PRODUCT / PROCESS CHANGE NOTIFICATION

	1. PCN basic data			
1.1 Company	577	STMicroelectronics International N.V		
1.2 PCN No.		IPD/15/9476		
1.3 Title of PCN		Introduction of Junction Capacity for L78 Standard Voltage Regulator Family in HBIP40 Technology		
1.4 Product Category		Standard Voltage Regulators		
1.5 Issue date		2015-11-05		

2. PCN Team		
2.1 Contact supplier		
2.1.1 Name	SETTLES JEFF	
2.1.2 Phone	+44 1628896222	
2.1.3 Email	jeff.settles@st.com	
2.2 Change responsibility		
2.2.1 Product Manager	Lorenzo NASO	
2.1.2 Marketing Manager	Antonio RIVIERA	
2.1.3 Quality Manager	Paolo MORETTI	

3. Change		
3.1 Category	3.2 Type of change	3.3 Manufacturing Location
	Active element design change with no product functionality or reliability impact	AMK Singapore

4. Description of change			
	Old	New	
4.1 Description	HBIP40 Technology	HBIP40 Technology with Junction Capacitor	
4.2 Anticipated Impact on form,fit, function, quality, reliability or processability?	Quality improvement. No changes of the Electrical Characteristics.		

5. Reason / motivation for change	
	Following Divisional Commitments towards a continuous improvement philosophy, we have replaced the old Oxide Capacitor structure with the new integrated Junction Capacitor, as a consequence of an improved product quality.
5.2 Customer Benefit	QUALITY IMPROVEMENT

6. Marking of parts / traceability of change	
	The traceability of the parts assembled in the new subcontractor will be ensured by different internal codification and QA number.

7. Timing / schedule	
7.1 Date of qualification results	2015-10-26
7.2 Intended start of delivery	2016-01-26
7.3 Qualification sample available?	Upon Request

8. Qualification / Validation			
8.1 Description	REL-6088-79-W-15-LX0501-L7805CV-TO220.pdf		
8.2 Qualification report and qualification results	Available (see attachment)	Issue Date	2015-11-05

9. Attachments (additional documentations)

9476PpPrdtLst.pdf REL-6088-79-W-15-LX0501-L7805CV-TO220.pdf

10. Affected parts				
	10. 1 Current	10.2 New (if applicable)		
10.1.1 Customer Part No	10.1.2 Supplier Part No	10.1.2 Supplier Part No		
L7805ABD2T-TR	L7805ABD2T-TR			
L7805ABV	L7805ABV			
L7805ACD2T-TR	L7805ACD2T-TR			
L7805ACV	L7805ACV			
L7805CD2T-TR	L7805CD2T-TR			
	L7805CDT-TR			
L7805CP	L7805CP			
L7812ABV	L7812ABV			
L7812CD2T-TR	L7812CD2T-TR			
L7812CP	L7812CP			

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND / OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2014 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

IPD (Industrial and Power Discrete Group) **IPC (Industrial Power Conversion)**

Voltage Vregulator & Vref

Quality and Reliability

RER6088-79-GSB-2015

Reliability Report

QUALIFICATION PROCESS CHANGE FE

New DIE IN HBIP40, Capacity Change from Oxide to junction

TV: LX0501 - L7805CV - TO220 SINGLE GAUGE

General Information

Product Line LX0501

Positive Voltage Regulator **Product Description**

P/N L7805CV

IPD Product Group IPC

IND.& POWER CONV. **Product division** Voltage Vregulator & Vref

Package TO220 SG

Silicon Process technology HBIP40 Locations

Wafer fab Ang Mo Kio (Singapore)

Assembly plant

ST Shenzhen

Reliability Lab IPD Catania Reliability Lab

Reliability assessment **Pass**

DOCUMENT INFORMATION

Version	Date	Pages	Prepared by	Approved by	Comment
1.0	MAY-2015	7	Vito Gisabella Giuseppe Giacopello	Giovanni Presti	Final report

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

IPD (Industrial and Power Discrete Group)

IPC (Industrial Power Conversion)

Voltage Vregulator & Vref

Quality and Reliability

RER6088-79-GSB-2015

TABLE OF CONTENTS

1	APPL	LICABLE AND REFERENCE DOCUMENTS	.3
		SSARY	
		ABILITY EVALUATION OVERVIEW	
		OBJECTIVES	
	3.2	Conclusion	.4
4	DEVI	ICE CHARACTERISTICS	.5
	4.1	DEVICE DESCRIPTION	.5
		CONSTRUCTION NOTE	
5		TS RESULTS SUMMARY	
		TEST VEHICLE	
		TEST PLAN AND RESULTS SUMMARY	
6	ANNI	EXES	.7
	6 1	TESTS DESCRIPTION	7

IPD (Industrial and Power Discrete Group)

IPC (Industrial Power Conversion)

Voltage Vregulator & Vref

Quality and Reliability

RER6088-79-GSB-2015

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
JESD47	Stress-Test-Driven Qualification of Integrated Circuits

2 GLOSSARY

DUT	Device Under Test
SS	Sample Size

life.augmented

IPD (Industrial and Power Discrete Group)

IPC (Industrial Power Conversion)

Voltage Vregulator & Vref

Quality and Reliability

RER6088-79-GSB-2015

3 RELIABILITY EVALUATION OVERVIEW

3.1 Objectives

Following Divisional Commitments towards a continuous improvement philosophy, we have replaced the old Oxide Capacitor structure with the new integrated Junction Capacitor, as a consequence of an improved product quality.

TV: L7805CV, TO220 SG, HBIP40 (new integrated Junction Capacitor).

3.2 Conclusion

Qualification Plan requirements have been fulfilled without exception. It is stressed that reliability tests have shown that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

life.augmented

IPD (Industrial and Power Discrete Group)

IPC (Industrial Power Conversion)

Voltage Vregulator & Vref

Quality and Reliability

RER6088-79-GSB-2015

4 DEVICE CHARACTERISTICS

4.1 Device description

The L78xx series of three-terminal positive regulators is available in several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shutdown and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1 A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable

4.1 Construction note

	L7805CV-LX0501			
Wafer/Die fab. information				
Wafer fab manufacturing location	Singapore Ang Mo Kio			
Technology	HBIP40V			
Die finishing back side	Cr/NiV/Au			
Die size	1320, 1630 micron			
Passivation type	P-Vapox/Nitride			
Wafer Testing (EWS) information				
Electrical testing manufacturing location	Ang Mo Kio EWS			
Tester	ETS 300			
Assembly information				
Assembly site	Shenzhen B/E			
Package description	TO220 SG			
Molding compound	Ероху			
Frame material	Bare copper			
Die attach material	PREFORM			
Wires bonding materials/diameters	WIRE Cu D2			
Final testing information				
Testing location	Shenzhen B/E			

life.augmented

IPD (Industrial and Power Discrete Group)

IPC (Industrial Power Conversion)

Voltage Vregulator & Vref

Quality and Reliability

RER6088-79-GSB-2015

5 TESTS RESULTS SUMMARY

5.1 Test vehicle

Lot#	Package	Product Line	Comments
1	TO220 SG	LX0501	

5.2 Test plan and results summary

Test	Std ref.	Conditions	ss	Steps	Failure/SS	Note
Die Orien	ted Tests					
				168 H	0/77	
HTOL	JESD22 A-108	Tj = 125°C Vcc= +35V		500 H	0/77	
				1000 H	0/77	
				168 H	0/45	
HTSL	JESD22 A-103	Ta = 150°C		500 H	0/45	Engineering Evaluation
				1000 H	0/45	
Package C	Priented Tests					
۸.0	JESD22	Pa=2Atm / Ta=121°C		96 H	0/77	
AC	A-102	Pa=2Atm / Ta=121°C		168 H	0/77	Engineering Evaluation
				100 CY	0/77	
TC	JESD22 A-104	Ta = -65°C to 150°C		200 CY	0/77	·
				500 CY	0/77	
				168 H	0/77	
ТНВ	JESD22 A-101	Ta = 85°C, RH = 85%, Vcc1= +24V		500 H	0/77	
				1000 H	0/77	
Other Tes	ts					
ESD	ANSI/ESDA/JEDEC JS001	HBM +/- 2000V	3	Pass		
	ANSI/ESD S5.3.1	CDM 500V	3	Pass		

IPD (Industrial and Power Discrete Group)

IPC (Industrial Power Conversion)

Voltage Vregulator & Vref

Quality and Reliability

RER6088-79-GSB-2015

6 ANNEXES

6.1 Tests Description

Test name	Description	Purpose		
Die Oriented				
HTOL High Temperature Bias	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. The typical failure modes are related to, silicon degradation, wire-bonds degradation, oxide faults.		
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. temperature allowed by the package materials, sometimes higher than the max. operative temperature.	To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-voiding.		
Package Oriented				
AC Auto Clave (Pressure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.		
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermomechanical stress induced by the different thermal expansion of the materials interacting in the diepackage system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, dieattach layer degradation.		
THB Temperature Humidity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.		
Other Test				
ESD Electro Static Discharge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CDM: Charged Device Model HBM: Human Body Model	To classify the device according to his susceptibility to damage or degradation by exposure to electrostatic discharge.		