 | SS                          | Steps                                                                                                                                                                                                                                                                               | Failure/SS                                                                                                                                                                                                                                                                         |  |
|------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                    |                 |                                                                                                            |                             | •                                                                                                                                                                                                                                                                                   | Lot 4                                                                                                                                                                                                                                                                              |  |
|                                    | IESDaa          |                                                                                                            | 77 v                        | 168 H                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                    |  |
| Ν                                  |                 | T.A.=175℃ Vdss=24V                                                                                         |                             | 500 H                                                                                                                                                                                                                                                                               | 0/77                                                                                                                                                                                                                                                                               |  |
|                                    | A-100           |                                                                                                            | 1 101                       | 1000 H                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                    |  |
|                                    | IECDOO          |                                                                                                            | 77 v                        | 168 H                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                    |  |
| Ν                                  |                 | TA = 150℃ Vgss= 20V                                                                                        |                             | 500 H                                                                                                                                                                                                                                                                               | 0/77                                                                                                                                                                                                                                                                               |  |
|                                    | A-106           |                                                                                                            | 1 101                       | 1000 H                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                    |  |
|                                    | IECDOO          |                                                                                                            | 77 v                        | 168 H                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                    |  |
| Ν                                  |                 | TA = 175℃                                                                                                  | 3 lots                      | 500 H                                                                                                                                                                                                                                                                               | 0/77                                                                                                                                                                                                                                                                               |  |
|                                    | A-103           |                                                                                                            |                             | 1000 H                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                    |  |
| N                                  | JESD22<br>A-101 | Ta=85℃ Rh=85%,<br>Vdd=30V                                                                                  | 77 x<br>1 lot               | 168 H                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                    |  |
|                                    |                 |                                                                                                            |                             | 500 H                                                                                                                                                                                                                                                                               | 0/77                                                                                                                                                                                                                                                                               |  |
|                                    |                 |                                                                                                            |                             | 1000 H                                                                                                                                                                                                                                                                              | ı                                                                                                                                                                                                                                                                                  |  |
|                                    |                 |                                                                                                            |                             | 100 cy                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                    |  |
| N                                  | JESD22<br>A-104 | TA=-65℃ TO 150℃<br>(1 HOUR/CYCLE)                                                                          | 77 x<br>1 lot               | 200 cy                                                                                                                                                                                                                                                                              | 0/77                                                                                                                                                                                                                                                                               |  |
|                                    |                 |                                                                                                            |                             | 500 cy                                                                                                                                                                                                                                                                              | 0/11                                                                                                                                                                                                                                                                               |  |
|                                    |                 |                                                                                                            |                             | 1000 cy                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                    |  |
|                                    | Mil-STD         |                                                                                                            | 20 v                        | 5K cy                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                    |  |
| <b>TF/IOL</b> N 750D $\Delta$ Tc=- | ΔTc=+105℃       | _                                                                                                          |                             | 0/20                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                    |  |
|                                    | Method 1037     |                                                                                                            | 1 101                       | TUK CY                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                    |  |
| N                                  | JESD22          | TA=121℃ – PA=2 ATM                                                                                         | 77 x                        | 96 H                                                                                                                                                                                                                                                                                | 0/77                                                                                                                                                                                                                                                                               |  |
|                                    | X               | N JESD22 A-108  N JESD22 A-108  N JESD22 A-103  N JESD22 A-101  N JESD22 A-101  N Mil-STD 750D Method 1037 | N JESD22 TA-121C - PA-2 ATM | N JESD22 TA-108 T.A.=175℃ Vdss=24V 77 x 1 lot  N JESD22 A-108 TA = 150℃ Vgss= 20V 77 x 1 lot  N JESD22 A-103 TA = 175℃ 77 x 3 lots  N JESD22 TA-101 TA=85℃ Rh=85%, 77 x 1 lot  N JESD22 TA-65℃ TO 150℃ 77 x 1 lot  N Mil-STD 750D ΔTc=+105℃ 1 lot  N JESD22 TA-121℃ - PA-2 ATM 77 x | N JESD22 A-108 TA = 150℃ Vgss= 20V T7 x 1 lot 1000 H 1000 Cy A-104 T50D |  |





## **6 ANNEXES 6.0**

## **6.1Tests Description**

| Test name                                              | Description                                                                                                                                                               | Purpose                                                                                                                                                                                                                                                                                                                               |  |  |  |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| HTRB High Temperature Reverse Bias HTGB                | The device is stressed in static configuration, trying to satisfy as much as possible the following conditions:  • low power dissipation;                                 | To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way.  To maximize the electrical field across either                                                                                                                    |  |  |  |
| High Temperature<br>Forward (Gate)<br>Bias             | <ul> <li>max. supply voltage compatible with<br/>diffusion process and internal circuitry<br/>limitations;</li> </ul>                                                     | reverse-biased junctions or dielectric layers, in order to investigate the failure modes linked to mobile contamination, oxide ageing, layout sensitivity to surface effects.                                                                                                                                                         |  |  |  |
| HTSL High Temperature Storage Life                     | The device is stored in unbiased condition at the max. temperature allowed by the package materials, sometimes higher than the max. operative temperature.                | To investigate the failure mechanisms activated<br>by high temperature, typically wire-bonds solder<br>joint ageing, data retention faults, metal stress-<br>voiding.                                                                                                                                                                 |  |  |  |
| AC Auto Clave (Pressure Pot)                           | The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.                                                                  | To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.                                                                                                                                                                                                     |  |  |  |
| TC<br>Temperature<br>Cycling                           | The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.                                                             | To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation. |  |  |  |
| TF / IOL Thermal Fatigue / Intermittent Operating Life | The device is submitted to cycled temperature excursions generated by power cycles (ON/OFF) at T ambient.                                                                 | To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation. |  |  |  |
| H3TRB<br>Temperature<br>Humidity Bias                  | The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity. | To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.                                                                                                                                                                                              |  |  |  |
| PC<br>Preconditioning                                  | The device is submitted to a typical temperature profile used for surface mounting devices, after a controlled moisture absorption.                                       | To verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.                                                                                                                                                               |  |  |  |

#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time. without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2012 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morroco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

47/