Features

- High Performance, Low Power AVR ${ }^{\circledR}$ 8-Bit Microcontroller
- Advanced RISC Architecture
- 131 Powerful Instructions - Most Single Clock Cycle Execution
- 32×8 General Purpose Working Registers
- Fully Static Operation
- Up to 20 MIPS Throughput at 20 MHz
- On-chip 2-cycle Multiplier
- Non-volatile Program and Data Memories
- 4/8/16K Bytes of In-System Self-Programmable Flash (ATmega48/88/168)

Endurance: 10,000 Write/Erase Cycles

- Optional Boot Code Section with Independent Lock Bits

In-System Programming by On-chip Boot Program
True Read-While-Write Operation

- 256/512/512 Bytes EEPROM (ATmega48/88/168)

Endurance: 100,000 Write/Erase Cycles

- 512/1K/1K Byte Internal SRAM (ATmega48/88/168)
- Programming Lock for Software Security
- Peripheral Features
- Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
- One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
- Real Time Counter with Separate Oscillator
- Six PWM Channels
- 8-channel 10-bit ADC in TQFP and MLF package
- 6-channel 10-bit ADC in PDIP Package
- Programmable Serial USART
- Master/Slave SPI Serial Interface
- Byte-oriented 2-wire Serial Interface
- Programmable Watchdog Timer with Separate On-chip Oscillator
- On-chip Analog Comparator
- Interrupt and Wake-up on Pin Change
- Special Microcontroller Features
- Power-on Reset and Programmable Brown-out Detection
- Internal Calibrated Oscillator
- External and Internal Interrupt Sources
- Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and Standby
- I/O and Packages
- 23 Programmable I/O Lines
- 28-pin PDIP, 32-lead TQFP and 32-pad MLF
- Operating Voltage:
- 1.8-5.5V for ATmega48V/88V/168V
- 2.7-5.5V for ATmega48/88/168
- Temperature Range:
$--40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Speed Grade:
- ATmega48V/88V/168V: 0-4 MHz @ 1.8-5.5V, 0-10 MHz @ 2.7-5.5V
- ATmega48/88/168: 0-10 MHz @ 2.7-5.5V, 0-20 MHz @ 4.5-5.5V
- Low Power Consumption
- Active Mode:
$1 \mathrm{MHz}, 1.8 \mathrm{~V}: 240 \mu \mathrm{~A}$
$32 \mathrm{kHz}, 1.8 \mathrm{~V}: 15 \mu \mathrm{~A}$ (including Oscillator)
- Power-down Mode:
$0.1 \mu \mathrm{~A}$ at 1.8 V

Note: This is a summary document. A complete document is available on our Web site at www.atmel.com.

Pin Configurations

Figure 1. Pinout ATmega48/88/168

	PDIP		
(PCINT14/RESET) PC6	1	28	$\square \mathrm{PC} 5$ (ADC5/SCL/PCINT13)
(PCINT16/RXD) PD0	2	27	$\square \mathrm{PC} 4$ (ADC4/SDA/PCINT12)
(PCINT17/TXD) PD1 \square	3	26	$\square \mathrm{PC} 3$ (ADC3/PCINT11)
(PCINT18/INT0) PD2	4	25	$\square \mathrm{PC2}$ (ADC2/PCINT10)
(PCINT19/OC2B/INT1) PD3	5	24	$\square \mathrm{PC} 1$ (ADC1/PCINT9)
(PCINT20/XCK/T0) PD4 \square	6	23	$\square \mathrm{PCO}$ (ADC0/PCINT8)
VCC	7	22	\square GND
GND	8	21	\square AREF
(PCINT6/XTAL1/TOSC1) PB6	9	20	\square AVCC
(PCINT7/XTAL2/TOSC2) PB7	10	19	$\square \mathrm{PB} 5$ (SCK/PCINT5)
(PCINT21/OC0B/T1) PD5	11	18	$\square \mathrm{PB} 4$ (MISO/PCINT4)
(PCINT22/OC0A/AIN0) PD6	12	17	$\square \mathrm{PB} 3$ (MOSI/OC2A/PCINT3)
(PCINT23/AIN1) PD7	13	16	$\square \mathrm{PB} 2$ (SS/OC1B/PCINT2)
(PCINT0/CLKO/ICP1) PB0	14	15	$\square \mathrm{PB} 1$ (OC1A/PCINT1)

Disclaimer

Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized.

Overview

Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega48/88/168 provides the following features: $4 \mathrm{~K} / 8 \mathrm{~K} / 16 \mathrm{~K}$ bytes of In-System Programmable Flash with Read-While-Write capabilities, 256/512/512 bytes EEPROM, 512/1K/1K bytes SRAM, 23 general purpose I/O lines, 32 general purpose working registers, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, a byte-oriented 2 -wire Serial Interface, an SPI serial port, a 6 -channel 10-bit ADC (8 channels in TQFP and MLF packages), a programmable Watchdog Timer with internal Oscillator, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, USART, 2-wire Serial Interface, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption.

The device is manufactured using Atmel's high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8 -bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega48/88/168 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.
The ATmega48/88/168 AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.

Comparison Between ATmega48, ATmega88, and ATmega168

The ATmega48, ATmega88 and ATmega168 differ only in memory sizes, boot loader support, and interrupt vector sizes. Table 1 summarizes the different memory and interrupt vector sizes for the three devices.

Table 1. Memory Size Summary

Device	Flash	EEPROM	RAM	Interrupt Vector Size
ATmega48	4K Bytes	256 Bytes	512 Bytes	1 instruction word/vector
ATmega88	8 K Bytes	512 Bytes	1K Bytes	1 instruction word/vector
ATmega168	16K Bytes	512 Bytes	1K Bytes	2 instruction words/vector

ATmega88 and ATmega168 support a real Read-While-Write Self-Programming mechanism. There is a separate Boot Loader Section, and the SPM instruction can only execute from there. In ATmega48, there is no Read-While-Write support and no separate Boot Loader Section. The SPM instruction can execute from the entire Flash.

Pin Descriptions

vcc

GND

Port B (PB7..0) XTAL1/ XTAL2/TOSC1/TOSC2

Port C (PC5..0)

PC6/ $\overline{\text { RESET }}$

Port D (PD7..0)
$\mathrm{AV}_{\mathrm{cc}}$

AREF

Digital supply voltage.

Ground.

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.
Depending on the clock selection fuse settings, PB6 can be used as input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
Depending on the clock selection fuse settings, PB7 can be used as output from the inverting Oscillator amplifier.
If the Internal Calibrated RC Oscillator is used as chip clock source, PB7.. 6 is used as TOSC2.. 1 input for the Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set.

The various special features of Port B are elaborated in "Alternate Functions of Port B" on page 69 and "System Clock and Clock Options" on page 24.

Port C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The PC5.. 0 output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical characteristics of PC6 differ from those of the other pins of Port C.

If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin for longer than the minimum pulse length will generate a Reset, even if the clock is not running. The minimum pulse length is given in Table 20 on page 41. Shorter pulses are not guaranteed to generate a Reset.
The various special features of Port C are elaborated in "Alternate Functions of Port C" on page 73.

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

The various special features of Port D are elaborated in "Alternate Functions of Port D" on page 75 .
$A V_{C C}$ is the supply voltage pin for the A / D Converter, PC3..0, and ADC7..6. It should be externally connected to $V_{C C}$, even if the ADC is not used. If the ADC is used, it should be connected to V_{CC} through a low-pass filter. Note that PC6.. 4 use digital supply voltage, V_{cc}.

AREF is the analog reference pin for the A/D Converter.

ADC7.. 6 In the TQFP and MLF package, ADC7.. 6 serve as analog inputs to the A/D converter. (TQFP and MLF Package Only) These pins are powered from the analog supply and serve as 10-bit ADC channels.

Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xFF)	Reserved	-	-	-	-	-	-	-	-	
(0xFE)	Reserved	-	-	-	-	-	-	-	-	
(0xFD)	Reserved	-	-	-	-	-	-	-	-	
(0xFC)	Reserved	-	-	-	-	-	-	-	-	
(0xFB)	Reserved	-	-	-	-	-	-	-	-	
(0xFA)	Reserved	-	-	-	-	-	-	-	-	
(0xF9)	Reserved	-	-	-	-	-	-	-	-	
(0xF8)	Reserved	-	-	-	-	-	-	-	-	
(0xF7)	Reserved	-	-	-	-	-	-	-	-	
(0xF6)	Reserved	-	-	-	-	-	-	-	-	
(0xF5)	Reserved	-	-	-	-	-	-	-	-	
(0xF4)	Reserved	-	-	-	-	-	-	-	-	
(0xF3)	Reserved	-	-	-	-	-	-	-	-	
(0xF2)	Reserved	-	-	-	-	-	-	-	-	
(0xF1)	Reserved	-	-	-	-	-	-	-	-	
(0xF0)	Reserved	-	-	-	-	-	-	-	-	
(0xEF)	Reserved	-	-	-	-	-	-	-	-	
(0xEE)	Reserved	-	-	-	-	-	-	-	-	
(0xED)	Reserved	-	-	-	-	-	-	-	-	
(0xEC)	Reserved	-	-	-	-	-	-	-	-	
(0xEB)	Reserved	-	-	-	-	-	-	-	-	
(0xEA)	Reserved	-	-	-	-	-	-	-	-	
(0xE9)	Reserved	-	-	-	-	-	-	-	-	
(0xE8)	Reserved	-	-	-	-	-	-	-	-	
(0xE7)	Reserved	-	-	-	-	-	-	-	-	
(0xE6)	Reserved	-	-	-	-	-	-	-	-	
(0xE5)	Reserved	-	-	-	-	-	-	-	-	
(0xE4)	Reserved	-	-	-	-	-	-	-	-	
(0xE3)	Reserved	-	-	-	-	-	-	-	-	
(0xE2)	Reserved	-	-	-	-	-	-	-	-	
(0xE1)	Reserved	-	-	-	-	-	-	-	-	
(0xE0)	Reserved	-	-	-	-	-	-	-	-	
(0xDF)	Reserved	-	-	-	-	-	-	-	-	
(0xDE)	Reserved	-	-	-	-	-	-	-	-	
(0xDD)	Reserved	-	-	-	-	-	-	-	-	
(0xDC)	Reserved	-	-	-	-	-	-	-	-	
(0xDB)	Reserved	-	-	-	-	-	-	-	-	
(0xDA)	Reserved	-	-	-	-	-	-	-	-	
(0xD9)	Reserved	-	-	-	-	-	-	-	-	
(0xD8)	Reserved	-	-	-	-	-	-	-	-	
(0xD7)	Reserved	-	-	-	-	-	-	-	-	
(0xD6)	Reserved	-	-	-	-	-	-	-	-	
(0xD5)	Reserved	-	-	-	-	-	-	-	-	
(0xD4)	Reserved	-	-	-	-	-	-	-	-	
(0xD3)	Reserved	-	-	-	-	-	-	-	-	
(0xD2)	Reserved	-	-	-	-	-	-	-	-	
(0xD1)	Reserved	-	-	-	-	-	-	-	-	
(0xD0)	Reserved	-	-	-	-	-	-	-	-	
(0xCF)	Reserved	-	-	-	-	-	-	-	-	
(0xCE)	Reserved	-	-	-	-	-	-	-	-	
(0xCD)	Reserved	-	-	-	-	-	-	-	-	
(0xCC)	Reserved	-	-	-	-	-	-	-	-	
(0xCB)	Reserved	-	-	-	-	-	-	-	-	
(0xCA)	Reserved	-	-	-	-	-	-	-	-	
(0xC9)	Reserved	-	-	-	-	-	-	-	-	
(0xC8)	Reserved	-	-	-	-	-	-	-	-	
(0xC7)	Reserved	-	-	-	-	-	-	-	-	
(0xC6)	UDR0				USART	Register				180
(0xC5)	UBRROH						USART Baud	te Register High		184
(0xC4)	UBRROL				SART Ba	Register L				184
(0xC3)	Reserved	-	-	-	-	-	-	-	-	
(0xC2)	UCSROC	UMSEL01	UMSELOO	UPM01	UPM00	USBSO	UCSZ01 UDORDO	UCSZ00 /UCPHAO	UCPOLO	183/196
(0xC1)	UCSROB	RXCIEO	TXCIEO	UDRIE0	RXENO	TXENO	UCSZ02	RXB80	TXB80	182
(0xC0)	UCSROA	RXCO	TXCO	UDREO	FEO	DORO	UPE0	U2X0	MPCM0	180

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xBF)	Reserved	-	-	-	-	-	-	-	-	
(0xBE)	Reserved	-	-	-	-	-	-	-	-	
(0xBD)	TWAMR	TWAM6	TWAM5	TWAM4	TWAM3	TWAM2	TWAM1	TWAM0	-	209
(0xBC)	TWCR	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	-	TWIE	206
(0xBB)	TWDR	2-wire Serial Interface Data Register								208
(0xBA)	TWAR	TWA6	TWA5	TWA4	TWA3	TWA2	TWA1	TWA0	TWGCE	208
(0xB9)	TWSR	TWS7	TWS6	TWS5	TWS4	TWS3	-	TWPS1	TWPS0	207
(0xB8)	TWBR	2-wire Serial Interface Bit Rate Register								206
(0xB7)	Reserved	-		-	-	-	-	-	-	
(0xB6)	ASSR	-	EXCLK	AS2	TCN2UB	OCR2AUB	OCR2BUB	TCR2AUB	TCR2BUB	150
(0xB5)	Reserved	-	-	-	-	-	-	-	-	
(0xB4)	OCR2B	Timer/Counter2 Output Compare Register B								147
(0xB3)	OCR2A	Timer/Counter2 Output Compare Register A								147
(0xB2)	TCNT2	Timer/Counter2 (8-bit)								147
(0xB1)	TCCR2B	FOC2A	FOC2B	-	-	WGM22	CS22	CS21	CS20	146
(0xB0)	TCCR2A	COM2A1	COM2A0	COM2B1	COM2B0	-	-	WGM21	WGM20	143
(0xAF)	Reserved	-	-	-	-	-	-	-	-	
(0xAE)	Reserved	-	-	-	-	-	-	-	-	
(0xAD)	Reserved	-	-	-	-	-	-	-	-	
(0xAC)	Reserved	-	-	-	-	-	-	-	-	
(0xAB)	Reserved	-	-	-	-	-	-	-	-	
(0xAA)	Reserved	-	-	-	-	-	-	-	-	
(0xA9)	Reserved	-	-	-	-	-	-	-	-	
(0xA8)	Reserved	-	-	-	-	-	-	-	-	
(0xA7)	Reserved	-	-	-	-	-	-	-	-	
(0xA6)	Reserved	-	-	-	-	-	-	-	-	
(0xA5)	Reserved	-	-	-	-	-	-	-	-	
(0xA4)	Reserved	-	-	-	-	-	-	-	-	
(0xA3)	Reserved	-	-	-	-	-	-	-	-	
(0xA2)	Reserved	-	-	-	-	-	-	-	-	
(0xA1)	Reserved	-	-	-	-	-	-	-	-	
(0xA0)	Reserved	-	-	-	-	-	-	-	-	
(0x9F)	Reserved	-	-	-	-	-	-	-	-	
(0x9E)	Reserved	-	-	-	-	-	-	-	-	
(0x9D)	Reserved	-	-	-	-	-	-	-	-	
(0x9C)	Reserved	-	-	-	-	-	-	-	-	
(0x9B)	Reserved	-	-	-	-	-	-	-	-	
(0x9A)	Reserved	-	-	-	-	-	-	-	-	
(0x99)	Reserved	-	-	-	-	-	-	-	-	
(0x98)	Reserved	-	-	-	-	-	-	-	-	
(0x97)	Reserved	-	-	-	-	-	-	-	-	
(0x96)	Reserved	-	-	-	-	-	-	-	-	
(0x95)	Reserved	-	-	-	-	-	-	-	-	
(0x94)	Reserved	-	-	-	-	-	-	-	-	
(0x93)	Reserved	-	-	-	-	-	-	-	-	
(0x92)	Reserved	-	-	-	-	-	-	-	-	
(0x91)	Reserved	-	-	-	-	-	-	-	-	
(0x90)	Reserved	-	-	-	-	-	-	-	-	
(0x8F)	Reserved	-	-	-	-	-	-	-	-	
(0x8E)	Reserved	-	-	-	-	-	-	-	-	
(0x8D)	Reserved	-	-	-	-	-	-	-	-	
(0x8C)	Reserved	-	-	-	-	-	-	-	-	
(0x8B)	OCR1BH	Timer/Counter1 - Output Compare Register B High Byte								129
(0x8A)	OCR1BL	Timer/Counter1 - Output Compare Register B Low Byte								129
(0x89)	OCR1AH	Timer/Counter1 - Output Compare Register A High Byte								129
(0x88)	OCR1AL	Timer/Counter1 - Output Compare Register A Low Byte								129
(0x87)	ICR1H	Timer/Counter1 - Input Capture Register High Byte								129
(0x86)	ICR1L	Timer/Counter1 - Input Capture Register Low Byte								129
(0x85)	TCNT1H	Timer/Counter1 - Counter Register High Byte								129
(0x84)	TCNT1L	Timer/Counter1 - Counter Register Low Byte								129
(0x83)	Reserved	-	-	-	-	-	-	-	-	
(0x82)	TCCR1C	FOC1A	FOC1B	-	-	-	-	-	-	128
(0x81)	TCCR1B	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	127
(0x80)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	-	-	WGM11	WGM10	125
(0x7F)	DIDR1	-	-	-	-	-	-	AIN1D	AINOD	230
(0x7E)	DIDR0	-	-	ADC5D	ADC4D	ADC3D	ADC2D	ADC1D	ADCOD	245

ATmega48/88/168

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0x7D)	Reserved	-	-	-	-	-	-	-	-	
(0x7C)	ADMUX	REFS1	REFSO	ADLAR	-	MUX3	MUX2	MUX1	MUX0	241
(0x7B)	ADCSRB	-	ACME	-	-	-	ADTS2	ADTS1	ADTS0	244
(0x7A)	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	242
(0x79)	ADCH	ADC Data Register High byte								244
(0x78)	ADCL	ADC Data Register Low byte								244
(0x77)	Reserved	-	-	-	-	-	-	-	-	
(0x76)	Reserved	-	-	-	-	-	-	-	-	
(0x75)	Reserved	-	-	-	-	-	-	-	-	
(0x74)	Reserved	-	-	-	-	-	-	-	-	
(0x73)	Reserved	-	-	-	-	-	-	-	-	
(0x72)	Reserved	-	-	-	-	-	-	-	-	
(0x71)	Reserved	-	-	-	-	-	-	-	-	
(0x70)	TIMSK2	-	-	-	-	-	OCIE2B	OCIE2A	TOIE2	148
(0x6F)	TIMSK1	-	-	ICIE1	-	-	OCIE1B	OCIE1A	TOIE1	130
(0x6E)	TIMSK0	-	-	-	-	-	OCIEOB	OCIEOA	TOIE0	100
(0x6D)	PCMSK2	PCINT23	PCINT22	PCINT21	PCINT20	PCINT19	PCINT18	PCINT17	PCINT16	83
(0x6C)	PCMSK1	-	PCINT14	PCINT13	PCINT12	PCINT11	PCINT10	PCINT9	PCINT8	83
(0x6B)	PCMSK0	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINTO	84
(0x6A)	Reserved	-	-	-	-	-	-	-	-	
(0x69)	EICRA	-	-	-	-	ISC11	ISC10	ISC01	ISC00	80
(0x68)	PCICR	-	-	-	-	-	PCIE2	PCIE1	PCIEO	
(0x67)	Reserved	-	-	-	-	-	-	-	-	
(0x66)	OSCCAL	Oscillator Calibration Register								30
(0x65)	Reserved	-	-	-	-	-	-	-	-	
(0x64)	PRR	PRTWI	PRTIM2	PRTIMO	-	PRTIM1	PRSPI	PRUSARTO	PRADC	37
(0x63)	Reserved	-	-	-	-	-	-	-	-	
(0x62)	Reserved	-	-	-	-	-	-	-	-	
(0x61)	CLKPR	CLKPCE	-	-	-	CLKPS3	CLKPS2	CLKPS1	CLKPSO	33
(0x60)	WDTCSR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	49
0x3F (0x5F)	SREG	1	T	H	S	V	N	Z	C	9
0x3E (0x5E)	SPH	-	-	-	-	-	(SP10) ${ }^{5}$	SP9	SP8	11
0x3D (0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SPO	11
0x3C (0x5C)	Reserved	-	-	-	-	-	-	-	-	
0x3B (0x5B)	Reserved	-	-	-	-	-	-	-	-	
0x3A (0x5A)	Reserved	-	-	-	-	-	-	-	-	
0x39 (0x59)	Reserved	-	-	-	-	-	-	-	-	
0×38 (0x58)	Reserved	-	-	-	-	-	-	-	-	
0x37 (0x57)	SPMCSR	SPMIE	(RWWSB) ${ }^{5}$	-	(RWWSRE) ${ }^{5}$	BLBSET	PGWRT	PGERS	SELFPRGEN	260
0x36 (0x56)	Reserved	-	-	-	-	-	-	-	-	
0x35 (0x55)	MCUCR	-	-	-	PUD	-	-	IVSEL	IVCE	
0x34 (0x54)	MCUSR	-	-	-	-	WDRF	BORF	EXTRF	PORF	
0x33 (0x53)	SMCR	-	-	-	-	SM2	SM1	SM0	SE	35
0x32 (0x52)	Reserved	-	-	-	-	-	-	-	-	
0x31 (0x51)	Reserved	-	-	-	-	-	-	-	-	
0x30 (0x50)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACISO	228
0x2F (0x4F)	Reserved	-	-	-	-	-	-	-	-	
0x2E (0x4E)	SPDR	SPI Data Register								160
0x2D (0x4D)	SPSR	SPIF	WCOL	-	-	-	-	-	SPI2X	160
0x2C ($0 \times 4 \mathrm{C}$)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPRO	158
0x2B (0x4B)	GPIOR2	General Purpose I/O Register 2								23
0x2A (0x4A)	GPIOR1	General Purpose I/O Register 1								23
0x29 (0x49)	Reserved	-	-	-	-	-	-	-	-	
0x28 (0x48)	OCROB	Timer/Counter0 Output Compare Register B								
0x27 (0x47)	OCROA	Timer/Counter0 Output Compare Register A								
0x26 (0x46)	TCNT0	Timer/Counter0 (8-bit)								
0x25 (0x45)	TCCROB	FOCOA	FOCOB	-	-	WGM02	CS02	CS01	CS00	
0x24 (0x44)	TCCROA	COM0A1	COMOAO	COM0B1	СОМов0	-	-	WGM01	WGM00	
0x23 (0x43)	GTCCR	TSM	-	-	-	-	-	PSRASY	PSRSYNC	103/152
0x22 (0x42)	EEARH	(EEPROM Address Register High Byte) ${ }^{5}$.								18
0x21 (0x41)	EEARL	EEPROM Address Register Low Byte								18
0x20 (0x40)	EEDR	EEPROM Data Register								18
0x1F (0x3F)	EECR	-	-	EEPM1	EEPM0	EERIE	EEMPE	EEPE	EERE	18
0x1E (0x3E)	GPIORO	General Purpose I/O Register 0								23
0x1D (0x3D)	EIMSK	-	-	-	-	-	-	INT1	INTO	81
0x1C ($0 \times 3 \mathrm{C}$)	EIFR	-	-	-	-	-	-	INTF1	INTFO	82

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x1B (0x3B)	PCIFR	-	-	-	-	-	PCIF2	PCIF1	PCIF0	
$0 \times 1 \mathrm{~A}(0 \times 3 \mathrm{~A})$	Reserved	-	-	-	-	-	-	-	-	
0×19 (0x39)	Reserved	-	-	-	-	-	-	-	-	
0×18 (0x38)	Reserved	-	-	-	-	-	-	-	-	
0×17 (0x37)	TIFR2	-	-	-	-	-	OCF2B	OCF2A	TOV2	148
0×16 (0x36)	TIFR1	-	-	ICF1	-	-	OCF1B	OCF1A	TOV1	130
0×15 (0x35)	TIFR0	-	-	-	-	-	OCFOB	OCF0A	TOV0	
0×14 (0x34)	Reserved	-	-	-	-	-	-	-	-	
0×13 (0x33)	Reserved	-	-	-	-	-	-	-	-	
0x12 (0x32)	Reserved	-	-	-	-	-	-	-	-	
0×11 (0x31)	Reserved	-	-	-	-	-	-	-	-	
0x10 (0x30)	Reserved	-	-	-	-	-	-	-	-	
0x0F (0x2F)	Reserved	-	-	-	-	-	-	-	-	
0x0E (0x2E)	Reserved	-	-	-	-	-	-	-	-	
0x0D (0x2D)	Reserved	-	-	-	-	-	-	-	-	
0x0C (0x2C)	Reserved	-	-	-	-	-	-	-	-	
$0 \times 0 \mathrm{~B}(0 \times 2 \mathrm{~B})$	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	79
$0 \times 0 \mathrm{~A}(0 \times 2 \mathrm{~A})$	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	79
0×09 (0x29)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	79
0×08 (0x28)	PORTC	-	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	79
0×07 (0x27)	DDRC	-	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	79
0x06 (0x26)	PINC	-	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	79
0x05 (0x25)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	79
0x04 (0x24)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	79
0×03 (0x23)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	79
0x02 (0x22)	Reserved	-	-	-	-	-	-	-	-	
0×01 (0x21)	Reserved	-	-	-	-	-	-	-	-	
0x0 (0x20)	Reserved	-	-	-	-	-	-	-	-	

Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
2. I/O Registers within the address range $0 \times 00-0 \times 1 \mathrm{~F}$ are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0×00 to $0 \times 1 \mathrm{~F}$ only.
4. When using the I/O specific commands IN and OUT, the I/O addresses $0 \times 00-0 x 3 F$ must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega48/88/168 is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60-0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.
5. Only valid for ATmega88/168.

Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS					
ADD	Rd, Rr	Add two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}+\mathrm{Rr}$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}+\mathrm{Rr}+\mathrm{C}$	Z,C,N,V,H	1
ADIW	Rdi, K	Add Immediate to Word	Rdh:Rdl \leftarrow Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{Rr}$	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{K}$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{Rr}-\mathrm{C}$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{K}-\mathrm{C}$	Z,C,N,V,H	1
SBIW	Rdi, K	Subtract Immediate from Word	Rdh:RdI \leftarrow Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{Rr}$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{K}$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$\mathrm{Rd} \leftarrow \mathrm{RdvRr}$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$\mathrm{Rd} \leftarrow \mathrm{Rd}$ v K	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} \oplus \mathrm{Rr}$	Z,N,V	1
COM	Rd	One's Complement	Rd $\leftarrow 0 \times \mathrm{FFF}-\mathrm{Rd}$	Z,C,N,V	1
NEG	Rd	Two's Complement	$\mathrm{Rd} \leftarrow 0 \times 00-\mathrm{Rd}$	Z,C,N,V,H	1
SBR	Rd, K	Set Bit(s) in Register	$\mathrm{Rd} \leftarrow \mathrm{Rdv} \mathrm{K}$	Z,N,V	1
CBR	Rd, K	Clear Bit(s) in Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet(0 x F F-K)$	Z,N,V	1
INC	Rd	Increment	$\mathrm{Rd} \leftarrow \mathrm{Rd}+1$	Z,N,V	1
DEC	Rd	Decrement	$\mathrm{Rd} \leftarrow \mathrm{Rd}-1$	Z,N,V	1
TST	Rd	Test for Zero or Minus	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{Rd}$	Z,N,V	1
CLR	Rd	Clear Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \oplus \mathrm{Rd}$	Z,N,V	1
SER	Rd	Set Register	$\mathrm{Rd} \leftarrow 0 \mathrm{xFF}$	None	1
MUL	Rd, Rr	Multiply Unsigned	$\mathrm{R} 1: \mathrm{R0} \leftarrow \mathrm{Rd} \times \mathrm{Rr}$	Z,C	2
MULS	Rd, Rr	Multiply Signed	$\mathrm{R} 1: \mathrm{R0} 0 \leftarrow \mathrm{Rd} \times \mathrm{Rr}$	Z,C	2
MULSU	Rd, Rr	Multiply Signed with Unsigned	$\mathrm{R} 1: \mathrm{R0} 5 \mathrm{Rd} \times \mathrm{Rr}$	Z,C	2
FMUL	Rd, Rr	Fractional Multiply Unsigned	$\mathrm{R} 1: \mathrm{RO} \leftarrow(\mathrm{Rd} \times \mathrm{Rr}) \ll 1$	Z,C	2
FMULS	Rd, Rr	Fractional Multiply Signed	$\mathrm{R} 1: \mathrm{RO} \leftarrow(\mathrm{Rd} \times \mathrm{Rr}) \ll 1$	Z,C	2
FMULSU	Rd, Rr	Fractional Multiply Signed with Unsigned	$\mathrm{R} 1: \mathrm{R0} \leftarrow(\mathrm{Rd} \times \mathrm{Rr}) \ll 1$	Z,C	2
BRANCH INSTRUCTIONS					
RJMP	k	Relative Jump	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	2
IJMP		Indirect Jump to (Z)	$\mathrm{PC} \leftarrow \mathrm{Z}$	None	2
JMP ${ }^{(1)}$	k	Direct Jump	$\mathrm{PC} \leftarrow \mathrm{k}$	None	3
RCALL	k	Relative Subroutine Call	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	3
ICALL		Indirect Call to (Z)	$\mathrm{PC} \leftarrow \mathrm{Z}$	None	3
CALL ${ }^{(1)}$	k	Direct Subroutine Call	$\mathrm{PC} \leftarrow \mathrm{k}$	None	4
RET		Subroutine Return	$\mathrm{PC} \leftarrow$ STACK	None	4
RETI		Interrupt Return	$\mathrm{PC} \leftarrow$ STACK	1	4
CPSE	Rd, Rr	Compare, Skip if Equal	if ($\mathrm{Rd}=\mathrm{Rr}$) $\mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
CP	Rd, Rr	Compare	Rd - Rr	Z, N, V, C, H	1
CPC	Rd, Rr	Compare with Carry	$\mathrm{Rd}-\mathrm{Rr}$ - C	Z, N, V, C, H	1
CPI	Rd, K	Compare Register with Immediate	Rd-K	$\mathrm{Z}, \mathrm{N}, \mathrm{V}, \mathrm{C}, \mathrm{H}$	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if $(\operatorname{Rr}(\mathrm{b})=0) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if $(\operatorname{Rr}(\mathrm{b})=1) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if $(P(b)=0) P C \leftarrow P C+2$ or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if $(P(b)=1) P C \leftarrow P C+2$ or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) $=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) $=0$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BREQ	k	Branch if Equal	if $(\mathrm{Z}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRNE	k	Branch if Not Equal	if $(\mathrm{Z}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRCS	k	Branch if Carry Set	if ($\mathrm{C}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRCC	k	Branch if Carry Cleared	if ($\mathrm{C}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRSH	k	Branch if Same or Higher	if ($\mathrm{C}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRLO	k	Branch if Lower	if ($\mathrm{C}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRMI	k	Branch if Minus	if ($\mathrm{N}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRPL	k	Branch if Plus	if ($\mathrm{N}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if ($\mathrm{N} \oplus \mathrm{V}=0$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if ($\mathrm{N} \oplus \mathrm{V}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if ($\mathrm{H}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if ($\mathrm{H}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRTS	k	Branch if T Flag Set	if $(T=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRTC	k	Branch if T Flag Cleared	if ($\mathrm{T}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if $(\mathrm{V}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if $(\mathrm{V}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
BRIE	k	Branch if Interrupt Enabled	if ($\mathrm{I}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRID	k	Branch if Interrupt Disabled	if $(\mathrm{I}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BIT AND BIT-TEST INSTRUCTIONS					
SBI	P, b	Set Bit in I/O Register	$\mathrm{I} / \mathrm{O}(\mathrm{P}, \mathrm{b}) \leftarrow 1$	None	2
CBI	P, b	Clear Bit in I/O Register	$\mathrm{l} / \mathrm{O}(\mathrm{P}, \mathrm{b}) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$\operatorname{Rd}(\mathrm{n}+1) \leftarrow \operatorname{Rd}(\mathrm{n}), \mathrm{Rd}(0) \leftarrow 0$	Z,C,N, V	1
LSR	Rd	Logical Shift Right	$\operatorname{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \operatorname{Rd}(7) \leftarrow 0$	Z,C,N, V	1
ROL	Rd	Rotate Left Through Carry	$\operatorname{Rd}(0) \leftarrow \mathrm{C}, \mathrm{Rd}(\mathrm{n}+1) \leftarrow \operatorname{Rd}(\mathrm{n}), \mathrm{C} \leftarrow \operatorname{Rd}(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$\operatorname{Rd}(7) \leftarrow \mathrm{C}, \mathrm{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \mathrm{C} \leftarrow \operatorname{Rd}(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$\operatorname{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \mathrm{n}=0.6$	Z,C,N, V	1
SWAP	Rd	Swap Nibbles	$\operatorname{Rd}(3 . .0) \leftarrow \operatorname{Rd}(7 . .4), \operatorname{Rd}(7 . .4) \leftarrow \operatorname{Rd}(3 . .0)$	None	1
BSET	s	Flag Set	SREG(s) $\leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	SREG(s) $\leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$\mathrm{T} \leftarrow \operatorname{Rr}(\mathrm{b})$	T	1
BLD	Rd, b	Bit load from T to Register	$\operatorname{Rd}(\mathrm{b}) \leftarrow \mathrm{T}$	None	1
SEC		Set Carry	$C \leftarrow 1$	C	1
CLC		Clear Carry	$C \leftarrow 0$	C	1
SEN		Set Negative Flag	$N \leftarrow 1$	N	1
CLN		Clear Negative Flag	$\mathrm{N} \leftarrow 0$	N	1
SEZ		Set Zero Flag	$\mathrm{Z} \leftarrow 1$	Z	1
CLZ		Clear Zero Flag	$\mathrm{Z} \leftarrow 0$	Z	1
SEI		Global Interrupt Enable	$1 \leftarrow 1$	1	1
CLI		Global Interrupt Disable	$1 \leftarrow 0$	1	1
SES		Set Signed Test Flag	$\mathrm{S} \leftarrow 1$	S	1
CLS		Clear Signed Test Flag	$\mathrm{S} \leftarrow 0$	S	1
SEV		Set Twos Complement Overflow.	$V \leftarrow 1$	V	1
CLV		Clear Twos Complement Overflow	$\mathrm{V} \leftarrow 0$	V	1
SET		Set T in SREG	$\mathrm{T} \leftarrow 1$	T	1
CLT		Clear T in SREG	$\mathrm{T} \leftarrow 0$	T	1
SEH		Set Half Carry Flag in SREG	$\mathrm{H} \leftarrow 1$	H	1
CLH		Clear Half Carry Flag in SREG	$\mathrm{H} \leftarrow 0$	H	1
DATA TRANSFER INSTRUCTIONS					
MOV	Rd, Rr	Move Between Registers	$\mathrm{Rd} \leftarrow \mathrm{Rr}$	None	1
MOVW	Rd, Rr	Copy Register Word	$\mathrm{Rd}+1: \mathrm{Rd} \leftarrow \mathrm{Rr}+1: \mathrm{Rr}$	None	1
LDI	Rd, K	Load Immediate	$\mathrm{Rd} \leftarrow \mathrm{K}$	None	1
LD	Rd, X	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{X})$	None	2
LD	Rd, X_{+}	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{X}), \mathrm{X} \leftarrow \mathrm{X}+1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$\mathrm{X} \leftarrow \mathrm{X}-1, \mathrm{Rd} \leftarrow(\mathrm{X})$	None	2
LD	Rd, Y	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{Y})$	None	2
LD	Rd, $\mathrm{Y}+$	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{Y}), \mathrm{Y} \leftarrow \mathrm{Y}+1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$\mathrm{Y} \leftarrow \mathrm{Y}-1, \mathrm{Rd} \leftarrow(\mathrm{Y})$	None	2
LDD	Rd, $\mathrm{Y}+\mathrm{q}$	Load Indirect with Displacement	$\mathrm{Rd} \leftarrow(\mathrm{Y}+\mathrm{q})$	None	2
LD	Rd, Z	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{Z})$	None	2
LD	Rd, Z_{+}	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{Z}), \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$\mathrm{Z} \leftarrow \mathrm{Z}-1, \mathrm{Rd} \leftarrow(\mathrm{Z})$	None	2
LDD	Rd, $\mathrm{Z}+\mathrm{q}$	Load Indirect with Displacement	$\mathrm{Rd} \leftarrow(\mathrm{Z}+\mathrm{q})$	None	2
LDS	Rd, k	Load Direct from SRAM	$\mathrm{Rd} \leftarrow(\mathrm{k})$	None	2
ST	X, Rr	Store Indirect	$(\mathrm{X}) \leftarrow \mathrm{Rr}$	None	2
ST	X t , Rr	Store Indirect and Post-Inc.	$(\mathrm{X}) \leftarrow \mathrm{Rr}, \mathrm{X} \leftarrow \mathrm{X}+1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$\mathrm{X} \leftarrow \mathrm{X}-1,(\mathrm{X}) \leftarrow \mathrm{Rr}$	None	2
ST	Y, Rr	Store Indirect	$(\mathrm{Y}) \leftarrow \mathrm{Rr}$	None	2
ST	Y + , Rr	Store Indirect and Post-Inc.	$(\mathrm{Y}) \leftarrow \mathrm{Rr}, \mathrm{Y} \leftarrow \mathrm{Y}+1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$\mathrm{Y} \leftarrow \mathrm{Y}-1,(\mathrm{Y}) \leftarrow \mathrm{Rr}$	None	2
STD	$\mathrm{Y}+\mathrm{q}, \mathrm{Rr}$	Store Indirect with Displacement	$(Y+q) \leftarrow R \mathrm{R}$	None	2
ST	Z, Rr	Store Indirect	$(\mathrm{Z}) \leftarrow \mathrm{Rr}$	None	2
ST	$\mathrm{Z}+$, Rr	Store Indirect and Post-Inc.	$(\mathrm{Z}) \leftarrow \mathrm{Rr}, \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$\mathrm{Z} \leftarrow \mathrm{Z}-1,(\mathrm{Z}) \leftarrow \mathrm{Rr}$	None	2
STD	$\mathrm{Z}+\mathrm{q}, \mathrm{Rr}$	Store Indirect with Displacement	$(Z+q) \leftarrow \operatorname{Rr}$	None	2
STS	k, Rr	Store Direct to SRAM	$(\mathrm{k}) \leftarrow \mathrm{Rr}$	None	2
LPM		Load Program Memory	$\mathrm{R} 0 \leftarrow(\mathrm{Z})$	None	3
LPM	Rd, Z	Load Program Memory	$\mathrm{Rd} \leftarrow(\mathrm{Z})$	None	3
LPM	Rd, Z_{+}	Load Program Memory and Post-Inc	$\mathrm{Rd} \leftarrow(\mathrm{Z}), \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	3
SPM		Store Program Memory	(Z) ↔R1:R0	None	-
IN	Rd, P	In Port	$\mathrm{Rd} \leftarrow \mathrm{P}$	None	1
OUT	P, Rr	Out Port	$\mathrm{P} \leftarrow \mathrm{Rr}$	None	1
PUSH	Rr	Push Register on Stack	STACK $\leftarrow \mathrm{Rr}$	None	2

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
POP	Rd	Pop Register from Stack	$\mathrm{Rd} \leftarrow$ STACK	None	2
MCU CONTROL INSTRUCTIONS					
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

Note: 1. These instructions are only available in ATmega168.

Ordering Information

ATmega48

Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
$10^{(3)}$	1.8-5.5	ATmega48V-10AI ATmega48V-10PI ATmega48V-10MI ATmega48V-10AJ ${ }^{(2)}$ ATmega48V-10PJ ${ }^{(2)}$ ATmega48V-10MJ ${ }^{(2)}$	$\begin{aligned} & \hline 32 \mathrm{~A} \\ & 28 \mathrm{P} 3 \\ & 32 \mathrm{M} 1-\mathrm{A} \\ & \text { 32A } \\ & 28 \mathrm{P} 3 \\ & 32 \mathrm{M} 1-\mathrm{A} \end{aligned}$	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \end{gathered}$
$20^{(3)}$	2.7-5.5	ATmega48-20AI ATmega48-20PI ATmega48-20MI ATmega48-20AJ ${ }^{(2)}$ ATmega48-20PJ ${ }^{(2)}$ ATmega48-20MJ ${ }^{(2)}$	32A 28P3 32M1-A 32A 28P3 32M1-A	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \end{gathered}$

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
2. Pb -free packaging alternative
3. See Figure 131 on page 293 and Figure 132 on page 293.

Package Type	
32A	32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)
28P3	28-lead, 0.300 " Wide, Plastic Dual Inline Package (PDIP)
32M1-A	32-pad, $5 \times 5 \times 1.0$ body, Lead Pitch 0.50 mm Micro Lead Frame Package (MLF)

ATmega88

Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
$10^{(3)}$	1.8-5.5	ATmega88V-10AI ATmega88V-10PI ATmega88V-10MI ATmega88V-10AJ ${ }^{(2)}$ ATmega88V-10PJ ${ }^{(2)}$ ATmega88V-10MJ ${ }^{(2)}$	32A 28P3 32M1-A 32A 28P3 32M1-A	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \end{gathered}$
$20^{(3)}$	2.7-5.5	ATmega88-20AI ATmega88-20PI ATmega88-20MI ATmega88-20AJ ${ }^{(2)}$ ATmega88-20PJ ${ }^{(2)}$ ATmega88-20MJ ${ }^{(2)}$	32A 28 P 3 $32 \mathrm{M} 1-\mathrm{A}$ 32 A 28 P 3 $32 \mathrm{M} 1-\mathrm{A}$	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \end{gathered}$

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
2. Pb-free packaging alternative
3. See Figure 131 on page 293 and Figure 132 on page 293.

Package Type	
32A	32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)
28P3	28-lead, 0.300 " Wide, Plastic Dual Inline Package (PDIP)
32M1-A	32-pad, $5 \times 5 \times 1.0$ body, Lead Pitch 0.50 mm Micro Lead Frame Package (MLF)

ATmega168

Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
$10^{(3)}$	1.8-5.5	ATmega168V-10AI ATmega168V-10PI ATmega168V-10MI ATmega168V-10AJ ${ }^{(2)}$ ATmega168V-10PJ ${ }^{(2)}$ ATmega168V-10MJ ${ }^{(2)}$	$\begin{aligned} & \hline 32 \mathrm{~A} \\ & 28 \mathrm{P} 3 \\ & 32 \mathrm{M} 1-\mathrm{A} \\ & 32 \mathrm{~A} \\ & 28 \mathrm{P} 3 \\ & 32 \mathrm{M} 1-\mathrm{A} \end{aligned}$	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \end{gathered}$
$20^{(3)}$	2.7-5.5	ATmega168-20AI ATmega168-20PI ATmega168-20MI ATmega168-20AJ ${ }^{(2)}$ ATmega168-20PJ ${ }^{(2)}$ ATmega168-20MJ ${ }^{(2)}$	$\begin{aligned} & \hline 32 \mathrm{~A} \\ & 28 \mathrm{P} 3 \\ & 32 \mathrm{M} 1-\mathrm{A} \\ & 32 \mathrm{~A} \\ & 28 \mathrm{P} 3 \\ & 32 \mathrm{M} 1-\mathrm{A} \end{aligned}$	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \end{gathered}$

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
2. Pb-free packaging alternative
3. See Figure 131 on page 293 and Figure 132 on page 293.

Package Type	
32A	32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)
28P3	28-lead, $0.300 "$ Wide, Plastic Dual Inline Package (PDIP)
32M1-A	32-pad, $5 \times 5 \times 1.0$ body, Lead Pitch 0.50 mm Micro Lead Frame Package (MLF)

Packaging Information

32A

28P3

COMMON DIMENSIONS (Unit of Measure = mm)								
otes: 1. JEDEC Standard MO-220, Fig. 2 (Anvil Singulation), VHHD-2.			YMBOL	MIN	NOM	MAX		
			A	0.80	0.90	1.00		
			A1	-	0.02	0.05		
			A2	-	0.65	1.00		
			A3	0.20 REF				
			b	0.18	0.23	0.30		
			D	5.00 BSC				
			D1	4.75 BSC				
			D2	2.95	3.10	3.25		
			E	5.00 BSC				
			E1	4.75BSC				
			E2	2.95	3.10	3.25		
			e	0.50 BSC				
			L	0.30	0.40	0.50		
			P	-	-	0.60		
			θ	-	-	12°		
01/15/03								
1相 ${ }^{\text {a }}$ 2325 Orchard Parkway	32M1-A, 32-pad, $5 \times 5 \times 1.0 \mathrm{~mm}$ Body, Lead Pitch 0.50 mm Micro Lead Frame Package (MLF)				DRAWING NO. 32M1-A			REV.

Errata ATmega48

Rev A

The revision letter in this section refers to the revision of the ATmega48 device.

- Wrong values read after Erase Only operation
- Watchdog Timer Interrupt disabled
- Start-up time with Crystal Oscillator is higher than expected
- High Power Consumption in Power-down with External Clock
- Asynchronous Oscillator does not stop in Power-down

1. Wrong values read after Erase Only operation

At supply voltages below 2.7 V , an EEPROM location that is erased by the Erase Only operation may read as programmed (0×00).

Problem Fix/Workaround

If it is necessary to read an EEPROM location after Erase Only, use an Atomic Write operation with 0xFF as data in order to erase a location. In any case, the Write Only operation can be used as intended. Thus no special considerations are needed as long as the erased location is not read before it is programmed.
2. Watchdog Timer Interrupt disabled

If the watchdog timer interrupt flag is not cleared before a new timeout occurs, the watchdog will be disabled, and the interrupt flag will automatically be cleared. This is only applicable in interrupt only mode. If the Watchdog is configured to reset the device in the watchdog time-out following an interrupt, the device works correctly.

Problem fix / Workaround

Make sure there is enough time to always service the first timeout event before a new watchdog timeout occurs. This is done by selecting a long enough time-out period.
3. Start-up time with Crystal Oscillator is higher than expected

The clock counting part of the start-up time is about 2 times higher than expected for all start-up periods when running on an external Crystal. This applies only when waking up by reset. Wake-up from power down is not affected. For most settings, the clock counting parts is a small fraction of the overall start-up time, and thus, the problem can be ignored. The exception is when using a very low frequency crystal like for instance a 32 kHz clock crystal.

Problem fix / Workaround

No known workaround.
4. High Power Consumption in Power-down with External Clock

The power consumption in power down with an active external clock is about 10 times higher than when using internal RC or external oscillators.

Problem fix / Workaround

Stop the external clock when the device is in power down.
5. Asynchronous Oscillator does not stop in Power-down

The Asynchronous oscillator does not stop when entering power down mode. This leads to higher power consumption than expected.

Problem fix / Workaround
Manually disable the asynchronous timer before entering power down.

Errata ATmega88

Rev. A

The revision letter in this section refers to the revision of the ATmega88 device.

- Writing to EEPROM does not work at low Operating Voltages
- Part may hang in reset

1. Writing to EEPROM does not work at low operating voltages

Writing to the EEPROM does not work at low voltages.
Problem Fix/Workaround
Do not write the EEPROM at voltages below 4.5 Volts. This will be corrected in rev. B.
2. Part may hang in reset

Some parts may get stuck in a reset state when a reset signal is applied when the internal reset state-machine is in a specific state. The internal reset state-machine is in this state for approximately 10 ns immediately before the part wakes up after a reset, and in a 10 ns window when altering the system clock prescaler. The problem is most often seen during In -System Programming of the device. There are theoretical possibilities of this happening also in run-mode. The following three cases can trigger the device to get stuck in a reset-state:

- Two succeeding resets are applied where the second reset occurs in the $10 n s$ window before the device is out of the reset-state caused by the first reset.
- A reset is applied in a 10 ns window while the system clock prescaler value is updated by software.
- Leaving SPI-programming mode generates an internal reset signal that can trigger this case.
The two first cases can occur during normal operating mode, while the last case occurs only during programming of the device.

Problem Fix/Workaround

The first case can be avoided during run-mode by ensuring that only one reset source is active. If an external reset push button is used, the reset start-up time should be selected such that the reset line is fully debounced during the start-up time.
The second case can be avoided by not using the system clock prescaler.
The third case occurs during In-System programming only. It is most frequently seen when using the internal RC at maximum frequency.
If the device gets stuck in the reset-state, turn power off, then on again to get the device out of this state.

Errata ATmega168

Rev A

The revision letter in this section refers to the revision of the ATmega168 device.

- Wrong values read after Erase Only operation
- Part may hang in reset

1. Wrong values read after Erase Only operation

At supply voltages below 2.7 V , an EEPROM location that is erased by the Erase Only operation may read as programmed (0×00).

Problem Fix/Workaround

If it is necessary to read an EEPROM location after Erase Only, use an Atomic Write operation with 0xFF as data in order to erase a location. In any case, the Write Only operation can be used as intended. Thus no special considerations are needed as long as the erased location is not read before it is programmed.

2. Part may hang in reset

Some parts may get stuck in a reset state when a reset signal is applied when the internal reset state-machine is in a specific state. The internal reset state-machine is in this state for approximately 10 ns immediately before the part wakes up after a reset, and in a 10 ns window when altering the system clock prescaler. The problem is most often seen during In -System Programming of the device. There are theoretical possibilities of this happening also in run-mode. The following three cases can trigger the device to get stuck in a reset-state:

- Two succeeding resets are applied where the second reset occurs in the 10ns window before the device is out of the reset-state caused by the first reset.
- A reset is applied in a 10 ns window while the system clock prescaler value is updated by software.
- Leaving SPI-programming mode generates an internal reset signal that can trigger this case.
The two first cases can occur during normal operating mode, while the last case occurs only during programming of the device.

Problem Fix/Workaround

The first case can be avoided during run-mode by ensuring that only one reset source is active. If an external reset push button is used, the reset start-up time should be selected such that the reset line is fully debounced during the start-up time.
The second case can be avoided by not using the system clock prescaler.
The third case occurs during In-System programming only. It is most frequently seen when using the internal RC at maximum frequency.
If the device gets stuck in the reset-state, turn power off, then on again to get the device out of this state.

ATmega48/88/168

Datasheet Change Log

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

Changes from Rev. 2545C-04/04 to Rev. 2545D-07/04

1. Updated instructions used with WDTCSR in relevant code examples.
2. Updated Table 8 on page 28, Table 21 on page 43, Table 112 on page

269, Table 114 on page 269, and Table 131 on page 288.
3. Updated "System Clock Prescaler" on page 33.
4. Moved "Timer/Counter2 Interrupt Mask Register - TIMSK2" and "Timer/Counter2 Interrupt Flag Register - TIFR2" to "8-bit Timer/Counter Register Description" on page 143.
5. Updated cross-reference in "Electrical Interconnection" on page 199.
6. Updated equation in "Bit Rate Generator Unit" on page 204.
7. Added "Page Size" on page 274.
8. Updated "Serial Programming Algorithm" on page 287.
9. Updated "Ordering Information" for "ATmega168" on page 16
10. Updated "Errata ATmega88" on page 21 and "Errata ATmega168" on page 22.

Changes from Rev. 2545B-01/04 to Rev. 2545C-04/04

Changes from Rev. 2545A-09/03 to Rev. 2545B-01/04

1. Speed Grades changed:
-12 MHz to 10 MHz
-24 MHz to 20 MHz
2. Updated "Maximum Speed vs. VCC" on page 293.
3. Updated "Ordering Information" on page 14.
4. Updated "Errata ATmega88" on page 21.
5. Added PDIP to "I/O and Packages", updated "Speed Grade" and Power Consumption Estimates in "Features" on page 1.
6. Updated "Stack Pointer" on page 11 with RAMEND as recommended Stack Pointer value.
7. Added section "Power Reduction Register" on page 37 and a note regarding the use of the PRR bits to 2-wire, Timer/Counters, USART, Analog Comparator and ADC sections.
8. Updated "Watchdog Timer" on page 46.
9. Updated Figure 55 on page 125 and Table 56 on page 126.
10. Extra Compare Match Interrupt OCF2B added to features in section "8bit Timer/Counter2 with PWM and Asynchronous Operation" on page 132
11. Updated Table 19 on page 37, Table 102 on page 245, Table 118 to Table 121 on page 272 to 273 and Table 98 on page 236. Added note 2 to Table 115 on page 270. Fixed typo in Table 42 on page 81.
12. Updated whole "ATmega48/88/168 Typical Characteristics - Preliminary Data" on page 298.
13. Added item 2 to 5 in "Errata ATmega48" on page 20.
14. Renamed the following bits:

- SPMEN to SELFPRGEN
- PSR2 to PSRASY
- PSR10 to PSRSYNC
- Watchdog Reset to Watchdog System Reset

11. Updated C code examples containing old IAR syntax.
12. Updated BLBSET description in "Store Program Memory Control and Status Register - SPMCSR" on page 260.

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G750QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.
© Atmel Corporation 2004. All rights reserved. Atmel ${ }^{\circledR}$ and combinations thereof, AVR ${ }^{\circledR}$, and AVR Studio ${ }^{\circledR}$ are the registered trademarks of Atmel Corporation or its subsidiaries. Microsoft ${ }^{\circledR}$, Windows ${ }^{\circledR}$, Windows $N T^{\circledR}$, and Windows XP $^{\circledR}$ are the registered trademarks of Microsoft Corporation. Other terms and product names may be the trademarks of others

This datasheet has been downloaded from: www.DatasheetCatalog.com

Datasheets for electronic components.

