

L6494

High voltage high and low-side 2 A gate driver

Description

MOSFETs or IGBTs.

active-low shutdown pin.

MOSFETs\IGBTs.

conditions.

material.

or DSP.

Datasheet - production data

The L6494 is a high-voltage device manufactured with the BCD6 "offline" technology. It is a single chip half-bridge gate driver for N-channel power

The high-side (floating) section is designed to stand a DC voltage rail up to 500 V, with 600 V

transient withstand voltage. The logic inputs are CMOS/TTL compatible down to 3.3 V for easy

interfacing control units such as microcontrollers

The device is a single input gate driver with

suited for medium and high capacity power

The independent UVLO protection circuits present on both the lower and upper driving

operated in low efficiency or dangerous

application PCB design simpler and more

compact, and help reducing the overall bill of

programmable deadtime, and also features an

Both device outputs can sink and source 2 A and

2.5 A respectively, making the L6494 particularly

sections prevent the power switches from being

The integrated bootstrap diode as well as all of the integrated features of this driver make the

Features

- Transient withstand voltage 600 V
- dV/dt immunity ± 50 V/ns in full temperature range
- Driver current capability:
 - 2 A source typ. at 25 °C
 - 2.5 A sink typ. at 25 °C
- Short propagation delay: 85 ns
- Switching times 25 ns rise/fall with 1 nF load
- Integrated bootstrap diode
- Single input and shutdown pin •
- Adjustable deadtime
- 3.3 V, 5 V TTL/CMOS inputs with hysteresis •
- UVLO on both high-side and low-side sections
- Compact and simplified layout
- Bill of material reduction
- Flexible, easy and fast design

Applications

- Motor driver for home appliances, factory automation, industrial drives and fans
- HID ballasts
- Induction heating
- Welding
- Industrial inverters
- UPS
- Power supply units
- DC-DC converters

February 2017

DocID030317 Rev 1

This is information on a product in full production.

Contents

1	Block diagram
2	Pin description and connection diagram4
3	Electrical data
	3.1 Absolute maximum ratings 5
	3.2 Thermal data
	3.3 Recommended operating conditions
4	Electrical characteristics7
5	Truth table
6	Typical application diagram 11
7	Bootstrap driver
	C _{BOOT} selection and charging 12
8	Package information
	8.1 SO-14 package information 14
9	Ordering information
10	Revision history

1 Block diagram

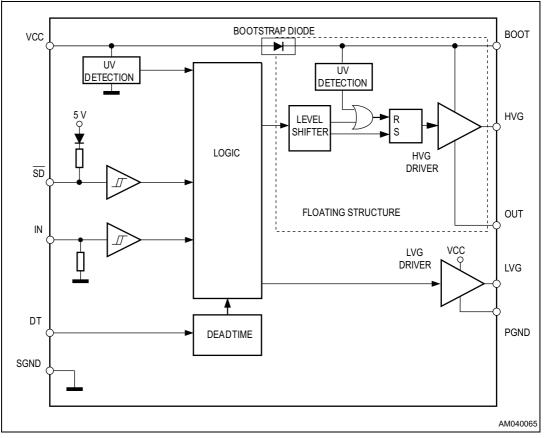


Figure 1. Block diagram SO-14

Pin description and connection diagram 2

	1	
IN 🗖	1 1	4 🗆 NC
SD 🗆	2 1	3 🗖 воот
SGND 🗖	3 1	2 🗖 HVG
DT 🗖	4 1	
PGND	5 1	
LVG 🗖	6	9 🗆 NC
	7	8 🗆 NC
· · · ·	1	AM040066
		AIVI040000

Figure 2. Pin connection SO-14 (top view)

	Table 1. Pin description					
Pin no. Pin name Type			Function			
1	IN	I	Output drivers logic input (is in phase with HVG and in opposition of phase with LVG)			
2	SD	-	Shutdown logic input (active-low)			
4	DT	Ι	Deadtime setting			
6	LVG ⁽¹⁾	0	Low-side driver output			
7	VCC	Р	Low-side section supply voltage			
11	OUT	Р	High-side (floating) section common voltage			
12	HVG ⁽¹⁾	0	High-side driver output			
13	BOOT	Р	High-side (bootstrapped) section supply voltage			
3	SGND	Р	Signal ground			
5	PGND	Р	Power ground			
8, 9, 10, 14	NC	-	Not connected			

The circuit guarantees less than 1 V on the LVG and HVG pins (at I_{sink} = 10 mA), with V_{CC} > 3 V. This allows omitting the "bleeder" resistor connected between the gate and the source of the external MOSFET normally used to hold the pin low. 1.

Ĺγ/

3 Electrical data

3.1 Absolute maximum ratings

Cumhal	Downwortow	Va	l lm it		
Symbol	Parameter	Min. Ma		– Unit	
V _{CC}	Supply voltage	-0.3	21	V	
V _{PGND}	Low-side driver ground	V _{CC} - 21	V _{CC} + 0.3	V	
V _{OUT}	Output voltage	V _{BOOT} - 21	V _{BOOT} + 0.3	V	
M	Boot DC voltage	-0.3	500	V	
V _{BOOT}	Boot transient withstand voltage (T _{pulse} < 1 ms)	-	620	V	
V _{hvg}	High-side gate output voltage	V _{OUT} - 0.3	V _{BOOT} + 0.3	V	
V _{lvg}	Low-side gate output voltage	PGND - 0.3	V _{CC} + 0.3	V	
Vi	Logic input pins voltage	-0.3	15	V	
dV _{OUT} /dt	Allowed output slew rate	-	50	V/ns	
P _{TOT}	Total power dissipation ($T_A = 25 \text{ °C}$) SO-14	-	1	W	
Τ _J	Junction temperature	-	150	°C	
T _{stg}	Storage temperature	-50	150	°C	
ESD	Human body model	2	kV	-	

Table 2. Absolute maximum ratings⁽¹⁾

1. Each voltage referred to SGND unless otherwise specified.

3.2 Thermal data

Table 3. Thermal data

Symbol	Parameter	Package	Value	Unit
R _{th(JA)}	Thermal resistance junction to ambient	SO-14	120	°C/W

Symbol	Pin	Parameter	Test condition	Min.	Max.	Unit
V _{CC}	VCC	Supply voltage	-	10	20	V
V _{PS} ⁽¹⁾	SGND - PGND	Low-side driver ground	-	-5	+5	V
V _{BO} ⁽²⁾	BOOT - OUT	Floating supply voltage	-	9.3	20	V
		OUT DC voltage	-	- 9 ⁽³⁾	480	V
V _{OUT}	OUT	OUT transient withstand voltage	T _{pulse} < 1 ms	-	600	V
f _{SW}	-	Maximum switching frequency	HVG, LVG load C _L = 1 nF	-	800	kHz
Τ _J	-	Junction temperature	-	-40	125	°C

1. V_{PS} = V_{PGND} - SGND.

2. $V_{BO} = V_{BOOT} - V_{OUT}$.

3. LVG off. V_{CC} = 12.5 V. Logic is operational if V_{BOOT} > 5 V.

L6494

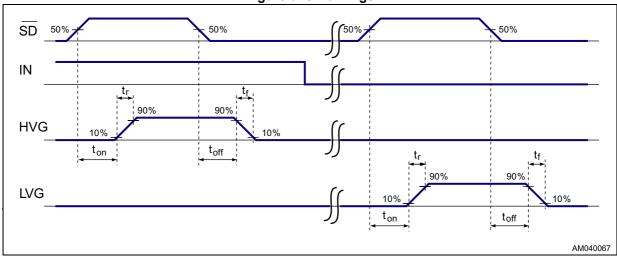
4 Electrical characteristics

Symbol	Pin	Parameter	Test condition	Min.	Тур.	Max.	Unit
Low-side s	ection supp	bly	I				
V _{CC_hys}		V _{CC} UV hysteresis	-	1.2	1.5	1.8	V
V _{CC_thON}		V _{CC} UV turn ON threshold	-	9.0	9.5	10.0	V
V _{CC_thOFF}	VCC vs.	V _{CC} UV turn OFF threshold	-	8.2	8.7	9.2	V
I _{QCCU}	SGND	Undervoltage quiescent supply current	$V_{CC} = \overline{SD} = 7 V$ IN = SGND	-	135	200	μA
I _{QCC}		Quiescent current	$\frac{V_{CC}}{SD} = 15 V$ SD = 5 V; IN = SGND	-	490	700	μA
High-side f	floating sec	tion supply ⁽¹⁾					1
V _{BO_hys}		V _{BO} UV hysteresis	-	0.8	1.0	1.2	V
$V_{BO_{thON}}$	1	V _{BO} UV turn ON threshold	-	8.0	8.6	9.1	V
V_{BO_thOFF}		V _{BO} UV turn OFF threshold	-	7.5	8.0	8.5	V
I _{QBOU}	BOOT vs. OUT	Undervoltage V _{BO} quiescent current	V _{BO} = SD = 7 V IN = SGND	-	20	30	μA
I _{QBO}		V _{BO} quiescent current	VBO = 15 V SD = IN = 5 V	-	90	120	μA
I _{LK}		High-voltage leakage current	$V_{hvg} = V_{out} = V_{boot} = 600 V$	-	-	8	μA
R _{DS(on)}		Bootstrap diode on-resistance ⁽²⁾	-	-	175	-	Ω
Output driv	ving buffers	5				•	•
I _{SO}		High/low-side source short-circuit current	LVG/HVG ON T _J = 25 °C	1.6	2	-	A
	lvg, hvg	Current	Full temperature range	1.25	-	-	Α
I _{SI}	LVG, HVG	High/low-side sink short-circuit current	LVG/HVG ON T _J = 25 °C	2	2.5	-	А
		Current	Full temperature range	1.55	-	-	Α
Logic inpu	ts						
V _{il}	IN, SD vs.	Low level logic threshold voltage	-	0.95	-	1.45	V
V _{ih}	SGND	High level logic threshold voltage	-	2	-	2.5	V
I _{INh}	IN vs.	IN logic "1" input bias current	IN = 15 V	120	200	260	μA
I _{INI}	SGND	IN logic "0" input bias current	IN = 0 V	-	-	1	μA
I _{SDh}	SD vs.	SD logic "1" input bias current	<u>SD</u> = 15 V	-	-	1	μA
I _{SDI}	SGND	SD logic "0" input bias current	<u>SD</u> = 0 V	14	17	23	μA

Table 5. Electrical characteristics ($v_{CC} = 15 v$, $T_J = \pm 25 c$, FGND = SGND) (continued)							
Symbol	Pin	Parameter	Test condition	Min.	Тур.	Max.	Unit
SD _{R_PU}	SD vs. SGND	SD pull-up resistor	-	185	250	310	kΩ
IN_{R_PD}	IN vs. SGND	IN pull-down resistor	-	58	75	125	kΩ
Dynamic c	haracteristi	cs (see <i>Figure 3</i> and <i>Figure 4</i>)					
t _{on}	SD vs. LVG/HVG	High/low-side driver turn-on propagation delay	$V_{out} = 0 V; Vb_{oot} = V_{CC};$ $C_L = 1 nF; V_i = 0 to 3.3 V$	-	85	120	ns
t _{off}	SD vs. LVG/HVG; IN vs. LVG/HVG	High/low-side driver turn-off propagation delay	-	-	85	120	ns
MT	-	Delay matching, HS and LS turn- on/off ⁽³⁾	-	-	-	30	ns
t _r		Rise time	C _L = 1 nF	-	25	-	ns
t _f	LVG, HVG	Fall time	C _L = 1 nF	-	25	-	ns
			R_{DT} = 0 Ω, C_{L} = 1 nF,	0.26	0.40	0.54	μS
DT	-	Deadtime setting range ⁽⁴⁾	R_{DT} = 100 kΩ, C _L = 1 nF, C _{DT} = 100 nF	2.10	2.70	3.30	μS
			R_{DT} = 200 kΩ, C _L = 1 nF, C _{DT} = 100 nF	4.00	5.00	6.00	μs
			R _{DT} = 0 Ω, C _L = 1 nF,	-	-	85	ns
MDT	-	Matching deadtime ⁽⁴⁾	R _{DT} = 100 kΩ, C _L = 1 nF, C _{DT} = 100 nF	-	-	350	ns
			R _{DT} = 200 kΩ, C _L = 1 nF, C _{DT} = 100 nF	-	-	700	ns

Table 5. Electrical characteristics	(V _{CC} = 15 V; T _J = +25 °C; PGND = SGND) (continued)	
	$(V_{CC} = 10^{\circ} V_{1} V_{1} = 120^{\circ} V_{1} V_{1} = 00000000000000000000000000000000000$	

1. $V_{BO} = V_{boot} - V_{out}$.


2. $R_{\mbox{\scriptsize DSON}}$ is tested in the following way:

 $R_{\text{DSON}} = [(V_{\text{CC}} - V_{\text{BOOT1}}) - (V_{\text{CC}} - V_{\text{BOOT2}})] / [I_1 (V_{\text{CC}}, V_{\text{BOOT1}}) - I_2 (V_{\text{CC}}, V_{\text{BOOT2}})]$

where I_1 is the BOOT pin current when $V_{BOOT} = V_{BOOT1}$, I_2 when $V_{BOOT} = V_{BOOT2}$.

3. MT = max. ($|_{ton}$ (LVG) - t_{off} (LVG)|, $|t_{on}$ (HVG) - t_{off} (HVG)|, $|t_{off}$ (LVG) - t_{on} (HVG)|, $|t_{off}$ (HVG) - t_{on} (LVG)|).

4. MDT = $| DT_{LH} - DT_{HL} |$ see *Figure 4*.

Figure 3. SD timings

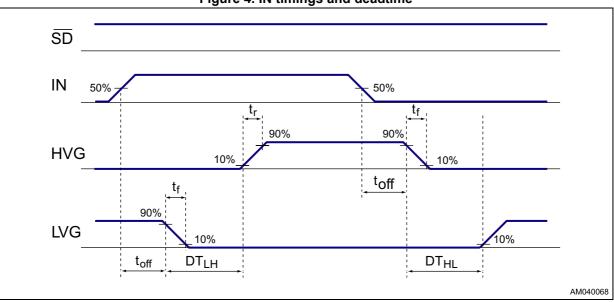
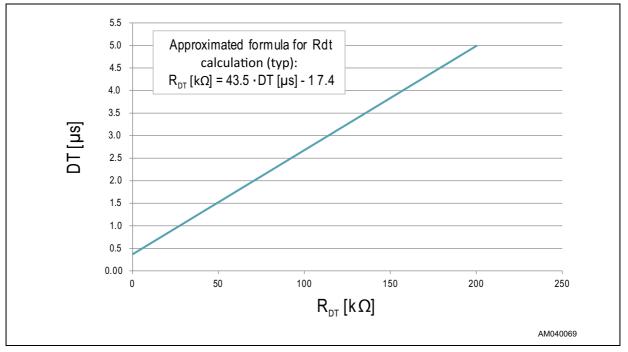



Figure 4. IN timings and deadtime

5 Truth table

Input Output				
SD	IN	LVG	HVG	
L	X ⁽¹⁾	L	L	
Н	L	Н	L	
Н	Н	L	Н	

Table 6. Truth table

1. X = don't care.

6 Typical application diagram

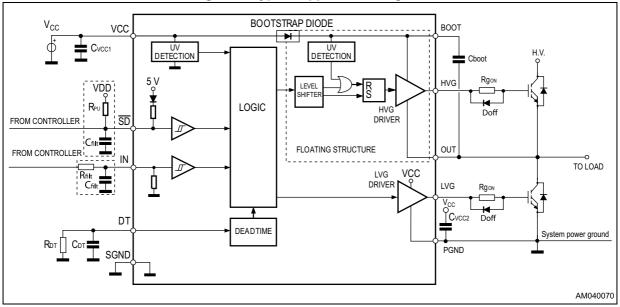
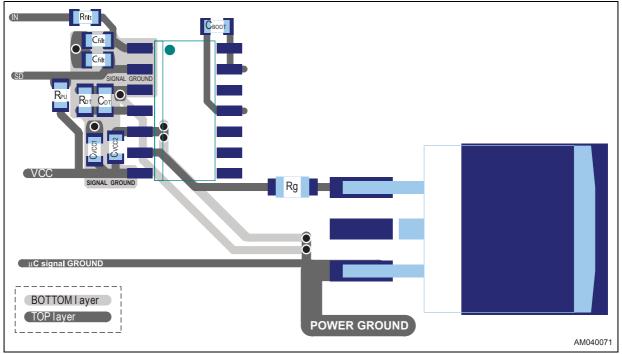



Figure 6. Typical application diagram

Figure 7. Suggested PCB layout (SO-14)

7 Bootstrap driver

A bootstrap circuitry is needed to supply the high voltage section. This function is usually accomplished by a high voltage fast recovery diode (*Figure 8*). In the L6494 an integrated structure replaces the external diode.

C_{BOOT} selection and charging

To choose the proper C_{BOOT} value the external MOS can be seen as an equivalent capacitor. This capacitor C_{EXT} is related to the MOS total gate charge:

Equation 1

$$C_{EXT} = \frac{Q_{gate}}{V_{gate}}$$

The ratio between the capacitors C_{EXT} and C_{BOOT} is proportional to the cyclical voltage loss. It has to be:

Equation 2

if Q_{aate} is 30 nC and V_{aate} is 10 V, C_{EXT} is 3 nF. With C_{BOOT} = 100 nF the drop is 300 mV.

If HVG has to be supplied for a long time, the C_{BOOT} selection has also to take into account the leakage and quiescent losses.

HVG steady-state consumption is lower than 120 μ A, so if HVG T_{ON} is 5 ms, C_{BOOT} has to supply 0.6 μ C. This charge on a 1 μ F capacitor means a voltage drop of 0.6 V.

The internal bootstrap driver gives a great advantage: the external fast recovery diode can be avoided (it usually has great leakage current).

This structure can work only if V_{OUT} is close to SGND (or lower) and in the meanwhile the LVG is on. The charging time (T_{charge}) of the C_{BOOT} is the time in which both conditions are fulfilled and it has to be long enough to charge the capacitor.

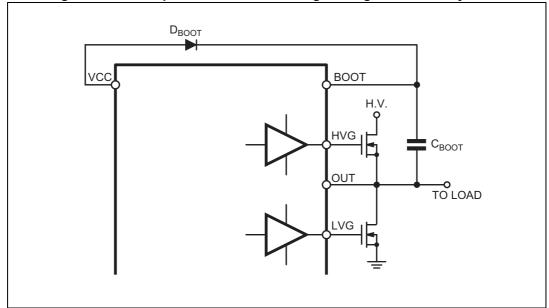
The bootstrap driver introduces a voltage drop due to the DMOS $R_{DS(on)}$ (typical value: 175 Ω). At low frequency this drop can be neglected. Anyway, the rise of frequency has to take into account.

The following equation is useful to compute the drop on the bootstrap DMOS:

Equation 3

$$V_{drop} = I_{charge} R_{DS(on)} \rightarrow V_{drop} = \frac{Q_{gate}}{T_{charge}} R_{DS(on)}$$

where Q_{gate} is the gate charge of the external power MOS, $R_{DS(on)}$ is the on resistance of the bootstrap DMOS and T_{charge} is the charging time of the bootstrap capacitor.

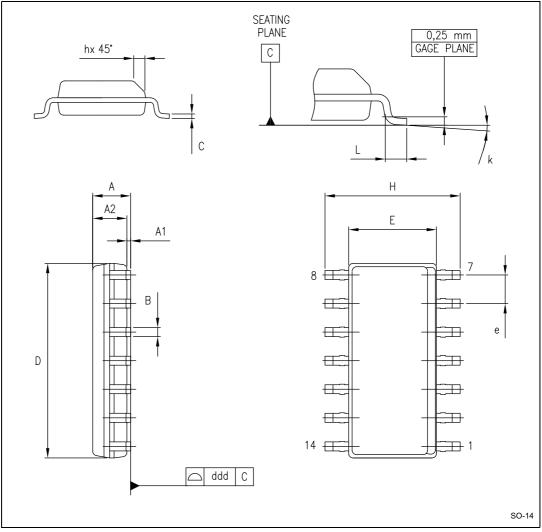


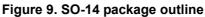
For example: using a power MOS with a total gate charge of 30 nC the drop on the bootstrap DMOS is about 1 V, if the T_{charge} is 5 $\mu s.$ In fact:

Equation 4

$$V_{drop} = \frac{30nC}{5\mu s} \cdot 175\Omega \sim 1V$$

 V_{drop} has to be taken into account when the voltage drop on C_{BOOT} is calculated: if this drop is too high, or the circuit topology doesn't allow a sufficient charging time, an external diode can be used.

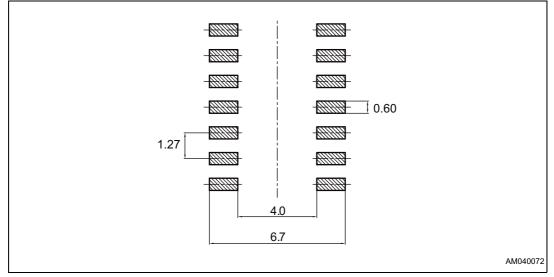

Figure 8. Bootstrap driver with external high voltage fast recovery diode



8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

8.1 SO-14 package information



Symbol		Dimensions (mm)			
Gymbol	Min.	Тур.	Max.		
А	1.35	-	1.75		
A1	0.10	-	0.25		
A2	1.10	-	1.65		
В	0.33	-	0.51		
С	0.19	-	0.25		
D	8.55	-	8.75		
E	3.80	-	4.00		
е	-	1.27	-		
Н	5.80	-	6.20		
h	0	-	-		
25	-	0.50	-		
L	0.40	-	1.27		
k	0	-	8		
ddd	-	-	0.10		

Table 7. SO-14 package mechanical data

Figure 10. SO-14 package suggested land pattern

9 Ordering information

Table 8	8. Device	summary
---------	-----------	---------

Order code	Package	Packaging
L6494LD	SO-14	Tube
L6494LDTR	SO-14	Tape and reel

10 Revision history

Table 9. Document revision history

Date	Revision	Changes
08-Feb-2017	1	Initial release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

DocID030317 Rev 1