

NTE74195 Integrated Circuit TTL – 4-Bit Parallel Access Shift Register

Description:

The NTE74195 is a 4-bit parallel access shift register in a 16-Lead plastic DIP type package and features parallel inputs, parallel outputs, $J-\overline{K}$ serial inputs, shift/load control input, and a direct overriding clear. All inputs are buffered to lower the input drive requirements. The register has two distinct modes of operation:

Parallel (Broadside) Load Shift (in the direction Q_A toward Q_D)

Parallel loading is accomplished by applying the four bits of data and taking the shift/load control input low. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input.

Shifting is accomplished synchronously when the shift/load control input is high. Serial data for this mode is entered at the $J-\overline{K}$ inputs. These inputs permit the first stage to perform as a $J-\overline{K}$, D-, or T- type flip-flop as shown in the function table.

Features:

- Synchronous Parallel Load
- Positive Edge–Triggered Clock
- Parallel Inputs and Outputs from Each Flip-Flop
- Direct Overriding Clear
- J and K Inputs to First Stage
- Complementary Outputs from Last Stage

Applications:

- Accumulators/Processors
- Serial-to-Parallel, Parallel-to-Serial Converter

Absolute Maximum Ratings: (Note 1)

Supply Voltage, V _{CC}	7V
DC Input Voltage, V _{IN}	5.5V
Power Dissipation, P _D	195mW
Operating Temperature Range, T _A	0°C to +70°C
Storage Temperature Range, T _{stq}	-65°C to +150°C

Note 1. Unless otherwise specified, all voltages are referenced to GND.

Recommended Operating Conditions:

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{CC}	4.75	5.0	5.25	V
High-Level Output Current	I _{OH}	-	_	-800	μΑ
Low-Level Output Current	I _{OL}	-	_	16	mA
Clock Frequency	f _{clock}	0	_	30	MHz
Width of Clock or Clear Pulse	t _{w(clock)}	16	_	_	ns
Width of Clear Input Pulse	t _{w(clear)}	12	_	_	ns
Shift/Load Setup Time	t _{su}	25	_	_	ns
Serial and Parallel Data Setup Time	t _{su}	20	_	_	ns
Clear Inactive-State Setup Time	t _{su}	25	_	_	ns
Shift/Load Release Time	t _{release}	-	_	10	ns
Serial and Parallel Data Hold Time	t _h	0	_	_	ns
Operating Temperature Range	T _A	0	_	+70	°C

Electrical Characteristics: (Note 2, Note 3)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
High-Level Input Voltage	V _{IH}		2	_	_	V
Low-Level Input Voltage	V_{IL}		-	_	0.8	V
Input Clamp Voltage	V_{IK}	V _{CC} = MIN, I _I = -12mA	_	_	-1.5	V
High Level Output Voltage	V _{OH}	V_{CC} = MIN, V_{IH} = 2V, V_{IL} = 0.8V, I_{OH} = -800 μ A	2.4	3.4	_	V
Low Level Output Voltage	V_{OL}	$V_{CC} = MIN, V_{IH} = 2V, V_{IL} = 0.8V, I_{OL} = 16mA$	_	0.2	0.4	V
Input Current	l _l	V _{CC} = MAX, V _I = 5.5V	_	_	1	mA
High Level Input Current	I _{IH}	V _{CC} = MAX, V _I = 2.4V	_	_	40	μΑ
Low Level Input Current	Ι _{ΙL}	V _{CC} = MAX, V _I = 0.4V	_	_	-1.6	mA
Short-Circuit Output Current	Ios	V _{CC} = MAX, Note 4	-18	_	-57	mA
Supply Current	I _{CC}	V _{CC} = MAX, Note 5	_	39	63	mA

- Note 2. .For conditions shown as MIN or MAX, use the appropriate value specified under "Recommended Operation Conditions".
- Note 3. All typical values are at $V_{CC} = 5V$, $T_A = +25$ °C.
- Note 4. Not more than one output should be shorted at a time and duration of short-circuit should not exceed one second.
- Note 5. With all outputs open, shift/load grounded, and 4.5V applied to the J, \overline{K} , and data inputs, I_{CC} is measured by applying a momentary GND, followed by 4.5V to clear and then applying a momentary ground, followed by 4.5V to clock.

<u>Switching Characteristics</u>: $(V_{CC} = 5V, T_A = +25^{\circ}C \text{ unless otherwise specified})$

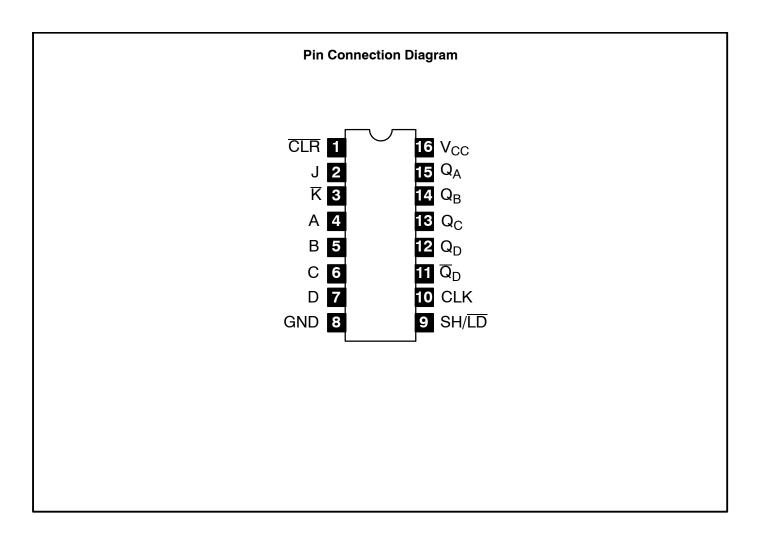
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Clock Frequency	f _{max}	$R_L = 400\Omega, C_L = 15pF$	30	39	-	MHz
Propagation Delay Time (from Clear)	t _{PHL}		-	19	30	ns
Propagation Delay Time (from Clock)	t _{PLH}		-	14	22	ns
	t _{PHL}		-	17	26	ns

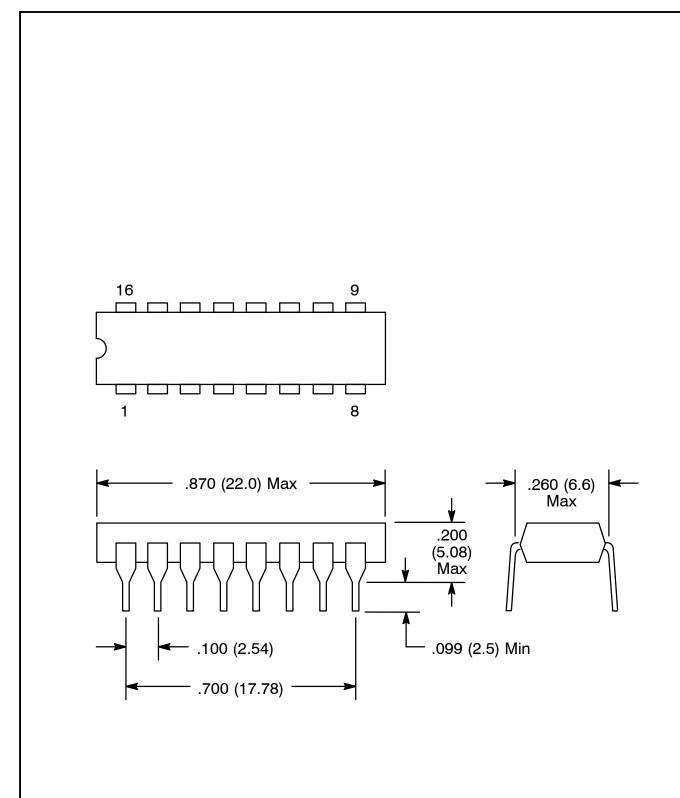
Function Table:

Inputs									(Outputs	3		
	Shift/		Se	rial	Parallel								
Clear	Load	Clock	J	K	Α	В	С	D	Q_A	Q_B	Q_{C}	Q_D	\overline{Q}_{D}
L	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	L	L	L	L	Н
Н	L	1	Χ	Χ	а	b	С	d	а	b	С	d	d
Н	Н	L	Χ	Χ	Χ	Χ	Χ	Χ	Q _{A0}	Q _{B0}	Q_{C0}	Q_{D0}	\overline{Q}_{D0}
Н	Н	1	L	Н	Χ	Χ	Χ	Χ	Q _{A0}	Q_{A0}	Q_{Bn}	Q_{Cn}	\overline{Q}_{Cn}
Н	Н	1	L	L	Χ	Х	Х	Χ	L	Q_{An}	Q_{Bn}	Q _{Cn}	\overline{Q}_{Cn}
Н	Н	1	Н	Н	Χ	Χ	Χ	Χ	Н	Q_{An}	Q_{Bn}	Q_{Cn}	\overline{Q}_{Cn}
Н	Н	1	Н	L	Х	Х	Х	Χ	\overline{Q}_{An}	Q_{An}	Q_{Bn}	Q _{Cn}	\overline{Q}_{Cn}

H = HIGH Level (Steady State)

L = LOW Level (Steady State)


X = Irrelevant (Any input, including transitional)


↑ = Transition from LOW to HIGH Level

a, b, c, d = The level of steady-state input at inputs A, B, C, or D respectively

 Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} = The level of Q_A , Q_B , Q_C , or Q_D respectively, before the indicated steady-state input conditions were established

 Q_{An} , Q_{Bn} , Q_{Cn} = The level of Q_A , Q_B , Q_C respectively, before the most recent transition of the clock.

