XPT IGBT

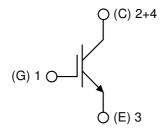
preliminary

V<sub>CES</sub> 1200 V

I <sub>C25</sub> 9 A

 $V_{CE(sat)}$  = 1.8 V

# Single IGBT


#### Part number

#### **IXA4I1200UC**

Marking on Product: X4TAU



Backside: collector



### Features / Advantages:

- Easy paralleling due to the positive temperature coefficient of the on-state voltage
- Rugged XPT design (Xtreme light Punch Through)
  - short circuit rated for 10 µsec.
- very low gate charge
- low EMI
- square RBSOA @ 3x Ic
- Thin wafer technology combined with the XPT design results in a competitive low VCE(sat)

### **Applications:**

- AC motor drives
- Solar inverter
- Medical equipment
- Uninterruptible power supply
- Air-conditioning systems
- Welding equipment
- Switched-mode and resonant-mode power supplies
- Inductive heating, cookers
- Pumps, Fans

Package: TO-252 (DPak)

- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0

### Terms \_Conditions of usage:

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact the sales office, which is responsible for you.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.


Should you intend to use the product in aviation, in health or live endangering or life support applications, please notify. For any such application we urgently recommend

- to perform joint risk and quality assessments; the conclusion of quality agreements;
- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, conditions and dimensions.

Data according to IEC 60747 and per semiconductor unless otherwise specified

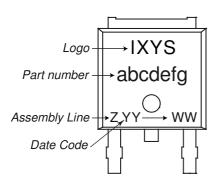
20160803a





preliminary

| IGBT                   |                                      |        |                                                                                |                         | Ratings |      |      |      |
|------------------------|--------------------------------------|--------|--------------------------------------------------------------------------------|-------------------------|---------|------|------|------|
| Symbol                 | Definition                           |        | Conditions                                                                     |                         | min.    | typ. | max. | Unit |
| V <sub>CES</sub>       | collector emitter voltage            |        |                                                                                | $T_{VJ} = 25^{\circ}C$  |         |      | 1200 | V    |
| V <sub>GES</sub>       | max. DC gate voltage                 |        |                                                                                |                         |         |      | ±20  | ٧    |
| $V_{GEM}$              | max. transient gate emitter voltage  |        |                                                                                |                         |         |      | ±30  | V    |
| I <sub>C25</sub>       | collector current                    |        |                                                                                | $T_C = 25^{\circ}C$     |         |      | 9    | Α    |
| I <sub>C100</sub>      |                                      |        |                                                                                | $T_C = 100 ^{\circ}C$   |         |      | 5    | Α    |
| P <sub>tot</sub>       | total power dissipation              |        |                                                                                | $T_{C} = 25^{\circ}C$   |         |      | 45   | W    |
| V <sub>CE(sat)</sub>   | collector emitter saturation voltage |        | $I_{C} = 3A; V_{GE} = 15 V$                                                    | $T_{VJ} = 25^{\circ}C$  |         | 1.8  | 2.1  | V    |
|                        |                                      |        |                                                                                | $T_{VJ} = 125 \circ C$  |         | 2.1  |      | V    |
| $V_{GE(th)}$           | gate emitter threshold voltage       |        | $I_{C}$ = 0.1 mA; $V_{GE}$ = $V_{CE}$                                          | $T_{VJ} = 25^{\circ}C$  | 5.4     | 5.9  | 6.5  | V    |
| I <sub>CES</sub>       | collector emitter leakage current    |        | $V_{CE} = V_{CES}; V_{GE} = 0 V$                                               | $T_{VJ} = 25^{\circ}C$  |         |      | 0.1  | mA   |
|                        |                                      |        |                                                                                | $T_{VJ} = 125 \circ C$  |         | 0.1  |      | mΑ   |
| I <sub>GES</sub>       | gate emitter leakage current         |        | $V_{GE} = \pm 20 \text{ V}$                                                    |                         |         |      | 500  | nA   |
| $Q_{G(on)}$            | total gate charge                    |        | $V_{CE} = 600 \text{ V}; V_{GE} = 15 \text{ V}; I_{C} =$                       | 3 A                     |         | 12   |      | nC   |
| t <sub>d(on)</sub>     | turn-on delay time                   | )      |                                                                                |                         |         | 70   |      | ns   |
| t <sub>r</sub>         | current rise time                    |        | inductive load                                                                 | T 125°C                 |         | 40   |      | ns   |
| $\mathbf{t}_{d(off)}$  | turn-off delay time                  | l      |                                                                                | T <sub>VJ</sub> = 125°C |         | 250  |      | ns   |
| t <sub>f</sub>         | current fall time                    |        | $V_{CE} = 600  V;  I_{C} = 3  A$<br>$V_{GE} = \pm 15  V;  R_{G} = 330  \Omega$ |                         |         | 100  |      | ns   |
| <b>E</b> <sub>on</sub> | turn-on energy per pulse             |        | $V_{GE} = \pm 15 \text{ V},  \Pi_{G} = 330  \Omega$                            |                         |         | 0.4  |      | mJ   |
| $E_{off}$              | turn-off energy per pulse            | ノ      |                                                                                |                         |         | 0.3  |      | mJ   |
| RBSOA                  | reverse bias safe operating area     | 1      | $V_{GE} = \pm 15 \text{ V}; R_G = 330 \Omega$                                  | T <sub>VJ</sub> = 125°C |         |      |      | 1    |
| I <sub>CM</sub>        |                                      | $\int$ | $V_{CEmax} = 1200 V$                                                           |                         |         |      | 9    | Α    |
| SCSOA                  | short circuit safe operating area    | 7      | $V_{CEmax} = 1200 \text{ V}$                                                   |                         |         |      |      |      |
| tsc                    | short circuit duration               | }      | $V_{CE} = 900 \text{ V}; V_{GE} = \pm 15 \text{ V}$                            | $T_{VJ} = 125$ °C       |         |      | 10   | μs   |
| I <sub>sc</sub>        | short circuit current                | J      | $R_G=330 \Omega$ ; non-repetitive                                              |                         |         | 12   |      | Α    |
| R <sub>thJC</sub>      | thermal resistance junction to case  |        |                                                                                |                         |         |      | 2.7  | K/W  |
| R <sub>thCH</sub>      | thermal resistance case to heatsink  |        |                                                                                |                         |         | 0.50 |      | K/W  |






preliminary

| Package TO-252 (DPak) |                              |              | Ratiu |      |      |      |
|-----------------------|------------------------------|--------------|-------|------|------|------|
| Symbol                | Definition                   | Conditions   | min.  | typ. | max. | Unit |
| I <sub>RMS</sub>      | RMS current                  | per terminal |       |      | 20   | Α    |
| T <sub>vJ</sub>       | virtual junction temperature |              | -40   |      | 150  | °C   |
| T <sub>op</sub>       | operation temperature        |              | -40   |      | 125  | °C   |
| T <sub>stg</sub>      | storage temperature          |              | -40   |      | 150  | °C   |
| Weight                |                              |              |       | 0.3  |      | g    |
| <b>F</b> <sub>c</sub> | mounting force with clip     |              | 20    |      | 60   | N    |

## **Product Marking**



#### Part description

I = IGBT

X = XPT IGBT

A = Gen 1 / std

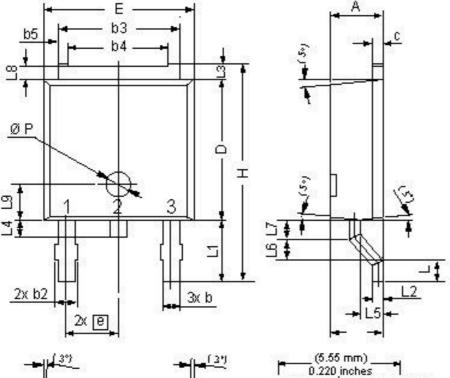
4 = Current Rating [A]

I = Single IGBT

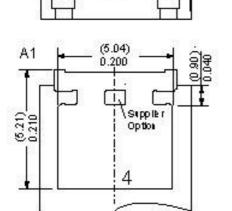
1200 = Reverse Voltage [V]

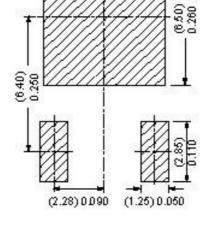
UC = TO-252AA (DPak)

| Ordering | Ordering Number | warking on Froduct | Delivery Mode | Quantity | Code No. |
|----------|-----------------|--------------------|---------------|----------|----------|
| Standard | IXA4I1200UC     | X4TAU              | Tape & Reel   | 2500     |          |
|          |                 |                    |               |          |          |

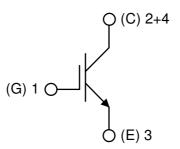

| Equiv               | alent Circuits for Simulation | * on die level | $T_{VJ} = 150 ^{\circ}\text{C}$ |
|---------------------|-------------------------------|----------------|---------------------------------|
| $I \rightarrow V_0$ | )- <u>R₀</u> -                | IGBT           |                                 |
| V <sub>0 max</sub>  | threshold voltage             | 1.1            | V                               |
| $R_{0max}$          | slope resistance *            | 460            | $m\Omega$                       |




**L**IXYS


preliminary






| Dim.  | Millimeters |       | Inches    |       |  |
|-------|-------------|-------|-----------|-------|--|
| Dini. | min         | max   | min       | max   |  |
| Α     | 2.20        | 2.40  | 0.087     | 0.094 |  |
| A1    | 2.10        | 2.50  | 0.083     | 0.098 |  |
| b     | 0.66        | 0.86  | 0.026     | 0.034 |  |
| b2    | 100         | 0.96  | , Q       | 0.038 |  |
| b3    | 5.04        | 5.64  | 0.198     | 0.222 |  |
| b4    | 4.34        | BSC   | 0.171     | BSC   |  |
| b5    | 0.50 BSC    |       | 0.020 BSC |       |  |
| С     | 0.40        | 0.86  | 0.016     | 0.034 |  |
| D     | 5.90        | 6.30  | 0.232     | 0.248 |  |
| Е     | 6.40        | 6.80  | 0.252     | 0.268 |  |
| е     | 2.10        | 2.50  | 0.083     | 0.098 |  |
| Н     | 9.20        | 10.10 | 0.362     | 0.398 |  |
| L     | 0.55        | 1.28  | 0.022     | 0.050 |  |
| L1    | 2.50        | 2.90  | 0.098     | 0.114 |  |
| L2    | 0.40        | 0.60  | 0.016     | 0.024 |  |
| L3    | 0.50        | 0.90  | 0.020     | 0.035 |  |
| L4    | 0.60        | 1.00  | 0.024     | 0.039 |  |
| L5    | 0.82        | 1.22  | 0.032     | 0.048 |  |
| L6    | 0.79        | 0.99  | 0.031     | 0.039 |  |
| L7    | 0.81        | 1.01  | 0.032     | 0.040 |  |
| L8    | 0.40        | 0.80  | 0.016     | 0.031 |  |
| L9    | 1.50 BSC    |       | 0.059     | BSC   |  |
| ØP    | 1.00        | BSC   | 0.039     | BSC   |  |





Recommended min. foot print

