NTE74195 Integrated Circuit TTL – 4-Bit Parallel Access Shift Register ### **Description:** The NTE74195 is a 4-bit parallel access shift register in a 16-Lead plastic DIP type package and features parallel inputs, parallel outputs, $J-\overline{K}$ serial inputs, shift/load control input, and a direct overriding clear. All inputs are buffered to lower the input drive requirements. The register has two distinct modes of operation: Parallel (Broadside) Load Shift (in the direction Q_A toward Q_D) Parallel loading is accomplished by applying the four bits of data and taking the shift/load control input low. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. Shifting is accomplished synchronously when the shift/load control input is high. Serial data for this mode is entered at the $J-\overline{K}$ inputs. These inputs permit the first stage to perform as a $J-\overline{K}$, D-, or T- type flip-flop as shown in the function table. #### Features: - Synchronous Parallel Load - Positive Edge–Triggered Clock - Parallel Inputs and Outputs from Each Flip-Flop - Direct Overriding Clear - J and K Inputs to First Stage - Complementary Outputs from Last Stage #### **Applications:** - Accumulators/Processors - Serial-to-Parallel, Parallel-to-Serial Converter #### Absolute Maximum Ratings: (Note 1) | Supply Voltage, V _{CC} | 7V | |---|-----------------| | DC Input Voltage, V _{IN} | 5.5V | | Power Dissipation, P _D | 195mW | | Operating Temperature Range, T _A | 0°C to +70°C | | Storage Temperature Range, T _{stq} | -65°C to +150°C | Note 1. Unless otherwise specified, all voltages are referenced to GND. ## **Recommended Operating Conditions:** | Parameter | Symbol | Min | Тур | Max | Unit | |-------------------------------------|-----------------------|------|-----|------|------| | Supply Voltage | V _{CC} | 4.75 | 5.0 | 5.25 | V | | High-Level Output Current | I _{OH} | - | _ | -800 | μΑ | | Low-Level Output Current | I _{OL} | - | _ | 16 | mA | | Clock Frequency | f _{clock} | 0 | _ | 30 | MHz | | Width of Clock or Clear Pulse | t _{w(clock)} | 16 | _ | _ | ns | | Width of Clear Input Pulse | t _{w(clear)} | 12 | _ | _ | ns | | Shift/Load Setup Time | t _{su} | 25 | _ | _ | ns | | Serial and Parallel Data Setup Time | t _{su} | 20 | _ | _ | ns | | Clear Inactive-State Setup Time | t _{su} | 25 | _ | _ | ns | | Shift/Load Release Time | t _{release} | - | _ | 10 | ns | | Serial and Parallel Data Hold Time | t _h | 0 | _ | _ | ns | | Operating Temperature Range | T _A | 0 | _ | +70 | °C | ### **Electrical Characteristics**: (Note 2, Note 3) | Parameter | Symbol | Test Conditions | Min | Тур | Max | Unit | |------------------------------|-----------------|---|-----|-----|------|------| | High-Level Input Voltage | V _{IH} | | 2 | _ | _ | V | | Low-Level Input Voltage | V_{IL} | | - | _ | 0.8 | V | | Input Clamp Voltage | V_{IK} | V _{CC} = MIN, I _I = -12mA | _ | _ | -1.5 | V | | High Level Output Voltage | V _{OH} | V_{CC} = MIN, V_{IH} = 2V, V_{IL} = 0.8V, I_{OH} = -800 μ A | 2.4 | 3.4 | _ | V | | Low Level Output Voltage | V_{OL} | $V_{CC} = MIN, V_{IH} = 2V, V_{IL} = 0.8V, I_{OL} = 16mA$ | _ | 0.2 | 0.4 | V | | Input Current | l _l | V _{CC} = MAX, V _I = 5.5V | _ | _ | 1 | mA | | High Level Input Current | I _{IH} | V _{CC} = MAX, V _I = 2.4V | _ | _ | 40 | μΑ | | Low Level Input Current | Ι _{ΙL} | V _{CC} = MAX, V _I = 0.4V | _ | _ | -1.6 | mA | | Short-Circuit Output Current | Ios | V _{CC} = MAX, Note 4 | -18 | _ | -57 | mA | | Supply Current | I _{CC} | V _{CC} = MAX, Note 5 | _ | 39 | 63 | mA | - Note 2. .For conditions shown as MIN or MAX, use the appropriate value specified under "Recommended Operation Conditions". - Note 3. All typical values are at $V_{CC} = 5V$, $T_A = +25$ °C. - Note 4. Not more than one output should be shorted at a time and duration of short-circuit should not exceed one second. - Note 5. With all outputs open, shift/load grounded, and 4.5V applied to the J, \overline{K} , and data inputs, I_{CC} is measured by applying a momentary GND, followed by 4.5V to clear and then applying a momentary ground, followed by 4.5V to clock. # <u>Switching Characteristics</u>: $(V_{CC} = 5V, T_A = +25^{\circ}C \text{ unless otherwise specified})$ | Parameter | Symbol | Test Conditions | Min | Тур | Max | Unit | |-------------------------------------|------------------|-------------------------------|-----|-----|-----|------| | Maximum Clock Frequency | f _{max} | $R_L = 400\Omega, C_L = 15pF$ | 30 | 39 | - | MHz | | Propagation Delay Time (from Clear) | t _{PHL} | | - | 19 | 30 | ns | | Propagation Delay Time (from Clock) | t _{PLH} | | - | 14 | 22 | ns | | | t _{PHL} | | - | 17 | 26 | ns | #### **Function Table:** | Inputs | | | | | | | | | (| Outputs | 3 | | | |--------|--------|-------|----|------|----------|---|---|---|---------------------|-----------------|----------|-----------------|---------------------| | | Shift/ | | Se | rial | Parallel | | | | | | | | | | Clear | Load | Clock | J | K | Α | В | С | D | Q_A | Q_B | Q_{C} | Q_D | \overline{Q}_{D} | | L | Χ | Х | Χ | Χ | Χ | Χ | Χ | Χ | L | L | L | L | Н | | Н | L | 1 | Χ | Χ | а | b | С | d | а | b | С | d | d | | Н | Н | L | Χ | Χ | Χ | Χ | Χ | Χ | Q _{A0} | Q _{B0} | Q_{C0} | Q_{D0} | \overline{Q}_{D0} | | Н | Н | 1 | L | Н | Χ | Χ | Χ | Χ | Q _{A0} | Q_{A0} | Q_{Bn} | Q_{Cn} | \overline{Q}_{Cn} | | Н | Н | 1 | L | L | Χ | Х | Х | Χ | L | Q_{An} | Q_{Bn} | Q _{Cn} | \overline{Q}_{Cn} | | Н | Н | 1 | Н | Н | Χ | Χ | Χ | Χ | Н | Q_{An} | Q_{Bn} | Q_{Cn} | \overline{Q}_{Cn} | | Н | Н | 1 | Н | L | Х | Х | Х | Χ | \overline{Q}_{An} | Q_{An} | Q_{Bn} | Q _{Cn} | \overline{Q}_{Cn} | H = HIGH Level (Steady State) L = LOW Level (Steady State) X = Irrelevant (Any input, including transitional) ↑ = Transition from LOW to HIGH Level a, b, c, d = The level of steady-state input at inputs A, B, C, or D respectively Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} = The level of Q_A , Q_B , Q_C , or Q_D respectively, before the indicated steady-state input conditions were established Q_{An} , Q_{Bn} , Q_{Cn} = The level of Q_A , Q_B , Q_C respectively, before the most recent transition of the clock.