

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

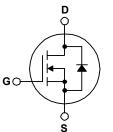
ON Semiconductor®

N-Channel SuperFET[®] III MOSFET 650 V, 24 A, 125 m Ω

FCPF125N65S3

Features

- 700 V @ T_J = 150 °C
- Typ. R_{DS(on)} = 105 mΩ
- Ultra Low Gate Charge (Typ. Q_g = 44 nC)
- Low Effective Output Capacitance (Typ. C_{oss(eff.)} = 405 pF)
- 100% Avalanche Tested
- RoHS Compliant


Applications

- Computing / Display Power Supplies
- Telecom / Server Power Supplies
- Industrial Power Supplies

SuperFET[®] III MOSFET is ON Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This advanced technology is tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate. Consequently, SuperFET III MOSFET is very suitable for various power system for miniaturization and higher efficiency.

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol		FCPF125N65S3	Unit			
V _{DSS}	Drain to Source Voltage			650	V	
V _{GSS}		- DC		±30	V	
	Gate to Source Voltage	- AC	(f > 1 Hz)	±30	V	
ID	Drain Current	- Continuous (T _C = 25 ^o C)		24*	^	
	Drain Current	- Continuous (T _C = 100 ^o C)		15*	A	
I _{DM}	Drain Current	- Pulsed	(Note 1)	60*	Α	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)			115	mJ	
I _{AS}	Avalanche Current (Note 1)			3.7	Α	
E _{AR}	Repetitive Avalanche Energy (Note 1)			0.38	mJ	
dv/dt	MOSFET dv/dt			100	V/ns	
	Peak Diode Recovery dv/dt (Note 3)			20		
P _D	Dower Dissinction	(T _C = 25°C)		38	W	
	Power Dissipation	- Derate Above 25°C		0.31	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds			300	°C	

*Drain current limited by maximum junction temperature.

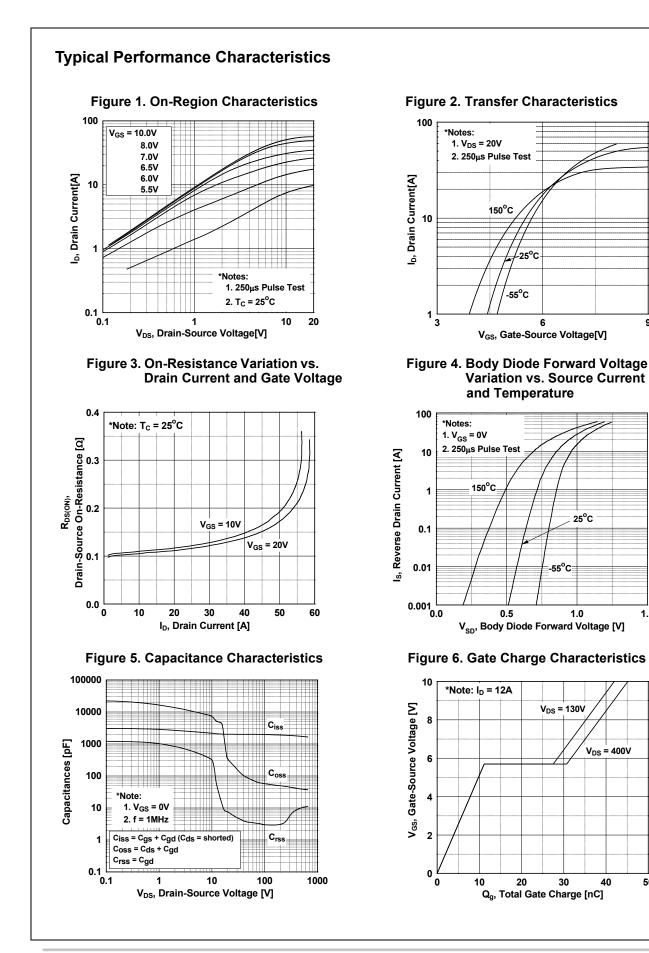
Thermal Characteristics

Symbol	Parameter	FCPF125N65S3	Unit	
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	3.24	°C/W	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient, Max.	62.5	- C/VV	

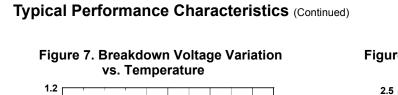
FCPF125N65S
3 N-0
Channel SuperFET [®]
III MOSFET

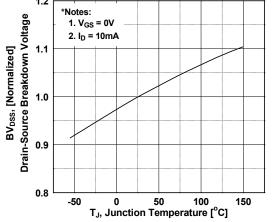
		Top Mark	Package	Packing Method	Reel Size	ə 1	Tape Width	Qu	antity
		TO-220F			N/A		50 units		
Electrica	al Chara	icteristics T _C = 25	^o C unless oth	erwise noted.					
Symbol		Parameter		Test Condition	S	Min.	Тур.	Max.	Unit
Off Chara	cteristics	i							
BV _{DSS}	Drain to Source Breakdown Voltage			V_{GS} = 0 V, I_D = 1 mA, T_J = 25°C V_{GS} = 0 V, I_D = 1 mA, T_J = 150°C		650 700	-	-	V
ΔBV _{DSS} / ΔΤ.Ι	Breakdown Voltage Temperature Coefficient			$I_D = 1$ mA, Referenced to 25°C		-	0.65	-	V/ºC
	Zero Gate Voltage Drain Current		VD	$V_{DS} = 650 V, V_{GS} = 0 V$ $V_{DS} = 520 V, T_{C} = 125^{\circ}C$		-	-	1	1 - μA
DSS			VD			-	1.29	-	
I _{GSS}	Gate to Body Leakage Current			V_{GS} = ±30 V, V_{DS} = 0 V			-	±100	nA
On Chara	cteristics								
V _{GS(th)}	Gate Threshold Voltage			$V_{GS} = V_{DS}, I_{D} = 2.4 \text{ mA}$		2.5	-	4.5	V
R _{DS(on)}	Static Drain to Source On Resistance			$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 12 \text{ A}$		-	105	125	mΩ
9FS	Forward Transconductance			$V_{\rm DS} = 20 \text{ V}, \text{ I}_{\rm D} = 12 \text{ A}$			16	-	S
	Character	ristics							1
	Characteristics Input Capacitance V _{DS} = 400 V, V _{CS} = 0 V,					_	1790	_	pF
C _{oss}	Output Capacitance			$V_{DS} = 400 V, V_{GS} = 0 V,$ f = 1 MHz $V_{DS} = 0 V \text{ to } 400 V, V_{GS} = 0 V$			40	_	pF
	Effective Output Capacitance					_	405		pF
Coss(eff.)	Energy Related Output Capacitance			$V_{\rm DS} = 0 V \text{ to } 400 V, V_{\rm GS} = 0 V$ $V_{\rm DS} = 0 V \text{ to } 400 V, V_{\rm GS} = 0 V$		_	60	_	pF
C _{oss(er.)}		e Charge at 10V			0 0	-	44	_	nC
Q _{g(tot)} Q _{gs}		ource Gate Charge		_{DS} = 400 V, I _D = 12 A, _{DS} = 10 V	_	-	12	_	nC
Q _{gd}		Prain "Miller" Charge	• (.		(Note 4)		12	-	nC
ESR		nt Series Resistance	f =	1 MHz	. ,	-	4	_	Ω
			•						
Switching		Delay Time				-	22		ne
t _{d(on)}		Rise Time	Va	_D = 400 V, I _D = 12 A,		-	22	-	ns
t _r		Delay Time		$V_{GS} = 10 \text{ V}, \text{ R}_{g} = 4.7 \Omega$		-	60	-	ns ns
t _{d(off)} t _f	Turn-Off F			g g	(Nata 4)	-	15	-	ns
					(Note 4)	-	15	_	115
	1	e Characteristics				-	1 1		
l _S		Continuous Source to I					-	24	A
I _{SM}		Pulsed Source to Drain	I.			-	-	60	A
V _{SD}		Source Diode Forward V	-	$_{\rm S} = 0 \text{ V}, \text{ I}_{\rm SD} = 12 \text{ A}$		-	-	1.2	V
t _{rr}		Recovery Time		_S = 0 V, I _{SD} = 12 A, //dt = 100 A/μs	F	-	362	-	ns
Q _{rr}	Reverse F	Recovery Charge	ur	/ut = 100 A/µs		-	6.36	-	μC

9


1.5

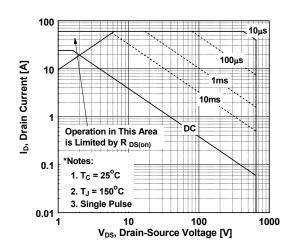
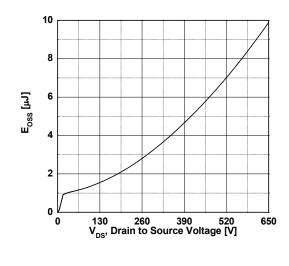
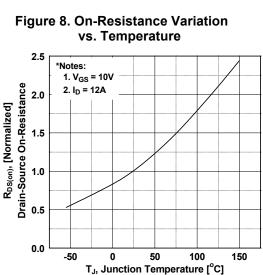
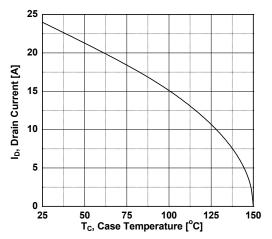
50

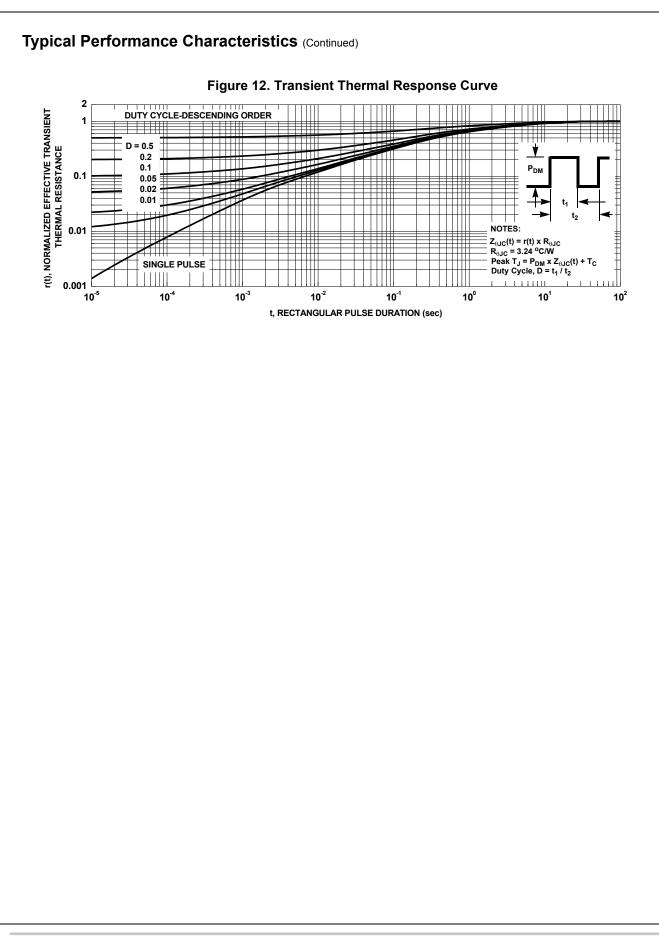

V_{DS} = 400V

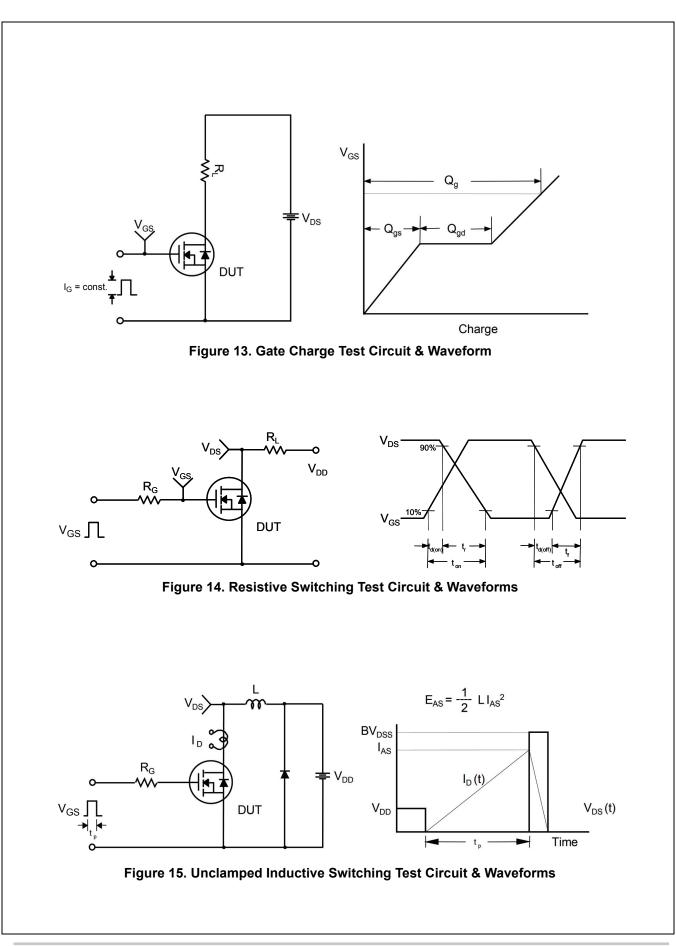

40

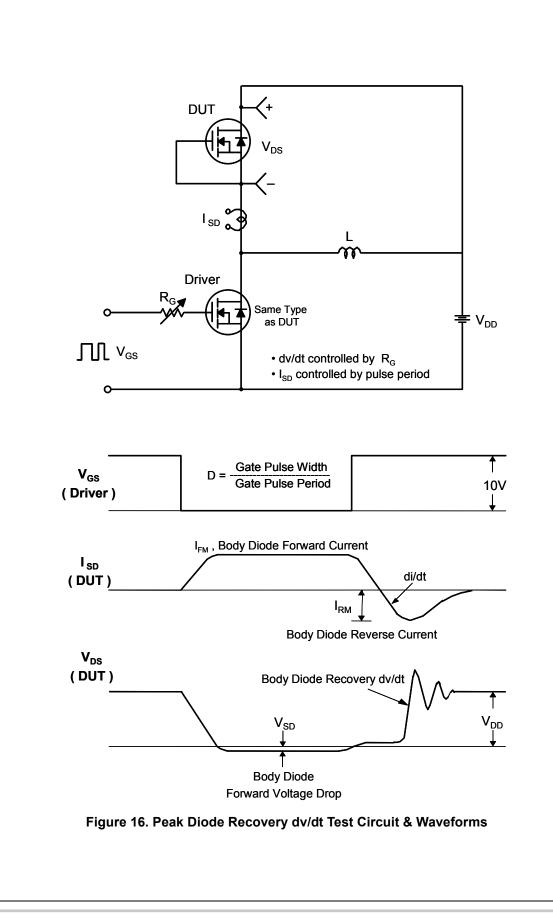
25°C

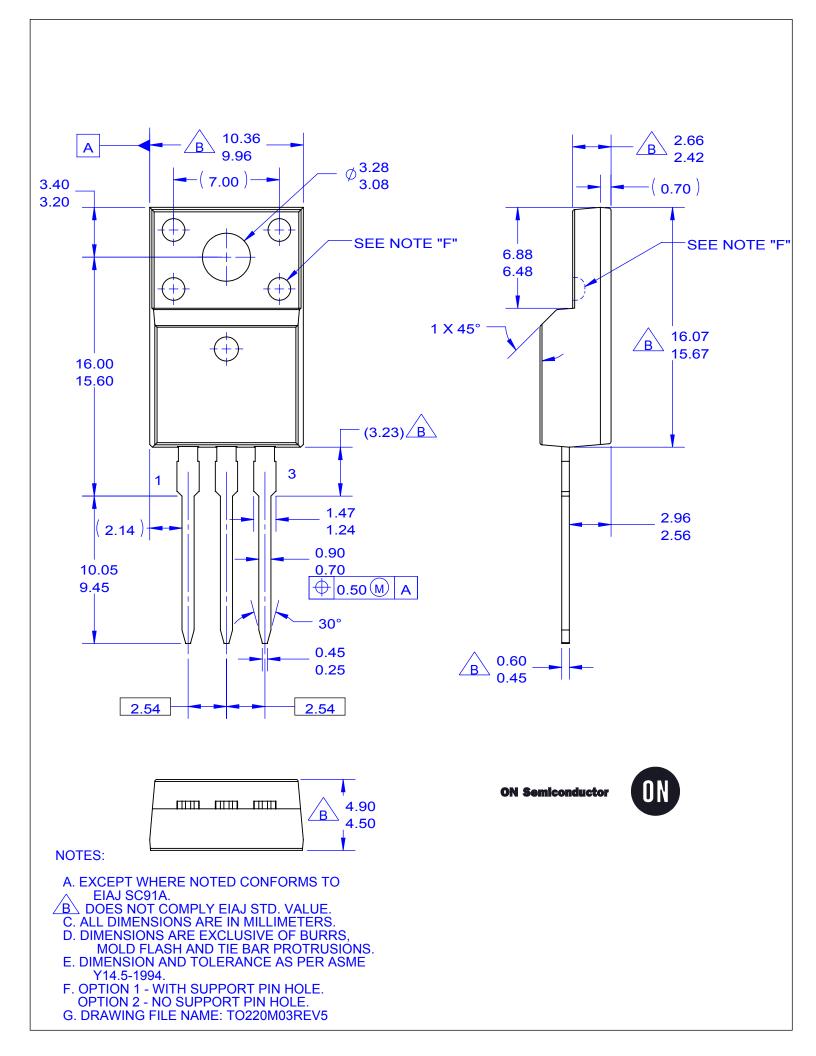
www.onsemi.com


Figure 11. Eoss vs. Drain to Source Voltage







FCPF125N65S3 — N-Channel SuperFET[®] III MOSFET

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC