

c ϵ

Model number

INX360D-F99-I2E2-5M

Features

- E1-Type approval
- Measuring range 0 ... 360°
- Analog output 4 mA ... 20 mA
- Evaluation limits can be taught-in
- 2 programmable switch outputs
- High shock resistance
- Increased noise immunity 100 V/m

Electrical connection

Standard symbol/Connection:

 $+{ }_{+}^{+U_{B}}$ Out 1 Analogue output $-U_{B}$

Technical Data

General specifications

Type	Incli
Measurement range	$0 \ldots$
Absolute accuracy	$\leq \pm 0$
Response delay	≤ 20
Resolution	≤ 0.1
Repeat accuracy	$\leq \pm 0$.
Temperature influence	≤ 0.027
Functional safety related parameters	
MTTF $_{d}$	300
Mission Time $^{\left(T_{M}\right)}$	20 a
Diagnostic Coverage (DC)	0%

Indicators/operating means \quad LED, green
Teach-In indicator 2 LEDs yellow (switching status), flashing
Button
Switching state

Electrical specifications

Operating voltage $U_{B} \quad 10 \ldots 30 \mathrm{~V}$ DC

No-load supply current $\mathrm{I}_{0} \quad \leq 25 \mathrm{~mA}$
Time delay before availability $\mathrm{t}_{\mathrm{v}} \leq 200 \mathrm{~ms}$
Switching output
Output type
Operating current I_{L}
Voltage drop
2 switch outputs PNP, NO , reverse polarity protected short-circuit protected
$\leq 100 \mathrm{~mA}$
$\leq 3 \mathrm{~V}$
Output type
Load resistor
1 current output 4 ... 20 mA
$0 \ldots 200 \Omega$ at $U_{B}=10 \ldots 18 \mathrm{~V}$
$0 \ldots 500 \Omega$ at $U_{B}=18 \ldots 30 \mathrm{~V}$
Ambient conditions
Ambient temperature $-40 \ldots 85^{\circ} \mathrm{C}\left(-40 \ldots 185^{\circ} \mathrm{F}\right)$

Storage temperature
$-40 \ldots 8{ }^{\circ} \mathrm{C}(-40$
Mechanical specifications
Connection type
Housing material
Degree of protection IP68 / IP69K

Factory settings

Switching output 1	$-30^{\circ} \ldots 30^{\circ}$
Switching output 2	$-30^{\circ} \ldots 30^{\circ}$

Analog output $-45^{\circ} \ldots 4{ }^{\circ}$
Compliance with standards and directives
Standard conformity
Shock and impact resistance $\quad 100 \mathrm{~g}$ according to DIN EN 60068-2-27
Standards
EN 60947-5-2:2007
IEC 60947-5-2:2007

Approvals and certificates

UL approval	cULus Listed, Class 2 Power Source
CSA approval	cCSAus Listed, General Purpose, Class 2 Power Source
CCC approval	CCC approval / marking not required for products rated E1 Type approval
$10 \mathrm{~V}-04$	

EMC Properties

Interference immunity in accordance with
DIN ISO 11452-2: $100 \mathrm{~V} / \mathrm{m}$
Frequency band 20 MHz up to 2 GHz
Mains-borne interference in accordance with ISO 7637-2:

Pulse	1	$2 a$	$2 b$	$3 a$	$3 b$	4
Severity level	III	III	III	III	III	III

Failure criterion C A C A A C
EN 61000-4-2: CD: 8 kV / AD: 15 kV
Severity level IV IV
EN 61000-4-3: $\quad 30 \mathrm{~V} / \mathrm{m}(80 . .2500 \mathrm{MHz}$)
Severity level IV
EN 61000-4-4: 2 kV
Severity level III
EN 61000-4-6: 10 V ($0.01 \ldots 80 \mathrm{MHz}$)
Severity level III
EN 55011: Klasse A

Dimensions

Sensor Orientation

In the default setting the zero position of the sensor is reached, when the electrical connection faces straight upwards.

X Orientation

Mounting of the sensor

Sensors from the -F99 series consist of a sensor module and accompanying cast aluminum housing. Select a vertical surface with minimum dimensions of $70 \mathrm{~mm} \times 50 \mathrm{~mm}$ to mount the sensor. Mount the sensor as follows:

1. Loosen the central screw under the sensor connection.
2. Slide back the clamping element until you are able to remove the sensor module from the housing.
3. Remove the sensor module from the housing
4. Position the housing at the required mounting location and secure using four countersunk screws. Make sure that the heads of the screws do not protrude.
5. Place the sensor module in the housing
6. Slide the clamping element flush into the housing. Check that the sensor element is seated correctly.
7. Finally tighten the central screw.

The sensor is now mounted correctly

LED display

Displays dependent on the operating state	LED green: Power	LED yellow out 1	LED yellow out 2
Teach-in of switching points (output S1): Teach-in of switching points (output S2):	off off	flashes off	off flashes
Activate teach-in mode for analog limits: Teach-in of analog limits	off off	flashes flashes	flashes off
Normal operation	on	switching- state	switching- state
Reset to factory settings: $2 \mathrm{~s} \ldots 10 \mathrm{~s}$ > $10 \mathrm{~s} \ldots$ end of reset process Followed by normal operation	off flashes flashes off	flashes off	
Undervoltage	flashes	off	off

Axis definition
The definition of the X-axis is shown on the sensor housing by means of an imprinted and labeled double arrow. The figure shows the clockwise direction of rotation

Teach-in of switching points (output S1)

1. Press key $\mathrm{T} 1>2 \mathrm{~s}$ (see LED display)
2. Move sensor to switching position 1
3. Press key T1 briefly. LED "out 1" lights for 1.5 s as confirmation. Switching point 1 has been taught
4. Move sensor to switching position 2
5. Press key T1 briefly. LED "out 1 " lights for 1.5 s as confirmation. Switching point 2 has been taught
6. Sensor returns to normal operation (see LED display)

The NC (active output state) is always defined in the range from the $1^{\text {st }}$ configured position to $2^{\text {nd }}$ configured position.
As an example :
Case \#1: configure position \#1 at +45degree, configure position \#2 at +90 degree; NC is from +45 ' +90 in the CW direction Case \#2: configure position \#1 at +90degree ; configure position \#2 at +45 degree; NC is from +90 ' +45 in the CW direction

Teach-in of switching points (output S2)
Similar to the process for "Teach-in of switching points (output S1)", but with key T2 instead of key T1.

Teach-in of analog limits

1. Activate the teach-in mode for the analog limits by simultaneously pressing keys T1 and T2 until the green LED is extinguished and the two yellow LEDs flash. Then release the keys.
2. Press key $\mathrm{T} 1>$ for 2 s (see LED display)
3. Move the sensor into the position of minimum evaluation limit
4. Press key T1 briefly. LED "out 1 " lights for 1.5 s as confirmation. The minimum evaluation limit has been taught. In this position the analog output will provide its minimum output value
5. Move the sensor into the position of maximum evaluation limit
6. Press key T1 briefly. LED "out 1 " lights for 1.5 s as confirmation. The maximum evaluation limit has been taught. In this position the analog output will provide its maximum output value.
. Sensor returns to normal operation (see LED display)
If the sensor inclination exceeds one of the analog limits, the last value of the analog output is retained.

Resetting the sensor to factory settings

1. Press keys T 1 and $\mathrm{T} 2>10 \mathrm{~s}$ (see LED display)
2. The sensor has been reset when the green LED "Power" lights again after approx. 10 s .

Undervoltage detection

If the supply voltage falls below a value of approx. 7 V , all outputs and yellow LEDs are deactivated. The green "power" LED flashes rapidly. If the supply voltage falls below a value of approx. 8 V , the sensor continues with normal operation.

