FOR USE AS LAMP, RELAY, OR MOS DRIVERS

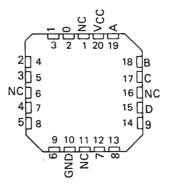
- Low-Voltage Version of SN54LS145/ SN74LS145
- Full Decoding of Input Logic
- SN74LS445 Has 80-mA Sink-Current Capability
- All Outputs Are Off for Invalid BCD Input Conditions
- Low Power Dissipation . . . 35 mW Typical

logic

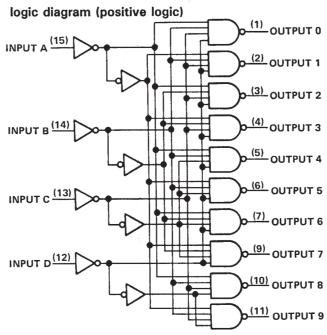
FUNCTION TABLE

NO.	INPUTS							0	UTF	UT	S			
NO.	D	С	В	Α	0	1	2	3	4	5	6	7	8	9
0	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	н
1	L	L	L	н	Н	L	Н	Н	Н	Н	Н	Н	Н	н
2	L	L	Н	L	Н	Н	L	Н	Н	н	Н	Н	Н	н
3	Ļ	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	н
4	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н	Н	Н
5	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	н
6	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	н
7	L	Н	Н	Н	н	Н	Н	Н	Н	Н	Н	L	Н	н
8	Н	L	L	L	н	Н	Н	Н	Н	Н	Н	Н	L	н
9	Н	L	L	Н	н	Н	Н	Н	Н	Н	Н	Н	Н	L
	Н	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	Н
1 5	Н	Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
INVALID	Н	Н	L	Н	н	Н	Н	Н	Н	Н	н	Н	Н	Н
=	н	Н	Н	L	н	Н	Н	Н	Н	Н	Н	Н	Н	Н
	н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н

H = high level (off), L = low level (on)


description

These monolithic BCD-to-decimal decoder/drivers consist of eight inverters and ten four-input NAND gates. The inverters are connected in pairs to make BCD input data available for decoding by the NAND gates. Full decoding of valid BCD input logic ensures that all outputs remain off for all invalid binary input conditions. These decoders feature high-performance, n-p-n output transistors designed for use as indicator/ relay drivers or as open-collector logic-circuit drivers. Each of the output transistors will sink up to 80 milliamperes of current. Each input is one Series 54LS/ 74LS standard load. Inputs and outputs are entirely compatible for use with TTL logic circuits, and the outputs are compatible for interfacing with most MOS integrated circuits. Power dissipation is typically 35 milliwatts.


SN54LS445 . . . J PACKAGE SN74LS445 . . . D OR N PACKAGE (TOP VIEW)

0[1	U ₁₆	□vcc
1[2	15] A
2[3	14	В
3□	4	13] c
4[5	12] D
5[6	11] 9
6[7	10	□8
GND[8	9] 7

SN54LS445 . . . FK PACKAGE
(TOP VIEW)

NC - No internal connection

Pin numbers shown are for D, J, and N packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)		7 V
nput voltage		7 V
Operating free-air temperature range:	SN54LS445	
	SN74LS445	0°C to 70°C
Storage temperature range		-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

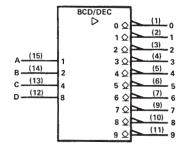
recommended operating conditions

	SI	SN54LS445			SN74LS445		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
Off-state output voltage, VO(off)			7			7	V
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS†		SN54LS445			SN74LS445			
		1EST CONT	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT	
V_{IH}	High-level input voltage			2			2			V
VIL	Low-level input voltage					0.7			0.8	V
VIK	Input clamp voltage	VCC = MIN,	I _I = -18 mA			-1.5			-1.5	V
IO(off)	Off-state output current	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{iH} = 2 V, V _{OH} = 7 V			250			250	μА
	On-state output voltage	VCC = MIN,	I _{OL} = 12 mA		0.25 0.4			0.25	0.4	
VO(on)		V _{IH} = 2 V,	I _{OL} = 24 mA					0.35	0.5	1 v
		VIL = VIL max	I _{OL} = 80 mA					2.3	3	1
Ц	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 7 V			0.1			0.1	mA
ΉΗ	High-level input current	V _{CC} = MAX,	V ₁ = 2.7 V			20			20	μА
11L	Low-level input current	V _{CC} = MAX,	V ₁ = 0.4 V			-0.4			-0.4	mA
Icc	Supply current	V _{CC} = MAX,	See Note 2		. 7	13		7	13	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.


NOTE 2: ICC is measured with all inputs grounded and outputs open.

switching characteristics, VCC = 5 V, TA = 25°C

	PARAMETER		TEST CONDITI	ONS	MIN	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output	C ₁ = 45 pF,	$R_1 = 665 \Omega$.	See Note 3		50	ns
^t PHL	Propagation delay time, high-to-low-level output	CL - 45 pr,	uf - 002 11'	000 11010 0		50	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

logic symbol†

[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, and N packages.

schematic of inputs and outputs

 $^{^{\}ddagger}$ All typical values are at V_{CC} = 5 V, T_{A} = 25°C.

ti.com 24-Jun-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN74LS445D	OBSOLETE	SOIC	D	16	TBD	Call TI	Call TI
SN74LS445N	OBSOLETE	PDIP	N	16	TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in

a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated