For General Purpose

2/3 Port Valve

Process Valve/Series VN

- ■The cylinder operation by external pilot air
- ■Can be operated with pressure differential zero.
- ■Wide variations

Series VNA

For controlling pneumatic systems or air-hydro circuits. A balance poppet that enables air to flow forward or backward.

Series VNB

For controlling various fluids

Can operate with a wide range of fluids, such as air, water, oil, gas, vacuum, etc., by selecting the body material and the seal material.

VQ

VDW

VX

VN□

VC

LV

PA

Series VNC

For controlling the cutting oils and coolants used in machine tools. Metal seals are used for preventing foreign matter such as cutting chips from entering.

Maximum operating pressure: 0.5MPa, 1MPa

Series VNH

For controlling the high pressure cutting oils and coolants used in machine tools.

Maximum operating pressure: 3.5MPa, 7MPa

Series VND

For steam control PTFE seal adopted With indicator (Option)

Series VN

Process Valve

,	Series					Coolant valve Series VNC		Coolant valve for high pressure Series VNH	Steam valve Series VND				
	Valve Style		N.C.	N.O.	C.O.	N.C.	N.O.	C.O.	N.C.	N.O.	N.C.	N.C.	N.O.
р	Water				_	•	•	•	_	_	_	_	_ 1
fluid	Air		•	•	•	•	•	•	_		_	_	_
	Oil		•	•	•	•	•	•	•	•	•	_	_
Applicable	Low vacuur	n (1 Torr)	_		1	•	•	•	_	_	_	_	_
ild	Coolant		_	_		_	_	_	•	•	•	_	_
A	Steam			_		_	_	_	_	_	_	•	•
		1/8	•	•	•	•	•	•	•	•	_	•	•
		1/4	•	•	•	•	•	•	•	•	_	•	•
		3/8	•	•	•	•	•	•	•	•	•	•	•
		1/2	•	•	•	•	•	•	•	•	•	•	•
	Rc(PT)	3/4	•	•	•	•	•	•	•	•	•	•	•
size	110(11)	1	•	•	•	•	•	•	•	•	•	•	•
t Si;		11/4	•	•	•	•	•	•	•	•	_	•	•
Port		11/2	•	•	•	•	•	•	•	•	_	•	•
ш.		2	•	•	•	•	•	•	•	•	_	•	•
Page		P.4.2-	·3 to P.4.	2-10	P.4.2	-11 to P.	4.2-18	P.4.2-19 t	o P.4.2-26	P.4.2-27 to P.4.2-32	P.4.2-33 to	P.4.2-40	

2 Port Valve for Flow Control **Process Valve**

Series VNB

Extensive applicable fluids The cylinder operated by

Proper selection wilh body and sealing materials permits application with a wide variety of fluids such as air, water, oil, gas and vaccum.

external pilot air

Many variations

The N.C, N.O, and C.O. types have made the screw-in styles (6A to 50A) and flanges (32F to 50F) into a series.

Air operated

External pilot solenoid

PA

4.2 - 11

Selection procedures

Fluid

- ●Refer to Table ① to check that the desired fluid is applicable.
- Select the body and sealing materials that best suit the fluid to be used.

Flow characteristics (Air and water)

- To find the flow rate of air or water, refer to the table of flow rate charactertics on page 4.2-14. Use the flow rate calculation equation to find the exact answer. Although the flow rate is the same, the operating pressure differs according to the valve size. Therefore, select the proper valve size from applicable valves.
- Refer to Table 2 to select the port size of the screw-in styles (6A to 50A) and flanges (32F to 50F).

Construction

Select the air operated or external pilot solenoid styles. Valves come in N.C. (normally closed), N.O. (normally open), C.O. (double acting), and N.C.1MPa (normally closed) types. Select the proper one according to the operating conditions.

Supply voltage and electrical entry

(External pilot solenoid)

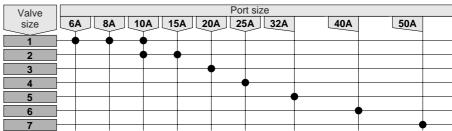
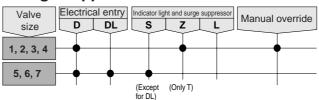

 Select AC or DC power supply, and select the proper method of electrical entry according to Table 3.

Table (1) Applicable fluid check list


Body material	ВС	6: Stand	dard	Al	Aluminum: L			inless ste		
Seal material	NBR	FPM	EPR	NBR	FPM	EPR	NBR	FPM	EPR	•
Fluid	: A	: B	L : C	J	↓ : B	: C] [: A		: C	•
Air (Standard, Dry)	-	- ∳-	+			$\overline{}$	—	—	+	
Low vaccum (1 torr)	•	- ♦-	+	—	—	_	—	—	+	
Carbon dioxide (CO ₂ , 0.7MPa or less)	-	+	+	—	-	+	—	-+	+	
Carbon dioxide (CO ₂ , 0.7 to 1MPa)		+		-		—		-	─	
Nitrogen gas (N ₂)	-	-	-	—	—	—	—	-	─	
Argon	•	•	+	—	-	_	-	-	_	
Helium		•	+	_	-	_		•	_	
Water (Standard, up to 60°C)	•	+	+	-		$\overline{}$	-		_	
Water (up to 99°C only air operated)		•	-	-		$\overline{}$		-	—	
Turbine oil	•	•		-	-		-	-	_	VX
Spindle oil		•	+		<u> </u>	_		-	_	V /\
Kerosene		•			-			•	_	VN□
Gas oil		•			•			•		VIN
Fuel oil		-	\Box		•	\neg		•	\top	VQ
Brake oil (1)		\neg	-			•			-	٧Ų
Silicone oil		1						T		\/D\\
Naphtha								T		VDW
Ethyl alcohol								7		
Ethylene glycol (up to 80°C)										VC
Boiler water							Ī			
Copper free					-	-	_	-	-	LV
A Coution										

When fluid permits application of multiple body and sealing material, select the best ones according to the ambient environment (FPM or EPR seal material for high temperature) and other conditions (corrosion resistance and viscosity). Contact SMC on other fluids, operating conditions, etc.. Note 1) Some brake oils are not allowed.

Table 2 Valve size, port size combinations

Table 3 Combination of electrical entry and light/surge voltage suppressor

VNB

How to Order Seal material **Body option** NBR seal Standard **Bracket** В FPM seal Vaccum pilot None EPR seal С S** Stainless steel body With bracket R Refer to table ① for application L** Aluminium body Only valve size 1, 2, 3, 4 * Valve size: 2 to 7 ** Threaded port only 15A VNB 2 0 Air operated 15A 1 2 VNB D Q External pilot solenoid Manual override Non-locking push style Valve size Valve style Port size Symbol Orifice Port **3**(1) Symbol size Symbol size N.C. N.C C.O. (mm) N.O. Rc(PT) 1MPa 0.5MPa 6A 1/8 1 ø7 8A 1/4 10A 3/8 ø11 10A 3/8 ø15 2 ø11 15A 1/2 ø15 ø14 20A 3 3/4 Electrical entry/Indicator light and surge voltage suppressor ø20 DIN connector ø16 4 25A DIN connector with indicator light DL ø25 ø22 . 11/4 5 32A ø32 Rated voltage ø28 6 _1 100V AC 50/60Hz 40A 11/2 ø40 2 200V AC 50/60Hz ø33 7 50A 2 3* 110V AC 50/60Hz ø50 220V AC 50/60Hz Note 1) Only air operated style 24V DC 5* 12V DC 6* 240V AC 50/60Hz 9 Less than 250 VAC and 50 VDC order Contact SMC for other voltages (9) Protective class ∆ class I (Mark: ⊕)...... DIN terminal type Table 4 Applicable pressure —Pilot pressure The pilot pressore should be within the range "A" of the 0.7 0.6 operating pressure. 0.5 Pilot pressure 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Applicable pressure (MPa)

Model

	Port	size	Orifice	Flo	w rate	Weight (kg)		
Model	Rc(PT)	Flange ⁽¹⁾	size ø (mm)	Nℓ/min	Effective area (mm²)	Air operated	External pilot solenoid	
VNB1□□□-6A	1/8	_		687.05	13			
VNB1□□□-8A	1/4	_	7	981.50	18	0.3	0.4	
VNB1□□□-10A				1275.95	23			
VNB2□4□-10A	3/8	_	11	2453.75	45			
VNB2□□□-10A			15	3729.70	70	0.6	0.7	
VNB2□4□-15A	1/2		11	2944.50	55	0.6		
VNB2□□□-15A	1 72		15	4907.50	90			
VNB3□4□-20A	3/4		14	4907.50	90	0.9	1.0	
VNB3□□-20A	94	_	20	7852.00	140	0.9	1.0	
VNB4□4□-25A	1		16	6870.50	130	1.4	1.5	
VNB4□□□-25A	'		25	11778.0	220	1.4		
VNB5□4□-32A	11/4		22	10796.50	210	2.5	2.6	
VNB5□□□-32A	174		32	17667.0	320	2.5	2.0	
VNB6□4□-40A	11/2		28	18648.50	330	4.1	4.2	
VNB6□□□-40A	172		40	27482.0	500	4.1	4.2	
VNB7□4□-50A	2		33	28463.50	520	6.3	6.4	
VNB7□□□-50A] 2		50	42204.50	770	0.3	6.4	

Symbol

Valve	N.C.	N.O.	C.O.
Style	Normally closed	Normally open	Double ading
	VNB□0 ¹ ₄	VNB□02	VNB□03
Air operated	P1 A + B	A B	P1
	VNB□1 ¹ ₄	VNB□12	
External pilot solenoid	P1 A H W	P1 A B	

Option Specifications Vacuum pilot valve VNB

(Valve size 2 to 7)

It is used when the valve is to be operated by the main vacuum in the absence of pressurized air.

Valve Specifications

Fluid	Vacuum
Pressure range	1 to 760 Torr
Pilot pressure range	1 to 400 Torr

Valve	N.C.	N.O.
Style	Normally closed	Normally open
	VNB□01□V	VNB□02□V
Air operated	P2 A H H B	P1
	VNB□11□V	VNB□12□V
External pilot solenoid	A	P1 H H A B

Valve Specifications

Fluids			Water, Oil, Air, Vaccum, etc.					
Fluid	VNE	B□□□A	−5 to 60°C ⁽¹⁾					
temperature	VNB III B		−5 to 99°C ⁽¹⁾					
temperature			(Water, oil etc. Only air operated)					
Ambient temperature			-5 to 50°C(Air operated type: 60°C) (1)					
Proof pressure			1.5MPa					
Applicable	VNE	VNB□□1□ Low vacuum to 0.5MPa						
press. range	VNB□□¾□		Low vacuum to 1MPa					
	Dress	VNB□□1□	0.25 to 0.7MPa					
External	Press.	VNB□□ ² ₃ □	0.1 to 0.5MPa See Table 4 on page P.					
pilot air	Lubr	ication	Not required (Use turbine oil No.1 (ISO VG32), if lubricated.) (2)					
	Tem	perature	−5 to 50°C (Air operated: 60°C) (1)					
<u> </u>								

 \mathcal{Q}

Note 1) No freezing Note 2) Lubrication is not allowed in case of seal material EPR.

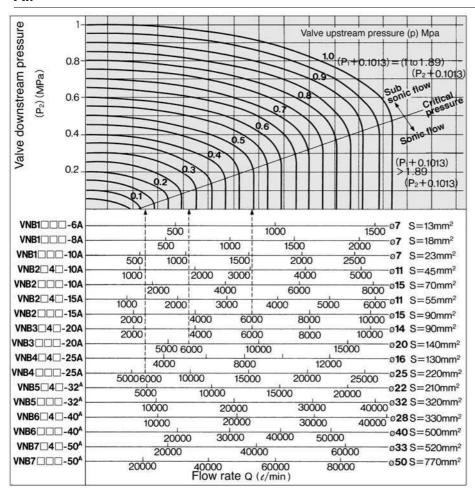
Pilot Solenoid Specifications

Port size			6A to 25A	32A to 50A		
Pilot solenoid va	Pilot solenoid valve		SF4-□□□-23 VO301□-00 □□□			
Electrical entry	ical entry DIN connector DIN connector					
Coil rated	AC (50/60Hz)	100V, 200V, C	Others (Option)		
voltage	DC		DC 24V, Others (Option)			
Allowable voltag	е		-15% to +10%o	f rated voltage		
Coil insulation	Class B or equivalent (130°C)			valent (130°C)		
Temperature ris	е		≤35°C (Application of rated voltage)	≤70°C (Application of rated voltage)		
Apparent newer	100	Inrush	5.6VA(50Hz), 5.0VA(60Hz)	12VA(50Hz), 10.5VA(60Hz)		
Apparent power	AC	Holding	3.4VA(50Hz), 2.3VA(60Hz)	7.5VA(50Hz), 6VA(60Hz)		
Power consumption	n	DC	1.8W	4.8W		
Manual override		Non-locking push style Others (Option)	Non-locking push style			

VX

VN■ VQ

VDW


VC

LV

PA

Flow Characteristics

Air

How to Read The Graph

In the sonic flow region: For a flow of 6000 (t/min) VNB4□□□ (Orifice Ø25).....P1 ≅ 0.14MPa VNB4□□□ (Orifice Ø20).....P1 ≅ 0.28MPa VNB4□□□ (Orifice Ø15).....P1 ≅ 0.5MPa

How to Calculate Flow

<Air and other gases>

1) Equation in the domain of subsonic flow

Calculation by Cv factor

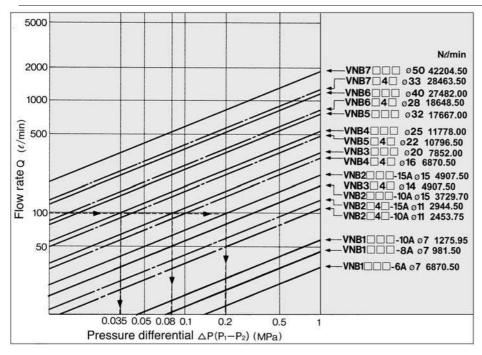
$$\begin{array}{c} Q{=}4080 \cdot Cv \cdot \sqrt{\frac{\Delta P(P2{+}0.1013)}{G}} \cdot \sqrt{\frac{273}{273{+}\theta}} \\ \qquad \cdots \quad \ell \ /min \ (ANR) \end{array}$$

· Calculation by effective area

$$Q = 226 \cdot S \cdot \sqrt{\frac{\Delta P(P2+0.1013)}{G}} \cdot \sqrt{\frac{273}{273+\theta}}$$

$$\cdots \cdot \ell / min (ANR)$$

2 Equation in the domain of sonic flow


Calculation by Cv factor

Q=2040·Cv·(P1+0.1013)
$$\frac{1}{\sqrt{G}} \cdot \sqrt{\frac{273}{273+\theta}}$$

...... ℓ /min (ANR)

· Calculation by effective area

$$\begin{array}{l} Q {=} 113 {\cdot} S {\cdot} (P1 {+} 0.1013) \frac{1}{\sqrt{G}} {\cdot} \sqrt{\frac{273}{273 {+} \theta}} \\ {\cdots} {\cdots} \ \ell \ / min \ (ANR) \end{array}$$

Water

How to Read The Graph

In case of a flow of 100 d/min:

VNB4□□□ (Orifice Ø25).....△P to 0.035MPa

VNB4□□□ (Orifice Ø20).....△P to 0.08MPa

VNB4□□□ (Orifice Ø15).....△P to 0.2MPa

How to Calculate Flow

Calculation by Cv factor

Q=14.2·Cv·
$$\sqrt{\frac{10.2\Delta P}{G}}$$
 ℓ /min

· Calculation by effective area

Q=0.8·S·
$$\sqrt{\frac{10.2\Delta P}{G}}$$
 ℓ /min

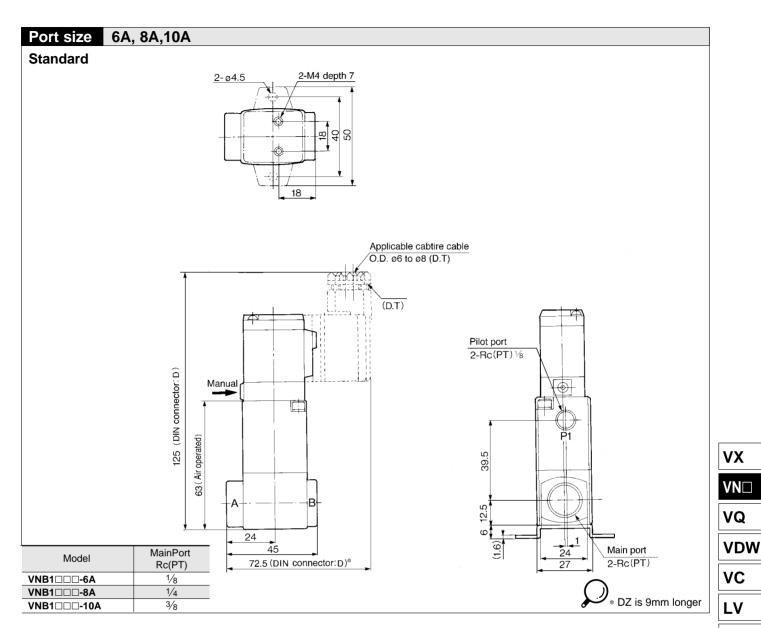
Note) Calculation error of fluid with viscosity of 50cSt or less will be very small.

Symbol

Q : Flow rate (Air and other gases t/min(ANR)) (Water and other fluids t/min)

△P: Pressure differential(P1—P2)

P1: Upstream pressure (MPa)


P2: Downstream pressure (MPa)

θ : Temperature of air and other gases (°C)

S : Effective area(mm²) S \cong 17667. N ℓ /min

Cv : Cv factor (/)

G: Specific gravity (/) Air/Water=1

Precautions

Be sure to read before handling. Refer to p.0-33 for Safety Instructions and p.0-37 to 0-40 for common precautions.

External Pilot

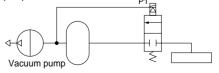
Pilot port piping

Please arrange P1 and P2 piping as follows according to the model.

Standard

Port	VNB□0 1□	VNB□02□	VNB□03□	VNB□1½□
P1	External pilot	Bleed port	External pilot	External pilot
P2	Bleed port	External pilot	External pilot	Pilot exhaust

Vacuum pilot


Port	VNB□01□V	VNB□02□V	VNB□1 ¹ ₂ □V
P1	Bleed port	External pilot	External pilot
P2	External pilot	Bleed port	Pilot exhaust

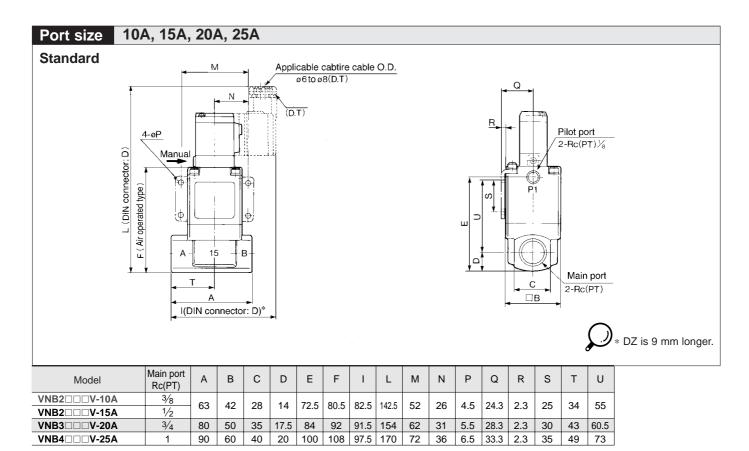
It is recommended to mount a silencer in the EXH port and the bleed port for noise reduction and dust entry prevention.

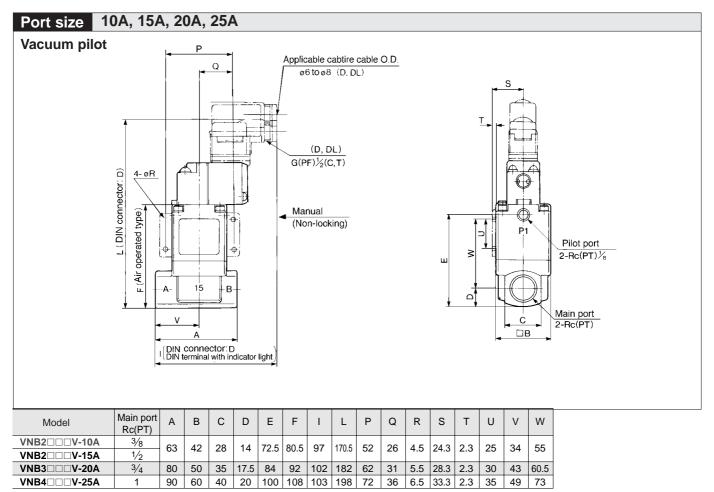
Vacuum Pilot

⚠ Caution

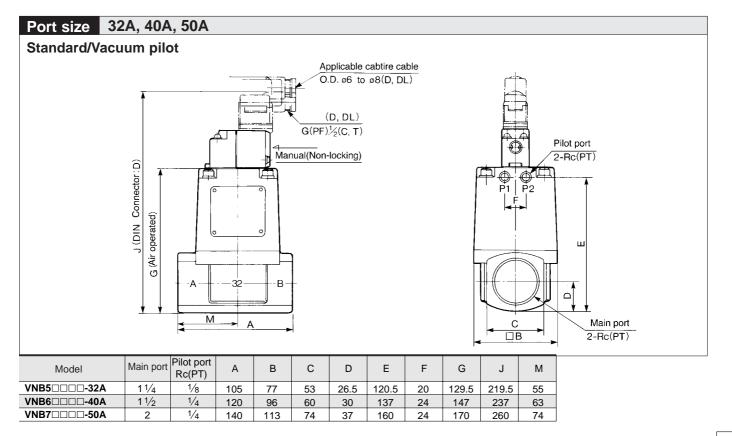
When using the VNB□₁¹1□V N.C. vacuum pilot, maintain the specified pilot pressure by providing a tank with an appropriate capacity or by acquiring the pilot pressure from an area near the vacuum pump.

Piping




To use the piping with a high temperature fluid, use heat resistant fittings and tubes. (Self-align fittings, Teflon, tube copper pipe, etc.,
Teflon is a registered trademark of DuPont.
4.2-15 Teflon, tube copper pipe, etc.)

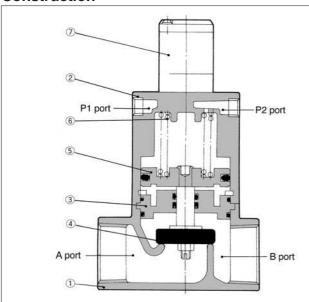
PA



VNB

٧X

VN■ VQ

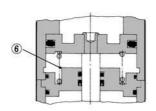

VDW

VC

LV

PA

Construction



Component Parts

No.	Description	Material	Note
1	Body	Bronze*	Clear coated
2	Cover assembly	Aluminium alloy	Platinum silver painted
3	Plate assembly	Brass*	Valve material (NBR, FPM, EPR)
4	Valve element	(NBR, FPM, EPR)	Stainless steel or brass
(5)	Piston assembly	Aluminium alloy	_
6	Return spring	Piano wire	_
7	Pilot solenoid valve	_	_

Note) Parts ③ and ④ are for selection of valve composition.

* The body option "S" is stainless steel, and "L" is aluminum.

Principles of Operation (The vacuum pilot style is excluded)

 $VNB\square 0^1_4\square$, $\square 1^1_41\square$ (N.C.)

When the pilot solenoid valve \odot is not energized (or when air is exhausted from the P₁ port of the air operated type), the valve element 4 linked to the piston 5 is closed by the return spring 6.

· When valve element opens

When the pilot solenoid valve is energized (or when pressurized air enters through the P₁ port of the air operated style), the pilot air that has entered under the piston moves upward to open the valve element.

When valve element closes

When the power to the pilot solenoid valve is turned off (or when fluid is exhausted from the P_1 port of the air operated style), the pilot air under the piston is exhausted, and the return spring closes the valve element.

VNB□ 02□, □12□ (N.O.)

In contrast with the $\dot{N}.C.$, when the power to the pilot solenoid valve is turned off (or when air is exhausted from the P₂ port of the air operated style), the valve is held open by the return spring. When the pilot solenoid valve is energized (or when pressurized air enters through the P₂ port of the air operated style), the valve element closes.

VNB □ 03□ (C.O.)

The valve element for the C.O. type, which has no return spring, is in an arbitary position when air is exhausted through the P_1 and P_2 ports. When pressurized air enters the P_1 port (exhaust from the P_2 port), the valve element opens, and it closes when pressurized air enters the P_2 port (exhaust from the P_1 port).

Replacement Parts

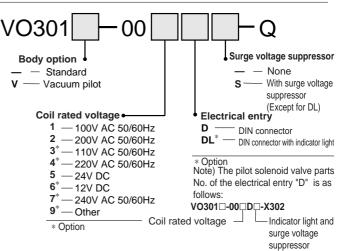
					Part No.								
No.	Description		VNB1□□□	VNB2□□□	VNB3□□□	VNB4□□□	VNB5□□□	VNB5□4□	VNB6□□□	VNB6□4□	VNB7□□□	VNB7□4□	
				-6A, 8A, 10A	-10A, 15A	-20A	-25A	-32A	-32A	-40A	-40A	-50A	-50A
	D		NBR	VN1-A3BA	VN2-A3BA	VN3-A3BA	VN4-A3BA	VN5-A3BA	VN5-A3BA	VN6-A3BA	VN6-A3BA	VN7-A3BA	VN7-A3BA
③(1)	Plate	Valve material	FPM	VN1-A3BB	VN2-A3BB	VN3-A3BB	VN4-A3BB	VN5-A3BB	VN5-A3BB	VN6-A3BB	VN6-A3BB	VN7-A3BB	VN7-A3BB
	assembly		EPR	VN1-A3BC	VN2-A3BC	VN3-A3BC	VN4-A3BC	VN5-A3BC	VN5-A3BC	VN6-A3BC	VN6-A3BC	VN7-A3BC	VN7-A3BC
	Valve (2)		NBR	VN1-4BA	VN2-4BA	VN3-4BA	VN4-4BA	VN5-A4BA	VN5-A4BA-3	VN6-A4BA	VN6-A4BA-3	VN7-A4BA	VN7-A4BA-3
(4) ⁽¹⁾		Valve material	FPM	VN1-4BB	VN2-4BB	VN3-4BB	VN4-4BB	VN5-A4BB	VN5-A4BB-3	VN6-A4BB	VN6-A4BB-3	VN7-A4BB	VN7-A4BB-3
	Cicincin		EPR	VN1-4BC	VN2-4BC	VN3-4BC	VN4-4BC	VN5-A4BC	VN5-A4BC-3	VN6-A4BC	VN6-A4BC-3	VN7-A4BC	VN7-A4BC-3
7	Pilot solen	oid va	lve		SF4-□□	l□-23-Q			VO3	01□-00□□□]-Q		

Note 1) In the casesy of body options "S" and "L", the materials of the parts Nos. ③ and ④ are as follows: (Example): VN1-A3B□A

Note 2) 32 to 50 to 5

However all brackets of valve element of VNB 1 to 4 are made of stainless steel. (No need to add options "S" and "L".)

How to Order Pilot Solenoid Valve


Valve size 1, 2, 3, 4

Manual override/classification Non-locking push style Coil rated voltage • 1 — 100V AC 50/60Hz -- 200V AC 50/60Hz - 110V AC 50/60Hz - 220V AC 50/60Hz Electrical entry and indicator light and surge 5 -24V DC voltage suppressor 6* — 12V DC DIN connector 7* - 240V AC 50/60Hz **DZ** DIN connector with indicator light and surge suppressor 9* - Other * Option

Protective class

class I (Mark: (4))....... DIN terminal type

Valve size 5, 6, 7

