

28/36/48/64/80-Pin, 16-Bit Digital Signal Controllers with High-Resolution PWM and CAN Flexible Data (CAN FD)

Operating Conditions

• 3.0V to 3.6V, -40°C to +125°C, DC to 100 MIPS

Core: 16-Bit dsPIC33CK CPU

- 32-256 Kbytes of Program Flash with ECC and 8-24K RAM
- Fast 6-Cycle Divide
- LiveUpdate
- Code Efficient (C and Assembly) Architecture
- 40-Bit Wide Accumulators
- Single-Cycle (MAC/MPY) with Dual Data Fetch
- Single-Cycle, Mixed-Sign MUL Plus Hardware Divide
- · 32-Bit Multiply Support
- Four Sets of Interrupt Context Saving Registers which Include Accumulator and STATUS for Fast Interrupt Handling
- Zero Overhead Looping
- RAM Memory Built-In Self-Test (MBIST)

Clock Management

- Internal Oscillator
- · Programmable PLLs and Oscillator Clock Sources
- Reference Clock Output
- Fail-Safe Clock Monitor (FSCM)
- Fast Wake-up and Start-up
- · Backup Internal Oscillator

Power Management

- Low-Power Management Modes (Sleep, Idle, Doze)
- Integrated Power-on Reset and Brown-out Reset

High-Speed PWM

- · 8 PWM Pairs
- · Up to 250 ps PWM Resolution
- · Dead Time for Rising and Falling Edges
- Dead-Time Compensation
- Clock Chopping for High-Frequency Operation
- · PWM Support for:
 - DC/DC, AC/DC, inverters, PFC, lighting
- BLDC, PMSM, ACIM, SRM motors
- · Fault and Current Limit Inputs
- Flexible Trigger Configuration for ADC Triggering

Timers/Output Compare/Input Capture

- One General Purpose Timer
- Peripheral Trigger Generator (PTG):
 - Up to 15 trigger sources to other peripheral modules
 - CPU independent state machine-based instruction sequencer
- Nine MCCP/SCCP modules which Include Timer, Capture/Compare and PWM:
 - 1 MCCP
 - 8 SCCPs
 - 16 or 32-bit time base
 - 16 or 32-bit capture
 - 4-deep capture buffer
- Fully Asynchronous Operation, Available in Sleep Modes

Advanced Analog Features

- High-Speed ADC module:
 - 12-bit with two dedicated SAR ADC cores and one shared SAR ADC core
 - Configurable resolution (up to 12-bit) for each ADC core
 - Up to 3.5 Msps conversion rate per channel at 12-bit resolution
 - Up to 24 input channels
 - Dedicated result buffer for each analog channel
 - Flexible and independent ADC trigger sources
 - Four digital comparators
 - Four oversampling filters for increased resolution
- Up to Three Analog Comparators:
 - 15 ns analog comparator
- Up to Three Op Amps
- Three 12-Bit DACs:
 - Hardware slope compensation

Communication Interfaces

- Three Protocol UARTs with Automated Protocol Handling Support for:
 - LIN 2.2
 - DMX
 - IrDA[®]
- Three 4-Wire SPI/I²S modules
- CAN Flexible Data (FD) module
- Three I²C modules with SMBus Support
- PPS to Allow Function Remap
- Programmable Cyclic Redundancy Check (CRC)
- Two SENT modules
- Parallel Master Port (PMP)

Direct Memory Access (DMA)

• Four DMA Channels

Debugger Development Support

- In-Circuit and In-Application Programming and Debugging
- Three Complex, Five Simple Breakpoints
- IEEE 1149.2 Compatible (JTAG) Boundary Scan
- Trace Buffer and Run-Time Watch

Safety Features

- Clock Monitor System with Backup Oscillator
- DMT (Deadman Timer)
- ECC (Error Correcting Code)
- WDT (Watchdog Timer)
- CodeGuard[™] Security
- CRC (Cyclic Redundancy Check)
- ICSP™ Write Inhibit
- RAM Memory Built-In Self-Test (MBIST)
- Two-Speed Start-up
- Fail-Safe Clock Monitoring (FSCM)
- Backup FRC (BFRC)
- · Capless Internal Voltage Regulator
- · Virtual Pins for Redundancy and Monitoring

Qualification and Class B Support

- AEC-Q100 REV-H (Grade 1: -40°C to +125°C) Compliant
- Class B Safety Library, IEC 60730

dsPIC33CK256MP508 PRODUCT FAMILIES

S	
⊵	
ത	
6	
<u>a</u>	
qi	
μ	
2	
P	
÷	
~~~	
ej.	
<u> </u>	
Ilowing pages show th	
≥	
Ö	
÷	
0	
ŝ	
ğ	
ъ	
ã	
D	
Ξ	
б	
=	
5	
Ð	
I Table 2. The	
F	
oi.	
C N	
<u>e</u>	
þ	
a	
e are listed in Table 1 and Table 2. Th	
1 and ⁻	
ЭГ	
1	
<u>a</u>	
P	
ത	
⊒.	
σ	
Ð	
evice are listed in	
÷	
e	
Я	
4	
8	
· 1	
Ð	
ъ	
p L	
p L	
p L	
f each dev	
p L	
f each d	
ity of each d	
ity of each d	
ity of each d	
ity of each d	
ity of each d	
ity of each d	
ity of each d	
ity of each d	
ity of each d	
f each d	
ity of each d	
ity of each d	
ity of each d	
ity of each d	
ity of each d	
ity of each d	
ity of each d	
es and peripheral availability of each d	
ity of each d	
es and peripheral availability of each d	
es and peripheral availability of each d	
es and peripheral availability of each d	
es and peripheral availability of each d	
es and peripheral availability of each d	
es and peripheral availability of each d	
es and peripheral availability of each d	
es and peripheral availability of each d	
es and peripheral availability of each d	
es and peripheral availability of each d	
counts, memory sizes and peripheral availability of each d	
counts, memory sizes and peripheral availability of each d	
counts, memory sizes and peripheral availability of each d	
es and peripheral availability of each d	
counts, memory sizes and peripheral availability of each d	
counts, memory sizes and peripheral availability of each d	
mes, pin counts, memory sizes and peripheral availability of each d	
counts, memory sizes and peripheral availability of each d	
mes, pin counts, memory sizes and peripheral availability of each d	
mes, pin counts, memory sizes and peripheral availability of each d	
mes, pin counts, memory sizes and peripheral availability of each d	
mes, pin counts, memory sizes and peripheral availability of each d	
mes, pin counts, memory sizes and peripheral availability of each d	
mes, pin counts, memory sizes and peripheral availability of each d	
mes, pin counts, memory sizes and peripheral availability of each d	
mes, pin counts, memory sizes and peripheral availability of each d	
mes, pin counts, memory sizes and peripheral availability of each d	

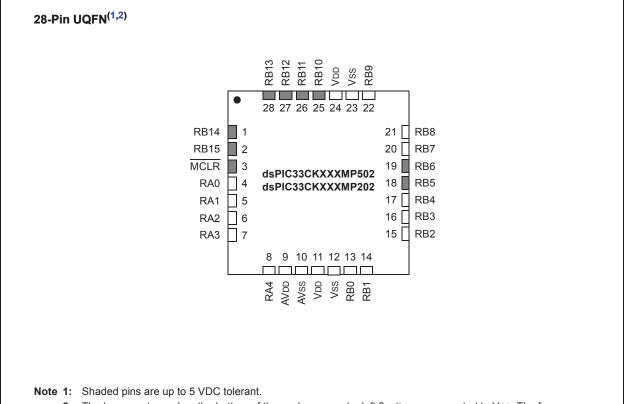
# TABLE 1: dsPIC33CK256MP508 FAMILY WITH CAN FD

	<u>г</u>	-		-	-			-	-		-	-	-	-	-	-	-	,	-
REFO Clock	-	Ł	-	-	Ł	-	-	~	-	-	Ł	-	-	Ł	-	-	~	-	-
ЧМЧ	-	~	0	0	0	-	-	0	0	0	~	~	0	0	0	~	0	0	0
qmA qO	з	3	3	с	2	3	3	с	с	2	3	3	3	3	2	3	с	3	2
12-Bit DAC	ю	3	3	ო	3	3	3	ო	ო	3	3	3	3	3	3	3	ო	3	с
Analog Comparators	3	3	3	3	3	3	3	з	3	3	3	3	3	3	3	3	з	3	3
studtuO MW9	8	8	8	9	4	8	8	8	9	4	8	8	8	9	4	8	8	9	4
свс	-	١	١	Ļ	١	1	١	-	Ļ	١	١	١	١	١	١	١	-	1	Ļ
рте	-	1	1	-	1	1	1	-	-	1	1	1	1	1	1	1	-	1	-
сгс	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
ØEI	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
۱ _۶ с	3	3	З	ы	3	3	3	ы	ы	З	3	3	З	3	3	3	ы	3	з
IdS	с	3	Е	ო	3	3	9	ო	ო	3	3	3	3	3	3	3	ო	3	с
ТЯАU	3	3	3	ю	3	3	3	ю	ю	3	3	3	3	3	3	3	ю	3	з
SENT	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
alənnsıdə AMD	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
CAN FD	-	Ļ	٢	-	Ļ	٢	٢	-	-	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	-	-	-
MCCP/SCCP	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
Timers	-	-	٢	-	-	-	~	~	-	~	-	-	~	-	-	-	~	-	-
ADC Channels	24	20	19	16	12	24	20	19	16	12	24	20	19	16	12	20	19	16	12
eluboM DDA	ო	e	с	ო	e	З	ю	ო	ო	с	e	ო	с	e	ო	ო	ო	з	ო
MAA stsD	24K	24K	24K	24K	24K	16K	16K	16K	16K	16K	8k	8k	8k	8k	8k	8k	8 K	8k	Ж
riash	256K	256K	256K	256K	256K	128K	128K	128K	128K	128K	64k	64k	64k	64k	64k	32k	32k	32k	32k
sniq	80	64	48	36	28	80	64	48	36	28	80	64	48	36	28	64	48	36	28
Product Pins	dsPIC33CK256MP508	dsPIC33CK256MP506	dsPIC33CK256MP505	dsPIC33CK256MP503	dsPIC33CK256MP502	dsPIC33CK128MP508	dsPIC33CK128MP506	dsPIC33CK128MP505	dsPIC33CK128MP503	dsPIC33CK128MP502	dsPIC33CK64MP508	dsPIC33CK64MP506	dsPIC33CK64MP505	dsPIC33CK64MP503	dsPIC33CK64MP502	dsPIC33CK32MP506	dsPIC33CK32MP505	dsPIC33CK32MP503	dsPIC33CK32MP502

		1						1		1				1						
	REFO Clock	~	-	~	-	-	~	~	-	~	~	-	-	~	-	-	-	-	-	~
	ЬМР	-	~	0	0	0	~	~	0	0	0	~	~	0	0	0	~	0	0	0
	qmA qO	з	3	ю	3	2	ю	ю	3	ю	2	3	3	ю	3	2	3	3	3	2
	12-Bit DAC	с	ю	e	ю	ю	ო	ო	ю	e	ო	ю	ю	ო	ю	ю	ю	3	3	ю
	Analog Comparators	с	с	e	с	с	ო	с	ю	e	с	ю	ю	с	ю	ю	с	3	3	з
	studtuO MW9	ω	8	ω	9	4	ω	ω	8	9	4	8	8	ω	9	4	8	8	9	4
	СВС	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	PTG	-	-	~	-	-	-	-	-	~	-	-	-	-	-	-	-	-	-	-
	сгс	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	ØEI	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	ا ₅ C	з	З	e	З	З	ო	ო	3	e	ო	з	3	ო	з	3	З	3	3	з
	IdS	e	с	ო	с	с	ო	ო	ю	ო	ო	с	e	ო	с	e	с	з	З	ი
	ТЯАŬ	e	З	ო	З	З	ო	ო	З	ო	ო	ю	З	ო	ю	З	З	З	3	ო
	SENT	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Ð	alənnad AMD	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
CAN	CAN FD	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
THOUT	MCCP/SCCP	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
	Timers	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	~
× ∠	alənnadə ODA	24	20	19	16	12	24	20	19	16	12	24	20	19	16	12	20	19	16	12
AMI	ADC Module	З	з	з	з	з	з	з	з	з	з	з	з	з	з	з	з	3	3	с
508 F	MAA stsD	24K	24K	24K	24K	24K	16K	16K	16K	16K	16K	8k								
56MP	riash	256K	256K	256K	256K	256K	128K	128K	128K	128K	128K	64k	64k	64k	64k	64k	32k	32k	32k	32k
3CK2	sniq	80	64	48	36	28	80	64	48	36	28	80	64	48	36	28	64	48	36	28
TABLE 2: dsPIC33CK256MP508 FAMILY W	Product Pins	dsPIC33CK256MP208	dsPIC33CK256MP206	dsPIC33CK256MP205	dsPIC33CK256MP203	dsPIC33CK256MP202	dsPIC33CK128MP208	dsPIC33CK128MP206	dsPIC33CK128MP205	dsPIC33CK128MP203	dsPIC33CK128MP202	dsPIC33CK64MP208	dsPIC33CK64MP206	dsPIC33CK64MP205	dsPIC33CK64MP203	dsPIC33CK64MP202	dsPIC33CK32MP206	dsPIC33CK32MP205	dsPIC33CK32MP203	dsPIC33CK32MP202

### **Pin Diagrams**

AVDD   AVss   VDD   VSS   RB0   RB1   RB2   RB3   RB4	9 <b>EECID</b> 10 <b>11</b> 12	25 25 4 F 24 F 23 F 22 27 7 20 7 19 7 18 7 18 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10	RB15 RB14 RB13 RB12 RB11 RB10 VDD VSS RB9 RB8 RB7 RB6			
-------------------------------------------------------------------------------	--------------------------------------	------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------	--	--	--


### TABLE 3: 28-PIN SSOP⁽¹⁾

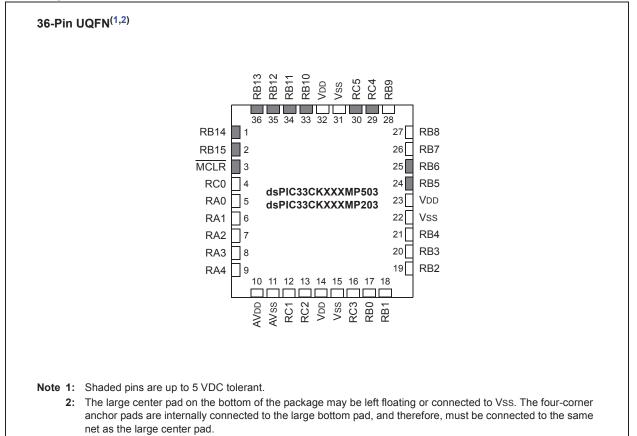
Pin #	Function	Pin #	Function
1	OA1IN-/ANA1/RA1	15	PGC3/ <b>RP38</b> /SCL2/RB6
2	OA1IN+/AN9/RA2	16	TDO/AN2/CMP3A/ <b>RP39</b> /SDA3/RB7
3	DACOUT1/AN3/CMP1C/RA3	17	PGD1/AN10/ <b>RP40</b> /SCL1/RB8
4	AN4/CMP3B/IBIAS3/RA4	18	PGC1/AN11/ <b>RP41</b> /SDA1/RB9
5	AVdd	19	Vss
6	AVss	20	VDD
7	VDD	21	TMS/ <b>RP42</b> /PWM3H/RB10 ⁽²⁾
8	Vss	22	TCK/ <b>RP43</b> /PWM3L/RB11
9	OSCI/CLKI/AN5/RP32/RB0	23	TDI/ <b>RP44</b> /PWM2H/RB12
10	OSCO/CLKO/AN6/RP33/RB1 ⁽³⁾	24	RP45/PWM2L/RB13
11	OA2OUT/AN1/AN7/ANA0/CMP1D/CMP2D/CMP3D/RP34/ SCL3/INT0/RB2	25	RP46/PWM1H/RB14
12	PGD2/OA2IN-/AN8/ <b>RP35</b> /RB3	26	RP47/PWM1L/RB15
13	PGC2/OA2IN+/ <b>RP36</b> /RB4	27	MCLR
14	PGD3/ <b>RP37</b> /SDA2/RB5	28	OA1OUT/AN0/CMP1A/IBIAS0/RA0

Note 1: RPn represents remappable peripheral functions.

2: A pull-up resistor is connected to this pin during power-up and programming.

### **Pin Diagrams (Continued)**




2: The large center pad on the bottom of the package may be left floating or connected to Vss. The four-corner anchor pads are internally connected to the large bottom pad, and therefore, must be connected to the same net as the large center pad.

Pin #	Function	Pin #	Function
1	<b>RP46</b> /PWM1H/RB14	15	OA2OUT/AN1/AN7/ANA0/CMP1D/CMP2D/CMP3D/RP34/SCL3/INT0/RB2
2	RP47/PWM1L/RB15	16	PGD2/OA2IN-/AN8/ <b>RP35</b> /RB3
3	MCLR	17	PGC2/OA2IN+/ <b>RP36</b> /RB4
4	OA1OUT/AN0/CMP1A/IBIAS0/RA0	18	PGD3/ <b>RP37</b> /SDA2/RB5
5	OA1IN-/ANA1/RA1	19	PGC3/ <b>RP38</b> /SCL2/RB6
6	OA1IN+/AN9/RA2	20	TDO/AN2/CMP3A/ <b>RP39</b> /SDA3/RB7
7	DACOUT1/AN3/CMP1C/RA3	21	PGD1/AN10/ <b>RP40</b> /SCL1/RB8
8	AN4/CMP3B/IBIAS3/RA4	22	PGC1/AN11/ <b>RP41</b> /SDA1/RB9
9	AVdd	23	Vss
10	AVss	24	Vdd
11	VDD	25	TMS/ <b>RP42</b> /PWM3H/RB10 ⁽²⁾
12	Vss	26	TCK/ <b>RP43</b> /PWM3L/RB11
13	OSCI/CLKI/AN5/RP32/RB0	27	TDI/ <b>RP44</b> /PWM2H/RB12
14	OSCO/CLKO/AN6/ <b>RP33</b> /RB1 ⁽³⁾	28	RP45/PWM2L/RB13

Note 1: RPn represents remappable peripheral functions.

2: A pull-up resistor is connected to this pin during power-up and programming.

### **Pin Diagrams (Continued)**

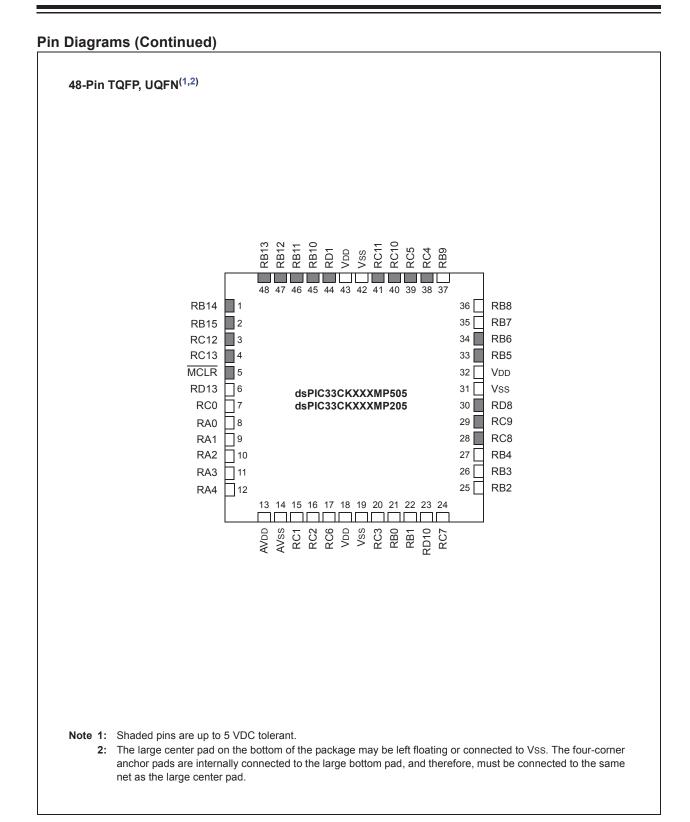
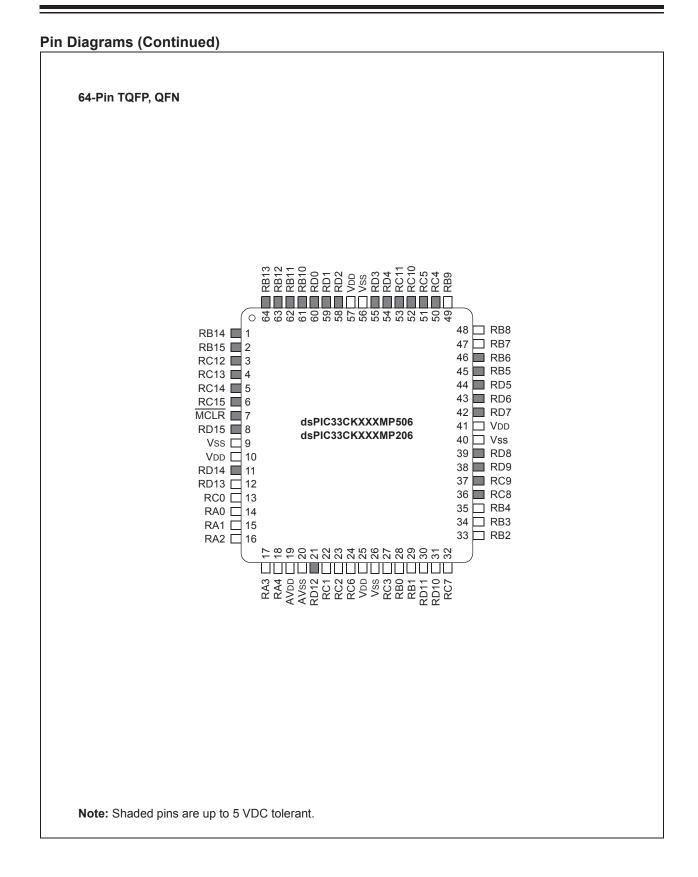



	TABLE 5:	36-PIN UQFN ⁽¹⁾
--	----------	----------------------------

Pin #	Function	Pin #	Function
1	RP46/PWM1H/RB14	19	OA2OUT/AN1/AN7/ANA0/CMP1D/CMP2D/CMP3D/RP34/SCL3/INT0/RB2
2	RP47/PWM1L/RB15	20	PGD2/OA2IN-/AN8/ <b>RP35</b> /RB3
3	MCLR	21	PGC2/OA2IN+/ <b>RP36</b> /RB4
4	AN12/ANN0/ <b>RP48</b> /RC0	22	Vss
5	OA1OUT/AN0/CMP1A/IBIAS0/RA0	23	VDD
6	OA1IN-/ANA1/RA1	24	PGD3/ <b>RP37</b> /PWM6L/SDA2/RB5
7	OA1IN+/AN9/RA2	25	PGC3/RP38/PWM6H/SCL2/RB6
8	DACOUT1/AN3/CMP1C/RA3	26	TDO/AN2/CMP3A/ <b>RP39</b> /SDA3/RB7
9	OA3OUT/AN4/CMP3B/IBIAS3/RA4	27	PGD1/AN10/ <b>RP40</b> /SCL1/RB8
10	AVDD	28	PGC1/AN11/ <b>RP41</b> /SDA1/RB9
11	AVss	29	RP52/PWM5H/ASDA2/RC4
12	OA3IN-/AN13/CMP1B/ISRC0/RP49/RC1	30	RP53/PWM5L/ASCL2/RC5
13	OA3IN+/AN14/CMP2B/ISRC1/RP50/RC2	31	Vss
14	Vdd	32	VDD
15	Vss	33	TMS/ <b>RP42</b> /PWM3H/RB10 ⁽²⁾
16	AN15/CMP2A/IBIAS2/RP51/RC3	34	TCK/ <b>RP43</b> /PWM3L/RB11
17	OSCI/CLKI/AN5/RP32/RB0	35	TDI/ <b>RP44</b> /PWM2H/RB12
18	OSCO/CLKO/AN6/RP33/RB1 ⁽³⁾	36	RP45/PWM2L/RB13

Note 1: RPn represents remappable peripheral functions.

2: A pull-up resistor is connected to this pin during power-up and programming.



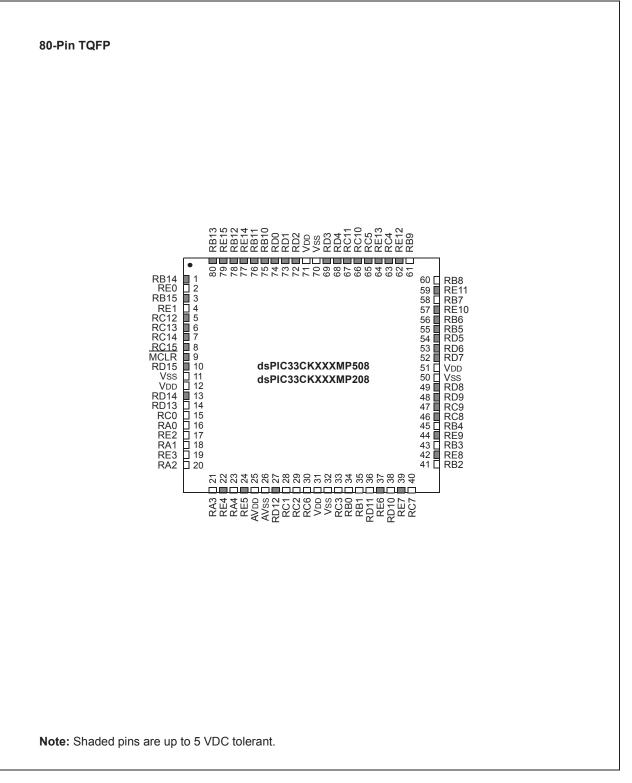

Pin #	Function	Pin #	Function
1	<b>RP46</b> /PWM1H/RB14	25	OA2OUT/AN1/AN7/ANA0/CMP1D/CMP2D/CMP3D/RP34/SCL3/INT0/RB2
2	RP47/PWM1L/RB15	26	PGD2/OA2IN-/AN8/ <b>RP35</b> /RB3
3	RP60/PWM8H/RC12	27	PGC2/OA2IN+/ <b>RP36</b> /RB4
4	RP61/PWM8L/RC13	28	RP56/ASDA1/SCK2/RC8
5	MCLR	29	RP57/ASCL1/SDI2/RC9
6	ANN2/ <b>RP77</b> /RD13	30	RP72/SDO2/PCI19/RD8
7	AN12/ANN0/ <b>RP48</b> /RC0	31	Vss
8	OA1OUT/AN0/CMP1A/IBIAS0/RA0	32	VDD
9	OA1IN-/ANA1/RA1	33	PGD3/ <b>RP37</b> /PWM6L/SDA2/RB5
10	OA1IN+/AN9/RA2	34	PGC3/RP38/PWM6H/SCL2/RB6
11	DACOUT1/AN3/CMP1C/RA3	35	TDO/AN2/CMP3A/ <b>RP39</b> /SDA3/RB7
12	OA3OUT/AN4/CMP3B/IBIAS3/RA4	36	PGD1/AN10/ <b>RP40</b> /SCL1/RB8
13	AVDD	37	PGC1/AN11/ <b>RP41</b> /SDA1/RB9
14	AVss	38	RP52/PWM5H/ASDA2/RC4
15	OA3IN-/AN13/CMP1B/ISRC0/RP49/RC1	39	RP53/PWM5L/ASCL2/RC5
16	OA3IN+/AN14/CMP2B/ISRC1/RP50/RC2	40	RP58/PWM7H/RC10
17	AN17/ANN1/IBIAS1/ <b>RP54</b> /RC6	41	RP59/PWM7L/RC11
18	VDD	42	Vss
19	Vss	43	VDD
20	AN15/CMP2A/IBIAS2/RP51/RC3	44	RP65/PWM4H/RD1
21	OSCI/CLKI/AN5/RP32/RB0	45	TMS/ <b>RP42</b> /PWM3H/RB10 ⁽²⁾
22	OSCO/CLKO/AN6/RP33/RB1 ⁽³⁾	46	TCK/ <b>RP43</b> /PWM3L/RB11
23	AN18/CMP3C/ISRC3/RP74/RD10	47	TDI/ <b>RP44</b> /PWM2H/RB12
24	AN16/ISRC2/ <b>RP55</b> /RC7	48	RP45/PWM2L/RB13

TABLE 6:48-PIN TQFP, UQFN⁽¹⁾

Note 1: RPn represents remappable peripheral functions.

2: A pull-up resistor is connected to this pin during power-up and programming.




Pin #	Function	Pin #	Function
1	RP46/PWM1H/PMD5/RB14	33	OA2OUT/AN1/AN7/ANA0/CMP1D/CMP2D/CMP3D/RP34/SCL3/INT0/RB2
2	RP47/PWM1L/PMD6/RB15	34	PGD2/OA2IN-/AN8/ <b>RP35</b> /RB3
3	RP60/PWM8H/PMD7/RC12	35	PGC2/OA2IN+/RP36/RB4
4	RP61/PWM8L/PMA5/RC13	36	RP56/ASDA1/SCK2/RC8
5	RP62/PWM6H/PMA4/RC14	37	RP57/ASCL1/SDI2/RC9
6	RP63/PWM6L/PMA3/RC15	38	RP73/PCI20/RD9
7	MCLR	39	RP72/SDO2/PCI19/RD8
8	RP79/PCI22/PMA2/RD15	40	Vss
9	Vss	41	VDD
10	VDD	42	RP71/PMD15/RD7
11	RP78/PCI21/RD14	43	RP70/PMD14/RD6
12	ANN2/ <b>RP77</b> /RD13	44	RP69/PMA15/PMCS2/RD5
13	AN12/ANN0/ <b>RP48</b> /RC0	45	PGD3/RP37/SDA2/PMA14/PMCS1/PSCS/RB5
14	OA1OUT/AN0/CMP1A/IBIAS0/RA0	46	PGC3/ <b>RP38</b> /SCL2/RB6
15	OA1IN-/ANA1/RA1	47	TDO/AN2/CMP3A/ <b>RP39</b> /SDA3/RB7
16	OA1IN+/AN9/PMA6/RA2	48	PGD1/AN10/ <b>RP40</b> /SCL1/RB8
17	DACOUT1/AN3/CMP1C/RA3	49	PGC1/AN11/ <b>RP41</b> /SDA1/RB9
18	OA3OUT/AN4/CMP3B/IBIAS3/RA4	50	RP52/PWM5H/ASDA2/RC4
19	AVDD	51	RP53/PWM5L/ASCL2/PMWR/PMENB/PSWR/RC5
20	AVss	52	RP58/PWM7H/PMRD/PMWR/PSRD/RC10
21	RP76/RD12	53	RP59/PWM7L/RC11
22	OA3IN-/AN13/CMP1B/ISRC0/RP49/PMA7/RC1	54	RP68/ASDA3/RD4
23	OA3IN+/AN14/CMP2B/ISRC1/RP50/PMD13/PMA13/RC2	55	RP67/ASCL3/RD3
24	AN17/ANN1/IBIAS1/RP54/PMD12/PMA12/RC6	56	Vss
25	VDD	57	VDD
26	Vss	58	RP66/RD2
27	AN15/CMP2A/IBIAS2/RP51/PMD11/PMA11/RC3	59	RP65/PWM4H/RD1
28	OSCI/CLKI/AN5/RP32/PMD10/PMA10/RB0	60	RP64/PWM4L/PMD0/RD0
29	OSCO/CLKO/AN6/RP33/PMA1/PMALH/PSA1/RB1 ⁽³⁾	61	TMS/RP42/PWM3H/PMD1/RB10 ⁽²⁾
30	AN19/CMP2C/RP75/PMA0/PMALL/PSA0/RD11	62	TCK/RP43/PWM3L/PMD2/RB11
31	AN18/CMP3C/ISRC3/RP74/PMD9/PMA9/RD10	63	TDI/ <b>RP44</b> /PWM2H/PMD3/RB12
32	AN16/ISRC2/RP55/PMD8/PMA8/RC7	64	RP45/PWM2L/PMD4/RB13

### TABLE 7:64-PIN TQFP, QFN⁽¹⁾

Note 1: RPn represents remappable peripheral functions.

2: A pull-up resistor is connected to this pin during power-up and programming.





Pin #	Function	Pin #	Function
1	RP46/PWM1H/PMD5/RB14	41	OA2OUT/AN1/AN7/ANA0/CMP1D/CMP2D/CMP3D/RP34/SCL3/INT0/RB2
2	AN20/RE0	42	RE8
3	RP47/PWM1L/PMD6/RB15	43	PGD2/OA2IN-/AN8/ <b>RP35</b> /RB3
4	AN21/RE1	44	RE9
5	RP60/PWM8H/PMD7/RC12	45	PGC2/OA2IN+/ <b>RP36</b> /RB4
6	RP61/PWM8L/PMA5/RC13	46	RP56/ASDA1/SCK2/RC8
7	RP62/PWM6H/PMA4/RC14	47	RP57/ASCL1/SDI2/RC9
8	RP63/PWM6L/PMA3/RC15	48	RP73/PCI20/RD9
9	MCLR	49	RP72/SDO2/PCI19/RD8
10	RP79/PCI22/PMA2/RD15	50	Vss
11	Vss	51	VDD
12	Vdd	52	RP71/PMD15/RD7
13	RP78/PCI21/RD14	53	RP70/PMD14/RD6
14	ANN2/ <b>RP77</b> /RD13	54	RP69/PMA15/PMCS2/RD5
15	AN12/ANN0/ <b>RP48</b> /RC0	55	PGD3/RP37/SDA2/PMA14/PMCS1/PSCS/RB5
16	OA1OUT/AN0/CMP1A/IBIAS0/RA0	56	PGC3/ <b>RP38</b> /SCL2/RB6
17	AN22/RE2	57	RE10
18	OA1IN-/ANA1/RA1	58	TDO/AN2/CMP3A/ <b>RP39</b> /SDA3/RB7
19	AN23/RE3	59	RE11
20	OA1IN+/AN9/PMA6/RA2	60	PGD1/AN10/ <b>RP40</b> /SCL1/RB8
21	DACOUT1/AN3/CMP1C/RA3	61	PGC1/AN11/ <b>RP41</b> /SDA1/RB9
22	RE4	62	RE12
23	OA3OUT/AN4/CMP3B/IBIAS3/RA4	63	RP52/PWM5H/ASDA2/RC4
24	RE5	64	RE13
25	AVdd	65	RP53/PWM5L/ASCL2/PMWR/PMENB/PSWR/RC5
26	AVss	66	RP58/PWM7H/PMRD/PMWR/PSRD/RC10
27	<b>RP76</b> /RD12	67	RP59/PWM7L/RC11
28	OA3IN-/AN13/CMP1B/ISRC0/RP49/PMA7/RC1	68	RP68/ASDA3/RD4
29	OA3IN+/AN14/CMP2B/ISRC1/RP50/PMD13/PMA13/RC2	69	RP67/ASCL3/RD3
30	AN17/ANN1/IBIAS1/RP54/PMD12/PMA12/RC6	70	Vss
31	VDD	71	VDD
32	Vss	72	RP66/RD2
33	AN15/CMP2A/IBIAS2/RP51/PMD11/PMA11/RC3	73	RP65/PWM4H/RD1
34	OSCI/CLKI/AN5/RP32/PMD10/PMA10/RB0	74	RP64/PWM4L/PMD0/RD0
35	OSCO/CLKO/AN6/RP33/PMA1/PMALH/PSA1/RB1 ⁽³⁾	75	TMS/ <b>RP42</b> /PWM3H/PMD1/RB10 ⁽²⁾
36	AN19/CMP2C/RP75/PMA0/PMALL/PSA0/RD11	76	TCK/ <b>RP43</b> /PWM3L/PMD2/RB11
37	RE6	77	RE14
38	AN18/CMP3C/ISRC3/RP74/PMD9/PMA9/RD10	78	TDI/ <b>RP44</b> /PWM2H/PMD3/RB12
39	RE7	79	RE15
40	AN16/ISRC2/RP55/PMD8/PMA8/RC7	80	RP45/PWM2L/PMD4/RB13

### TABLE 8:80-PIN TQFP⁽¹⁾

Note 1: RPn represents remappable peripheral functions.

2: A pull-up resistor is connected to this pin during power-up and programming.

### **Table of Contents**

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-Bit Digital Signal Controllers	
3.0	CPU	
4.0	Memory Organization	41
5.0	Flash Program Memory	
6.0	Resets	
7.0	Interrupt Controller	
8.0	I/O Ports	
9.0	Oscillator with High-Frequency PLL	
10.0	Direct Memory Access (DMA) Controller	
11.0	Controller Area Network (CAN FD) Module	
12.0	High-Resolution PWM with Fine Edge Placement	
13.0	High-Speed, 12-Bit Analog-to-Digital Converter (ADC)	
14.0	High-Speed Analog Comparator with Slope Compensation DAC	
15.0	Quadrature Encoder Interface (QEI)	
16.0	Universal Asynchronous Receiver Transmitter (UART)	
	Serial Peripheral Interface (SPI)	
	Inter-Integrated Circuit (I ² C)	
19.0	Parallel Master Port (PMP)	405
20.0	Single-Edge Nibble Transmission (SENT)	419
21.0	Timer1	
22.0	Capture/Compare/PWM/Timer Modules (SCCP/MCCP)	433
23.0	Configurable Logic Cell (CLC)	447
24.0	Peripheral Trigger Generator (PTG)	459
25.0	32-Bit Programmable Cyclic Redundancy Check (CRC) Generator	
	Current Bias Generator (CBG)	
27.0	Operational Amplifier	483
28.0	Deadman Timer (DMT)	487
29.0	Power-Saving Features	
30.0	Special Features	507
31.0	Instruction Set Summary	533
32.0	Development Support	543
33.0	Electrical Characteristics	547
34.0	Packaging Information	583
Appe	endix A: Revision History	609
Index	<	611
The I	Microchip Website	619
	omer Change Notification Service	
	omer Support	
Prod	uct Identification System	621

### TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

### Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

### http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

### Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

### **Customer Notification System**

Register on our website at www.microchip.com to receive the most current information on all of our products.

### **Referenced Sources**

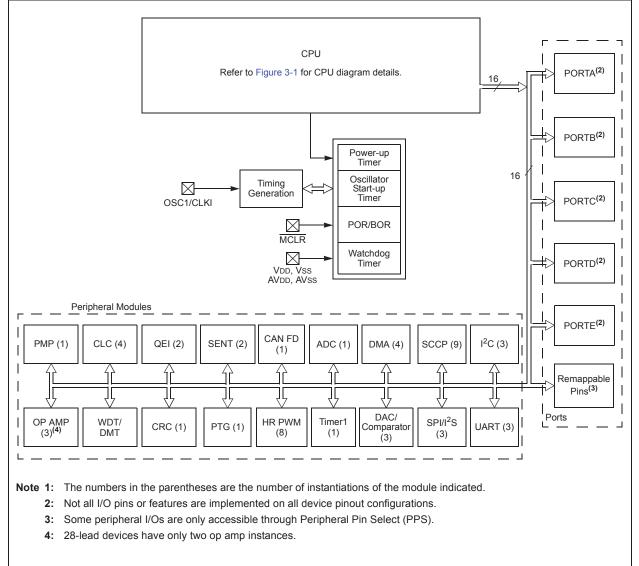
This device data sheet is based on the following individual chapters of the *"dsPlC33/PlC24 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note 1: To access the documents listed below, browse to the documentation section of the dsPIC33CK256MP508 product page of the Microchip website (www.microchip.com) or select a family reference manual section from the following list.

> In addition to parameters, features and other documentation, the resulting page provides links to the related family reference manual sections.

- "Introduction" (www.microchip.com/DS70573)
- "dsPIC33E Enhanced CPU" (www.microchip.com/DS70005158)
- "dsPIC33E/PIC24E Program Memory" (www.microchip.com/DS70000613)
- "Data Memory" (www.microchip.com/DS70595)
- "Dual Partition Flash Program Memory" (www.microchip.com/DS70005156)
- "Flash Programming" (www.microchip.com/DS70609)
- "Reset" (www.microchip.com/DS70602)
- "Interrupts" (www.microchip.com/DS70000600)
- "I/O Ports with Edge Detect" (www.microchip.com/DS70005322)
- "Oscillator Module with High-Speed PLL" (www.microchip.com/DS70005255)
- "Direct Memory Access Controller (DMA)" (www.microchip.com/DS39742)
- "CAN Flexible Data-Rate (FD) Protocol Module" (www.microchip.com/DS70005340)
- "High-Resolution PWM with Fine Edge Placement" (www.microchip.com/DS70005320)
- "12-Bit High-Speed, Multiple SARs A/D Converter (ADC)" (www.microchip.com/DS70005213)
- "High-Speed Analog Comparator Module" (www.microchip.com/DS70005280)
- "Quadrature Encoder Interface (QEI)" (www.microchip.com/DS70000601)
- "Multiprotocol Universal Asynchronous Receiver Transmitter (UART) Module" (www.microchip.com/DS70005288)
- "Serial Peripheral Interface (SPI) with Audio Codec Support" (www.microchip.com/DS70005136)
- "Inter-Integrated Circuit (I²C)" (www.microchip.com/DS70000195)
- "Parallel Master Port (PMP)" (www.microchip.com/DS70005344)
- "Single-Edge Nibble Transmission (SENT) Module" (www.microchip.com/DS70005145)
- "Timer1 Module" (www.microchip.com/DS70005279)
- "Capture/Compare/PWM/Timer (MCCP and SCCP)" (www.microchip.com/DS33035)
- "Configurable Logic Cell (CLC)" (www.microchip.com/DS70005298)
- "Peripheral Trigger Generator (PTG)" (www.microchip.com/DS70000669)
- "32-Bit Programmable Cyclic Redundancy Check (CRC)" (www.microchip.com/DS30009729)
- "Current Bias Generator (CBG)" (www.microchip.com/DS70005253)
- "Deadman Timer" (www.microchip.com/DS70005155)
- "Watchdog Timer and Power-Saving Modes" (www.microchip.com/DS70615)
- "CodeGuard™ Security" (www.microchip.com/DS70634)
- "Dual Watchdog Timer" (www.microchip.com/DS70005250)
- "Programming and Diagnostics" (www.microchip.com/DS70608)

### 1.0 DEVICE OVERVIEW


- Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com).
  - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33CK256MP508 Digital Signal Controller (DSC) and Microcontroller (MCU) devices.

dsPIC33CK256MP508 devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules of the dsPIC33CK256MP508 family. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

### FIGURE 1-1: dsPIC33CK256MP508 FAMILY BLOCK DIAGRAM⁽¹⁾



Pin Name(1)Pin TypeBuffer TypePPSDescriptionAN0-AN23IAnalogNo AnalogAnalog input channels Analog alternate inputs Analog alternate inputsAN0-AN11IAnalogNo Analog alternate inputsADTRGISTYesCLKIIST/ CMOSNo CMOSCLKOO CMOSNo Callator crystal output. Connects to crystal or resonator in Oscillator crystal output. ST buffer when configured in RC mo CMOSOSCIIST/ CMOSNo Callator crystal output. Connects to crystal or resonator in Oscillator mode. Optionally functions as CLKO in RC and E modes.REFCLKOO YesYesReference clock inputIINT0IST YesINT2IST YesINT3IST YesINT2IST NoIOCA<4:0>IST NoIOCA<4:0>IST NoIOCA<4:0>IST NoIOCA<10>ST NoINT2IST NoINT2IST	
ANA0-ANA1       I       Analog       No       Analog alternate inputs         ANN0-ANN2       I       ST       Yes       ADC Trigger Input 31         CLKI       I       ST/       No       External Clock (EC) source input. Always associated with OSC function.         CLKO       O       -       No       Scillator crystal output. Connects to crystal or resonator in Oscillator mode. Optionally functions as CLKO in RC and Emodes. Always associated with OSC pin function.         OSCI       I       ST/       No       Oscillator crystal input. ST buffer when configured in RC mc CMOS otherwise.         OSCO       I/O       -       No       Oscillator crystal output. Connects to crystal or resonator in Oscillator mode. Optionally functions as CLKO in RC and Emodes.         REFCLKO       O       -       -       No       Oscillator crystal output. Connects to crystal or resonator in Oscillator mode. Optionally functions as CLKO in RC and Emodes.         REFCLKO       O       -       -       Yes       Reference clock output         INT0       I       ST       Yes       Reference clock input         INT1       I       ST       Yes       External Interrupt 0         INT2       I       ST       Yes       External Interrupt 3         IOCA       I       ST       No       Inter	
ANN0-ANN2       I       Analog       No       Analog negative inputs         ADTRG       I       ST       Yes       ADC Trigger Input 31         CLKI       I       ST/       No       External Clock (EC) source input. Always associated with OSC function.         CLKO       O        No       Oscillator crystal output. Connects to crystal or resonator in Oscillator mode. Optionally functions as CLKO in RC and E modes. Always associated with OSCO pin function.         OSCI       I       ST/       No       Oscillator crystal input. ST buffer when configured in RC mc CMOS otherwise.         OSCO       I/O        No       Oscillator crystal output. Connects to crystal or resonator in Oscillator crystal output. Connects to crystal or resonator in Oscillator mode. Optionally functions as CLKO in RC and E modes.         REFCLKO       O        Yes       Reference clock output         REFOI       I       ST       Yes       Reference clock input         INT0       I       ST       Yes       External Interrupt 0         INT1       I       ST       Yes       External Interrupt 1         INT2       I       ST       Yes       External Interrupt 3         IOCA<4:0>       I       ST       No       Interrupt-on-Change input for PORTA         IOCC	
ADTRG       I       ST       Yes       ADC Trigger Input 31         CLKI       I       ST/       No       External Clock (EC) source input. Always associated with OSC function.         CLKO       O       —       No       External Clock (EC) source input. Always associated with OSC function.         CLKO       O       —       No       Oscillator crystal output. Connects to crystal or resonator in Oscillator mode. Optionally functions as CLKO in RC and E modes. Always associated with OSCO pin function.         OSCI       I       ST/       No       Oscillator crystal input. ST buffer when configured in RC mc CMOS otherwise.         OSCO       I/O       —       No       Oscillator crystal output. Connects to crystal or resonator in Oscillator mode. Optionally functions as CLKO in RC and E modes.         REFCLKO       O       —       Yes       Reference clock output.         REFOI       I       ST       Yes       Reference clock input         INT0       I       ST       Yes       External Interrupt 0         INT1       I       ST       Yes       External Interrupt 3         IOCA       I       ST       Yes       External Interrupt 3         IOCA       I       ST       No       Interrupt-on-Change input for PORTB         IOCA       I	
CLKI       I       ST/ CMOS       No       External Clock (EC) source input. Always associated with OSC function.         CLKO       O        No       Oscillator crystal output. Connects to crystal or resonator in Oscillator mode. Optionally functions as CLKO in RC and E modes. Always associated with OSCO pin function.         OSCI       I       ST/ CMOS       No       Oscillator crystal input. ST buffer when configured in RC mc CMOS otherwise.         OSCO       I/O        No       Oscillator crystal output. Connects to crystal or resonator in Oscillator crystal output. Connects to crystal or resonator in Oscillator mode. Optionally functions as CLKO in RC and E modes.         REFCLKO       O        Yes       Reference clock output         REFOI       I       ST       Yes       Reference clock input         INT0       I       ST       Yes       External Interrupt 0         INT1       I       ST       Yes       External Interrupt 3         IOCA       I       ST       Yes       External Interrupt 3         IOCA       I       ST       No       Interrupt-on-Change input for PORTA         INT2       I       ST       No       Interrupt-on-Change input for PORTA         IOCA       I       ST       No       Interrupt-on-Change input for PORTB	
CLKOOCMOSfunction.OSCIIST/NoOscillator crystal output. Connects to crystal or resonator in Oscillator mode. Optionally functions as CLKO in RC and Emodes. Always associated with OSCO pin function.OSCIIST/NoOscillator crystal input. ST buffer when configured in RC mode. Optionally functions as CLKO in RC and Emodes.OSCOI/O—NoOscillator crystal output. Connects to crystal or resonator in Oscillator mode. Optionally functions as CLKO in RC and Emodes.REFCLKOO—YesReference clock outputREFOIISTYesReference clock inputINT0ISTYesExternal Interrupt 0INT1ISTYesExternal Interrupt 1INT2ISTYesExternal Interrupt 3IOCA<4:0>ISTNoInterrupt-on-Change input for PORTAIOCA<15:0>ISTNoInterrupt-on-Change input for PORTBIOCA<15:0>ISTNoInterrupt-on-Change input for PORTCIOCA<15:0>ISTNoInterrupt-on-Change input for PORTEIOCA<15:0>ISTNoInterrupt-on-Change input for PORTERP32-RP71I/OSTNoPORTA is a bidirectional I/O portRB0-RB15I/OSTNoPORTA is a bidirectional I/O portRD0-RD15I/OSTNoPORTB is a bidirectional I/O port	
CLKOONoOscillator crystal output. Connects to crystal or resonator in Oscillator mode. Optionally functions as CLKO in RC and Ermodes. Always associated with OSCO pin function.OSCIIST/NoOscillator crystal input. ST buffer when configured in RC modes.OSCOI/ONoOscillator crystal output. Connects to crystal or resonator in Oscillator crystal output. Connects to crystal or resonator in Oscillator mode. Optionally functions as CLKO in RC and Ermodes.REFCLKOOYesReference clock output. Connects to crystal or resonator in Oscillator mode. Optionally functions as CLKO in RC and Ermodes.REFCLKOOYesReference clock output.INTOISTYesReference clock inputINT1ISTYesExternal Interrupt 0INT2ISTYesExternal Interrupt 1INT2ISTYesExternal Interrupt 3IOCA<40>ISTNoInterrupt-on-Change input for PORTAIOCB<15:0>ISTNoInterrupt-on-Change input for PORTBIOCC<15:0>ISTNoInterrupt-on-Change input for PORTDIOCE<15:0>ISTNoInterrupt-on-Change input for PORTERP32-RP71I/OSTNoPORTA is a bidirectional I/O portR0-RB15I/OSTNoPORTA is a bidirectional I/O portR0-RD15I/OSTNoPORTC is a bidirectional I/O port	pin
OSCOI/OI/OCMOS -NoCMOS otherwise.OSCOI/O-NoOscillator crystal output. Connects to crystal or resonator in Oscillator mode. Optionally functions as CLKO in RC and Emodes.REFCLKOO-YesReference clock outputREFOIISTYesReference clock inputINT0ISTNoExternal Interrupt 0INT1ISTYesExternal Interrupt 1INT2ISTYesExternal Interrupt 1INT3ISTYesExternal Interrupt 3IOCA<4:0>ISTNoInterrupt-on-Change input for PORTAIOCB<15:0>ISTNoInterrupt-on-Change input for PORTBIOCC<15:0>ISTNoInterrupt-on-Change input for PORTCIOCE<15:0>ISTNoInterrupt-on-Change input for PORTDIOCE<15:0>ISTNoInterrupt-on-Change input for PORTERP32-RP71I/OSTNoPORTA is a bidirectional I/O portRA0-RA4I/OSTNoPORTB is a bidirectional I/O portRD0-RD15I/OSTNoPORTD is a bidirectional I/O port	
REFCLKO REFOIO I— STYes Yes Reference clock output Reference clock inputINT0 INT1 INT2IST STYes Yes Reference clock inputINT0 INT1 INT2IST ST YesNo External Interrupt 0 External Interrupt 1INT2 INT3IST ST YesYes External Interrupt 2 External Interrupt 3IOCA<4:0> IOCB<15:0> IOCC<15:0>IST 	le;
REFOIISTYesReference clock inputINT0ISTNoExternal Interrupt 0INT1ISTYesExternal Interrupt 1INT2ISTYesExternal Interrupt 2INT3ISTYesExternal Interrupt 3IOCA<4:0>ISTNoInterrupt-on-Change input for PORTAIOCB<15:0>ISTNoInterrupt-on-Change input for PORTBIOCC<15:0>ISTNoInterrupt-on-Change input for PORTCIOCE<15:0>ISTNoInterrupt-on-Change input for PORTDIOCE<15:0>ISTNoInterrupt-on-Change input for PORTDIOCE<15:0>ISTNoInterrupt-on-Change input for PORTDIOCE<15:0>ISTNoInterrupt-on-Change input for PORTDIOCE<15:0>ISTNoInterrupt-on-Change input for PORTERP32-RP71I/OSTYesRemappable I/O portsRA0-RA4I/OSTNoPORTA is a bidirectional I/O portRB0-RB15I/OSTNoPORTC is a bidirectional I/O portRD0-RD15I/OSTNoPORTD is a bidirectional I/O port	
INTOISTNoExternal Interrupt 0INT1ISTYesExternal Interrupt 1INT2ISTYesExternal Interrupt 2INT3ISTYesExternal Interrupt 3IOCA<4:0>ISTNoInterrupt-on-Change input for PORTAIOCB<15:0>ISTNoInterrupt-on-Change input for PORTBIOCC<15:0>ISTNoInterrupt-on-Change input for PORTCIOCD<15:0>ISTNoInterrupt-on-Change input for PORTDIOCE<15:0>ISTNoInterrupt-on-Change input for PORTERP32-RP71I/OSTYesRemappable I/O portsRA0-RA4I/OSTNoPORTA is a bidirectional I/O portR00-RD15I/OSTNoPORTC is a bidirectional I/O portRD0-RD15I/OSTNoPORTD is a bidirectional I/O port	
INT1ISTYesExternal Interrupt 1INT2ISTYesExternal Interrupt 2INT3ISTYesExternal Interrupt 3IOCA<4:0>ISTNoInterrupt-on-Change input for PORTAIOCB<15:0>ISTNoInterrupt-on-Change input for PORTBIOCC<15:0>ISTNoInterrupt-on-Change input for PORTCIOCD<15:0>ISTNoInterrupt-on-Change input for PORTCIOCE<15:0>ISTNoInterrupt-on-Change input for PORTDIOCE<15:0>ISTNoInterrupt-on-Change input for PORTDIOCE<15:0>ISTNoInterrupt-on-Change input for PORTERP32-RP71I/OSTYesRemappable I/O portsRA0-RA4I/OSTNoPORTA is a bidirectional I/O portRC0-RC15I/OSTNoPORTC is a bidirectional I/O portRD0-RD15I/OSTNoPORTD is a bidirectional I/O port	
INT2ISTYesExternal Interrupt 2INT3ISTYesExternal Interrupt 3IOCA<4:0>ISTNoInterrupt-on-Change input for PORTAIOCB<15:0>ISTNoInterrupt-on-Change input for PORTBIOCC<15:0>ISTNoInterrupt-on-Change input for PORTCIOCD<15:0>ISTNoInterrupt-on-Change input for PORTCIOCD<15:0>ISTNoInterrupt-on-Change input for PORTDIOCE<15:0>ISTNoInterrupt-on-Change input for PORTDIOCE<15:0>ISTNoInterrupt-on-Change input for PORTERP32-RP71I/OSTYesRemappable I/O portsRA0-RA4I/OSTNoPORTA is a bidirectional I/O portRB0-RB15I/OSTNoPORTC is a bidirectional I/O portRD0-RD15I/OSTNoPORTD is a bidirectional I/O port	
INT3ISTYesExternal Interrupt 3IOCA<4:0>ISTNoInterrupt-on-Change input for PORTAIOCB<15:0>ISTNoInterrupt-on-Change input for PORTBIOCC<15:0>ISTNoInterrupt-on-Change input for PORTCIOCD<15:0>ISTNoInterrupt-on-Change input for PORTCIOCD<15:0>ISTNoInterrupt-on-Change input for PORTDIOCE<15:0>ISTNoInterrupt-on-Change input for PORTERP32-RP71I/OSTYesRemappable I/O portsRA0-RA4I/OSTNoPORTA is a bidirectional I/O portRB0-RB15I/OSTNoPORTC is a bidirectional I/O portRD0-RD15I/OSTNoPORTD is a bidirectional I/O port	
IOCA<4:0>ISTNoInterrupt-on-Change input for PORTAIOCB<15:0>ISTNoInterrupt-on-Change input for PORTBIOCC<15:0>ISTNoInterrupt-on-Change input for PORTCIOCD<15:0>ISTNoInterrupt-on-Change input for PORTDIOCE<15:0>ISTNoInterrupt-on-Change input for PORTDIOCE<15:0>ISTNoInterrupt-on-Change input for PORTERP32-RP71I/OSTYesRemappable I/O portsRA0-RA4I/OSTNoPORTA is a bidirectional I/O portRB0-RB15I/OSTNoPORTC is a bidirectional I/O portRD0-RD15I/OSTNoPORTD is a bidirectional I/O port	
IOCB<15:0>ISTNoInterrupt-on-Change input for PORTBIOCC<15:0>ISTNoInterrupt-on-Change input for PORTCIOCD<15:0>ISTNoInterrupt-on-Change input for PORTDIOCE<15:0>ISTNoInterrupt-on-Change input for PORTDIOCE<15:0>ISTNoInterrupt-on-Change input for PORTERP32-RP71I/OSTYesRemappable I/O portsRA0-RA4I/OSTNoPORTA is a bidirectional I/O portRB0-RB15I/OSTNoPORTB is a bidirectional I/O portRC0-RC15I/OSTNoPORTC is a bidirectional I/O portRD0-RD15I/OSTNoPORTD is a bidirectional I/O port	
IOCC<15:0>ISTNoInterrupt-on-Change input for PORTCIOCD<15:0>ISTNoInterrupt-on-Change input for PORTDIOCE<15:0>ISTNoInterrupt-on-Change input for PORTERP32-RP71I/OSTYesRemappable I/O portsRA0-RA4I/OSTNoPORTA is a bidirectional I/O portRB0-RB15I/OSTNoPORTB is a bidirectional I/O portRC0-RC15I/OSTNoPORTC is a bidirectional I/O portRD0-RD15I/OSTNoPORTD is a bidirectional I/O port	
IOCD<15:0>ISTNoInterrupt-on-Change input for PORTDIOCE<15:0>ISTNoInterrupt-on-Change input for PORTERP32-RP71I/OSTYesRemappable I/O portsRA0-RA4I/OSTNoPORTA is a bidirectional I/O portRB0-RB15I/OSTNoPORTB is a bidirectional I/O portRC0-RC15I/OSTNoPORTC is a bidirectional I/O portRD0-RD15I/OSTNoPORTD is a bidirectional I/O port	
IOCE<15:0>ISTNoInterrupt-on-Change input for PORTERP32-RP71I/OSTYesRemappable I/O portsRA0-RA4I/OSTNoPORTA is a bidirectional I/O portRB0-RB15I/OSTNoPORTB is a bidirectional I/O portRC0-RC15I/OSTNoPORTC is a bidirectional I/O portRD0-RD15I/OSTNoPORTD is a bidirectional I/O port	
RP32-RP71I/OSTYesRemappable I/O portsRA0-RA4I/OSTNoPORTA is a bidirectional I/O portRB0-RB15I/OSTNoPORTB is a bidirectional I/O portRC0-RC15I/OSTNoPORTC is a bidirectional I/O portRD0-RD15I/OSTNoPORTD is a bidirectional I/O port	
RA0-RA4I/OSTNoPORTA is a bidirectional I/O portRB0-RB15I/OSTNoPORTB is a bidirectional I/O portRC0-RC15I/OSTNoPORTC is a bidirectional I/O portRD0-RD15I/OSTNoPORTD is a bidirectional I/O port	
RB0-RB15I/OSTNoPORTB is a bidirectional I/O portRC0-RC15I/OSTNoPORTC is a bidirectional I/O portRD0-RD15I/OSTNoPORTD is a bidirectional I/O port	
RC0-RC15       I/O       ST       No       PORTC is a bidirectional I/O port         RD0-RD15       I/O       ST       No       PORTD is a bidirectional I/O port	
RD0-RD15 I/O ST No PORTD is a bidirectional I/O port	
RE0-RE15 I/O ST No PORTE is a bidirectional I/O port	
T1CK I ST Yes Timer1 external clock input	
CAN1RX I ST Yes CAN1 receive input	
CAN1 O — Yes CAN1 transmit output	
U1CTS I ST Yes UART1 Clear-to-Send	
U1RTS O — Yes UART1 Request-to-Send	
U1RX I ST Yes UART1 receive	
U1TX O — Yes UART1 transmit	
U1DSR I ST Yes UART1 Data-Set-Ready	
U1DTR O — Yes UART1 Data-Terminal-Ready	

### TABLE 1-1: PINOUT I/O DESCRIPTIONS

Legend:CMOS = CMOS compatible input or output<br/>ST = Schmitt Trigger input with CMOS levels<br/>PPS = Peripheral Pin SelectAnalog = Analog input<br/>O = OutputP = Power<br/>I = InputTTL = TTL input bufferDIG = Digital

Note 1: Not all pins are available in all package variants. See the "Pin Diagrams" section for pin availability.

**2:** PWM4L and PWM4H pins are available on PPS as well as dedicated.

**3:** SPI2 supports dedicated pins as well as PPS on 48, 64 and 80-pin devices.

TABLE 1-1: PINOUT			HONS	
Pin Name ⁽¹⁾	Pin Type	Buffer Type	PPS	Description
U2CTS	Ι	ST	Yes	UART2 Clear-to-Send
U2RTS	0	—	Yes	UART2 Request-to-Send
U2RX	1	ST	Yes	UART2 receive
U2TX	Ó	_	Yes	UART2 transmit
U2DSR	Ĩ	ST	Yes	UART2 Data-Set-Ready
U2DTR	0	_	Yes	UART2 Data-Terminal-Ready
U3CTS	1	ST	Yes	UART3 Clear-to-Send
U3RTS	Ó	_	Yes	UART3 Request-to-Send
U3RX	Ĩ	ST	Yes	UART3 receive
U3TX	Ó	_	Yes	UART3 transmit
U3DSR	Î	ST	Yes	UART3 Data-Set-Ready
U3DTR	0	- 51	Yes	UART3 Data-Sel-Ready UART3 Data-Terminal-Ready
SCK1		OT		
	1/0	ST	Yes	Synchronous serial clock input/output for SPI1
SDI1		ST	Yes	SPI1 data in
SDO1 SS1	0	 ST	Yes	SPI1 data out
	1/0		Yes	SPI1 slave synchronization or frame pulse I/O
SCK2	I/O	ST	Yes ⁽³⁾	Synchronous serial clock input/output for SPI2
SDI2		ST	Yes ⁽³⁾	SPI2 data in
SDO2	0	—	Yes ⁽³⁾	
SS2	I/O	ST	Yes ⁽³⁾	SPI2 slave synchronization or frame pulse I/O
SCK3	I/O	ST	Yes	Synchronous serial clock input/output for SPI3
SDI3	1	ST	Yes	SPI3 data in
SDO3	0	—	Yes	SPI3 data out
SS3	I/O	ST	Yes	SPI3 slave synchronization or frame pulse I/O
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1
ASDA1	I/O	ST	No	Alternate synchronous serial data input/output for I2C1
SCL2	I/O	ST	No	Synchronous serial clock input/output for I2C2
SDA2	1/0	ST	No	Synchronous serial data input/output for I2C2
ASCL2	I/O	ST	No	Alternate synchronous serial clock input/output for I2C2
ASDA2	I/O	ST	No	Alternate synchronous serial data input/output for I2C2
SCL3	I/O	ST	No	Synchronous serial clock input/output for I2C3
SDA3	1/0	ST	No	Synchronous serial data input/output for I2C3
ASCL3	1/0	ST	No	Alternate synchronous serial clock input/output for I2C3
ASDA3	1/0	ST	No	Alternate synchronous serial data input/output for I2C3
QEIA1-QEIA2	1	ST	Yes	QEI Inputs A1 and A2
QEIB1-QEIB2	l i	ST	Yes	QEI Inputs B1 and B2
QEINDX1-QEINDX2	i	ST	Yes	QEI Index Inputs 1 and 2
QEIHOM1-QEIHOM2	li	ST	Yes	QEI Home Inputs 1 and 2
QEICMP1-QEICMP2	Ó		Yes	QEI Comparator Outputs 1 and 2
	1	ST		
SENT1-SENT2 SENT1OUT-SENT2OUT		51	Yes	SENT1 and SENT2 inputs SENT1 and SENT2 outputs
	0		Yes	
Legend: CMOS = CMOS ST = Schmitt Trig				

TABLE 1-1:	<b>PINOUT I/O DESCRIPTIONS</b>	(CONTINUED)
		(

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select

Analog = Analog input O = Output TTL = TTL input buffer P = Power I = Input DIG = Digital

Note 1: Not all pins are available in all package variants. See the "Pin Diagrams" section for pin availability.

2: PWM4L and PWM4H pins are available on PPS as well as dedicated.

3: SPI2 supports dedicated pins as well as PPS on 48, 64 and 80-pin devices.

### TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

	Pin	Buffer		
Pin Name ⁽¹⁾	Туре	Туре	PPS	Description
TMS	I	ST	No	JTAG Test mode select pin
ТСК	I.	ST	No	JTAG test clock input pin
TDI	I	ST	No	JTAG test data input pin
TDO	0		No	JTAG test data output pin
PCI8-PCI18	I	ST	Yes	PWM PCI Inputs 8 through 18
PCI19-PCI22	I	ST	No	PWM PCI Inputs 19 through 22
PWM1L-PWM8L ⁽²⁾	0	—	No ⁽⁴⁾	PWM Low Outputs 1 through 8
PWM1H-PWM8H ⁽²⁾	0	—	No ⁽⁴⁾	PWM High Outputs 1 through 8
PWMEA-PWMED	0		Yes	PWM Event Outputs A through D
CMP1A-CMP3A	I	Analog	No	Comparator Channels 1A through 3A inputs
CMP1B-CMP3B	I	Analog	No	Comparator Channels 1B through 3B inputs
CMP1C-CMP3C	I	Analog	No	Comparator Channels 1C through 3C inputs
CMP1D-CMP3D	I	Analog	No	Comparator Channels 1D through 3D inputs
DACOUT1	0		No	DAC output voltage
TCKI1-TCKI9	I	ST	Yes	SCCP/MCCP Timer Inputs 1 through 9
ICM1-ICM9	I	ST	Yes	SCCP/MCCP Capture Inputs 1 through 9
OCFA-OCFD	0	—	Yes	SCCP/MCCP Fault Inputs A through D
OCM1-OCM9	0	—	Yes	SCCP/MCCP Compare Outputs 1 through 9
IBIAS0-IBIAS3	0	Analog	No	50 µA Constant-Current Outputs 0 through 3
ISRC0-ISRC3	0	Analog	No	10 µA Constant-Current Outputs 0 through 3
OA1IN+	I	_	No	Op Amp 1+ Input
OA1IN-	I	—	No	Op Amp 1- Input
OA1OUT	0	—	No	Op Amp 1 Output
OA2IN+	I	—	No	Op Amp 2+ Input
OA2IN-	I	—	No	Op Amp 2- Input
OA2OUT	0	—	No	Op Amp 2 Output
OA3IN+		—	No	Op Amp 3+ Input
OA3IN-		—	No	Op Amp 3- Input
OA3OUT	0		No	Op Amp 3 Output
PMA0/PMALL	0	ST/TTL	No	PMP Address 0 or address latch low
PMA1/PMALH	0	ST/TTL	No	PMP Address 1 or address latch high
PMA14/PMCS1	0	ST/TTL	No	PMP Address 14 or Chip Select 1
PMA15/PMCS2	0	ST/TTL	No	PMP Address 15 or Chip Select 2
PMA2-PMA13	0	ST/TTL	No	PMP Address Lines 2-13
PMD0-PMD15	I/O	ST/TTL	No	PMP Data Lines 0-15
PMRD/PMWR	0	ST/TTL	No	PMP read or read/write signal
PMWR/PMENB	0	ST/TTL	No	PMP write or data enable signal
PSA0		ST/TTL	No	PMP Slave Address 0
PSA1		ST/TTL	No	PMP Slave Address 1
PSCS		ST/TTL	No	PMP slave chip select
PSRD		ST/TTL	No	PMP slave write
PSWR		ST/TTL	No	PMP slave read
CLCINA-CLCIND		ST	Yes	CLC Inputs A through D
CLC10UT-CLC40UT	0		Yes	CLC Outputs 1 through 4
Legend: CMOS = CMOS	compa	tiple inpu	t or ou	tput Analog = Analog input P = Power

Legend:CMOS = CMOS compatible input or output<br/>ST = Schmitt Trigger input with CMOS levels<br/>PPS = Peripheral Pin SelectAnalog = Analog input<br/>O = OutputP = Power<br/>I = InputTTL = TTL input bufferDIG = Digital

Note 1: Not all pins are available in all package variants. See the "Pin Diagrams" section for pin availability.

2: PWM4L and PWM4H pins are available on PPS as well as dedicated.

3: SPI2 supports dedicated pins as well as PPS on 48, 64 and 80-pin devices.

Pin Name ⁽¹⁾	Pin Type	Buffer Type	PPS	Description
ADTRG31		ST	No	External ADC trigger source
PGD1 PGC1	I/O I	ST ST	No No	Data I/O pin for Programming/Debugging Communication Channel 1 Clock input pin for Programming/Debugging Communication Channel 1
PGD2 PGC2	I/O I	ST ST	No No	Data I/O pin for Programming/Debugging Communication Channel 2 Clock input pin for Programming/Debugging Communication Channel 2
PGD3 PGC3	I/O I	ST ST	No No	Data I/O pin for Programming/Debugging Communication Channel 3 Clock input pin for Programming/Debugging Communication Channel 3
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.
AVDD	Р	Р	No	Positive supply for analog modules. This pin must be connected at all times.
AVss	Р	Р	No	Ground reference for analog modules. This pin must be connected at all times.
Vdd	Р	_	No	Positive supply for peripheral logic and I/O pins
Vss	Р		No	Ground reference for logic and I/O pins
Legend: CMOS = CMC	DS compa	tible inpu	t or out	tput Analog = Analog input P = Power

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select Analog = Analog input O = Output TTL = TTL input buffer

l = Input DIG = Digital

Note 1: Not all pins are available in all package variants. See the "Pin Diagrams" section for pin availability.

2: PWM4L and PWM4H pins are available on PPS as well as dedicated.

3: SPI2 supports dedicated pins as well as PPS on 48, 64 and 80-pin devices.

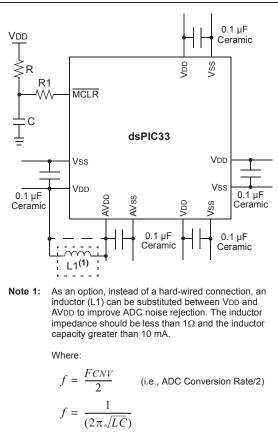
NOTES:

### 2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

### 2.1 Basic Connection Requirements

Getting started with the family devices of the dsPIC33CK256MP508 requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins regardless if ADC module is not used (see Section 2.2 "Decoupling Capacitors")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")
- PGCx/PGDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.4 "ICSP Pins")
- OSCI and OSCO pins when an external oscillator source is used (see Section 2.5 "External Oscillator Pins")


### 2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1  $\mu$ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01  $\mu$ F to 0.001  $\mu$ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1  $\mu$ F in parallel with 0.001  $\mu$ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.





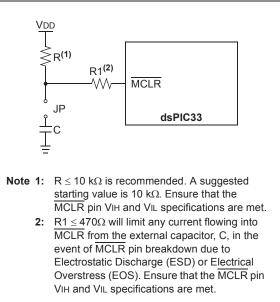
### 2.2.1 BULK CAPACITORS

 $L = \left(\frac{1}{(2\pi f\sqrt{C})}\right)^2$ 

On boards with power traces running longer than six inches in length, it is suggested to use a bulk capacitor for integrated circuits, including DSCs, to supply a local power source. The value of the bulk capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the bulk capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7  $\mu$ F to 47  $\mu$ F.

### 2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions:


- Device Reset
- · Device Programming and Debugging.

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the  $\overline{\text{MCLR}}$  pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor, C, be isolated from the  $\overline{\text{MCLR}}$  pin during programming and debugging operations.

Place the components, as shown in Figure 2-2, within one-quarter inch (6 mm) from the MCLR pin.





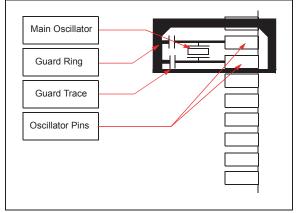
### 2.4 ICSP Pins

The PGCx and PGDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGCx and PGDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGCx/PGDx pins) programmed into the device matches the physical connections for the ICSP to PICkit[™] 3, MPLAB[®] ICD 3 or MPLAB REAL ICE[™] emulator.

For more information on MPLAB ICD 2, MPLAB ICD 3 and REAL ICE emulator connection requirements, refer to the following documents that are available on the Microchip website.


- "Using MPLAB[®] ICD 3 In-Circuit Debugger" (poster) (DS51765)
- "Development Tools Design Advisory" (DS51764)
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" (DS51616)
- "Using MPLAB[®] REAL ICE™ In-Circuit Emulator" (poster) (DS51749)

### 2.5 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency Primary Oscillator (POSC) and a low-frequency Secondary Oscillator (SOSC). For details, see Section 9.2 "Primary Oscillator (POSC)".

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

### FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT



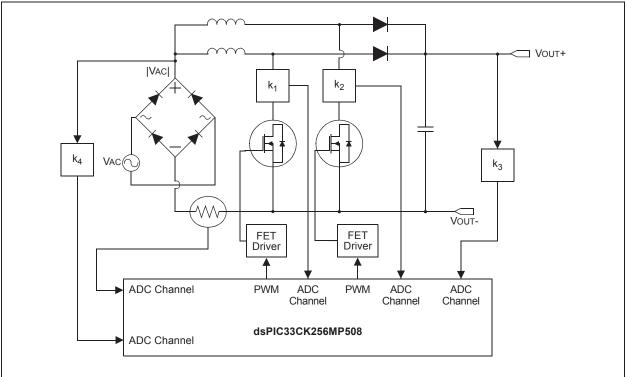
### 2.6 Oscillator Value Conditions on Device Start-up

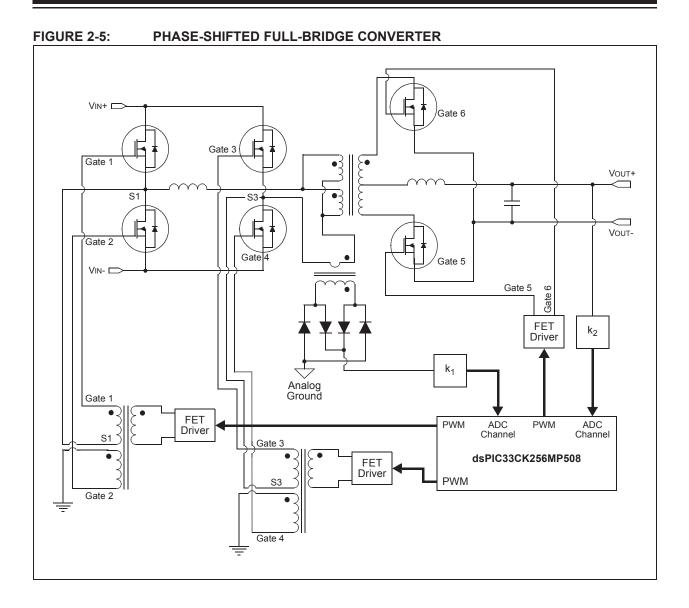
If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to a certain frequency (see Section 9.0 "Oscillator with High-Frequency PLL") to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLFBD, to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

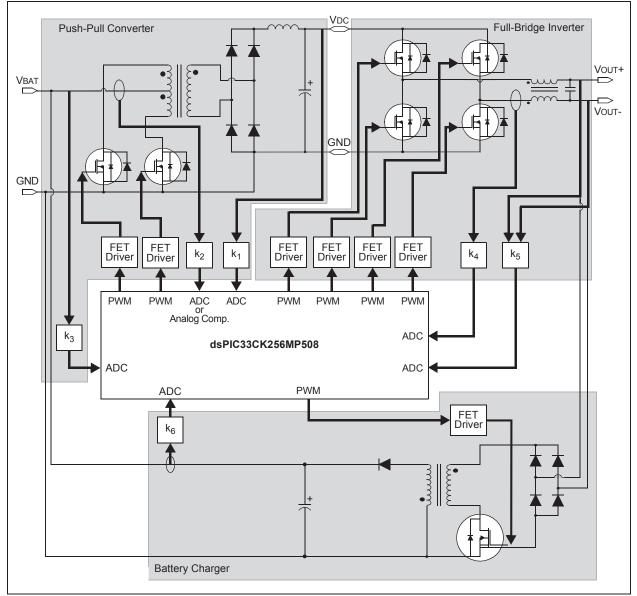
### 2.7 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.


Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.


### FIGURE 2-4: INTERLEAVED PFC

### 2.8 Targeted Applications


- Power Factor Correction (PFC):
  - Interleaved PFC
  - Critical Conduction PFC
  - Bridgeless PFC
- · DC/DC Converters:
  - Buck, Boost, Forward, Flyback, Push-Pull
  - Half/Full-Bridge
  - Phase-Shift Full-Bridge
- Resonant Converters
- · DC/AC:
  - Half/Full-Bridge Inverter
  - Resonant Inverter
- Motor Control
  - BLDC
  - PMSM
  - SR
  - ACIM

Examples of typical application connections are shown in Figure 2-4 through Figure 2-6.





### FIGURE 2-6: OFF-LINE UPS



### 3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "dsPIC33E Enhanced CPU" (www.microchip.com/DS70005158) in the "dsPIC33/PIC24 Family Reference Manual".
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33CK256MP508 family CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for Digital Signal Processing (DSP). The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space.

An instruction prefetch mechanism helps maintain throughput and provides predictable execution. Most instructions execute in a single-cycle effective execution rate, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction, PSV accesses and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

### 3.1 Registers

The dsPIC33CK256MP508 devices have sixteen, 16-bit Working registers in the programmer's model. Each of the Working registers can act as a Data, Address or Address Offset register. The 16th Working register (W15) operates as a Software Stack Pointer for interrupts and calls.

In addition, the dsPIC33CK256MP508 devices include four Alternate Working register sets, which consist of W0 through W14. The Alternate Working registers can be made persistent to help reduce the saving and restoring of register content during Interrupt Service Routines (ISRs). The Alternate Working registers can be assigned to a specific Interrupt Priority Level (IPL1 through IPL6) by configuring the CTXTx<2:0> bits in the FALTREG Configuration register. The Alternate Working registers can also be accessed manually by using the CTXTSWP instruction. The CCTXI<2:0> and MCTXI<2:0> bits in the CTXTSTAT register can be used to identify the current, and most recent, manually selected Working register sets.

### 3.2 Instruction Set

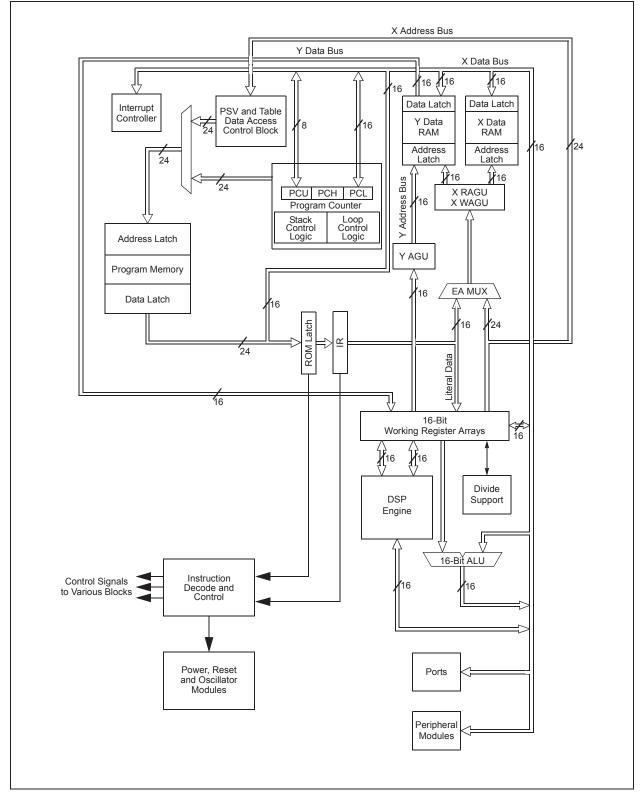
The instruction set for dsPIC33CK256MP508 devices has two classes of instructions: the MCU class of instructions and the DSP class of instructions. These two instruction classes are seamlessly integrated into the architecture and execute from a single execution unit. The instruction set includes many addressing modes and was designed for optimum C compiler efficiency.

### 3.3 Data Space Addressing

The base Data Space can be addressed as up to 4K words or 8 Kbytes, and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear Data Space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y Data Space boundary is device-specific.

The upper 32 Kbytes of the Data Space memory map can optionally be mapped into Program Space (PS) at any 16K program word boundary. The program-to-Data Space mapping feature, known as Program Space Visibility (PSV), lets any instruction access Program Space as if it were Data Space. Refer to "**Data Memory**" (DS70595) in the "*dsPlC33/PlC24 Family Reference Manual*" for more details on PSV and table accesses.

On dsPIC33CK256MP508 family devices, overheadfree circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. The X AGU Circular Addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data re-ordering for radix-2 FFT algorithms.


### 3.4 Addressing Modes

The CPU supports these addressing modes:

- Inherent (no operand)
- Relative
- Literal
- Memory Direct
- Register Direct
- Register Indirect

Each instruction is associated with a predefined addressing mode group, depending upon its functional requirements. As many as six addressing modes are supported for each instruction.

### FIGURE 3-1: dsPIC33CK256MP508 FAMILY CPU BLOCK DIAGRAM

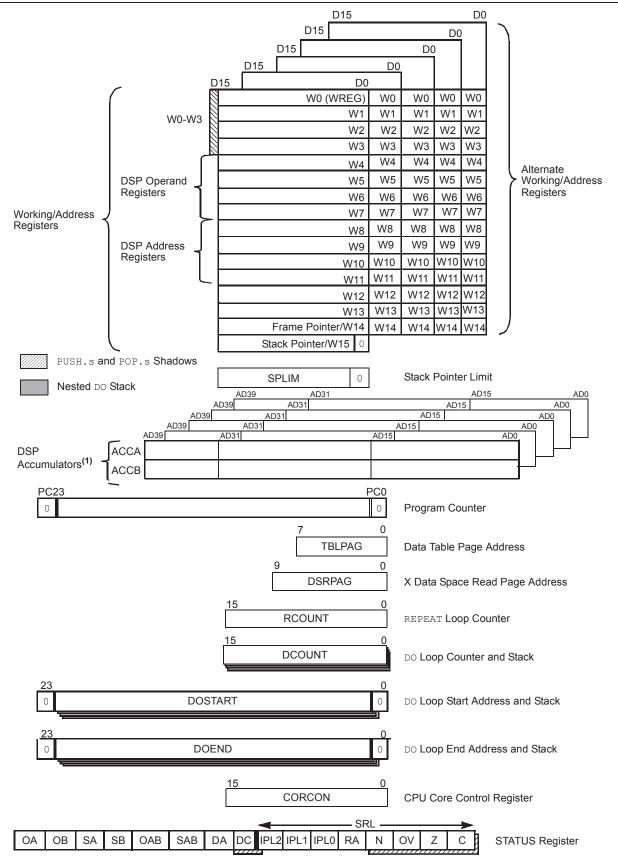


### 3.4.1 PROGRAMMER'S MODEL

The programmer's model for the dsPIC33CK256MP508 family is shown in Figure 3-2. All registers in the programmer's model are memory-mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register.

In addition to the registers contained in the programmer's model, the dsPIC33CK256MP508 devices contain control registers for Modulo Addressing, Bit-Reversed Addressing and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory-mapped, as shown in Figure 3-2.


TABLE 3-1:	PROGRAMMER'S MODEL REGISTER DESCRIPTIONS

Register(s) Name	Description
W0 through W15 ⁽¹⁾	Working Register Array
W0 through W14 ⁽¹⁾	Alternate Working Register Array 1
W0 through W14 ⁽¹⁾	Alternate Working Register Array 2
W0 through W14 ⁽¹⁾	Alternate Working Register Array 3
W0 through W14 ⁽¹⁾	Alternate Working Register Array 4
ACCA, ACCB	40-Bit DSP Accumulators (Additional 4 Alternate Accumulators)
PC	23-Bit Program Counter
SR	ALU and DSP Engine STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
DSRPAG	Extended Data Space (EDS) Read Page Register
RCOUNT	REPEAT Loop Counter Register
DCOUNT	DO Loop Counter Register
DOSTARTH, DOSTARTL ⁽²⁾	DO Loop Start Address Register (High and Low)
DOENDH, DOENDL	DO Loop End Address Register (High and Low)
CORCON	Contains DSP Engine, DO Loop Control and Trap Status bits

Note 1: Memory-mapped W0 through W14 represent the value of the register in the currently active CPU context.

2: The DOSTARTH and DOSTARTL registers are read-only.





### 3.4.2 CPU RESOURCES

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page contains the latest updates and additional information.

### 3.4.2.1 Key Resources

- "dsPIC33E Enhanced CPU" (DS70005158) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- · Webinars
- All related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

### 3.4.3 CPU CONTROL REGISTERS

### REGISTER 3-1: SR: CPU STATUS REGISTER

0 R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0	
OB	SA ⁽³⁾	SB ⁽³⁾	OAB	SAB	DA	DC	
						bit 8	
		R-0	R/W-0	R/W-0	R/W-0	R/W-0	
¹⁾ IPL1 ⁽¹⁾	IPL0 ⁽¹⁾	RA	N	OV	Z	С	
						bit 0	
		1.11					
					(0)		
		DIT	-				
e at POR	T = Bit is set		$0^{\circ} = Bit is cle$	ared	x = Bit is unk	nown	
	ator A Overflov	v Status hit					
<b>OB:</b> Accumul	ator B Overflov	v Status bit					
			(3)				
				a a ma a time a			
			en saturateu at	some ume			
SB: Accumula	ator B Saturatio	on 'Sticky' Stat	tus bit ⁽³⁾				
1 = Accumula	itor B is saturat	ted or has bee	en saturated at	some time			
			verflow Status	bit			
			owed				
					1		
0 = Neither A	ccumulator A c	or B is saturate	ed				
DA: DO Loop	Active bit						
			for buto aizad (	data) or 9th low	ordor bit (for w	ord aized data)	
			ioi byte-sizeu t			JIU-SIZEU UAla)	
0 = No carry-	out from the 4		oit (for byte-siz	ed data) or 8th	low-order bit (	for word-sized	
data) of t	he result occur	red					
The IPL<2:0> bits	are concatenat	ed with the IP	L<3> bit (COF	RCON<3>) to for	m the CPU Int	terrupt Priority	
	n parentheses i	ndicates the II	PL, if IPL<3> =	1. User interru	pts are disable	ed when	
	ua hita ara raa				) - 1		
		-		-		nd SB or by	
	OB $(2)$ $R/W-0(2)$ 1) $IPL1(1)$ IPL1(1)IPL1(1)IPL1(1)IPL1(1)IPL1(1)IPL1(1)IPL1(1)IPL1(1)IPL1(1)IPL1(1)IPL1(1)IPL1(1)IPL1(1)IPL1(1)IPL1(1)IPL1(1)IPL1(1)IPL1(1)IPL1(1)IPL1(1)IPL2(1)IPL2(1)IPL2(1)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2(2)IPL2	OBSA(3) $(2)$ $R/W-0(2)$ $R/W-0(2)$ 1) $IPL1(1)$ $IPL0(1)$ $IPL1(1)$ $IPL0(1)$ $C$ = Clearabledable bit $W$ = Writable $e$ at POR'1'= Bit is setOA: Accumulator A Overflow1 = Accumulator A has over0 = Accumulator A has over0 = Accumulator B has not coSA: Accumulator A Saturation1 = Accumulator A saturation1 = Accumulator A is not sateSB: Accumulator A is not sateSB: Accumulator B is saturation1 = Accumulator B is saturation1 = Accumulator B is not sateOAB: OA    OB Combined A1 = Accumulator A or B has0 = Neither Accumulator A or B has0 = Neither Accumulator A or1 = Accumulator A or B is sate0 = Neither Accumulator A or1 = Do loop is in progress0 = Do loop is not in progress0 = Do loop is not in progress0 = Do loop is not in progress0 = No carry-out from the 4th of the result occurred0 = No carry-out from the 4th of the result occurred0 = No carry-out from the 4th of the result occurred0 = No carry-out from the 4th of the result occurred0 = No carry-out from the 4th of the result occurred0 = No carry-out from the 4th of the result occurred0 = No carry-out from the 4th of the result occurred0 = No carry-out	OB         SA ⁽³⁾ SB ⁽³⁾ ( ⁽²⁾ R/W-0 ⁽²⁾ R-0 ¹⁾ IPL1 ⁽¹⁾ IPL0 ⁽¹⁾ RA           C = Clearable bit           data is set           OA: Accumulator A Overflow Status bit           1 = Accumulator A Nas overflowed           0 = Accumulator A has overflowed           O = Accumulator B Nas overflowed           O = Accumulator B Nas overflowed           O = Accumulator B has overflowed           O = Accumulator A Saturation 'Sticky' Status bit           1 = Accumulator A Saturation 'Sticky' Status           I = Accumulator A is not saturated           SB: Accumulator B Saturation 'Sticky' Status           I = Accumulator B is saturated or has bee           O = Accumulator B is saturated or has bee           O = Accumulator A or B has overflowed           O = Accumulator A or B has overflowed           O = Neither Accumulator A or B has overflowed           O = Neither Accumulator A or B is saturated or has           O = Neither Accumulator A or B is saturated           D = Noop Active bit <td colspa<="" td=""><td>OB         SA⁽³⁾         SB⁽³⁾         OAB           (2)         R/W-0⁽²⁾         R-0         R/W-0           1)         IPL1⁽¹⁾         IPL0⁽¹⁾         RA         N           C = Clearable bit           data is set           C = Clearable bit           data is set           C = Clearable bit           data is set           OA: Accumulator A Overflow Status bit           1 = Accumulator A has overflowed           OA: Accumulator A New overflowed           OA: Accumulator A has not overflowed           OA: Accumulator B New overflowed           OA: Accumulator B Saturation 'Sticky' Status bit           1 = Accumulator A has not overflowed           OB: Accumulator A Saturation 'Sticky' Status bit⁽³⁾           1 = Accumulator A saturation 'Sticky' Status bit⁽³⁾           1 = Accumulator B is not saturated           OAB: OA    OB Combined Accumulator Overflow Status           I = Accumulator A or B has overflowed           SAB: SA    SB Combined Accumulator 'Sticky' Status bit           1 = Accumulator A or B has overflowed           SAB: SA    SB Combined</td><td>OBSA(3)SB(3)OABSAB(2)R/W-0(2)R/W-0(2)R-0R/W-0R/W-0(1)IPL1(1)IPL0(1)RANOVOVC = Clearable bitU = Unimplemented bit, readdable bitW = Writable bitU = Unimplemented bit, reade at POR'1'= Bit is set'0' = Bit is clearedOA: Accumulator A Overflow Status bit1 = Accumulator A has not overflowed0 = Accumulator B has overflowed0 = Accumulator B Noverflowed0 = Accumulator B has not overflowed0 = Accumulator A Saturation 'Sticky' Status bit(3)1 = Accumulator A is saturated or has been saturated at some time0 = Accumulator B is saturated or has been saturated at some time0 = Accumulator B is not saturatedSB: Accumulator B is not saturatedSB: Accumulator B is not saturatedOAB: OA    OB Combined Accumulator Overflow Status bit1 = Accumulator A or B has overflowed0 = Neither Accumulator A or B has overflowed0 = Neither Accumulator A or B is saturatedDAB: SA    SB Combined Accumulator Overflow Status bit1 = Do loop is in progress0 = Do loop is in progress0 = Do loop is in progress0 = Do loop is not in progress0 = No carry-out from the 4th low-order bit (for byte-sized data) or 8th data) or 8th data) or 8th cata) o</td><td>OBSA(3)SB(3)OABSABDA$(2)$R/W-0(2)R/W-0(2)R-0R/W-0R/W-0R/W-0$(1)$IPL1(1)IPL0(1)RANOVZC = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'C = Clearable bitU = Unimplemented bit, read as '0'C = Clearable bitU = Unimplemented bit, read as '0'C = Clearable bitU = Unimplemen</td></td>	<td>OB         SA⁽³⁾         SB⁽³⁾         OAB           (2)         R/W-0⁽²⁾         R-0         R/W-0           1)         IPL1⁽¹⁾         IPL0⁽¹⁾         RA         N           C = Clearable bit           data is set           C = Clearable bit           data is set           C = Clearable bit           data is set           OA: Accumulator A Overflow Status bit           1 = Accumulator A has overflowed           OA: Accumulator A New overflowed           OA: Accumulator A has not overflowed           OA: Accumulator B New overflowed           OA: Accumulator B Saturation 'Sticky' Status bit           1 = Accumulator A has not overflowed           OB: Accumulator A Saturation 'Sticky' Status bit⁽³⁾           1 = Accumulator A saturation 'Sticky' Status bit⁽³⁾           1 = Accumulator B is not saturated           OAB: OA    OB Combined Accumulator Overflow Status           I = Accumulator A or B has overflowed           SAB: SA    SB Combined Accumulator 'Sticky' Status bit           1 = Accumulator A or B has overflowed           SAB: SA    SB Combined</td> <td>OBSA(3)SB(3)OABSAB(2)R/W-0(2)R/W-0(2)R-0R/W-0R/W-0(1)IPL1(1)IPL0(1)RANOVOVC = Clearable bitU = Unimplemented bit, readdable bitW = Writable bitU = Unimplemented bit, reade at POR'1'= Bit is set'0' = Bit is clearedOA: Accumulator A Overflow Status bit1 = Accumulator A has not overflowed0 = Accumulator B has overflowed0 = Accumulator B Noverflowed0 = Accumulator B has not overflowed0 = Accumulator A Saturation 'Sticky' Status bit(3)1 = Accumulator A is saturated or has been saturated at some time0 = Accumulator B is saturated or has been saturated at some time0 = Accumulator B is not saturatedSB: Accumulator B is not saturatedSB: Accumulator B is not saturatedOAB: OA    OB Combined Accumulator Overflow Status bit1 = Accumulator A or B has overflowed0 = Neither Accumulator A or B has overflowed0 = Neither Accumulator A or B is saturatedDAB: SA    SB Combined Accumulator Overflow Status bit1 = Do loop is in progress0 = Do loop is in progress0 = Do loop is in progress0 = Do loop is not in progress0 = No carry-out from the 4th low-order bit (for byte-sized data) or 8th data) or 8th data) or 8th cata) o</td> <td>OBSA(3)SB(3)OABSABDA$(2)$R/W-0(2)R/W-0(2)R-0R/W-0R/W-0R/W-0$(1)$IPL1(1)IPL0(1)RANOVZC = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'C = Clearable bitU = Unimplemented bit, read as '0'C = Clearable bitU = Unimplemented bit, read as '0'C = Clearable bitU = Unimplemen</td>	OB         SA ⁽³⁾ SB ⁽³⁾ OAB           (2)         R/W-0 ⁽²⁾ R-0         R/W-0           1)         IPL1 ⁽¹⁾ IPL0 ⁽¹⁾ RA         N           C = Clearable bit           data is set           C = Clearable bit           data is set           C = Clearable bit           data is set           OA: Accumulator A Overflow Status bit           1 = Accumulator A has overflowed           OA: Accumulator A New overflowed           OA: Accumulator A has not overflowed           OA: Accumulator B New overflowed           OA: Accumulator B Saturation 'Sticky' Status bit           1 = Accumulator A has not overflowed           OB: Accumulator A Saturation 'Sticky' Status bit ⁽³⁾ 1 = Accumulator A saturation 'Sticky' Status bit ⁽³⁾ 1 = Accumulator B is not saturated           OAB: OA    OB Combined Accumulator Overflow Status           I = Accumulator A or B has overflowed           SAB: SA    SB Combined Accumulator 'Sticky' Status bit           1 = Accumulator A or B has overflowed           SAB: SA    SB Combined	OBSA(3)SB(3)OABSAB(2)R/W-0(2)R/W-0(2)R-0R/W-0R/W-0(1)IPL1(1)IPL0(1)RANOVOVC = Clearable bitU = Unimplemented bit, readdable bitW = Writable bitU = Unimplemented bit, reade at POR'1'= Bit is set'0' = Bit is clearedOA: Accumulator A Overflow Status bit1 = Accumulator A has not overflowed0 = Accumulator B has overflowed0 = Accumulator B Noverflowed0 = Accumulator B has not overflowed0 = Accumulator A Saturation 'Sticky' Status bit(3)1 = Accumulator A is saturated or has been saturated at some time0 = Accumulator B is saturated or has been saturated at some time0 = Accumulator B is not saturatedSB: Accumulator B is not saturatedSB: Accumulator B is not saturatedOAB: OA    OB Combined Accumulator Overflow Status bit1 = Accumulator A or B has overflowed0 = Neither Accumulator A or B has overflowed0 = Neither Accumulator A or B is saturatedDAB: SA    SB Combined Accumulator Overflow Status bit1 = Do loop is in progress0 = Do loop is in progress0 = Do loop is in progress0 = Do loop is not in progress0 = No carry-out from the 4th low-order bit (for byte-sized data) or 8th data) or 8th data) or 8th cata) o	OBSA(3)SB(3)OABSABDA $(2)$ R/W-0(2)R/W-0(2)R-0R/W-0R/W-0R/W-0 $(1)$ IPL1(1)IPL0(1)RANOVZC = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'c = Clearable bitU = Unimplemented bit, read as '0'C = Clearable bitU = Unimplemented bit, read as '0'C = Clearable bitU = Unimplemented bit, read as '0'C = Clearable bitU = Unimplemen

**3:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

### REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop is in progress 0 = REPEAT loop is not in progress
bit 3	N: MCU ALU Negative bit
	<ul><li>1 = Result was negative</li><li>0 = Result was non-negative (zero or positive)</li></ul>
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (two's complement). It indicates an overflow of the magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit
	<ul> <li>1 = An operation that affects the Z bit has set it at some time in the past</li> <li>0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)</li> </ul>
bit 0	C: MCU ALU Carry/Borrow bit
	<ul> <li>1 = A carry-out from the Most Significant bit of the result occurred</li> <li>0 = No carry-out from the Most Significant bit of the result occurred</li> </ul>
Note 1:	The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when

- IPL<3> = 1.
- 2: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
- **3:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

1 = Varia $0 = Fixed$ bit 14 Unimplet bit 13-12 US<1:0> $11 = Res$ $10 = DSF$ $01 = DSF$ $01 = DSF$ bit 11 EDT: Eart $1 = Termi$ $0 = No ef$ bit 10-8 DL<2:0> $111 = Se$ $$ $001 = Or$ $000 = Ze$ bit 7 SATA: AC $1 = Accur$ $0 = Accur$ bit 6 SATB: AC $1 = Data$ $0 = Data$	C = Clearab W = Writable '1' = Bit is se iable Exception Pro- ble exception proces mented: Read as : DSP Multiply Un erved P engine multiplies	e bit rocessing Later ressing is enab sing is enabled '0'	'0' = Bit is clea ancy Control bit bled d	DL2 R-0 SFA nented bit, read	DL1 R/W-0 RND d as '0' x = Bit is unkno	DL0 bit R/W-0 IF bit
R/W-0       R/W-0         SATA       SATB         bit 7	C = Clearab W = Writable '1' = Bit is se iable Exception Pro- ble exception proces mented: Read as : DSP Multiply Un erved P engine multiplies	ACCSAT e bit e bi	U = Unimplem '0' = Bit is clea oncy Control bit bled d	SFA	RND	R/W-0 IF bit
SATA         SATB           bit 7           Legend:           R = Readable bit           -n = Value at POR           bit 15         VAR: Var           1 = Varia           0 = Fixed           bit 14         Unimpleat           bit 13-12         US<1:0>           11 = Res           10 = DSF           01 = DSF           00 = DSF           bit 11         EDT: Ear           1 = Termin           0 = No eff           bit 10-8         DL<2:0>           111 = Se              001 = Or           000 = Ze           bit 7         SATA: A0           1 = Accur           0 = Accur           bit 6         SATB: A1           1 = Accur           0 = Accur           bit 5         SATDW:           1 = Data           0 = Data	C = Clearab W = Writable '1' = Bit is se iable Exception Pro- ble exception proces mented: Read as : DSP Multiply Un erved P engine multiplies	ACCSAT e bit e bi	U = Unimplem '0' = Bit is clea oncy Control bit bled d	SFA	RND	IF bit
SATA         SATB           bit 7           Legend:           R = Readable bit           -n = Value at POR           bit 15         VAR: Var           1 = Varia           0 = Fixed           bit 14         Unimpleat           bit 13-12         US<1:0>           11 = Res           10 = DSF           01 = DSF           00 = DSF           bit 11         EDT: Ear           1 = Termin           0 = No eff           bit 10-8         DL<2:0>           111 = Se              001 = Or           000 = Ze           bit 7         SATA: A0           1 = Accur           0 = Accur           bit 6         SATB: A1           1 = Accur           0 = Accur           bit 5         SATDW:           1 = Data           0 = Data	C = Clearab W = Writable '1' = Bit is se iable Exception Pro- ble exception proces mented: Read as : DSP Multiply Un erved P engine multiplies	ACCSAT e bit e bi	U = Unimplem '0' = Bit is clea oncy Control bit bled d	SFA	RND	IF bit
bit 7 Legend: R = Readable bit -n = Value at POR bit 15 VAR: Var 1 = Varia 0 = Fixed bit 14 Unimplet bit 13-12 US<1:0> 11 = Res 10 = DSF 01 = DSF 00 = DSF 00 = DSF bit 11 EDT: Ear 1 = Termi 0 = No ef bit 10-8 DL<2:0> 111 = Se  001 = Or 000 = Ze bit 7 SATA: AC 1 = Accur 0 = Accur bit 5 SATDW: 1 = Data 0 = Data	C = Clearab W = Writable '1' = Bit is se iable Exception P ble exception proces nented: Read as : DSP Multiply Un erved P engine multiplies	e bit e bit tt rocessing Later cessing is enab sing is enabled '0'	U = Unimplem '0' = Bit is clea ncy Control bit bled d	nented bit, read	d as '0'	bit
R = Readable bit         -n = Value at POR         bit 15       VAR: Var         1 = Varia         0 = Fixed         bit 14       Unimplet         bit 13-12       US<1:0>         11 = Res         10 = DSF         01 = DSF         00 = DSF         bit 11       EDT: Ear         1 = Termin         0 = No eff         bit 10-8       DL<2:0>         111 = Se            001 = Or         000 = Ze         bit 7       SATA: A0         1 = Accun         0 = Accun         bit 6       SATB: A1         1 = Accun         0 = Accun         bit 5       SATDW:         1 = Data         0 = Data	W = Writable '1' = Bit is se riable Exception P ble exception proces I exception proces mented: Read as : DSP Multiply Un erved P engine multiplies	e bit rocessing Later ressing is enab sing is enabled '0'	'0' = Bit is clea ancy Control bit bled d			own
R = Readable bit         -n = Value at POR         bit 15       VAR: Var         1 = Varia         0 = Fixed         bit 14       Unimplet         bit 13-12       US<1:0>         11 = Res         10 = DSF         01 = DSF         00 = DSF         bit 11       EDT: Ear         1 = Termin         0 = No eff         bit 10-8       DL<2:0>         111 = Se            001 = Or         000 = Ze         bit 7       SATA: A0         1 = Accun         0 = Accun         bit 6       SATB: A1         1 = Accun         0 = Accun         bit 5       SATDW:         1 = Data         0 = Data	'1' = Bit is se iable Exception P ble exception proces I exception proces mented: Read as : DSP Multiply Un erved P engine multiplies	rocessing Later ressing is enab sing is enabled	'0' = Bit is clea ancy Control bit bled d			own
bit 15 VAR: Var 1 = Varia 0 = Fixed bit 14 Unimplet bit 13-12 US<1:0> 11 = Res 10 = DSF 01 = DSF 00 = DSF 00 = DSF bit 11 EDT: Ear 1 = Termi 0 = No ef bit 10-8 DL<2:0> 111 = Se  001 = Or 000 = Ze bit 7 SATA: AC 1 = Accur 0 = Accur bit 6 SATB: Ac 1 = Data 0 = Data	iable Exception P ble exception proces l exception proces <b>mented:</b> Read as : DSP Multiply Un erved P engine multiplies	rocessing Later ressing is enab sing is enabled	'0' = Bit is clea ancy Control bit bled d			own
1 = Varia $0 = Fixed$ bit 14 Unimplet bit 13-12 US<1:0> $11 = Res$ $10 = DSF$ $01 = DSF$ $01 = DSF$ bit 11 EDT: Ear $1 = Termi$ $0 = No ef$ bit 10-8 DL<2:0> $111 = Se$ $$ $001 = Or$ $000 = Ze$ bit 7 SATA: AC $1 = Accur$ $0 = Accur$ bit 6 SATB: AC $1 = Data$ $0 = Data$	ble exception proc l exception proces <b>mented:</b> Read as : DSP Multiply Un erved P engine multiplies	essing is enab sing is enabled	bled d			
bit 13-12 US<1:0> 11 = Res 10 = DSF 01 = DSF 00 = DSF bit 11 EDT: Ear 1 = Termi 0 = No ef bit 10-8 DL<2:0> 111 = Se  001 = Or 000 = Ze bit 7 SATA: A0 1 = Accur 0 = Accur bit 6 SATB: A1 1 = Data 0 = Data	: DSP Multiply Un erved ^o engine multiplies		Control bito			
$11 = \operatorname{Res}_{10} = \operatorname{DSF}_{01} = \operatorname{DSF}_{00} = \operatorname{DSF}_{00} = \operatorname{DSF}_{00} = \operatorname{DSF}_{00} = \operatorname{DSF}_{00} = \operatorname{No} \operatorname{ef}_{0} = \operatorname{No} \operatorname{ef}_{0}$	erved P engine multiplies	signed/Signed	Control hito			
10 = DSF         01 = DSF         00 = DSF         bit 11       EDT: Ear         1 = Termin         0 = No ef         bit 10-8       DL<2:0>         111 = Se            001 = Or         000 = Ze         bit 7       SATA: A0         1 = Accur         0 = Accur         bit 6       SATB: A0         1 = Accur         0 = Accur         bit 5       SATDW:         1 = Data         0 = Data	P engine multiplies		Control bits			
$1 = \text{Termin} \\ 0 = \text{No ef} \\ 0 = \text{No ef} \\ 111 = \text{Se} \\ 001 = \text{Or} \\ 000 = \text{Ze} \\ 000 = \text{Ze} \\ 000 = \text{Ze} \\ 000 = \text{Ze} \\ 1 = \text{Accur} \\ 0 = \text{Data} \\ 0$	P engine multiplies P engine multiplies	are unsigned				
111 = Se         001 = Or         000 = Ze         bit 7       SATA: A0         1 = Accur         0 = Accur         bit 6       SATB: A0         1 = Accur         0 = Accur         bit 5       SATDW:         1 = Data         0 = Data	Iy DO Loop Termin inates executing D ffect			nt loop iteratior	ı	
001 = Or         000 = Ze         bit 7       SATA: A0         1 = Accur         0 = Accur         bit 6       SATB: A0         1 = Accur         0 = Accur         0 = Accur         0 = Accur         0 = Accur         bit 5       SATDW:         1 = Data         0 = Data	: DO Loop Nesting even DO loops are		pits			
1 = Accur 0 = Accur bit 6 SATB: At 1 = Accur 0 = Accur bit 5 SATDW: 1 = Data 0 = Data	ne DO loop is active ro DO loops are ac					
0 = Accur bit 6 <b>SATB:</b> At 1 = Accur 0 = Accur bit 5 <b>SATDW:</b> 1 = Data 0 = Data	CCA Saturation E	nable bit				
1 = Accur 0 = Accur bit 5 <b>SATDW:</b> 1 = Data 0 = Data	mulator A saturation mulator a satu					
0 = Accur bit 5 <b>SATDW:</b> 1 = Data 0 = Data	CCB Saturation E	nable bit				
1 <b>= Data</b> 0 <b>= Data</b>	mulator B saturation mulator B saturation					
	Data Space Write Space write satura	ation is enabled	d	Enable bit		
	Space write satura: Accumulator Sat	uration Mode S				
0 = 1.31		saturation)				
1 = CPU	saturation (super s saturation (normal		than 7			
Note 1: This bit is alwa		0			PU Interrupt Pric	

### REGISTER 3-2: CORCON: CORE CONTROL REGISTER

# REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

bit 2	<ul> <li>SFA: Stack Frame Active Status bit</li> <li>1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG</li> <li>0 = Stack frame is not active; W14 and W15 address the base Data Space</li> </ul>
bit 1	RND: Rounding Mode Select bit
	<ul><li>1 = Biased (conventional) rounding is enabled</li><li>0 = Unbiased (convergent) rounding is enabled</li></ul>
bit 0	IF: Integer or Fractional Multiplier Mode Select bit
	<ul> <li>1 = Integer mode is enabled for DSP multiply</li> <li>0 = Fractional mode is enabled for DSP multiply</li> </ul>
Note 1:	This bit is always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

#### REGISTER 3-3: MSTRPR: EDS BUS MASTER PRIORITY CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	—	—	_	_	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0
_	_	DMAPR	CANPR	—	_	_	NVMPR
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit
J
bit
J
ſ

# REGISTER 3-4: CTXTSTAT: CPU W REGISTER CONTEXT STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
	_	_		—	CCTXI2	CCTXI1	CCTXI0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
_		—	—	—	MCTXI2	MCTXI1	MCTXI0
bit 7							bit (
Legend:							
R = Readab	ole bit	W = Writable I	bit	U = Unimpler	nented bit, read	1 as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
	011 <b>= Alterna</b> 010 <b>= Alterna</b> 001 <b>= Alterna</b>	te Working Reg te Working Reg te Working Reg te Working Reg register set is	gister Set 3 is gister Set 2 is gister Set 1 is	currently in us currently in us currently in us	e		
bit 7-3		ted: Read as '					
bit 2-0	MCTXI<2:0>: 111 = Reserv • • 100 = Alterna 011 = Alterna 010 = Alterna	Manual (W Re ed te Working Re te Working Re te Working Re te Working Re	gister) Contex gister Set 4 wa gister Set 3 wa gister Set 2 wa gister Set 1 wa	as most recent as most recent as most recent as most recent	tly manually sel tly manually sel tly manually sel tly manually sel	ected ected	

# 3.4.4 ARITHMETIC LOGIC UNIT (ALU)

The dsPIC33CK256MP508 family ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-Bit MCU and DSC Programmer's Reference Manual"* (DS70000157) for information on the SR bits affected by each instruction.

The core CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

#### 3.4.4.1 Multiplier

Using the high-speed, 17-bit x 17-bit multiplier, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit signed x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

#### 3.4.4.2 Divider

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute. There are additional instructions: DIV2 and DIVF2. Divide instructions will complete in six cycles.

# 3.4.5 DSP ENGINE

The DSP engine consists of a high-speed 17-bit x 17-bit multiplier, a 40-bit barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic).

The DSP engine can also perform inherent accumulatorto-accumulator operations that require no additional data. These instructions are, ADD, SUB, NEG, MIN and MAX.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or integer DSP multiply (IF)
- Signed, unsigned or mixed-sign DSP multiply (USx)
- Conventional or convergent rounding (RND)
- · Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)

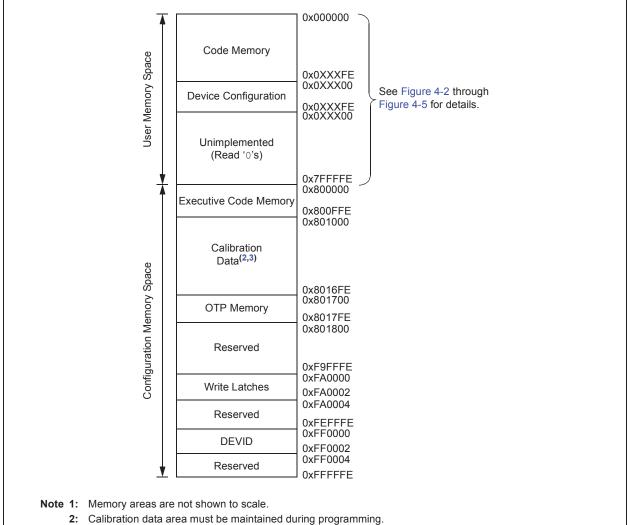
<b>TABLE 3-2:</b>	DSP INSTRUCTIONS
	SUMMARY

Instruction	Algebraic Operation	ACC Write-Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	$A = A + (x \bullet y)$	Yes
MAC	$A = A + x^2$	No
MOVSAC	No change in A	Yes
MPY	$A = x \bullet y$	No
MPY	$A = x^2$	No
MPY.N	$A = -x \bullet y$	No
MSC	$A = A - x \bullet y$	Yes

NOTES:

#### 4.0 MEMORY ORGANIZATION

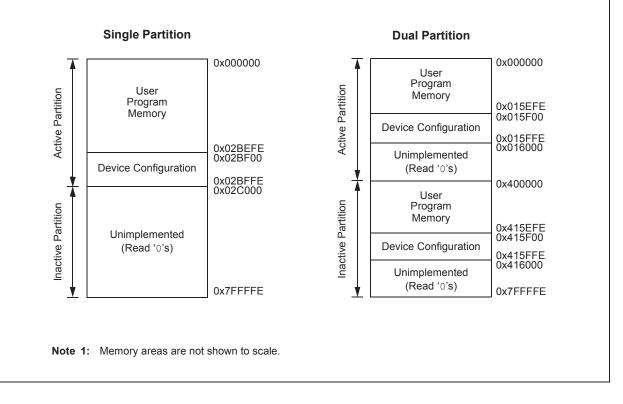
Note: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "dsPIC33E/PIC24E Pro-Memory" (www.microchip.com/ gram DS70000613) in the "dsPIC33/PIC24 Family Reference Manual".


The dsPIC33CK256MP508 family architecture features separate program and data memory spaces, and buses. This architecture also allows the direct access of program memory from the Data Space (DS) during code execution.

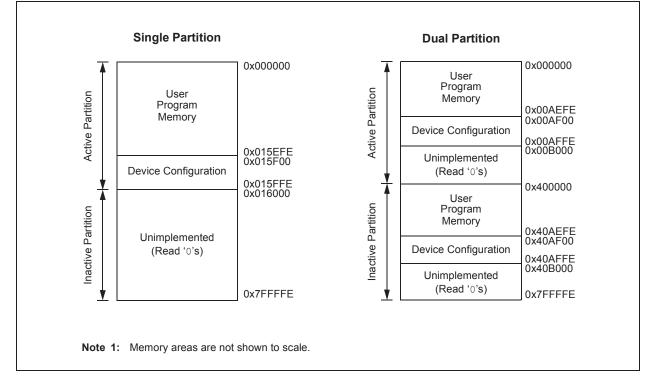
#### 4.1 Program Address Space

The program address memory space of the dsPIC33CK256MP508 family devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit PC during program execution, or from table operation or Data Space remapping, as described in Section 4.4.5 "Interfacing Program and Data Memory Spaces".

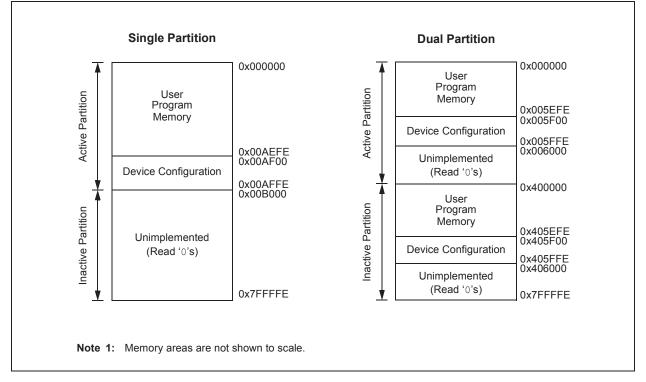
User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFF). The exception is the use of TBLRD operations, which use TBLPAG<7> to permit access to calibration data and Device ID sections of the configuration memory space.


The program memory maps for dsPIC33CK256MP508 devices are shown in Figure 4-1 through Figure 4-5.




PROGRAM MEMORY MAP FOR dsPIC33CKXXXMP50X/20X DEVICES⁽¹⁾ FIGURE 4-1:

- 3: Calibration data area includes UDID, ICSP™ Write Inhibit and FBOOT registers locations.






# FIGURE 4-3: PROGRAM MEMORY MAP FOR dsPIC33CK128MP50X/20X DEVICES⁽¹⁾







# FIGURE 4-5: PROGRAM MEMORY MAP FOR dsPIC33CK32MP50X/20X DEVICES⁽¹⁾



#### 4.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-6).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented, by two, during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

# 4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33CK256MP508 family devices reserve the addresses between 0x000000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at address, 0x000000, of Flash memory, with the actual address for the start of code at address, 0x000002, of Flash memory.

A more detailed discussion of the Interrupt Vector Tables (IVTs) is provided in Section 7.0 "Interrupt Controller".



#### FIGURE 4-6: PROGRAM MEMORY ORGANIZATION

# 4.1.3 UNIQUE DEVICE IDENTIFIER (UDID)

All dsPIC33CK256MP508 family devices are individually encoded during final manufacturing with a Unique Device Identifier or UDID. The UDID cannot be erased by a bulk erase command or any other user-accessible means. This feature allows for manufacturing traceability of Microchip Technology devices in applications where this is a requirement. It may also be used by the application manufacturer for any number of things that may require unique identification, such as:

- Tracking the device
- Unique serial number
- Unique security key

The UDID comprises five 24-bit program words. When taken together, these fields form a unique 120-bit identifier.

The UDID is stored in five read-only locations, located between 0x801200 and 0x801208 in the device configuration space. Table 4-1 lists the addresses of the identifier words and shows their contents

TABLE 4-1: UDID ADDRESSES

UDID	Address	Description
UDID1	0x801200	UDID Word 1
UDID2	0x801202	UDID Word 2
UDID3	0x801204	UDID Word 3
UDID4	0x801206	UDID Word 4
UDID5	0x801208	UDID Word 5

# 4.2 Data Address Space

The dsPIC33CK256MP508 family CPU has a separate 16-bit wide data memory space. The Data Space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps are shown in Figure 4-7, Figure 4-8 and Figure 4-9.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the Data Space. This arrangement gives a base Data Space address range of 64 Kbytes or 32K words.

The lower half of the data memory space (i.e., when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility (PSV).

The dsPIC33CK256MP508 family devices implement up to 16 Kbytes of data memory. If an EA points to a location outside of this area, an all-zero word or byte is returned.

# 4.2.1 DATA SPACE WIDTH

The data memory space is organized in byteaddressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

#### 4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve Data Space memory usage efficiency, the dsPIC33CK256MP508 family instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

A data byte read, reads the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB; the MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

# 4.2.3 SFR SPACE

The first four Kbytes of the Near Data Space, from 0x0000 to 0x0FFF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33CK256MP508 family core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note:	The actual set of peripheral features and
	interrupts varies by the device. Refer to the
	corresponding device tables and pinout
	diagrams for device-specific information.

# 4.2.4 NEAR DATA SPACE

The 8-Kbyte area, between 0x0000 and 0x1FFF, is referred to as the Near Data Space. Locations in this space are directly addressable through a 13-bit absolute address field within all memory direct instructions. Additionally, the whole Data Space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a Working register as an Address Pointer.

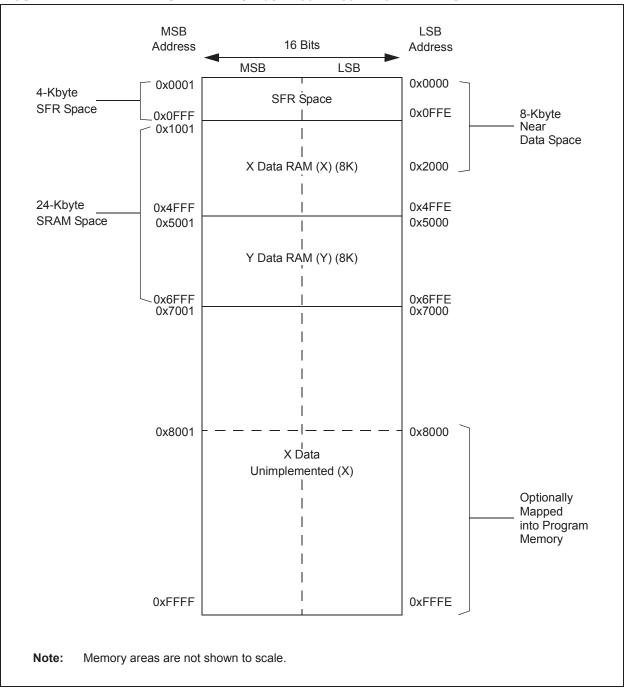
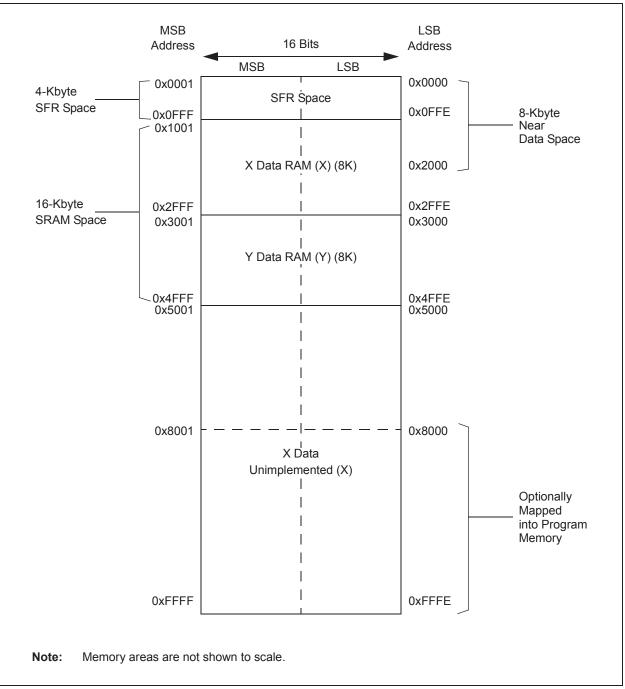
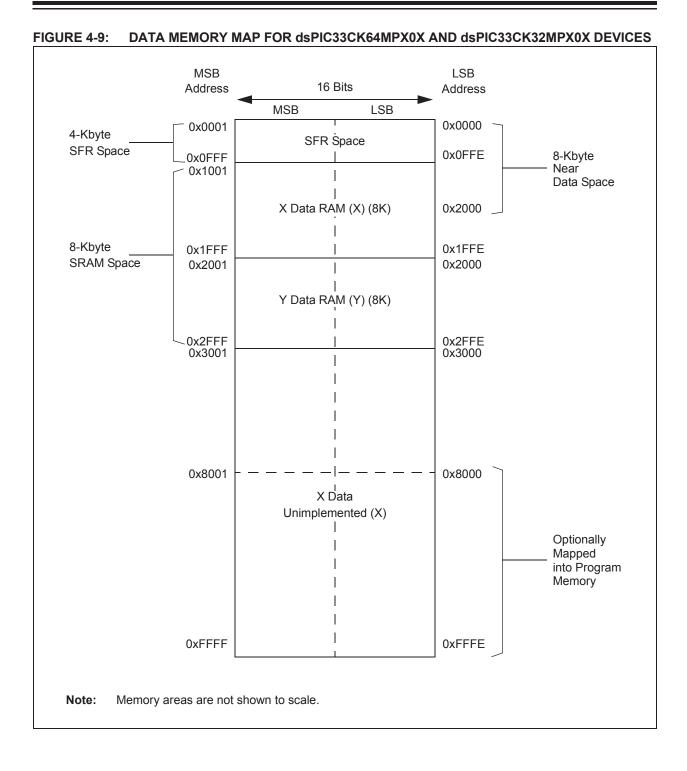





FIGURE 4-7: DATA MEMORY MAP FOR dsPIC33CK256MPX0X DEVICES



# FIGURE 4-8: DATA MEMORY MAP FOR dsPIC33CK128MPX0X DEVICES



# 4.2.5 X AND Y DATA SPACES

The dsPIC33CK256MP508 family core has two Data Spaces, X and Y. These Data Spaces can be considered either separate (for some DSP instructions) or as one unified linear address range (for MCU instructions). The Data Spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

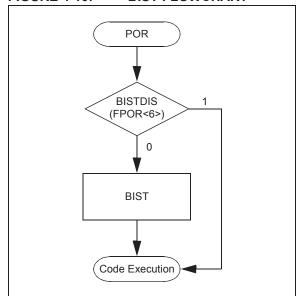
The X Data Space is used by all instructions and supports all addressing modes. X Data Space has separate read and write data buses. The X read data bus is the read data path for all instructions that view Data Space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y Data Space is used in concert with the X Data Space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y Data Spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X Data Space.

All data memory writes, including in DSP instructions, view Data Space as combined X and Y address space. The boundary between the X and Y Data Spaces is device-dependent and is not user-programmable.

# 4.2.6 BIST OVERVIEW


The dsPIC33CK256MP508 family features a data memory Built-In Self-Test (BIST) that has the option to be run at start-up or run time. The memory test checks that all memory locations are functional and provides a pass/fail status of the RAM that can be used by software to take action if needed. If a failure is reported, the specific location(s) are not identified.

The MBISTCON register (Register 4-1) contains control and status bits for BIST operation. The MBISTDONE bit (MBISTCON<7>) indicates if a BIST was run since the last Reset and the MBISTSTAT bit (MBISTCON<4>) provides the pass fail result.

# 4.2.7 BIST AT START-UP

The BIST can be configured to automatically run on a POR type Reset, as shown in Figure 4-10. By default, when BISTDIS (FPOR<6>) = 1, the BIST is disabled and will not be part of device start-up. If the BISTDIS bit is cleared during device programming, the BIST will run after all Configuration registers have been loaded and before code execution begins. BIST will always run on FRC+PLL with PLL settings resulting in a 125 MHz clock rate.

#### FIGURE 4-10: BIST FLOWCHART



# 4.2.8 BIST AT RUN TIME

A BIST test can be requested to run on subsequent device Resets at any time.

A BIST will corrupt all of the RAM contents, including the Stack Pointer, and requires a subsequent Reset. The system should be prepared for a Reset before a BIST is performed. The BIST is invoked by setting the MBISTEN bit (MBISTCON<0>) and executing a Reset. The MBISTCON register is protected against accidental writes and requires an unlock sequence prior to writing. Only one bit can be set per unlock sequence. The procedure for a run-time BIST is as follows:

- 1. Execute the unlock sequence by consecutively writing 0x55 and 0xAA to the NVMKEY register.
- 2. Write 0x0001 to the MBISTCON SFR.
- 3. Execute a software RESET command.
- 4. Verify a Software Reset has occurred by reading SWR (RCON<6>) (optional).
- 5. Verify that the MBISTDONE bit is set.
- 6. Take action depending on test result indicated by MBISTSTAT.

#### 4.2.8.1 Fault Simulation

A mechanism is available to simulate a BIST failure to allow testing of Fault handling software. When the FLTINJ bit is set during a run-time BIST, the MBISTSTAT bit will be set regardless of the test result. The procedure for a BIST Fault simulation is as follows:

- 1. Execute the unlock sequence by consecutively writing 0x55 and 0xAA to the NVMKEY register.
- 2. Set the MBISTEN bit (MBISTCON<0>).
- 3. Execute 2nd unlock sequence by consecutively writing 0x55 and 0xAA to the NVMKEY register.
- 4. Set the FLTINJ bit (MBISTCON<8>).
- 5. Execute a software RESET command.
- 6. Verify the MBISTDONE, MBSITSTAT and FLTINJ bits are all set.

# REGISTER 4-1: MBISTCON: MBIST CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾		
	—	_	_	_	_	_	FLTINJ		
bit 15							bit 8		
R/W/HS-0	U-0	U-0	R-0	U-0	U-0	U-0	R/W/HC-0		
MBISTDONE ⁽¹⁾	—	—	MBISTSTAT	—	—	—	MBISTEN ⁽²⁾		
bit 7 b							bit 0		
Legend:		HS = Hardwar	e Settable bit	HC = Hardv	vare Clearable	e bit			
R = Readable b	it	W = Writable b	oit	U = Unimple	emented bit, re	ead as '0'			
-n = Value at PC	)R	'1' = Bit is set		'0' = Bit is c	leared	x = Bit is unl	known		
bit 15-9	Unimplemen	ted: Read as '0	,						
bit 8		ST Fault Inject C							
		ST test will com		MBISTSTAT =	= 1, simulating	an SRAM tes	st failure		
		ST test will exec							
bit 7		: MBIST Done S							
		T operation has T operation has			sequence				
bit 6-5		ted: Read as '0			Sequence				
bit 4	-	MBIST Status b							
Dit 4	1 = The last l		nt -						
		MBIST passed;	all memory ma	y not have be	en tested				
bit 3-1		ted: Read as '0		•					
bit 0	MBISTEN: MBIST Enable bit ⁽²⁾								
	1 = MBIST test is armed; an MBIST test will execute at the next device Reset								
	0 = MBIST te	est is disarmed							
Note 1: HW r	esets only on a	a true POR Res	et.						
<b>Note 1:</b> HW resets only on a true POR Reset.									

2: This bit will self-clear when the MBIST test is complete.

# 4.3 Memory Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page contains the latest updates and additional information.

#### 4.3.1 KEY RESOURCES

- "dsPIC33E Enhanced CPU" (DS70005158) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- · Software Libraries

- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

# 4.4 SFR Maps

The following tables show the dsPIC33CK256MP508 family SFR names, addresses and Reset values. These tables contain all registers applicable to the dsPIC33CK256MP508 family. Not all registers are present on all device variants. Refer to Table 1 and Table 2 for peripheral availability. Table 8-1 details port availability for the different package options.

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
Core			XMODSRT	048	****************	CRC		
WREG0	000	000000000000000000	XMODEND	04A	*******	CRCCONL	0B0	00000010000
WREG1	002	000000000000000000	YMODSRT	04C	***************	CRCCONH	0B2	0000000000
WREG2	004	000000000000000000	YMODEND	04E	*******	CRCXORL	0B4	0000000000000000-
WREG3	006	000000000000000000	XBREV	050	*****	CRCXORH	0B6	000000000000000000
WREG4	008	000000000000000000	DISICNT	052	-xxxxxxxxxx00	CRCDATL	0B8	0000000000000000000
WREG5	00A	000000000000000000	TBLPAG	054	00000000	CRCDATH	0BA	000000000000000000
WREG6	00C	000000000000000000	YPAG	056	00000001	CRCWDATL	0BC	000000000000000000
WREG7	00E	000000000000000000	MSTRPR	058	000	CRCWDATH	0BE	000000000000000000
WREG8	010	000000000000000000	CTXTSTAT	05A	000000	CLC		
WREG9	012	000000000000000000	DMTCON	05C		CLC1CONL	0C0	0-00000000
WREG10	014	000000000000000000	DMTPRECLR	060	xxxxxxxx	CLC1CONH	0C2	0000
WREG11	016	000000000000000000	DMTCLR	064	xxxxxxxx	CLC1SEL	0C4	0000-000-000-000
WREG12	018	000000000000000000	DMTSTAT	068	xxxx	CLC1GLSL	0C8	000000000000000000
WREG13	01A	000000000000000000	DMTCNTL	06C	*****	CLC1GLSH	0CA	000000000000000000
WREG14	01C	000000000000000000	DMTCNTH	06E	*****	CLC2CONL	0CC	0-00000000
WREG15	01E	0001000000000000	DMTHOLDREG	070	*****	CLC2CONH	0CE	0000
SPLIM	020	*****	DMTPSCNTL	074	*****	CLC2SELL	0D0	0000-000-000-000
ACCAL	022	*****	DMTPSCNTH	076	*****	CLC2GLSL	0D4	000000000000000000
ACCAH	024	*****	DMTPSINTVL	078	*****	CLC2GLSH	0D6	0000000000000000000
ACCAU	026	*****	DMTPSINTVH	07A	*****	CLC3CONL	0D8	0-00000000
ACCBL	028	*****	SENT			CLC3CONH	0DA	0000
ACCBH	02A	*****	SENT1CON1	080	0-000000-0-000	CLC3SELL	0DC	0000-000-000-000
ACCBU	02C	*****	SENT1CON2	084	000000000000000000	CLC3GLSL	0E0	0000000000000000000
PCL	02E	000000000000000000	SENT1CON3	088	000000000000000000	CLC3GLSH	0E2	000000000000000000
PCH	030	00000000	SENT1STAT	08C	00000000	CLC4CONL	0E4	0-00000000
DSRPAG	032	0000000001	SENT1SYNC	090	000000000000000000	CLC4CONH	0E6	0000
DSWPAG	034	000000001	SENT1DATL	094	000000000000000000	CLC4SELL	0E8	0000-000-000-000
RCOUNT	036	*****	SENT1DATH	096	000000000000000000	CLC4GLSL	0EC	000000000000000000
DCOUNT	038	*****	SENT2CON1	098	0-000000-0-000	CLC4GLSH	0EE	0000000000000000000
DOSTARTL	03A	****************	SENT2CON2	09C	000000000000000000	ECC		
DOSTARTH	03C	xxxxxxx	SENT2CON3	0A0	000000000000000000	ECCCONL	0F0	0
DOENDL	03E	****************	SENT2STAT	0A4	00000000	ECCCONH	0F2	000000000000000000
DOENDH	040	xxxxxxx	SENT2SYNC	0A8	000000000000000000	ECCADDRL	0F4	000000000000000000
SR	042	00000000000000000	SENT2DATL	0AC	000000000000000000	ECCADDRH	0F6	000000000000000000
CORCON	044	xx000000100000	SENT2DATH	0AE	000000000000000000	ECCSTATL	0F8	000000000000000000
MODCON	046	000000000000000				ECCSTATH	0FA	0000000000

# TABLE 4-2:SFR BLOCK 000h

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
Timers			INDX1HLD	16A	000000000000000000000000000000000000000	INDX2HLD	19E	000000000000000000000000000000000000000
T1CON	100	0000000-00-00-	QEI1GECL/ QEI1ICL	16C	000000000000000000000000000000000000000	QEI2GECL/ QEI2ICL	1A0	000000000000000000000000000000000000000
TMR1	104	000000000000000000000000000000000000000	QEI1GECH/ QEI1ICH	16E	000000000000000000000000000000000000000	QEI2GECH/ QEI2ICH	1A2	000000000000000000000000000000000000000
PR1	108	000000000000000000	QEI1LECL	170	000000000000000000	QEI2LECL	1A4	000000000000000000000000000000000000000
QEI			QEI1LECH	172	000000000000000000	QEI2LECH	1A6	000000000000000000000000000000000000000
QEI1CON	140	000000-0000000	QEI2CON	174	000000-0000000	РМР		
QEI1IOC	144	000000000000xxxx	QEI2IOC	178	000000000000xxxx	PMCON	1A8	0000000000000000000000000000000000000
QEI1IOCH	146	0	QEI2IOCH	17A	0	PMCONH	1AA	00-
QEI1STAT	148	000000000000000	QEI2STAT	17C	000000000000000	PMMODE	1AC	000000000000000000000000000000000000000
POS1CNTL	14C	000000000000000000	POS2CNTL	180	000000000000000000	PMADDR	1B0	000000000000000000000000000000000000000
POS1CNTH	14E	000000000000000000	POS2CNTH	182	000000000000000000	PMDOUT1	1B4	000000000000000000000000000000000000000
POS1HLD	152	000000000000000000	POS2HLD	186	000000000000000000	PMDOUT2	1B6	000000000000000000000000000000000000000
VEL1CNT	154	000000000000000000	VEL2CNT	188	000000000000000000	PMDIN1	1B8	000000000000000000000000000000000000000
VEL1CNTH	156	000000000000000000	VEL2CNTH	18A	000000000000000000	PMDIN2	1BA	000000000000000000000000000000000000000
VEL1HLD	15A	000000000000000000	VEL2HLD	18E	000000000000000000	PMAEN	1BC	000000000000000000000000000000000000000
INT1TMRL	15C	000000000000000000	INT2TMRL	190	000000000000000000	PMSTAT	1C0	000000101111
INT1TMRH	15E	000000000000000000	INT2TMRH	192	000000000000000000	PMWADDR	1C4	000000000000000000000000000000000000000
INT1HLDL	160	000000000000000000	INT2HLDL	194	000000000000000000	PMRADDR	1C8	000000000000000000000000000000000000000
INT1HLDH	162	000000000000000000	INT2HLDH	196	000000000000000000	PMRDIN	1CC	000000000000000000000000000000000000000
INDX1CNTL	164	000000000000000000	INDX2CNTL	198	000000000000000000			
INDX1CNTH	166	00000000000000000	INDX2CNTH	19A	000000000000000000			

# TABLE 4-3: SFR BLOCK 100h

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
I2C1 and I2C2			U1SCCON	258	00000-	SPI1IMSKH	2C2	0000000-000000
I2C1CONL	200	01000000000000	U1SCINT	25A	00-00000-000	SPI1URDTL	2C4	000000000000000000000000000000000000000
I2C1CONH	202	0000000	U1INT	25C	000	SPI1URDTH	2C6	000000000000000000000000000000000000000
I2C1STAT	204	00000000000000	U2MODE	260	000-0000000000	SPI2CON1L	2C8	0000000000000000000000000000000000000
I2C1ADD	208	0000000000	U2MODEH	262	0000000000000	SPI2CON1H	2CA	000000000000000000000000000000000000000
I2C1MSK	20C	0000000000	U2STA	264	00000001000000	SPI2CON2L	2CC	00000
I2C1BRG	210	000000000000000000000000000000000000000	U2STAH	266	0000-00000101110	SPI2CON2H	2CE	
I2C1TRN	214	111111111	U2BRG	268	000000000000000000000000000000000000000	SPI2STATL	2D0	000001-1-00
I2C1RCV	218	00000000	U2BRGH	26A	0000	SPI2STATH	2D2	000000000000
I2C2CONL	21C	01000000000000	U2RXREG	26C	xxxxxxxxx	SPI2BUFL	2D4	000000000000000000000000000000000000000
I2C2CONH	21E	0000000	U2TXREG	270	xxxxxxxxx	SPI2BUFH	2D6	000000000000000000000000000000000000000
I2C2STAT	220	00000000000000	U2P1	274	000000000	SPI2BRGL	2D8	xxxxxxxxxxxxx
I2C2ADD	224	0000000000	U2P2	276	000000000	SPI2BRGH	2DA	
I2C2MSK	228	0000000000	U2P3	278	000000000000000000000000000000000000000	SPI2IMSKL	2DC	000000-0-000
I2C2BRG	22C	000000000000000000000000000000000000000	U2P3H	27A	00000000	SPI2IMSKH	2DE	000000-000000
I2C2TRN	230	111111111	U2TXCHK	27C	00000000	SPI2URDTL	2E0	000000000000000000000000000000000000000
I2C2RCV	234	00000000	U2RXCHK	27E	00000000	SPI2URDTH	2E2	000000000000000000000000000000000000000
UART1 and U	ART2		U2SCCON	280	00000-	SPI3CON1L	2E4	000000000000000000
U1MODE	238	000-0000000000	U2SCINT	282	00-00000-000	SPI3CON1H	2E6	000000000000000000000000000000000000000
U1MODEH	23A	0000000000000	U2INT	284	000	SPI3CON2L	2E8	00000
U1STA	23C	00000001000000	SPI			SPI3CON2H	2EA	
U1STAH	23E	0000-00000101110	SPI1CON1L	2AC	000000000000000	SPI3STATL	2EC	000001-1-00
U1BRG	240	000000000000000000000000000000000000000	SPI1CON1H	2AE	000000000000000000000000000000000000000	SPI3STATH	2EE	000000000000
U1BRGH	242	0000	SPI1CON2L	2B0	00000	SPI3BUFL	2F0	000000000000000000000000000000000000000
U1RXREG	244	xxxxxxxx	SPI1CON2H	2B2		SPI3BUFH	2F2	000000000000000000000000000000000000000
U1TXREG	248	xxxxxxxx	SPI1STATL	2B4	000001-1-00	SPI3BRGL	2F4	xxxxxxxxxxxxx
U1P1	24C	000000000	SPI1STATH	2B6	000000000000	SPI3BRGH	2F6	
U1P2	24E	000000000	SPI1BUFL	2B8	000000000000000000000000000000000000000	SPI3IMSKL	2F8	000000-0-000
U1P3	250	000000000000000000000000000000000000000	SPI1BUFH	2BA	000000000000000000000000000000000000000	SPI3IMSKH	2FA	000000-000000
U1P3H	252	00000000	SPI1BRGL	2BC	xxxxxxxxxxxxxx	SPI3URDTL	2FC	000000000000000000000000000000000000000
U1TXCHK	254	00000000	SPI1BRGH	2BE		SPI3URDTH	2F3	000000000000000000000000000000000000000
U1RXCHK	256	00000000	SPI1IMSKL	2C0	000000-0-00			

# TABLE 4-4: SFR BLOCK 200h

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
High-Speed F	WM		PG1TRIGA	354	000000000000000000000000000000000000000	PG3CLPCIH	3AA	0000-00000000000
PCLKCON	300	0000000	PG1TRIGB	356	000000000000000000000000000000000000000	PG3FFPCIL	3AC	000000000000000000000000000000000000000
FSCL	302	000000000000000000000000000000000000000	PG1TRIGC	358	000000000000000000000000000000000000000	PG3FFPCIH	3AE	0000-000000000000
FSMINPER	304	000000000000000000000000000000000000000	PG1DTL	35A	0000000000000000000000000000000000000	PG3SPCIL	3B0	000000000000000000000000000000000000000
MPHASE	306	000000000000000000000000000000000000000	PG1DTH	35C	0000000000000000000000000000000000000	PG3SPCIH	3B2	0000-000000000000
MDC	308	000000000000000000000000000000000000000	PG1CAP	35E	000000000000000000000000000000000000000	PG3LEBL	3B4	000000000000000000000000000000000000000
MPER	30A	000000000000000000000000000000000000000	PG2CONL	360	000000000	PG3LEBH	3B6	0000000
LFSR	30C	000000000000000000000000000000000000000	PG2CONH	362	000-0000000000	PG3PHASE	3B8	000000000000000000000000000000000000000
CMBTRIGL	30E	00000000	PG2STAT	364	000000000000000000000000000000000000000	PG3DC	3BA	000000000000000000000000000000000000000
CMBTRIGH	310	00000000	PG2IOCONL	366	000000000000000000000000000000000000000	PG3DCA	3BC	00000000
LOGCONA	312	000000000000000000000000000000000000000	PG2IOCONH	368	00000000000	PG3PER	3BE	000000000000000000000000000000000000000
LOGCONB	314	000000000000-000	PG2EVTL	36A	0000000000000	PG3TRIGA	3C0	000000000000000000000000000000000000000
LOGCONC	316	000000000000-000	PG2EVTH	36C	00000000000000	PG3TRIGB	3C2	000000000000000000000000000000000000000
LOGCOND	318	000000000000000000000000000000000000000	PG2FPCIL	36E	000000000000000000000000000000000000000	PG3TRIGC	3C4	000000000000000000000000000000000000000
LOGCONE	31A	000000000000-000	PG2FPCIH	370	0000-00000000000	PG3DTL	3C6	0000000000000000
LOGCONF	31C	000000000000000000000000000000000000000	PG2CLPCIL	372	000000000000000000000000000000000000000	PG3DTH	3C8	000000000000000
PWMEVTA	31E	00000000-000	PG2CLPCIH	374	0000-00000000000	PG3CAP	3CA	000000000000000000000000000000000000000
PWMEVTB	320	00000000-000	PG2FFPCIL	376	000000000000000000000000000000000000000	PG4CONL	3CC	000000000
PWMEVTC	322	00000000-000	PG2FFPCIH	378	0000-00000000000	PG4CONH	3CE	000-0000000000
PWMEVTD	324	00000000-000	PG2SPCIL	37A	000000000000000000000000000000000000000	PG4STAT	3D0	000000000000000000000000000000000000000
PWMEVTE	326	00000000-000	PG2SPCIH	37C	0000-00000000000	PG4IOCONL	3D2	000000000000000000000000000000000000000
PWMEVTF	328	00000000-000	PG2LEBL	37E	000000000000000000000000000000000000000	PG4IOCONH	3D4	00000000000
PG1CONL	32A	000000000	PG2LEBH	380	0000000	PG4EVTL	3D6	00000000000000
PG1CONH	32C	000-0000000000	PG2PHASE	382	000000000000000000000000000000000000000	PG4EVTH	3D8	00000000000000
PG1STAT	32E	000000000000000000000000000000000000000	PG2DC	384	000000000000000000000000000000000000000	PG4FPCIL	3DA	000000000000000000000000000000000000000
PG1IOCONL	330	000000000000000000000000000000000000000	PG2DCA	386	00000000	PG4FPCIH	3DC	0000-00000000000
PG1IOCONH	332	00000-000000	PG2PER	388	000000000000000000	PG4CLPCIL	3DE	000000000000000000000000000000000000000
PG1EVTL	334	0000000000000	PG2TRIGA	38A	000000000000000000	PG4CLPCIH	3E0	0000-00000000000
PG1EVTH	336	00000000000000	PG2TRIGB	38C	000000000000000000	PG4FFPCIL	3E2	000000000000000000000000000000000000000
PG1FPCIL	338	000000000000000000000000000000000000000	PG2TRIGC	38E	000000000000000000	PG4FFPCIH	3E4	0000-00000000000
PG1FPCIH	33A	0000-00000000000	PG2DTL	390	0000000000000000	PG4SPCIL	3E6	000000000000000000000000000000000000000
PG1CLPCIL	33C	000000000000000000	PG2DTH	392	0000000000000000	PG4SPCIH	3E8	0000-00000000000
PG1CLPCIH	33E	0000-0000000000	PG2CAP	394	000000000000000000	PG4LEBL	3EA	000000000000000000000000000000000000000
PG1FFPCIL	340	000000000000000000000000000000000000000	PG3CONL	396	000000000	PG4LEBH	3EC	0000000
PG1FFPCIH	342	0000-00000000000	PG3CONH	398	000-0000000000	PG4PHASE	3EE	000000000000000000000000000000000000000
PG1SPCIL	344	000000000000000000000000000000000000000	PG3STAT	39A	000000000000000000	PG4DC	3F0	000000000000000000000000000000000000000
PG1SPCIH	346	0000-0000000000	PG3IOCONL	39C	000000000000000000	PG4DCA	3F2	00000000
PG1LEBL	348	000000000000000000000000000000000000000	PG3IOCONH	39E	00000000000	PG4PER	3F4	000000000000000000000000000000000000000
PG1LEBH	34A	0000000	PG3EVTL	3A0	000000000000	PG4TRIGA	3F6	000000000000000000000000000000000000000
PG1PHASE	34C	000000000000000000000000000000000000000	PG3EVTH	3A2	00000000000000	PG4TRIGB	3F8	000000000000000000000000000000000000000
PG1DC	34E	000000000000000000000000000000000000000	PG3FPCIL	3A4	000000000000000000	PG4TRIGC	3FA	000000000000000000000000000000000000000
PG1DCA	350	00000000	PG3FPCIH	3A6	0000-00000000000	PG4DTL	3FC	0000000000000000000000000000000000000
PG1PER	352	000000000000000000000000000000000000000	PG3CLPCIL	3A8	000000000000000000	PG4DTH	3FE	00000000000000000

TABLE 4-5: SFR BLOCK 300h

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
High-Speed P	WM (Con	tinued)	PG6FPCIH	448	0000-00000000000	PG7DC	492	000000000000000000000000000000000000000
PG4CAP	400	000000000000000000000000000000000000000	PG6CLPCIL	44A	000000000000000000	PG7DCA	494	00000000
PG5CONL	402	000000000	PG6CLPCIH	44C	0000-00000000000	PG7PER	496	000000000000000000000000000000000000000
PG5CONH	404	000-0000000000	PG6FFPCIL	44E	000000000000000000	PG7TRIGA	498	000000000000000000000000000000000000000
PG5STAT	406	000000000000000000000000000000000000000	PG6FFPCIH	450	0000-00000000000	PG7TRIGB	49A	000000000000000000000000000000000000000
PG5IOCONL	408	000000000000000000000000000000000000000	PG6SPCIL	452	000000000000000000	PG7TRIGC	49C	000000000000000000000000000000000000000
PG5IOCONH	40A	000000-000000	PG6SPCIH	454	0000-00000000000	PG7DTL	49E	00000000000000000
PG5EVTL	40C	0000000000000	PG6LEBL	456	000000000000000000	PG7DTH	4A0	0000000000000000
PG5EVTH	40E	00000000000000	PG6LEBH	458	0000000	PG7CAP	4A2	000000000000000000000000000000000000000
PG5FPCIL	410	000000000000000000000000000000000000000	PG6PHASE	45A	000000000000000000	PG8CONL	4A4	000000000
PG5FPCIH	412	0000-00000000000	PG6DC	45C	000000000000000000	PG8CONH	4A6	000-0000000000
PG5CLPCIL	414	000000000000000000000000000000000000000	PG6DCA	45E	00000000	PG8STAT	4A8	000000000000000000000000000000000000000
PG5CLPCIH	416	0000-00000000000	PG6PER	460	000000000000000000	PG8IOCONL	4AA	000000000000000000000000000000000000000
PG5FFPCIL	418	000000000000000000000000000000000000000	PG6TRIGA	462	000000000000000000	PG8IOCONH	4AC	00000000000
PG5FFPCIH	41A	0000-00000000000	PG6TRIGB	464	000000000000000000	PG8EVTL	4AE	000000000000
PG5SPCIL	41C	000000000000000000000000000000000000000	PG6TRIGC	466	000000000000000000	PG8EVTH	4B0	00000000000000
PG5SPCIH	41E	0000-00000000000	PG6DTL	468	0000000000000000	PG8FPCIL	4B2	000000000000000000000000000000000000000
PG5LEBL	420	000000000000000000000000000000000000000	PG6DTH	46A	0000000000000000	PG8FPCIH	4B4	0000-00000000000
PG5LEBH	422	0000000	PG6CAP	46C	000000000000000000	PG8CLPCIL	4B6	000000000000000000000000000000000000000
PG5PHASE	424	000000000000000000000000000000000000000	PG7CONL	46E	000000000	PG8CLPCIH	4B8	0000-00000000000
PG5DC	426	000000000000000000000000000000000000000	PG7CONH	470	000-0000000000	PG8FFPCIL	4BA	000000000000000000000000000000000000000
PG5DCA	428	00000000	PG7STAT	472	000000000000000000	PG8FFPCIH	4BC	0000-00000000000
PG5PER	42A	000000000000000000000000000000000000000	PG7IOCONL	474	000000000000000000	PG8SPCIL	4BE	000000000000000000000000000000000000000
PG5TRIGA	42C	000000000000000000000000000000000000000	PG7IOCONH	476	00000000000	PG8SPCIH	4C0	0000-00000000000
PG5TRIGB	42E	000000000000000000000000000000000000000	PG7EVTL	478	0000000000000	PG8LEBL	4C2	000000000000000000000000000000000000000
PG5TRIGC	430	000000000000000000000000000000000000000	PG7EVTH	47A	00000000000000	PG8LEBH	4C4	0000000
PG5DTL	432	000000000000000	PG7FPCIL	47C	000000000000000000	PG8PHASE	4C6	000000000000000000000000000000000000000
PG5DTH	434	000000000000000	PG7FPCIH	47E	0000-00000000000	PG8DC	4C8	000000000000000000000000000000000000000
PG5CAP	436	000000000000000000000000000000000000000	PG7CLPCIL	480	000000000000000000	PG8DCA	4CA	00000000
PG6CONL	438	000000000	PG7CLPCIH	482	0000-00000000000	PG8PER	4CC	000000000000000000000000000000000000000
PG6CONH	43A	000-0000000000	PG7FFPCIL	484	000000000000000000	PG8TRIGA	4CE	000000000000000000000000000000000000000
PG6STAT	43C	000000000000000000000000000000000000000	PG7FFPCIH	486	0000-00000000000	PG8TRIGB	4D0	000000000000000000000000000000000000000
PG6IOCONL	43E	000000000000000000000000000000000000000	PG7SPCIL	488	000000000000000000	PG8TRIGC	4D2	000000000000000000000000000000000000000
PG6IOCONH	440	00000-000000	PG7SPCIH	48A	0000-00000000000	PG8DTL	4D4	00000000000000000
PG6EVTL	442	0000000000000	PG7LEBL	48C	000000000000000000	PG8DTH	4D6	0000000000000000000000000000000000000
PG6EVTH	444	00000000000000	PG7LEBH	48E	0000000	PG8CAP	4D8	000000000000000000000000000000000000000
PG6FPCIL	446	000000000000000000000000000000000000000	PG7PHASE	490	000000000000000000			

# TABLE 4-6:SFR BLOCK 400h

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
Regiotor	Addiede		rtogiotoi	71001000		rtogiotoi	71441000	7411100010
CAN			C1TSCONL	5D4	0000000000	C1RXOVIFH	5EA	000000000000000000000000000000000000000
C1CONL	5C0	00011101100000	C1TSCONH	5D6	000	C1TXATIFL	5EC	000000000000000000
C1CONH	5C2	0000010010011000	C1VECL	5D8	00000-1000000	C1TXATIFH	5EE	000000000000000000
C1NBTCFGL	5C4	00001111-0001111	C1VECH	5DA	11000000-1000000	C1TXREQL	5F0	000000000000000000000000000000000000000
C1NBTCFGH	5C6	000000000111110	C1INTL	5DC	000000000000	C1TXREQH	5F2	000000000000000000
C1DBTCFGL	5C8	00110011	C1INTH	5DE	000000000000	C1TRECL	5F4	000000000000000000
C1DBTCFGH	5CA	0000000001110	C1RXIFL	5E0	000000000000000000	C1TRECH	5F6	100000
C1TDCL	5CC	00010000000000	C1RXIFH	5E2	000000000000000000	C1BDIAG0L	5F8	000000000000000000
C1TDCH	5CE	10	C1TXIFL	5E4	00000000000000000-	C1BDIAG0H	5FA	000000000000000000
C1TBCL	5D0	000000000000000000000000000000000000000	C1TXIFH	5E6	000000000000000000	C1BDIAG1L	5FC	000000000000000000
C1TBCH	5D2	000000000000000000000000000000000000000	C1RXOVIFL	5E8	0000000000000000-	C1BDIAG1H	5FE	00000-000-000000

#### TABLE 4-7: SFR BLOCK 500h

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
CAN (Continued	d)		C1FIFOSTA6	65C	000000000000000000000000000000000000	C1FLTOBJ6L	6B0	000000000000000000000000000000000000000
C1TEFCONL	600	1-00-0000	C1FIFOUA6L	660	*****	C1FLTOBJ6H	6B2	000000000000000000000000000000000000000
C1TEFCONH	602	00000	C1FIFOUA6H	662	*****	C1MASK6L	6B4	000000000000000000000000000000000000000
C1TEFSTA	604	0000	C1FIFOCON7L	664	100x000000	C1MASK6H	6B6	000000000000000000000000000000000000000
C1TEFUAL	608	*****	C1FIFOCON7H	666	0000000-1100000	C1FLTOBJ7L	7B8	000000000000000000000000000000000000000
C1TEFUAH	60A	*****	C1FIFOSTA7	668	00000000000000000	C1FLTOBJ7H	6BA	000000000000000000000000000000000000000
C1FIFOBAL	60C	000000000000000000000000000000000000000	C1FIFOUA7L	66C	*****	C1MASK7L	6BC	000000000000000000000000000000000000000
C1FIFOBAH	60E	000000000000000000000000000000000000000	C1FIFOUA7H	66E	*****	C1MASK7H	6BE	000000000000000000000000000000000000000
C1TXQCONL	610	100x0000000	C1FLTCON0L	670	00000000000	C1FLTOBJ8L	6C0	000000000000000000000000000000000000000
C1TXQCONH	612	0000000-1100000	C1FLTCON0H	672	00000000000	C1FLTOBJ8H	6C2	000000000000000000000000000000000000000
C1TXQSTA	614	00000000-0-0	C1FLTCON1L	674	00000000000	C1MASK8L	6C4	000000000000000000000000000000000000000
C1TXQUAL	618	*****	C1FLTCON1H	676	00000000000	C1MASK8H	6C6	000000000000000000000000000000000000000
C1TXQUAH	61A	*****	C1FLTCON2L	678	00000000000	C1FLTOBJ9L	6C8	000000000000000000000000000000000000000
C1FIFOCON1L	61C	100x000000	C1FLTCON2H	67A	00000000000	C1FLTOBJ9H	6CA	000000000000000000000000000000000000000
C1FIFOCON1H	61E	0000000-1100000	C1FLTCON3L	67C	00000000000	C1MASK9L	6CC	000000000000000000000000000000000000000
C1FIFOSTA1	620	000000000000000	C1FLTCON3H	67E	00000000000	C1MASK9H	6CE	000000000000000000000000000000000000000
C1FIFOUA1L	624	*****	C1FLTOBJ0L	680	000000000000000000000000000000000000000	C1FLTOBJ10L	6D0	000000000000000000000000000000000000000
C1FIFOUA1H	626	*****	C1FLTOBJ0H	682	000000000000000000000000000000000000000	C1FLTOBJ10H	6D2	000000000000000000000000000000000000000
C1FIFOCON2L	628	100x000000	C1MASK0L	684	000000000000000000000000000000000000000	C1MASK10L	6D4	000000000000000000000000000000000000000
C1FIFOCON2H	62A	0000000-1100000	C1MASK0H	686	000000000000000000000000000000000000000	C1MASK10H	6D6	000000000000000000000000000000000000000
C1FIFOSTA2	62C	000000000000000	C1FLTOBJ1L	688	000000000000000000000000000000000000000	C1FLTOBJ11L	6D8	000000000000000000000000000000000000000
C1FIFOUA2L	630	*****	C1FLTOBJ1H	68A	000000000000000000000000000000000000000	C1FLTOBJ11H	6DA	000000000000000000000000000000000000000
C1FIFOUA2H	632	*****	C1MASK1L	68C	000000000000000000000000000000000000000	C1MASK11L	6DC	000000000000000000000000000000000000000
C1FIFOCON3L	634	100x000000	C1MASK1H	68E	000000000000000000000000000000000000000	C1MASK11H	6DE	000000000000000000000000000000000000000
C1FIFOCON3H	636	0000000-1100000	C1FLTOBJ2L	690	000000000000000000000000000000000000000	C1FLTOBJ12L	6E0	000000000000000000000000000000000000000
C1FIFOSTA3	638	000000000000000	C1FLTOBJ2H	692	000000000000000000000000000000000000000	C1FLTOBJ12H	6E2	000000000000000000000000000000000000000
C1FIFOUA3L	63C	*****	C1MASK2L	694	000000000000000000000000000000000000000	C1MASK12L	6E4	000000000000000000000000000000000000000
C1FIFOUA3H	63E	*****	C1MASK2H	696	000000000000000000000000000000000000000	C1MASK12H	6E6	000000000000000000000000000000000000000
C1FIFOCON4L	640	100x000000	C1FLTOBJ3L	698	000000000000000000000000000000000000000	C1FLTOBJ13L	6E8	000000000000000000000000000000000000000
C1FIFOCON4H	642	0000000-1100000	C1FLTOBJ3H	69A	000000000000000000000000000000000000000	C1FLTOBJ13H	6EA	000000000000000000000000000000000000000
C1FIFOSTA4	644	000000000000000	C1MASK3L	69C	000000000000000000000000000000000000000	C1MASK13L	6EC	000000000000000000000000000000000000000
C1FIFOUA4L	648	*****	C1MASK3H	69C	000000000000000000000000000000000000000	C1MASK13H	6EE	000000000000000000000000000000000000000
C1FIFOUA4H	64A	*****	C1FLTOBJ4L	6A0	000000000000000000000000000000000000000	C1FLTOBJ14L	6F0	000000000000000000000000000000000000000
C1FIFOCON5L	64C	100x0000000	C1FLTOBJ4H	6A2	000000000000000000000000000000000000000	C1FLTOBJ14H	6F2	000000000000000000000000000000000000000
C1FIFOCON5H	64E	0000000-1100000	C1MASK4L	6A4	000000000000000000000000000000000000000	C1MASK14L	6F4	000000000000000000000000000000000000000
C1FIFOSTA5	650	0000000000000000	C1MASK4H	6A6	000000000000000000000000000000000000000	C1MASK14H	6F6	000000000000000000000000000000000000000
C1FIFOUA5L	654	*****	C1FLTOBJ5L	6A8	000000000000000000000000000000000000000	C1FLTOBJ15L	6F8	000000000000000000000000000000000000000
C1FIFOUA5H	656	*****	C1FLTOBJ5H	6AA	000000000000000000000000000000000000000	C1FLTOBJ15H	6FA	000000000000000000000000000000000000000
C1FIFOCON6L	658	100x0000000	C1MASK5L	6AC	000000000000000000000000000000000000000	C1MASK15L	6FC	000000000000000000000000000000000000000
C1FIFOCON6H	65A	0000000-1100000	C1MASK5H	6AE	000000000000000000000000000000000000000	C1MASK15H	6FE	000000000000000000000000000000000000000

# TABLE 4-8:SFR BLOCK 600h

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
Interrupts	•		IPC3	846	-100-100-100-100	IPC35	886	-100-100
IFS0	800	0000000000-00000	IPC4	848	-100-100-100-100	IPC36	888	100
IFS1	802	00000000-000000	IPC5	84A	-100100-100	IPC37	88A	100-100
IFS2	804	00000-00-0000	IPC6	84C	-100-100-100-100	IPC38	88C	100-100
IFS3	806	0000000-0-000000	IPC7	84E	-100-100-100-100	IPC40	890	100-100
IFS4	808	000000000000000000000000000000000000000	IPC8	850	-100-100	IPC42	894	-100-100-100-100
IFS5	80A	000000000000000000-	IPC9	852	100-100-100	IPC43	896	-100-100-100-100
IFS6	80C	000000000000000000000000000000000000000	IPC10	854	-100100-100	IPC44	898	-100-100-100-100
IFS7	80E	000000000000000000000000000000000000000	IPC11	856	-100-100-100-100	IPC45	89A	100-100-100
IFS8	810	000	IPC12	858	-100-100-100-100	IPC47	89E	-100-100-100
IFS9	812	0	IPC13	85A	100100	IPC48	8A0	-100-100-100-100
IFS10	814	0000000000	IPC14	85C	-100-100-100-100	INTCON1	8C0	000000000-0000-
IFS11	816	0000000000	IPC15	85E	-100-100-100	INTCON2	8C2	00000000
IFS12	818	0000	IPC16	860	-100100-100	INTCON3	8C4	000
IEC0	820	0000000000-00000	IPC17	862	-100-100-100-100	INTCON4	8C6	00
IEC1	822	00000000-0000000	IPC18	864	-100-100-100-100	INTTREG	8C8	000-0000-0000000
IEC2	824	00000-00-0000	IPC19	866	-100-100-100-100	Flash		
IEC3	826	0000000-0-00000	IPC20	868	-100-100-100	NVMCON	8D0	000000000000
IEC4	828	000000000000000000000000000000000000000	IPC21	86A	-100-100-100-100	NVMADR	8D2	000000000000000000000000000000000000000
IEC5	82A	0000000000000000-	IPC22	86C	-100-100-100-100	NVMADRU	8D4	00000000
IEC6	82C	000000000000000000000000000000000000000	IPC23	86E	-100-100-100-100	NVMKEY	8D6	00000000
IEC7	82E	000000000000000000000000000000000000000	IPC24	870	-100-100-100-100	NVMSRCADRL	8D8	000000000000000000000000000000000000000
IEC8	830	00	IPC25	872	-100-100-100-100	NVMSRCADRH	8DA	00000000
IEC9	832	0	IPC26	874	-100-100-100-100	CBG		
IEC10	834	0000000000	IPC27	876	-100-100-100-100	AMPCON1L	8DC	000
IEC11	836	000000000000	IPC28	878	-100-100-100-100	AMPCON1H	8DE	000
IEC12	838	0000	IPC29	87A	-100-100-100-100	BIASCON	8F0	0000
IPC0	840	-100-100-100-100	IPC30	87C	-100-100-100-100	IBIASCON0L	8F4	000000000000
IPC1	842	-100-100100	IPC31	87E	-100-100-100-100	IBIASCON0H	8F6	000000000000
IPC2	844	-100-100-100-100	IPC32	880	100	1	•	-

TABLE 4-9: SFR BLOCK 800h

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
PTG			CCP1CON3H	95A	00000-00	CCP3PRL	9AC	111111111111111111
PTGCST	900	00-00000x00	CCP1STATL	95C	000xx0000	CCP3PRH	9AE	111111111111111111
PTGCON	902	000000000000000000000000000000000000000	CCP1STATH	95E	00000	CCP3RAL	9B0	000000000000000000000000000000000000000
PTGBTE	904	*****	CCP1TMRL	960	000000000000000000	CCP3RBL	9B4	000000000000000000000000000000000000000
PTGBTEH	906	000000000000000000	CCP1TMRH	962	000000000000000000	CCP3BUFL	9B8	000000000000000000000000000000000000000
PTGHOLD	908	000000000000000000	CCP1PRL	964	111111111111111111	CCP3BUFH	9BA	000000000000000000000000000000000000000
<b>PTGT0LIM</b>	90C	000000000000000000	CCP1PRH	966	111111111111111111	CCP4CON1L	9BC	0000000000000000000000000000000000000
PTGT1LIM	910	000000000000000000	CCP1RAL	968	000000000000000000000000000000000000000	CCP4CON1H	9BE	00000000000000000000
PTGSDLIM	914	000000000000000000	CCP1RBL	96C	000000000000000000000000000000000000000	CCP4CON2L	9C0	00-000000000
<b>PTGC0LIM</b>	918	000000000000000000	CCP1BUFL	970	000000000000000000000000000000000000000	CCP4CON2H	9C2	100-00000
PTGC1LIM	91C	000000000000000000	CCP1BUFH	972	000000000000000000000000000000000000000	CCP4CON3H	9C6	00000-00
PTGADJ	920	000000000000000000	CCP2CON1L	974	0000000000000000	CCP4STATL	9C8	000xx0000
PTGL0	924	000000000000000000	CCP2CON1H	976	00000000000000	CCP4STATH	9CA	00000
PTGQPTR	928	00000	CCP2CON2L	978	00-000000000	CCP4TMRL	9CC	000000000000000000000000000000000000000
PTGQUE0	930	*****	CCP2CON2H	97A	0100-00000	CCP4TMRH	9CE	000000000000000000000000000000000000000
PTGQUE1	932	*****	CCP2CON3H	97E	00000-00	CCP4PRL	9D0	11111111111111111
PTGQUE2	934	*****	CCP2STATL	980	000xx0000	CCP4PRH	9D2	111111111111111111
PTGQUE3	936	*****	CCP2STATH	982	00000	CCP4RAL	9D4	000000000000000000000000000000000000000
PTGQUE4	938	*****	CCP2TMRL	984	000000000000000000000000000000000000000	CCP4RBL	9D8	000000000000000000000000000000000000000
PTGQUE5	93A	*****	CCP2TMRH	986	000000000000000000000000000000000000000	CCP4BUFL	9DC	000000000000000000000000000000000000000
PTGQUE6	93C	*****	CCP2PRL	988	111111111111111111	CCP4BUFH	9DE	000000000000000000000000000000000000000
PTGQUE7	93E	*****	CCP2PRH	98A	111111111111111111	CCP5CON1L	9E0	0000000000000000000000000000000000000
PTGQUE8	940	*****	CCP2RAL	98C	000000000000000000000000000000000000000	CCP5CON1H	9E2	0000000000000000000
PTGQUE9	942	*****	CCP2RBL	990	000000000000000000000000000000000000000	CCP5CON2L	9E4	00-000000000
PTGQUE10	944	*****	CCP2BUFL	994	000000000000000000000000000000000000000	CCP5CON2H	9E6	100-00000
PTGQUE11	946	*****	CCP2BUFH	996	000000000000000000000000000000000000000	CCP5CON3H	9EA	00000-00
PTGQUE12	948	*****	CCP3CON1L	998	0000000000000000	CCP5STATL	9EC	000xx0000
PTGQUE13	94A	*****	CCP3CON1H	99A	00000000000000	CCP5STATH	9EE	00000
PTGQUE14	94C	*****	CCP3CON2L	99C	00-000000000	CCP5TMRL	9F0	000000000000000000000000000000000000000
PTGQUE15	94E	*****	CCP3CON2H	99E	100-00000	CCP5TMRH	9F2	000000000000000000000000000000000000000
ССР			CCP3CON3H	9A2	00000-00	CCP5PRL	9F4	11111111111111111
CCP1CON1L	950	000000000000000	CCP3STATL	9A4	000xx0000	CCP5PRH	9F6	111111111111111111
CCP1CON1H	952	00000000000000	CCP3STATH	9A6	00000	CCP5RAL	9F8	000000000000000000000000000000000000000
CCP1CON2L	954	00-000000000	CCP3TMRL	9A8	000000000000000000	CCP5RBL	9FC	000000000000000000000000000000000000000
CCP1CON2H	956	100-00000	<b>CCP3TMRH</b>	9AA	000000000000000000000000000000000000000			

# TABLE 4-10:SFR BLOCK 900h

Register A	ddress	All Resets	Register	Address	All Resets	Register	Address	All Resets
CCP (Continued	d)		CCP7RBL	A44	000000000000000000000000000000000000000	CCP9RAL	A88	000000000000000000000000000000000000000
CCP5BUFL	A00	000000000000000000	CCP7BUFL	A48	000000000000000000	CCP9RBL	A8C	000000000000000000000000000000000000000
CCP5BUFH	A02	000000000000000000	CCP7BUFH	A4A	000000000000000000	CCP9BUFL	A90	000000000000000000000000000000000000000
CCP6CON1L	A04	000000000000000	CCP8CON1L	A4C	000000000000000	CCP9BUFH	A92	000000000000000000000000000000000000000
CCP6CON1H	A06	00000000000000	CCP8CON1H	A4E	00000000000000	DMA		•
CCP6CON2L	A08	00-000000000	CCP8CON2L	A50	00-000000000	DMACON	ABC	00
CCP6CON2H	A0A	100-00000	CCP8CON2H	A52	0100-00000	DMABUF	ABE	000000000000000000000000000000000000000
CCP6CON3H	A0E	00000-00	CCP8CON3H	A56	00000-00	DMAL	AC0	000000000000000000000000000000000000000
CCP6STATL	A10	000xx0000	CCP8STATL	A58	000xx0000	DMAH	AC2	000000000000000000000000000000000000000
CCP6STATH	A12	00000	CCP8STATH	A5A	00000	DMACH0	AC4	000000000000
CCP6TMRL	A14	000000000000000000000000000000000000000	CCP8TMRL	A5C	00000000000000000	DMAINT0	AC6	00000000000
CCP6TMRH	A16	000000000000000000000000000000000000000	CCP8TMRH	A5E	000000000000000000	DMASRC0	AC8	000000000000000000000000000000000000000
CCP6PRL	A18	111111111111111111	CCP8PRL	A60	11111111111111111	DMADST0	ACA	000000000000000000000000000000000000000
CCP6PRH	A1A	111111111111111111	CCP8PRH	A62	111111111111111111	DMACNT0	ACC	000000000000000000000000000000000000000
CCP6RAL	A1C	000000000000000000000000000000000000000	CCP8RAL	A64	00000000000000000	DMACH1	ACE	00000000000000000000000000000000000
CCP6RBL	A20	000000000000000000000000000000000000000	CCP8RBL	A68	000000000000000000	DMAINT1	AD0	00000000000
CCP6BUFL	A24	000000000000000000000000000000000000000	CCP8BUFL	A6C	00000000000000000	DMASRC1	AD2	000000000000000000000000000000000000000
CCP6BUFH	A26	000000000000000000000000000000000000000	CCP8BUFH	A6E	00000000000000000	DMADST1	AD4	000000000000000000000000000000000000000
CCP7CON1L	A28	000000000000000	CCP9CON1L	A70	000000000000000	DMACNT1	AD6	000000000000000000000000000000000000000
CCP7CON1H	A2A	00000000000000	CCP9CON1H	A72	00000000000000	DMACH2	AD8	00000000000000000000000000000000000
CCP7CON2L	A2C	00-000000000	CCP9CON2L	A74	00-000000000	DMAINT2	ADA	000000000000
CCP7CON2H	A2E	100-00000	CCP9CON2H	A76	00000100-00000	DMASRC2	ADC	000000000000000000000000000000000000000
CCP7CON3H	A32	00000-00	CCP9CON3L	A78	000000	DMADST2	ADE	000000000000000000000000000000000000000
CCP7STATL	A34	000xx0000	CCP9CON3H	A7A	0000-000000000	DMACNT2	AE0	000000000000000000000000000000000000000
CCP7STATH	A36	00000	CCP9STATL	A7C	000xx0000	DMACH3	AE2	00000000000000000000000000000000000
CCP7TMRL	A38	000000000000000000000000000000000000000	CCP9STATH	A7E	00000	DMAINT3	AE4	000000000000
CCP7TMRH	A3A	000000000000000000000000000000000000000	CCP9TMRL	A80	00000000000000000	DMASRC3	AE6	000000000000000000000000000000000000000
CCP7PRL	A3C	1111111111111111111	CCP9TMRH	A82	00000000000000000	DMADST3	AE8	000000000000000000000000000000000000000
CCP7PRH	A3E	1111111111111111111	CCP9PRL	A84	111111111111111111	DMACNT3	AEA	000000000000000000000000000000000000000
CCP7RAL	A40	000000000000000000000000000000000000000	CCP9PRH	A86	11111111111111111			

TABLE 4-11:	SFR BLOCK A00h
-------------	----------------

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
ADC			ADCMP1LO	B44	000000000000000000000000000000000000000	ADTRIG2H	B8A	000000000000000000000000000000000000000
ADCON1L	B00	000-00000000	ADCMP1HI	B46	000000000000000000000000000000000000000	ADTRIG3L	B8C	000000000000000000000000000000000000000
ADCON1H	B02	011	ADCMP2ENL	B48	000000000000000000000000000000000000000	ADTRIG3H	B8E	000000000000000000000000000000000000000
ADCON2L	B04		ADCMP2ENH	B4A	0000000000	ADTRIG4L	B90	000000000000000000000000000000000000000
ADCON2H	B06	00-000000000000000000000000000000000000	ADCMP2LO	B4C	000000000000000000000000000000000000000	ADTRIG4H	B92	000000000000000000000000000000000000000
ADCON3L	B08	000000000000000000000000000000000000000	ADCMP2HI	B4E	000000000000000000000000000000000000000	ADTRIG5L	B94	000000000000000000000000000000000000000
ADCON3H	B0A	000000000xx	ADCMP3ENL	B50	000000000000000000000000000000000000000	ADTRIG5H	B96	000000000000000000000000000000000000000
ADCON4L	B0C		ADCMP3ENH	B52	0000000000	ADTRIG6L	B98	000000000000000000000000000000000000000
ADCON4H	B0E	000000	ADCMP3LO	B54	000000000000000000000000000000000000000	ł	BA0	000000000000000000000000000000000000000
ADMOD0L	B10	000000000000000000000000000000000000000	ADCMP3HI	B56	000000000000000000000000000000000000000	ADCMP1CON	BA4	000000000000000000000000000000000000000
ADMOD0H	B12	000000000000000000000000000000000000000	ADFL0DAT	B68	000000000000000000000000000000000000000	ADCMP2CON	BA8	000000000000000000000000000000000000000
ADMOD1L	B14	000000000000000000000000000000000000000	ADFL0CON	B6A	xxx00000000000000	ADCMP3CON	BAC	000000000000000000000000000000000000000
ADMOD1H	B16	0000	ADFL1DAT	B6C	000000000000000000000000000000000000000	ADLVLTRGL	BD0	000000000000000000000000000000000000000
ADIEL	B20	*****	ADFL1CON	B6E	xxx00000000000000	ADLVLTRGH	BD2	xxxxxxxxxx
ADIEH	B22	xxxxxxxxxx	ADFL2DAT	B70	000000000000000000000000000000000000000	ADCORE0L	BD4	000000000000000000000000000000000000000
ADSTATL	B30	000000000000000000	ADFL2CON	B72	xxx000000000000000	ADCORE0H	BD6	0000001100000000
ADSTATH	B32	0000000000	ADFL3DAT	B74	000000000000000000	ADCORE1L	BD8	000000000000000000000000000000000000000
ADCMP0ENL	B38	000000000000000000	ADFL3CON	B76	xxx00000000000000	ADCORE1H	BDA	0000001100000000
ADCMP0ENH	B3A	0000000000	ADTRIG0L	B80	000000000000000000	ADEIEL	BF0	*****
ADCMP0LO	B3C	000000000000000000	ADTRIG0H	B82	000000000000000000	ADEIEH	BF2	xxxxxxxxxx
ADCMP0HI	B3E	000000000000000000	ADTRIG1L	B84	000000000000000000	ADEISTATL	BF8	*****
ADCMP1ENL	B40	000000000000000000	ADTRIG1H	B86	000000000000000000	ADEISTATH	BFA	xxxxxxxxxx
ADCMP1ENH	B42	0000000000	ADTRIG2L	B88	000000000000000000			•

# TABLE 4-12: SFR BLOCK B00h

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
ADC (Continu	ued)		ADCBUF16	C2C	000000000000000000000000000000000000000	SLP1CONH	C92	000
ADCON5L	C00	0	ADCBUF17	C2E	000000000000000000000000000000000000000	SLP1DAT	C94	000000000000000000
ADCON5H	C02	xxxx0	ADCBUF18	C30	000000000000000000000000000000000000000	DAC2CONL	C98	0000000x0000000
ADCBUF0	COC	000000000000000000000000000000000000000	ADCBUF19	C32	000000000000000000000000000000000000000	DAC2CONH	C9A	0000000000
ADCBUF1	C0E	000000000000000000000000000000000000000	ADCBUF20	C34	000000000000000000000000000000000000000	DAC2DATL	C9C	00000000000000000000
ADCBUF2	C10	000000000000000000000000000000000000000	ADCBUF21	C36	000000000000000000000000000000000000000	DAC2DATH	C9E	0000000000000000000
ADCBUF3	C12	000000000000000000000000000000000000000	ADCBUF22	C38	000000000000000000000000000000000000000	SLP2CONL	CA0	0000000000000000000
ADCBUF4	C14	000000000000000000000000000000000000000	ADCBUF23	C3A	000000000000000000000000000000000000000	SLP2CONH	CA2	000
ADCBUF5	C16	000000000000000000000000000000000000000	ADCBUF24	C3C	000000000000000000000000000000000000000	SLP2DAT	CA4	0000000000000000000
ADCBUF6	C18	000000000000000000000000000000000000000	ADCBUF25	C3E	000000000000000000000000000000000000000	DAC3CONL	CA8	0000000x0000000
ADCBUF7	C1A	000000000000000000000000000000000000000	DAC			DAC3CONH	CAA	0000000000
ADCBUF8	C1C	000000000000000000000000000000000000000	DACCTRL1L	C80	00000-000	DAC3DATL	CAC	0000000000000000000
ADCBUF9	C1E	000000000000000000000000000000000000000	DACCTRL2L	C84	0001010101	DAC3DATH	CAE	0000000000000000000
ADCBUF10	C20	000000000000000000000000000000000000000	DACCTRL2H	C86	0010001010	SLP3CONL	CB0	00000000000000000000
ADCBUF11	C22	0000000000000000000	DAC1CONL	C88	0000000x0000000	SLP3CONH	CB2	000
ADCBUF12	C24	0000000000000000000	DAC1CONH	C8A	0000000000	SLP3DAT	CB4	0000000000000000000
ADCBUF13	C26	000000000000000000	DAC1DATL	C8C	000000000000000000000000000000000000000	VREGCON	CFC	000000
ADCBUF14	C28	000000000000000000	DAC1DATH	C8E	000000000000000000000000000000000000000			
ADCBUF15	C2A	000000000000000000	SLP1CONL	C90	000000000000000000000000000000000000000			

#### TABLE 4-13: SFR BLOCK C00h

Deviator	Addamaa	All Decete	Beninten	Adduces	All Decete	Deviates	A	
Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
PPS			RPINR21	D2E	111111111111111111	RPOR4	D88	000000000000
RPCON	D00	0	RPINR22	D30	111111111111111111	RPOR5	D8A	000000000000
RPINR0	D04	11111111	RPINR23	D32	111111111	RPOR6	D8C	000000000000
RPINR1	D06	111111111111111111	RPINR26	D38	111111111	RPOR7	D8E	000000000000
RPINR2	D08	11111111	RPINR27	D3A	111111111111111111	RPOR8	D90	000000000000
RPINR3	D0A	111111111111111111	RPINR29	D3E	111111111111111111	RPOR9	D92	000000000000
RPINR4	D0C	111111111111111111	RPINR30	D40	111111111	RPOR10	D94	000000000000
RPINR5	D0E	111111111111111111	RPINR32	D44	11111111	RPOR11	D96	000000000000
RPINR6	D10	111111111111111111	RPINR33	D46	111111111	RPOR12	D98	000000000000
RPINR7	D12	111111111111111111	RPINR37	D4E	111111111111111111	RPOR13	D9A	000000000000
RPINR8	D14	111111111111111111	RPINR38	D50	111111111	RPOR14	D9C	000000000000
RPINR9	D16	111111111111111111	RPINR42	D58	111111111111111111	RPOR15	D9E	000000000000
RPINR10	D18	111111111111111111	RPINR43	D5A	111111111111111111	RPOR16	DA0	000000000000
RPINR11	D1A	111111111111111111	RPINR44	D5C	111111111111111111	RPOR17	DA2	000000000000
RPINR12	D1C	111111111111111111	RPINR45	D5E	111111111111111111	RPOR18	DA4	000000000000
RPINR13	D1E	111111111111111111	RPINR46	D60	111111111111111111	RPOR19	DA6	000000000000
RPINR14	D20	111111111111111111	RPINR47	D62	111111111111111111	RPOR20	DA8	000000000000
RPINR15	D22	111111111111111111	RPINR48	D64	111111111111111111	RPOR21	DAA	000000000000
RPINR16	D24	111111111111111111	RPINR49	D66	111111111	RPOR22	DAC	000000000000
RPINR17	D26	111111111111111111	RPOR0	D80	000000000000	RPOR23	DAE	000000000000
RPINR18	D28	111111111111111111	RPOR1	D82	000000000000	RPOR24	DB0	000000000000
RPINR19	D2A	111111111111111111	RPOR2	D84	000000000000	RPOR25	DB2	000000000000
RPINR20	D2C	111111111111111111	RPOR3	D86	000000000000	RPOR26	DB4	000000000000

# TABLE 4-14:SFR BLOCK D00h

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
I/O Ports			CNEN0B	E2C	000000000000000000	CNPUD	E5E	000000000000000000
ANSELA	E00	11111	CNSTATB	E2E	000000000000000000	CNPDD	E60	000000000000000000
TRISA	E02	11111	CNEN1B	E30	000000000000000000	CNCOND	E62	0
PORTA	E04	xxxxx	CNFB	E32	000000000000000000	CNEN0D	E64	0000000000000000000
LATA	E06	xxxxx	ANSELC	E38	111111	CNSTATD	E66	0000000000000000000
ODCA	E08	00000	TRISC	E3A	11111111111111111	CNEN1D	E68	0000000000000000000
CNPUA	E0A	00000	PORTC	E3C	*****	CNFD	E6A	000000000000000000
CNPDA	E0C	00000	LATC	E3E	*****	ANSELE	E70	1111
CNCONA	E0E	0	ODCC	E40	000000000000000000	TRISE	E72	111111111111111111
CNEN0A	E10	00000	CNPUC	E42	000000000000000000	PORTE	E74	*****
CNSTATA	E12	00000	CNPDC	E44	000000000000000000	LATE	E76	*****
CNEN1A	E14	00000	CNCONC	E46	0	ODCE	E78	000000000000000000
CNFA	E16	00000	CNEN0C	E48	000000000000000000	CNPUE	E7A	000000000000000000
ANSELB	E1C	11111111	CNSTATC	E4A	000000000000000000	CNPDE	E7C	000000000000000000
TRISB	E1E	111111111111111111	CNEN1C	E4C	000000000000000000	CNCONE	E7E	0
PORTB	E20	*****	CNFC	E4E	000000000000000000	CNEN0E	E80	000000000000000000
LATB	E22	*****	ANSELD	E54	1-11	CNSTATE	E82	000000000000000000
ODCB	E24	000000000000000000	TRISD	E56	11111111111111111	CNEN1E	E84	000000000000000000
CNPUB	E26	000000000000000000	PORTD	E58	*****	CNFE	E86	000000000000000000
CNPDB	E28	000000000000000000	LATD	E5A	*****	Memory BIST		
CNCONB	E2A	0	ODCD	E5C	000000000000000000	MBISTCON	EFC	1

#### TABLE 4-15: SFR BLOCK E00h

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
•			I2C3TRN			WDTCONH	FB6	
UART3				F70	11111111		FB0	000000000000000000000000000000000000000
U3MODE	F00	000-000000000			REFO			
U3MODEH	F02	0000000000000	Reset and Osc			REFOCONL	FB8	000-000000
U3STA	F04	000000010000000	RCON	F80	xxx01x0xxxxx	REFOCONH	FBA	000000000000000000000000000000000000000
U3STAH	F06	0000-00000101110	OSCCON	F84	0000-ууу0-0-00	REFOTRIML	FBC	00000000
U3BRG	F08	000000000000000000000000000000000000000	CLKDIV	F86	00110000000001	Processor		
U3BRGH	F0A	0000	PLLFBD	F88	000010010110	PCTRAPL	FC0	*****
<b>U3RXREG</b>	F0C	xxxxxxxx	PLLDIV	F8A	00-001-001	PCTRAPH	FC2	xxxxxxxx
<b>U3TXREG</b>	F10	xxxxxxxx	OSCTUN	F8C	000000	FEXL	FC4	*****
U3P1	F14	000000000	ACLKCON1	F8E	000000001	FEXH	FC6	xxxxxxxx
U3P2	F16	000000000	APLLFBD1	F90	000010010110	FEX2L	FC8	*****
U3P3	F18	000000000000000000	APLLDIV1	F92	00-001-001	FEX2H	FCA	xxxxxxxx
U3P3H	F1A	00000000	CANCLKCON	F9A	00000-000000	VISI	FCC	*****
U3TXCHK	F1C	00000000	DCOTUN	F9C	000000000000	DPCL	FCE	*****
<b>U3RXCHK</b>	F1E	00000000	DCOCON	F9E	0-xxxx	DPCH	FD0	xxxxxxxx
U3SCCON	F20	00000-	PMD		APPO	FD2	*****	
<b>U3SCINT</b>	F22	00-00000-000	PMD1	FA4	000-00000-00	APPI	FD4	*****
U3INT	F24	000	PMD2	FA6	000000000	APPS	FD6	xxxxx
I2C3	I2C3		PMD3	FA8	00-0-000-	STROUTL	FD8	*****
I2C3CONL	F5C	010000000000000	PMD4	FAA	0	STROUTH	FDA	*****
I2C3CONH	F5E	0000000	PMD6	FAE	0000	STROVCNT	FDC	*****
I2C3 STAT	F60	00000000000000	PMD7	FB0	0000	JDATAL	FFA	000000000000000000000000000000000000000
I2C3ADD	F64	0000000000	PMD8	FB2	000000000-	JDATAH	FFC	000000000000000000000000000000000000000
I2C3MSK	F68	0000000000						1
I2C3BRG	F6C	000000000000000000000000000000000000000	WDTCONL	FB4	000000000000000			

# TABLE 4-16: SFR BLOCK F00h

Legend: x = unknown or indeterminate value; "-" =unimplemented bits; y = value set by Configuration bits. Address values are in hexadecimal. Reset values are in binary.

# 4.4.1 PAGED MEMORY SCHEME

The dsPIC33CK256MP508 architecture extends the available Data Space through a paging scheme, which allows the available Data Space to be accessed using MOV instructions in a linear fashion for pre- and post-modified Effective Addresses (EAs). The upper half of the base Data Space address is used in conjunction with the Data Space Read Page (DSRPAG) register to form the Program Space Visibility (PSV) address.

The Data Space Read Page (DSRPAG) register is located in the SFR space. Construction of the PSV address is shown in Figure 4-11. When DSRPAG<9> = 1 and the base address bit, EA<15> = 1, the DSRPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit PSV read address.

The paged memory scheme provides access to multiple 32-Kbyte windows in the PSV memory. The Data Space Read Page (DSRPAG) register, in combination with the upper half of the Data Space address, can provide up to 8 Mbytes of PSV address space. The paged data memory space is shown in Figure 4-12.

The Program Space (PS) can be accessed with a DSRPAG of 0x200 or greater. Only reads from PS are supported using the DSRPAG.

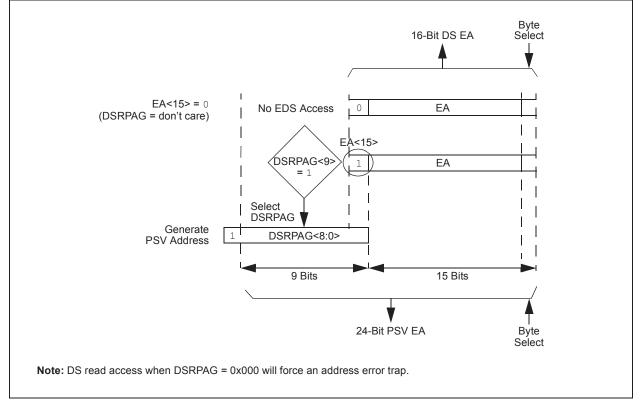
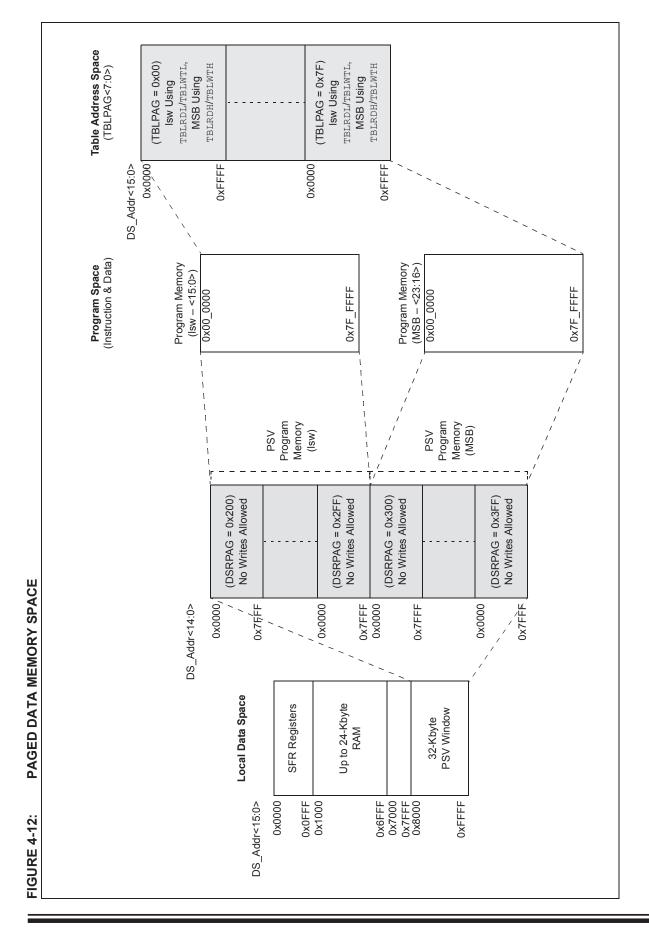




FIGURE 4-11: PROGRAM SPACE VISIBILITY (PSV) READ ADDRESS GENERATION

# dsPIC33CK256MP508 FAMILY



When a PSV page overflow or underflow occurs, EA<15> is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the PSV pages can occur at the page boundaries when:

- The initial address, prior to modification, addresses the PSV page
- The EA calculation uses Pre- or Post-Modified Register Indirect Addressing; however, this does not include Register Offset Addressing

In general, when an overflow is detected, the DSRPAG register is incremented and the EA<15> bit is set to keep the base address within the PSV window. When an underflow is detected, the DSRPAG register is decremented and the EA<15> bit is set to keep the base

address within the PSV window. This creates a linear PSV address space, but only when using Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of Page 0 and PSV spaces. Table 4-17 lists the effects of overflow and underflow scenarios at different boundaries.

In the following cases, when overflow or underflow occurs, the EA<15> bit is set and the DSRPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- Register Indirect with Register Offset Addressing
- Modulo Addressing
- Bit-Reversed Addressing

<b>TABLE 4-17:</b>	OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0 AND
	PSV SPACE BOUNDARIES ^(2,3,4)

O/U, R/W	Operation		Before		After			
		DSRPAG	DS EA<15>	Page Description	DSRPAG	DS EA<15>	Page Description	
O, Read	[++Wn]	DSRPAG = 0x2FF	1	PSV: Last Isw page	DSRPAG = 0x300	1	PSV: First MSB page	
O, Read	Or [Wn++]	DSRPAG = 0x3FF	1	PSV: Last MSB page	DSRPAG = 0x3FF	0	See Note 1	
U, Read		DSRPAG = 0x001	1	PSV page	DSRPAG = 0x001	0	See Note 1	
U, Read	[Wn] <b>Or</b> [Wn]	DSRPAG = 0x200	1	PSV: First Isw page	DSRPAG = 0x200	0	See Note 1	
U, Read		DSRPAG = 0x300	1	PSV: First MSB page	DSRPAG = 0x2FF	1	PSV: Last Isw page	

**Legend:** O = Overflow, U = Underflow, R = Read, W = Write

Note 1: The Register Indirect Addressing now addresses a location in the base Data Space (0x0000-0x8000).

2: An EDS access, with DSRPAG = 0x000, will generate an address error trap.

3: Only reads from PS are supported using DSRPAG.

4: Pseudolinear Addressing is not supported for large offsets.

# 4.4.1.1 Extended X Data Space

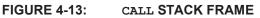
The lower portion of the base address space range, between 0x0000 and 0x7FFF, is always accessible, regardless of the contents of the Data Space Read Page register. It is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS Page 0 (i.e., EDS address range of 0x000000 to 0x007FFF with the base address bit, EA<15> = 0, for this address range). However, Page 0 cannot be accessed through the upper 32 Kbytes, 0x8000 to 0xFFFF, of base Data Space in combination with DSRPAG = 0x00. Consequently, DSRPAG is initialized to 0x001 at Reset.

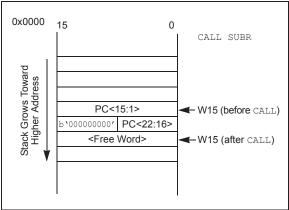
- Note 1: DSRPAG should not be used to access Page 0. An EDS access with DSRPAG set to 0x000 will generate an address error trap.
  - 2: Clearing the DSRPAG in software has no effect.

The remaining PSV pages are only accessible using the DSRPAG register in combination with the upper 32 Kbytes, 0x8000 to 0xFFFF, of the base address, where the base address bit, EA<15> = 1.

# 4.4.1.2 Software Stack

The W15 register serves as a dedicated Software Stack Pointer (SSP), and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating the Stack Pointer (for example, creating stack frames).


Note: To protect against misaligned stack accesses, W15<0> is fixed to '0' by the hardware.


W15 is initialized to 0x1000 during all Resets. This address ensures that the SSP points to valid RAM in all dsPIC33CK256MP508 devices and permits stack availability for non-maskable trap exceptions. These can occur before the SSP is initialized by the user software. You can reprogram the SSP during initialization to any location within Data Space.

The Software Stack Pointer always points to the first available free word and fills the software stack, working from lower toward higher addresses. Figure 4-13 illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes).

When the PC is pushed onto the stack, PC<15:0> are pushed onto the first available stack word, then PC<22:16> are pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-13. During exception processing, the MSB of the PC is concatenated with the lower eight bits of the CPU STATUS Register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

- **Note 1:** To maintain system Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore, restricted to an address range of 0x0000 to 0xFFFF. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).
  - 2: As the stack can be placed in, and can access X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a C development environment





#### 4.4.2 INSTRUCTION ADDRESSING MODES

The addressing modes shown in Table 4-18 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

# 4.4.2.1 File Register Instructions

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a Working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

# 4.4.2.2 MCU Instructions

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a Working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can either be a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

# TABLE 4-18: FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode	Description				
File Register Direct	The address of the file register is specified explicitly.				
Register Direct	The contents of a register are accessed directly.				
Register Indirect	The contents of Wn form the Effective Address (EA).				
Register Indirect Post-Modified	The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value.				
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.				
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.				
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.				

# 4.4.2.3 Move and Accumulator Instructions

Move instructions, and the DSP accumulator class of instructions, provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal
- Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

# 4.4.2.4 MAC Instructions

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must therefore, be valid addresses within X Data Space for W8 and W9, and Y Data Space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the  ${\tt MAC}$  class of instructions:

- Register Indirect
- · Register Indirect Post-Modified by 2
- · Register Indirect Post-Modified by 4
- · Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

#### 4.4.2.5 Other Instructions

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ULNK, the source of an operand or result is implied by the opcode itself. Certain operations, such as a NOP, do not have any operands.

#### 4.4.3 MODULO ADDRESSING

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either Data or Program Space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into Program Space) and Y Data Spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a Bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

#### 4.4.3.1 Start and End Address

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-2).

Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

#### 4.4.3.2 W Address Register Selection

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags, as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 1111, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 1111, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W (XWM) register, to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4.1). Modulo Addressing is enabled for X Data Space when XWM is set to any value other than '1111' and the XMODEN bit is set (MODCON<15>).

The Y Address Space Pointer W (YWM) register, to which Modulo Addressing is to be applied, is stored in MODCON<7:4>. Modulo Addressing is enabled for Y Data Space when YWM is set to any value other than '1111' and the YMODEN bit (MODCON<14>) is set.

#### FIGURE 4-14: MODULO ADDRESSING OPERATION EXAMPLE

Byte Address		MOV MOV MOV	#0x1100, W0 W0, XMODSRT #0x1163, W0	;set modulo start address
0x1100		MOV MOV	#0x1103, W0 W0, MODEND #0x8001, W0	;set modulo end address
		MOV	W0, MODCON	;enable W1, X AGU for modulo
	↓ ( )	MOV		;WO holds buffer fill value
0x1163	$\square$	MOV	#0x1110, W1	;point W1 to buffer
		DO MOV	AGAIN, #0x31 W0, [W1++]	;fill the 50 buffer locations ;fill the next location
E	Start Addr = 0x1100 End Addr = 0x1163 Length = 0x0032 words	AGAIN:	INC W0, W0	; increment the fill value

#### 4.4.3.3 Modulo Addressing Applicability

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than, or greater than, the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (such as [W7 + W2]) is used, Modulo Addressing correction is performed, but the contents of the register remain unchanged.

#### 4.4.4 BIT-REVERSED ADDRESSING

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

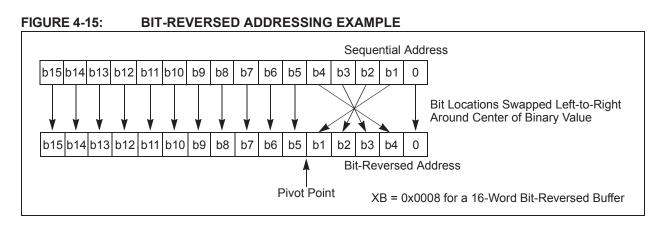
The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

#### 4.4.4.1 Bit-Reversed Addressing Implementation

Bit-Reversed Addressing mode is enabled in any of these situations:

- BWMx bits (W register selection) in the MODCON register are any value other than '1111' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is  $M = 2^N$  bytes, the last 'N' bits of the data buffer start address must be zeros.


XB<14:0> is the Bit-Reversed Addressing modifier, or 'pivot point', which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume word-sized data (LSb of every EA is always clear). The XB value is scaled accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo Addressing and Bit-Reversed
	Addressing can be enabled simultaneously
	using the same W register, but Bit-
	Reversed Addressing operation will always
	take precedence for data writes when
	enabled.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.



#### TABLE 4-19: BIT-REVERSED ADDRESSING SEQUENCE (16-ENTRY)

Normal Address							Bit-Rev	ersed Ac	ldress
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

# 4.4.5 INTERFACING PROGRAM AND DATA MEMORY SPACES

The dsPIC33CK256MP508 family architecture uses a 24-bit wide Program Space (PS) and a 16-bit wide Data Space (DS). The architecture is also a modified Harvard scheme, meaning that data can also be present in the Program Space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the architecture of the dsPIC33CK256MP508 family devices provides two methods by which Program Space can be accessed during operation:

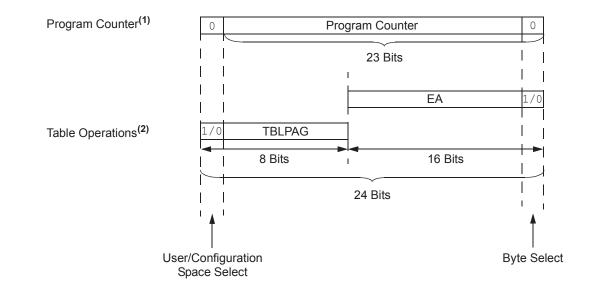

- Using table instructions to access individual bytes or words anywhere in the Program Space
- Remapping a portion of the Program Space into the Data Space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

# TABLE 4-20: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	m Space Address				
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>
Instruction Access	User	0 PC<22:1>				0
(Code Execution)		0xxx xxxx xxxx xxxx xxxx xxx0				
TBLRD/TBLWT	User	TBLPAG<7:0>			Data EA<15:0>	
(Byte/Word Read/Write)		0	XXX XXXX	XXXX	XXXX XXXX XXX	X
	Configuration	TBLPAG<7:0>		Data EA<15:0>		
		1	XXX XXXX	****		

#### FIGURE 4-16: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

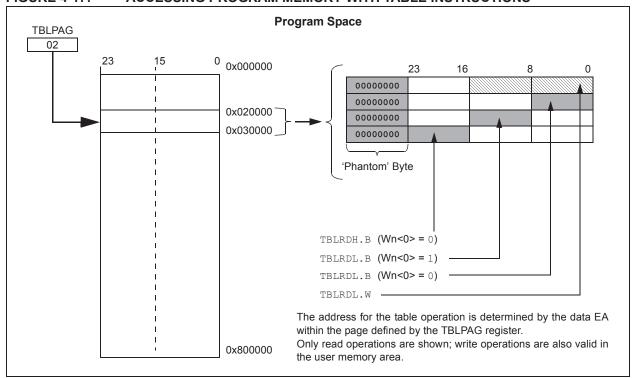


- **Note 1:** The Least Significant bit (LSb) of Program Space addresses is always fixed as '0' to maintain word alignment of data in the Program and Data Spaces.
  - **2:** Table operations are not required to be word-aligned. Table Read operations are permitted in the configuration memory space.

#### 4.4.5.1 Data Access from Program Memory Using Table Instructions

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the Program Space without going through Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a Program Space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.


Two table instructions are provided to move byte or word-sized (16-bit) data to and from Program Space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
  - In Word mode, this instruction maps the lower word of the Program Space location (P<15:0>) to a data address (D<15:0>)
  - In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.

- TBLRDH (Table Read High):
  - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>) is always '0'.
  - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a Program Space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.



# FIGURE 4-17: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

NOTES:

# 5.0 FLASH PROGRAM MEMORY

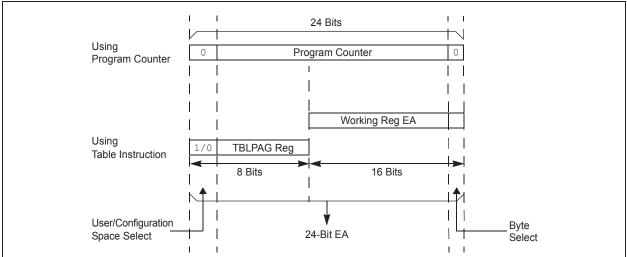
- Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Dual Partition Flash Program Memory" (www.microchip.com/DS70005156) in the "dsPIC33/PIC24 Family Reference Manual").
  - 2: Some registers and associated bits described in this section may not be available on all devices.

The dsPIC33CK256MP508 family devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in three ways:

- In-Circuit Serial Programming™ (ICSP™) programming capability
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)
- Run-Time Self-Programming (RTSP)

ICSP allows for a dsPIC33CK256MP508 family device to be serially programmed while in the end application circuit. This is done with a Programming Clock and Programming Data (PGCx/PGDx) line, and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.


Enhanced In-Circuit Serial Programming uses an on-board bootloader, known as the Program Executive, to manage the programming process. Using an SPI data frame format, the Program Executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user application can write program memory data, two instruction words or a row at a time, and erase a program memory page.

# 5.1 Table Instructions and Flash Programming

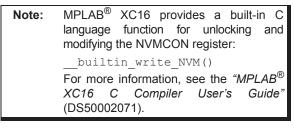
Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 5-1. The TBLRDL and TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes. The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

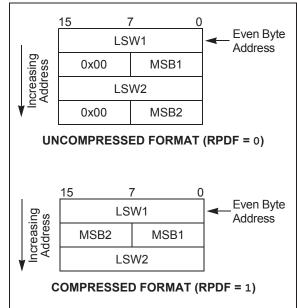


# 5.2 RTSP Operation

The dsPIC33CK256MP508 family Flash program memory array is organized into rows of 128 instructions or 384 bytes. RTSP allows the user application to erase a single page (eight rows or 1024 instructions) of memory at a time and to program one row at a time. It is possible to program two instructions at a time as well.


The page erase and single row write blocks are edge-aligned, from the beginning of program memory, on boundaries of 3072 bytes and 384 bytes, respectively. Table 33-18 in Section 33.0 "Electrical Characteristics" lists the typical erase and programming times.

Row programming is performed by loading 384 bytes into data memory and then loading the address of the first byte in that row into the NVMSRCADRL/H register. Once the write has been initiated, the device will automatically load the write latches, and increment the NVMSRCADRL/H and the NVMADR(U) registers until all bytes have been programmed. The RPDF bit (NVMCON<9>) selects the format of the stored data in RAM to be either compressed or uncompressed. See Figure 5-2 for data formatting. Compressed data helps to reduce the amount of required RAM by using the upper byte of the second word for the MSB of the second instruction.


The basic sequence for RTSP word programming is to use the TBLWTL and TBLWTH instructions to load two of the 24-bit instructions into the write latches found in configuration memory space. Refer to Figure 4-1 through Figure 4-5 for write latch addresses. Programming is performed by unlocking and setting the control bits in the NVMCON register as follows:

- 1. Write 0x55 to NVMKEY.
- 2. Write 0xAA to NVMKEY.
- 3. Set the WR bit (NVMCON<15>) as a single operation.

All erase and program operations may optionally use the NVM interrupt to signal the successful completion of the operation. For example, when performing Flash write operations on the Inactive Partition in Dual Partition mode, where the CPU remains running, it is necessary to wait for the NVM interrupt before programming the next block of Flash program memory.







#### 5.3 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

#### 5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program two adjacent words (24 bits x 2) of Program Flash Memory at a time on every other word address boundary (0x000002,

0x000006, 0x00000A, etc.). To do this, it is necessary to erase the page that contains the desired address of the location the user wants to change. For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPs. Refer to Example 5-1 for Flash read and write operations.

#### EXAMPLE 5-1: FLASH WRITE/READ

//Sample code for writing 0x123456 to address locations 0x10000 / 10002 NVMCON =  $0 \times 4001$ ; TBLPAG =  $0 \times FA$ ; // write latch upper address NVMADR =  $0 \times 0000;$ // set target write address of general segment NVMADRU =  $0 \times 0001;$ __builtin_tblwtl(0, 0x3456); // load write latches builtin tblwth (0,0x12); builtin tblwtl(2, 0x3456); // load write latches builtin tblwth (2,0x12); asm volatile ("disi #5"); builtin write NVM(); while ( WR == 1 ) ; //Sample code to read the Flash content of address 0x10000 // readDataL/ readDataH variables need to defined TBLPAG =  $0 \times 0001;$ readDataL = __builtin_tblrdl(0x0000); readDataH = __builtin_tblrdh(0x0000);

# 5.3.2 ERROR CORRECTING CODE (ECC)

In order to improve program memory performance and durability, these devices include Error Correcting Code (ECC) functionality as an integral part of the Flash memory controller. ECC can determine the presence of single bit errors in program data, including which bit is in error, and correct the data automatically without user intervention. ECC cannot be disabled.

When data is written to program memory, ECC generates a 7-bit Hamming code parity value for every two (24-bit) instruction words. The data is stored in blocks of 48 data bits and 7 parity bits; parity data is not memory-mapped and is inaccessible. When the data is read back, the ECC calculates the parity on it and compares it to the previously stored parity value. If a parity mismatch occurs, there are two possible outcomes:

- Single bit error has occurred and has been automatically corrected on readback.
- Double-bit error has occurred and the read data is not changed.

Single bit error occurrence can be identified by the state of the ECCSBEIF (IFS0<13>) bit. An interrupt can be generated when the corresponding interrupt enable bit is set, ECCSBEIE (IEC0<13>). The ECCSTATL register contains the parity information for single bit errors. The SECOUT<7:0> bits field contains the expected calculated SEC parity and the SECIN<7:0> bits contain the actual value from a Flash read operation. The SECSYNDx bits (ECCSTATH<7:0>) indicate the bit position of the single bit error within the 48-bit pair of instruction words. When no error is present, SECINx equals SECOUTx and SECSYNDx is zero.

Double-bit errors result in a generic hard trap. The ECCDBE bit (INTCON4<1>) will be set to identify the source of the hard trap. If no Interrupt Service Routine is implemented for the hard trap, a device Reset will also occur. The ECCSTATH register contains double-bit error status information. The DEDOUT bit is the expected calculated DED parity and DEDIN is the actual value from a Flash read operation. When no error is present, DEDIN equals DEDOUT.

# 5.3.3 ECC FAULT INJECTION

To test Fault handling, an EEC error can be generated. Both single and double-bit errors can be generated in both the read and write data paths. Read path Fault injection first reads the Flash data and then modifies it prior to entering the ECC logic. Write path Fault injection modifies the actual data prior to it being written into the target Flash and will cause an EEC error on a subsequent Flash read. The following procedure is used to inject a Fault:

- 1. Load the Flash target address into the ECCADDR register.
- Select 1st Fault bit determined by FLT1PTRx (ECCCONH<7:0>). The target bit is inverted to create the Fault.
- If a double Fault is desired, select the 2nd Fault bit determined by FLT2PTRx (ECCCONH<15:8>), otherwise set to all '1's.
- 4. Write 0x55 to NVMKEY.
- 5. Write 0xAA to NVMKEY.
- Set the FLTINJ bit (ECCCONL<0>) in a single operation to enable the ECC Fault injection logic.
- 7. Perform a read or write to the Flash target address.

# 5.4 ICSP™ Write Inhibit

ICSP Write Inhibit is an access restriction feature that, when activated, restricts all of Flash memory. Once activated, ICSP Write Inhibit permanently prevents ICSP Flash programming and erase operations, and cannot be deactivated. This feature is intended to prevent alteration of Flash memory contents, with behavior similar to One-Time-Programmable (OTP) devices.

RTSP, including erase and programming operations, is not restricted when ICSP Write Inhibit is activated; however, code to perform these actions must be programmed into the device before ICSP Write Inhibit is activated. This allows for a bootloader-type application to alter Flash contents with ICSP Write Inhibit activated.

Entry into ICSP and Enhanced ICSP modes is not affected by ICSP Write Inhibit. In these modes, it will continue to be possible to read configuration memory space and any user memory space regions which are not code protected. With ICSP writes inhibited, an attempt to set WR (NVMCON<15>) = 1 will maintain WR = 0, and instead, set WRERR (NVMCON<13>) = 1. All Enhanced ICSP erase and programming commands will have no effect with self-checked programming commands returning a FAIL response opcode (PASS if the destination already exactly matched the requested programming data).

Once ICSP Write Inhibit is activated, it is not possible for a device executing in Debug mode to erase/write Flash, nor can a debug tool switch the device to Production mode. ICSP Write Inhibit should therefore only be activated on devices programmed for production.

The JTAG port, when enabled, can be used to map ICSP signals to JTAG I/O pins. All Flash erase/ programming operations initiated via the JTAG port will therefore also be blocked after activating ICSP Write Inhibit.

#### 5.4.1 ACTIVATING ICSP™ WRITE INHIBIT

Caution: It is not possible to deactivate ICSP Write Inhibit.

ICSP Write Inhibit is activated by executing a pair of NVMCON double-word programming commands to save two 16-bit activation values in the configuration memory space. The target NVM addresses and values required for activation are shown in Table 5-1. Once both addresses contain their activation values, ICSP Write Inhibit will take permanent effect on the next device Reset. Neither address can be reset, erased or otherwise modified, through any means, after being successfully programmed, even if one of the addresses has not been programmed.

Only the lower 16 data bits stored at the activation addresses are evaluated; the upper 8 bits and second 24-bit word written by the double-word programming (NVMOP<3:0>) should be written as '0's. The addresses can be programmed in any order and also during separate ICSP/Enhanced ICSP/RTSP sessions, but any attempt to program an incorrect 16-bit value or use a row programming operation to program the values will be aborted without altering the existing data.

#### TABLE 5-1: ICSP™ WRITE INHIBIT ACTIVATION ADDRESSES AND DATA

	Configuration Memory Address	ICSP Write Inhibit Activation Value	
Write Lock 1	0x801034	0x006D63	
Write Lock 2	0x801038	0x006870	

# 5.5 Dual Partition Flash Configuration

For dsPIC33CK256MP508 devices operating in Dual Partition Flash Program Memory modes, the Inactive Partition can be erased and programmed without stalling the processor. The same programming algorithms are used for programming and erasing the Flash in the Inactive Partition, as described in Section 5.2 "RTSP Operation". On top of the page erase option, the entire Flash memory of the Inactive Partition can be erased by configuring the NVMOP<3:0> bits in the NVMCON register.

Note 1: The application software to be loaded into the Inactive Partition will have the address of the Active Partition. The bootloader firmware will need to offset the address by 0x400000 in order to write to the Inactive Partition.

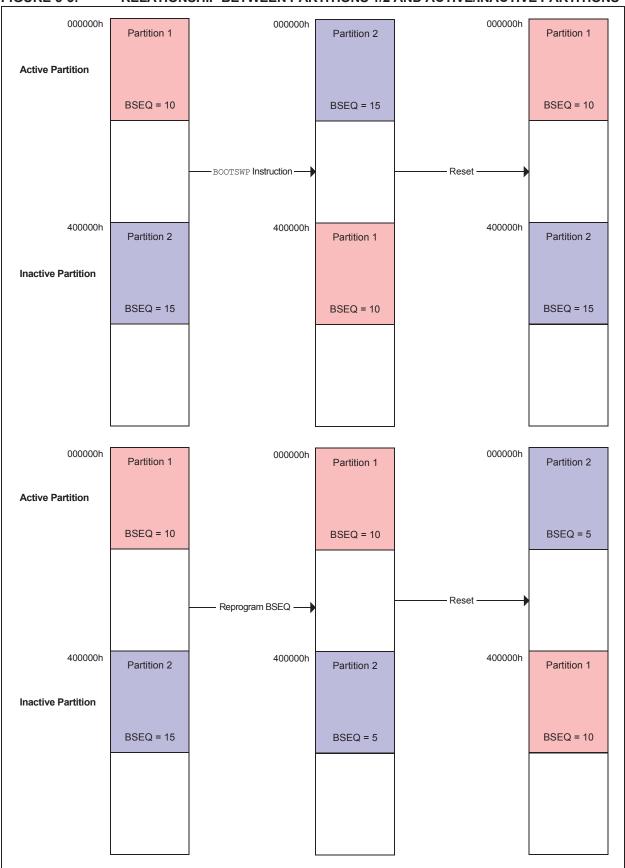
#### 5.5.1 FLASH PARTITION SWAPPING

The Boot Sequence Number is used for determining the Active Partition at start-up and is encoded within the FBTSEQ Configuration register bits. Unlike most Configuration registers, which only utilize the lower 16 bits of the program memory, FBTSEQ is a 24-bit Configuration Word. The Boot Sequence Number (BSEQ) is a 12-bit value and is stored in FBTSEQ twice. The true value is stored in bits, FBTSEQ<11:0>, and its complement is stored in bits, FBTSEQ<23:12>. At device Reset, the sequence numbers are read and the partition with the lowest sequence number becomes the Active Partition. If one of the Boot Sequence Numbers is invalid, the device will select the partition with the valid Boot Sequence Number, or default to Partition 1 if both sequence numbers are invalid. See Section 30.0 "Special Features" for more information.

The BOOTSWP instruction provides an alternative means of swapping the Active and Inactive Partitions (soft swap) without the need for a device Reset. The BOOTSWP must always be followed by a GOTO instruction. The BOOTSWP instruction swaps the Active and Inactive Partitions, and the PC vectors to the location specified by the GOTO instruction in the newly Active Partition.

It is important to note that interrupts should temporarily be disabled while performing the soft swap sequence and that after the partition swap, all peripherals and interrupts which were enabled remain enabled. Additionally, the RAM and stack will maintain state after the switch. As a result, it is recommended that applications using soft swaps jump to a routine that will reinitialize the device in order to ensure the firmware runs as expected. The Configuration registers will have no effect during a soft swap. For robustness of operation, in order to execute the BOOTSWP instruction, it is necessary to execute the NVM unlocking sequence as follows:

- 1. Write 0x55 to NVMKEY.
- 2. Write 0xAA to NVMKEY.
- 3. Execute the BOOTSWP instruction.


If the unlocking sequence is not performed, the BOOTSWP instruction will be executed as a forced NOP and a GOTO instruction, following the BOOTSWP instruction, will be executed, causing the PC to jump to that location in the current operating partition.

The SFTSWP and P2ACTIV bits in the NVMCON register are used to determine a successful swap of the Active and Inactive Partitions, as well as which partition is active. After the BOOTSWP and GOTO instructions, the SFTSWP bit should be polled to verify the partition swap has occurred and then cleared for the next panel swap event.

#### 5.5.2 DUAL PARTITION MODES

While operating in Dual Partition mode, the dsPIC33CK256MP508 family devices have the option for both partitions to have their own defined security segments, as shown in Figure 30-4. Alternatively, the device can operate in Protected Dual Partition mode, where Partition 1 becomes permanently erase/write-protected. Protected Dual Partition mode allows for a "Factory Default" mode, which provides a fail-safe backup image to be stored in Partition 1.

dsPIC33CK256MP508 family devices can also operate in Privileged Dual Partition mode, where additional security protections are implemented to allow for protection of intellectual property when multiple parties have software within the device. In Privileged Dual Partition mode, both partitions place additional restrictions on the FBSLIM register. These prevent changes to the size of the Boot Segment and General Segment, ensuring that neither segment will be altered.





#### 5.5.3 PROGRAM FLASH MEMORY CONTROL REGISTERS

Five SFRs are used to write and erase the Program Flash Memory: NVMCON, NVMKEY, NVMADR, NVMADRU and NVMSRCADRL/H.

The NVMCON register (Register 5-1) selects the operation to be performed (page erase, word/row program, Inactive Partition erase) and initiates the program or erase cycle.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. There are two NVM Address registers: NVMADRU and NVMADR. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word/row for programming operations, or the selected page for erase operations. The NVMADRU register is used to hold the upper eight bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA.

For row programming operation, data to be written to Program Flash Memory is written into data memory space (RAM) at an address defined by the NVMSRCADRL/H register (location of first element in row programming data).

REGISTER 5-1. INVINCON. NONVOLATILE MEMORT (INVIN) CONTROL REGISTE	REGISTER 5-1:	NVMCON: NONVOLATILE MEMORY	(NVM	) CONTROL	REGISTER
--------------------------------------------------------------------	---------------	----------------------------	------	-----------	----------

R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	R/C-0	R-0	R/W-0	R/C-0
WR	WREN	WRERR	NVMSIDL ⁽²⁾	SFTSWP	P2ACTIV	RPDF	URERR
bit 15			•	·			bit 8
U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
—	—	—	—	NVMOP3 ^(3,4)	NVMOP2 ^(3,4)	NVMOP1 ^(3,4)	NVMOP0 ^(3,4)
bit 7							bit C
Legend:		C = Clearab	le bit	SO = Settable	Only bit		
R = Readable	e bit	W = Writable	e bit	U = Unimplem	ented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is se	et	'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	cleared b	a Flash mem by hardware d	once the operat	r erase operati tion is complete ete and inactive		on is self-timed	l and the bit is
bit 14	WREN: Write						
			n/erase operat				
			/erase operatio				
bit 13			Error Flag bit ⁽¹				
		per program c et attempt of t		ce attempt, or te	ermination has o	ccurred (bit is se	et automatically
				pleted normally	/		
bit 12			le Control bit ⁽²⁾				
				ndby mode dur	ing Idle mode		
	0 = Flash vol	Itage regulato	or is active durin	ng Idle mode			
bit 11			vap Status bit				
	0 = Awaiting	successful pa		ing the BOOTSV	e BOOTSWP inst		
bit 10	P2ACTIV: Pa			U			
			apped into the a				
			apped into the a	0			
bit 9		0 0	Data Format b				
				ompressed forr incompressed for			
bit 8			ng Data Underr	•	onnat		
		-	-	n has been tern	ninated		
	0 = No data						
bit 7-4	Unimplemen	ted: Read as	; '0'				
Note 1: Th	ese bits can on	ly be reset or	a POR.				
2: If t		ere will be mi	nimal power sa	• • •	nd upon exiting	Idle mode, the	re is a delay
3: All	other combinat	tions of NVM	OP<3:0> are u	nimplemented.			
			-	-			
<b>E</b> . T.	ecution of the PWRSAV instruction is ignored while any of the NVM operations are in progress.						

5: Two adjacent words on a 4-word boundary are programmed during execution of this operation.

#### REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER (CONTINUED)

- bit 3-0 NVMOP<3:0>: NVM Operation Select bits^(1,3,4)
  - 1111 = Reserved
    - 1110 = User memory bulk erase operation
    - 1101 = Reserved
    - 1100 = Reserved
    - 1011 = Reserved
  - 1010 = Reserved
  - 1001 = Reserved
  - 1000 = Boot mode (FBOOT) double-word program operation
  - 0111 = Reserved
  - 0101 = Reserved
  - 0100 = Inactive Partition memory erase operation
  - 0011 = Memory page erase operation
  - 0010 = Memory row program operation
  - 0001 = Memory double-word operation⁽⁵⁾
  - 0000 = Reserved
- **Note 1:** These bits can only be reset on a POR.
  - 2: If this bit is set, there will be minimal power savings (IIDLE), and upon exiting Idle mode, there is a delay (TVREG) before Flash memory becomes operational.
  - 3: All other combinations of NVMOP<3:0> are unimplemented.
  - 4: Execution of the PWRSAV instruction is ignored while any of the NVM operations are in progress.
  - 5: Two adjacent words on a 4-word boundary are programmed during execution of this operation.

#### REGISTER 5-2: NVMADR: NONVOLATILE MEMORY LOWER ADDRESS REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMA	DR<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
				DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			it	U = Unimpler	nented bit, rea	ıd as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	

bit 15-0 **NVMADR<15:0>:** Nonvolatile Memory Lower Write Address bits Selects the lower 16 bits of the location to program or erase in Program Flash Memory. This register may be read or written to by the user application.

#### REGISTER 5-3: NVMADRU: NONVOLATILE MEMORY UPPER ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
NVMADRU<23:16>							
bit 7							bit 0

Legend:				
R = Readable bit	ble bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMADRU<23:16>:** Nonvolatile Memory Upper Write Address bits Selects the upper eight bits of the location to program or erase in Program Flash Memory. This register may be read or written to by the user application.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 15	·		•				bit 8	
W-0	W-0	W-0	W-0	W-0	W-0	W-0	VV-0	
			NVMK	EY<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown	

#### REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMKEY<7:0>: NVM Key Register bits (write-only)

#### REGISTER 5-5: NVMSRCADRL: NVM SOURCE DATA ADDRESS REGISTER LOW

-n = Value at POR (1' = Bit is set			0 – Onimplemented bit, rea		x = Bit is unknown		
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
Legend:							
bit 7							bit 0
			NVMSRC	ADR<7:0>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
			NVMSRC	ADR<15:8>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-0 **NVMSRCADR<15:0>:** NVM Source Data Address bits The RAM address of the data to be programmed into Flash when the NVMOP<3:0> bits are set to row programming.

#### REGISTER 5-6: NVMSRCADRH: NVM SOURCE DATA ADDRESS REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
NVMSRCADR<23:16>								
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMSRCADR<23:16>: NVM Source Data Address bits

The RAM address of the data to be programmed into Flash when the NVMOP<3:0> bits are set to row programming.

#### 5.5.4 ECC CONTROL REGISTERS

#### REGISTER 5-7: ECCCONL: ECC FAULT INJECTION CONFIGURATION REGISTER LOW

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	_		_		_	—	FLTINJ
bit 7	·		•	•			bit 0

#### Legend:

bit 0

R = Readable bit	Readable bit W = Writable bit		d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

#### bit 15-1 Unimplemented: Read as '0'

FLTINJ: Fault Injection Sequence Enable bit

1 = Enabled

0 = Disabled

#### **REGISTER 5-8:** ECCCONH: ECC FAULT INJECTION CONFIGURATION REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			FLT2PT	R<7:0>							
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			FLT1PT	R<7:0>							
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable bi	it	U = Unimplen	nented bit, read	1 as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown					
bit 15-8	FLT2PTR<7:0>: ECC Fault Injection Bit Pointer 2 bits										
	1111111-00111000 = No Fault injection occurs										
	00110111 = Fault injection (bit inversion) occurs on bit 55 of ECC bit order										
	•										
	•										
	•	. Foult initiation (I		o o o uno o o bitu		dor					
		<ul> <li>Fault injection (I</li> <li>Fault injection (I</li> </ul>									
			,								
bit 0		:0>: ECC Fault In	-								
		00111000 <b>= No F</b>									
	00110111 = Fault injection occurs on bit 55 of ECC bit order										
	•										
	•										
	• 00000001 = Fault injection occurs on bit 1 of ECC bit order										
	0000001 =	Eault injection o	cours on hit	1 of ECC bit or	rder						

<b>D 1 1 1</b>	<b>B</b> 4 4 4 6	<b>B</b> 844 A	5444.6	<b>D</b> 4 4 4 0	5444.6		<b>D</b> 444 A
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ECCADE	DR<15:8>			
bit 15							bit 8
Dates		5444.6				5444.6	5444.6
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ECCAD	DR<7:0>			
bit 7							bit 0

#### REGISTER 5-9: ECCADDRL: ECC FAULT INJECT ADDRESS COMPARE REGISTER LOW

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 ECCADDR<15:0>: ECC Fault Injection NVM Address Match Compare bits

#### REGISTER 5-10: ECCADDRH: ECC FAULT INJECT ADDRESS COMPARE REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	_	—	_	—	_
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ECCADI	DR<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	e bit U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			0' = Bit is cleared x = I		x = Bit is unkr	nown	

bit 15-8 Unimplemented: Read as '0'

bit 7-0 ECCADDR<23:16>: ECC Fault Injection NVM Address Match Compare bits

#### REGISTER 5-11: ECCSTATL: ECC SYSTEM STATUS DISPLAY REGISTER LOW

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			SECOL	JT<7:0>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			SECI	N<7:0>			
bit 7							bit 0
l egend:							

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 SECOUT<7:0>: Calculated Single Error Correction Parity Value bits

bit 7-0 SECIN<7:0>: Read Single Error Correction Parity Value bits

SECIN<7:0> bits are the actual parity value of a Flash read operation.

#### REGISTER 5-12: ECCSTATH: ECC SYSTEM STATUS DISPLAY REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	R-0	R-0
—	_	—	—	—	_	DEDOUT	DEDIN
bit 15						•	bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			SECSY	ND<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15-10	Unimplemen	ted: Read as '	)'				
bit 9	DEDOUT: Ca	lculated Dual B	it Error Detec	tion Parity bit			
bit 8	DEDIN: Read	Dual Bit Error	Detection Par	ity bit			
	DEDIN is the	actual parity va	lue of a Flash	read operatio	n.		

bit 7-0 SECSYND<7:0>: Calculated ECC Syndrome Value bits Indicates the bit location that contains the error.

# 6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Reset" (www.microchip.com/ DS70602) in the "dsPIC33/PIC24 Family Reference Manual".
  - 2: Some registers and associated bits described in this section may not be available on all devices.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

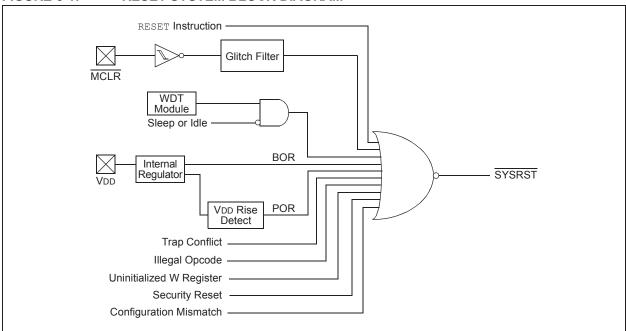
- POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Time-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
  - Illegal Opcode Reset
  - Uninitialized W Register Reset
  - Security Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

#### FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state, and some are unaffected.

Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this data sheet for register Reset states.


All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the BOR and POR bits (RCON<1:0>) that are set. The user application can set or clear any bit, at any time, during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this data sheet.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

For all Resets, the default clock source is determined by the FNOSC<2:0> bits in the FOSCSEL Configuration register. The value of the FNOSCx bits is loaded into the NOSC<2:0> (OSCCON<10:8>) bits on Reset, which in turn, initializes the system clock.



# 6.1 Reset Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page contains the latest updates and additional information.

#### 6.1.1 KEY RESOURCES

- "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
TRAPR	IOPUWR		_			CM	VREGS
bit 15				•			bit 8
R/W-1	R/W-0	r-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	—	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit (
Logondu		r - Decenved	hit				
Legend: R = Readable	hit	r = Reserved W = Writable			mantad bit raad		
				-	mented bit, read		2011/2
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkı	IOWN
bit 15	TRAPR. Tran	Reset Flag bi	ł				
bit 15		onflict Reset ha					
		onflict Reset ha		d			
bit 14	•				cess Reset Flag	bit	
					ode or Uninitial		er used as ar
		Pointer caused				-	
	•	•		Register Reset	has not occurre	d	
bit 13-10	-	ted: Read as '					
bit 9	•	ation Mismatcl	•				
		uration Mismate					
bit 8	•	age Regulator					
		egulator is acti	-				
				node during SI	еер		
bit 7	EXTR: Extern	nal Reset (MCL	R) Pin bit				
		Clear (pin) Re					
		Clear (pin) Re					
bit 6		IRE RESET (Inst	, <b>c</b>				
		instruction has instruction has					
bit 5	Reserved: R			Culeu			
bit 4		hdog Timer Tir	ne-out Elan bi	t			
bit 4		e-out has occu		ι.			
		e-out has not o					
bit 3	SLEEP: Wak	e-up from Slee	p Flag bit				
	1 = Device ha	as been in Slee	ep mode				
	0 = Device ha	as not been in a	Sleep mode				
bit 2	IDLE: Wake-u	up from Idle Fla	ag bit				
		as been in Idle as not been in I					
bit 1		out Reset Flag					
		out Reset has					
		out Reset has					
Note 1: All	of the Reset sta	atus bits can be	e set or cleare	d in software. S	Setting one of the	ese bits in soft	ware does no

# REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

© 2017-2018 Microchip Technology Inc.

cause a device Reset.

# **REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)**

- bit 0 **POR:** Power-on Reset Flag bit
  - 1 = A Power-on Reset has occurred
    - 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.

# 7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts" (www.microchip.com/ DS70000600) in the "dsPIC33/PIC24 Family Reference Manual".
  - 2: Some registers and associated bits described in this section may not be available on all devices.

The dsPIC33CK256MP508 family interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33CK256MP508 family CPU.

The interrupt controller has the following features:

- · Six Processor Exceptions and Software Traps
- Seven User-Selectable Priority Levels
- Interrupt Vector Table (IVT) with a Unique Vector for each Interrupt or Exception Source
- · Fixed Priority within a Specified User Priority Level
- Fixed Interrupt Entry and Return Latencies
- Alternate Interrupt Vector Table (AIVT) for Debug Support

# 7.1 Interrupt Vector Table

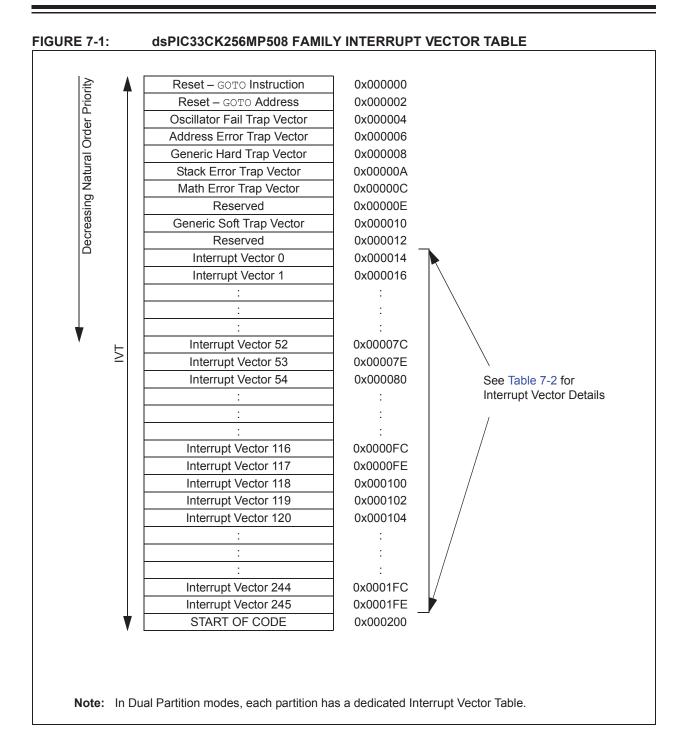
The dsPIC33CK256MP508 family Interrupt Vector Table (IVT), shown in Figure 7-1, resides in program memory, starting at location, 000004h. The IVT contains six non-maskable trap vectors and up to 246 sources of interrupts. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

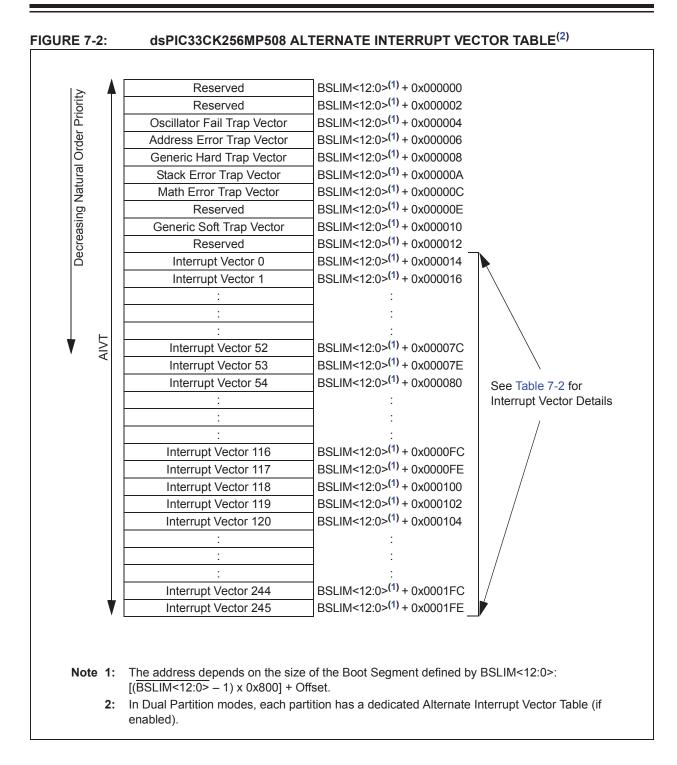
Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 takes priority over interrupts at any other vector address.

#### 7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT), shown in Figure 7-2, is available only when the Boot Segment (BS) is defined and the AIVT has been enabled. To enable the Alternate Interrupt Vector Table, the Configuration bit, AIVTDIS in the FSEC register, must be programmed and the AIVTEN bit must be set (INTCON2<8> = 1). When the AIVT is enabled, all interrupt and exception processes use the alternate vectors instead of the default vectors. The AIVT begins at the start of the last page of the Boot Segment, defined by BSLIM<12:0>. The second half of the page is no longer usable space. The Boot Segment must be at least two pages to enable the AIVT.

The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time.


# 7.2 Reset Sequence


A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33CK256MP508 family devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

**Note:** Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

Note: Although the Boot Segment must be enabled in order to enable the AIVT, application code does not need to be present inside of the Boot Segment. The AIVT (and IVT) will inherit the Boot Segment code protection.

# dsPIC33CK256MP508 FAMILY





Tree Description	MPLAB [®] XC16	Ma . 4 #	IVT		Trap Bit Locatio	n	Distant
Trap Description	Trap ISR Name	Vector #	Address	Interrupt Flag	Туре	Enable	Priority
Oscillator Failure	_OscillatorFail	0	0x000004	INTCON1<1>	_	—	15
Address Error	_AddressError	1	0x000006	INTCON1<3>	—	—	14
ECC Double-Bit Error	_HardTrapError	2	0x000008	INTCON4<1>	_	—	13
Software Generated Trap	_HardTrapError	2	0x000008	INTCON4<0>	—	INTCON2<13>	13
Stack Error	_StackError	3	0x00000A	INTCON1<2>	—	—	12
Overflow Accumulator A	_MathError	4	0x00000C	INTCON1<4>	INTCON1<14>	INTCON1<10>	11
Overflow Accumulator B	_MathError	4	0x00000C	INTCON1<4>	INTCON1<13>	INTCON1<9>	11
Catastrophic Overflow Accumulator A	_MathError	4	0x00000C	INTCON1<4>	INTCON1<12>	INTCON1<8>	11
Catastrophic Overflow Accumulator B	_MathError	4	0x00000C	INTCON1<4>	INTCON1<11>	INTCON1<8>	11
Shift Accumulator Error	_MathError	4	0x00000C	INTCON1<4>	INTCON1<7>	INTCON1<8>	11
Divide-by-Zero Error	_MathError	4	0x00000C	INTCON1<4>	INTCON1<6>	INTCON1<8>	11
Reserved	Reserved	5	0x00000E	—	_	—	—
CAN Address Error	_SoftTrapError	6	0x000010	INTCON3<9>	_	—	9
NVM Address Error	_SoftTrapError	6	0x000010	INTCON3<8>			9
DO Stack Overflow	_SoftTrapError	6	0x000010	INTCON3<4>	_	_	9
APLL Loss of Lock	_SoftTrapError	6	0x000010	INTCON3<0>	_	—	9
Reserved	Reserved	7	0x000012	_	_	_	—

# TABLE 7-1: TRAP VECTOR DETAILS

Interrupt Source	MPLAB [®] XC16	Vector	IRQ	IVT Address	Int	terrupt Bit Lo	cation
Interrupt Source	ISR Name	#	#	IVI Address	Flag	Enable	Priority
External Interrupt 0	_INT0Interrupt	8	0	0x000014	IFS0<0>	IEC0<0>	IPC0<2:0>
Timer1	_T1Interrupt	9	1	0x000016	IFS0<1>	IEC0<1>	IPC0<6:4>
Change Notice Interrupt A	_CNAInterrupt	10	2	0x000018	IFS0<2>	IEC0<2>	IPC0<10:8>
Change Notice Interrupt B	_CNBInterrupt	11	3	0x00001A	IFS0<3>	IEC0<3>	IPC0<14:12>
DMA Channel 0	_DMA0Interrupt	12	4	0x00001C	IFS0<4>	IEC0<4>	IPC1<2:0>
Reserved	Reserved	13	5	0x00001E	—	—	—
Input Capture/Output Compare 1	_CCP1Interrupt	14	6	0x000020	IFS0<6>	IEC0<6>	IPC1<10:8>
CCP1 Timer	_CCT1Interrupt	15	7	0x000022	IFS0<7>	IEC0<7>	IPC1<14:12>
DMA Channel 1	_DMA1Interrupt	16	8	0x000024	IFS0<8>	IEC0<8>	IPC2<2:0>
SPI1 Receiver	_SPI1RXInterrupt	17	9	0x000026	IFS0<9>	IEC0<9>	IPC2<6:4>
SPI1 Transmitter	_SPI1TXInterrupt	18	10	0x000028	IFS0<10>	IEC0<10>	IPC2<10:8>
UART1 Receiver	_U1RXInterrupt	19	11	0x00002A	IFS0<11>	IEC0<11>	IPC2<14:12>
UART1 Transmitter	_U1TXInterrupt	20	12	0x00002C	IFS0<12>	IEC0<12>	IPC3<2:0>
ECC Single Bit Error	_ECCSBEInterrupt	21	13	0x00002E	IFS0<13>	IEC0<13>	IPC3<6:4>
NVM Write Complete	_NVMInterrupt	22	14	0x000030	IFS0<14>	IEC0<14>	IPC3<10:8>
External Interrupt 1	_INT1Interrupt	23	15	0x000032	IFS0<15>	IEC0<15>	IPC3<14:12>
I2C1 Slave Event	_SI2C1Interrupt	24	16	0x000034	IFS1<0>	IEC1<0>	IPC4<2:0>
I2C1 Master Event	_MI2C1Interrupt	25	17	0x000036	IFS1<1>	IEC1<1>	IPC4<6:4>
DMA Channel 2	_DMA2Interrupt	26	18	0x000038	IFS1<2>	IEC1<2>	IPC4<10:8>
Change Notice Interrupt C ⁽²⁾	_CNCInterrupt	27	19	0x00003A	IFS1<3>	IEC1<3>	IPC4<14:12>
External Interrupt 2	_INT2Interrupt	28	20	0x00003C	IFS1<4>	IEC1<4>	IPC5<2:0>
DMA Channel 3	_DMA3Interrupt	29	21	0x00003E	IFS1<5>	IEC1<5>	IPC5<6:4>
Reserved	Reserved	30	22	0x000040	_	—	
Input Capture/Output Compare 2	_CCP2Interrupt	31	23	0x000042	IFS1<7>	IEC1<7>	IPC5<14:12>
CCP2 Timer	_CCT2Interrupt	32	24	0x000044	IFS1<8>	IEC1<8>	IPC6<2:0>
CAN1 Combined Error ⁽³⁾	_CAN1Interrupt	33	25	0x000046	IFS1<9>	IEC1<9>	IPC6<6:4>
External Interrupt 3	_INT3Interrupt	34	26	0x000048	IFS1<10>	IEC1<10>	IPC6<10:8>
UART2 Receiver	_U2RXInterrupt	35	27	0x00004A	IFS1<11>	IEC1<11>	IPC6<14:12>
UART2 Transmitter	_U2TXInterrupt	36	28	0x00004C	IFS1<12>	IEC1<12>	IPC7<2:0>
SPI2 Receiver	_SPI2RXInterrupt	37	29	0x00004E	IFS1<13>	IEC1<13>	IPC7<6:4>
SPI2 Transmitter	_SPI2TXInterrupt	38	30	0x000050	IFS1<14>	IEC1<14>	IPC7<10:8>
CAN1 RX Data Ready ⁽³⁾	_C1RXInterrupt	39	31	0x000052	IFS1<15>	IEC1<15>	IPC7<14:12>
Reserved	Reserved	40-42	32-34	0x000054-0x000058	_	—	_
Input Capture/Output Compare 3	_CCP3Interrupt	43	35	0x00005A	IFS2<3>	IEC2<3>	IPC8<14:12>
CCP3 Timer	_CCT3Interrupt	44	36	0x00005C	IFS2<4>	IEC2<4>	IPC9<2:0>
I2C2 Slave Event	SI2C2Interrupt	45	37	0x00005E	IFS2<5>	IEC2<5>	IPC9<6:4>
I2C2 Master Event	 _MI2C2Interrupt	46	38	0x000060	IFS2<6>	IEC2<6>	IPC9<10:8>
Reserved	Reserved	47	39	0x000062		—	—
Input Capture/Output Compare 4	_CCP4Interrupt	48	40	0x000064	IFS2<8>	IEC2<8>	IPC10<2:0>
CCP4 Timer	 _CCT4Interrupt	49	41	0x000066	IFS2<9>	IEC2<9>	IPC10<6:4>
Reserved	Reserved	50	42	0x000068	_		_

#### TABLE 7-2: INTERRUPT VECTOR DETAILS

**Note 1:** Availability dependent on number of supported ADC channels. Refer to Table 1 and Table 2 for ADC channel availability on package variants.

2: Availability dependent on supported I/O ports. Refer to Table 8-1 for availability on package variants.

# TABLE 7-2: INTERRUPT VECTOR DETAILS (CONTINUED)

Interrupt Service	MPLAB [®] XC16	Vector	IRQ		Int	errupt Bit Lo	ocation
Interrupt Source	ISR Name	#	#	IVT Address	Flag	Enable	Priority
Input Capture/Output Compare 5	_CCP5Interrupt	51	43	0x00006A	IFS2<11>	IEC2<11>	IPC10<14:12>
CCP5 Timer	_CCT5Interrupt	52	44	0x00006C	IFS2<12>	IEC2<12>	IPC11<2:0>
Deadman Timer	_DMTInterrupt	53	45	0x00006E	IFS2<13>	IEC2<13>	IPC11<6:4>
Input Capture/Output Compare 6	_CCP6Interrupt	54	46	0x000070	IFS2<14>	IEC2<14>	IPC11<10:8>
CCP6 Timer	_CCT6Interrupt	55	47	0x000072	IFS2<15>	IEC2<15>	IPC11<14:12>
QEI Position Counter Compare	_QEI1Interrupt	56	48	0x000074	IFS3<0>	IEC3<0>	IPC12<2:0>
UART1 Error	_U1EInterrupt	57	49	0x000076	IFS3<1>	IEC3<1>	IPC12<6:4>
UART2 Error	_U2EInterrupt	58	50	0x000078	IFS3<2>	IEC3<2>	IPC12<10:8>
CRC Generator	_CRCInterrupt	59	51	0x00007A	IFS3<3>	IEC3<3>	IPC12<14:12>
CAN1 TX Data Request ⁽³⁾	_C1TXInterrupt	60	52	0x00007C	IFS3<4>	IEC3<4>	IPC13<2:0>
Reserved	Reserved	61	53	0x00007E	_	—	—
QEI Position Counter Compare	_QEI2Interrupt	62	54	0x000080	IFS3<6>	IEC3<6>	IPC13<10:8>
Reserved	Reserved	63	55	0x000082	_	_	_
UART3 Error	_U3EInterrupt	64	56	0x000084	IFS3<8>	IEC3<8>	IPC14<2:0>
UART3 Receiver	_U3RXInterrupt	65	57	0x000086	IFS3<9>	IEC3<9>	IPC14<6:4>
UART3 Transmitter	_U3TXInterrupt	66	58	0x000088	IFS3<10>	IEC3<10>	IPC14<10:8>
SPI3 Receiver	_SPI3RXInterrupt	67	59	0x00008A	IFS3<11>	IEC3<11>	IPC14<14:12>
SPI3 Transmitter	_SPI3TXInterrupt	68	60	0x00008C	IFS3<12>	IEC3<12>	IPC15<2:0>
In-Circuit Debugger	_ICDInterrupt	69	61	0x00008E	IFS3<13>	IEC3<13>	IPC15<6:4>
JTAG Programming	JTAGInterrupt	70	62	0x000090	IFS3<14>	IEC3<14>	IPC15<10:8>
PTG Step	PTGSTEPInterrupt	71	63	0x000092	IFS3<15>	IEC3<15>	IPC15<14:12>
I2C1 Bus Collision	I2C1BCInterrupt	72	64	0x000094	IFS4<0>	IEC4<0>	IPC16<2:0>
I2C2 Bus Collision	I2C2BCInterrupt	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>
Reserved	Reserved	74	66	0x000098	_	_	—
PWM Generator 1	_PWM1Interrupt	75	67	0x00009A	IFS4<3>	IEC4<3>	IPC16<14:12>
PWM Generator 2	PWM2Interrupt	76	68	0x00009C	IFS4<4>	IEC4<4>	IPC17<2:0>
PWM Generator 3	PWM3Interrupt	77	69	0x00009E	IFS4<5>	IEC4<5>	IPC17<6:4>
PWM Generator 4	PWM4Interrupt	78	70	0x0000A0	IFS4<6>	IEC4<6>	IPC17<10:8>
PWM Generator 5	PWM5Interrupt	79	71	0x0000A2	IFS4<7>	IEC4<7>	IPC17<14:12>
PWM Generator 6	PWM6Interrupt	80	72	0x0000A4	IFS4<8>	IEC4<8>	IPC18<2:0>
PWM Generator 7	PWM7Interrupt	81	73	0x0000A6	IFS4<9>	IEC4<9>	IPC18<6:4>
PWM Generator 8	PWM8Interrupt	82	74	0x0000A8	IFS4<10>	IEC4<10>	IPC18<10:8>
Change Notice D ⁽²⁾	CNDInterrupt	83	75	0x0000AA	IFS4<11>	IEC4<11>	IPC18<14:12>
Change Notice E ⁽²⁾	CNEInterrupt	84	76	0x0000AC	IFS4<12>	IEC4<12>	IPC19<2:0>
Comparator 1	CMP1Interrupt	85	77	0x0000AE	IFS4<13>	IEC4<13>	IPC19<6:4>
Comparator 2	CMP2Interrupt	86	78	0x0000B0	IFS4<14>	IEC4<14>	IPC19<10:8>
Comparator 3	CMP3Interrupt	87	79	0x0000B2	IFS4<15>	IEC4<15>	IPC19<14:12>
Reserved	Reserved	88	80	0x0000B4	_	_	_
PTG Watchdog Timer Time-out	PTGWDTInterrupt	89	81	0x0000B6	IFS5<1>	IEC5<1>	IPC20<6:4>
PTG Trigger 0	PTG0Interrupt	90	82	0x0000B8	IFS5<2>	IEC5<2>	IPC20<10:8>
PTG Trigger 1	PTG1Interrupt	91	83	0x0000BA	IFS5<3>	IEC5<3>	IPC20<14:12>
PTG Trigger 2	PTG2Interrupt	92	84	0x0000BC	IFS5<4>	IEC5<4>	IPC21<2:0>
PTG Trigger 3	PTG3Interrupt	93	85	0x0000BE	IFS5<5>	IEC5<6>	IPC21<6:4>

Note 1: Availability dependent on number of supported ADC channels. Refer to Table 1 and Table 2 for ADC

channel availability on package variants.

2: Availability dependent on supported I/O ports. Refer to Table 8-1 for availability on package variants.

Internation	MPLAB [®] XC16	Vector	IRQ		Int	terrupt Bit Lo	ocation
Interrupt Source	ISR Name	#	#	IVT Address	Flag	Enable	Priority
SENT1 TX/RX	_SENT1Interrupt	94	86	0x0000C0	IFS5<6>	IEC5<6>	IPC21<10:8>
SENT1 Error	_SENT1EInterrupt	95	87	0x0000C2	IFS5<7>	IEC5<7>	IPC21<14:12>
SENT2 TX/RX	_SENT2Interrupt	96	88	0x0000C4	IFS5<8>	IEC5<8>	IPC22<2:0>
SENT2 Error	_SENT2EInterrupt	97	89	0x0000C6	IFS5<9>	IEC5<9>	IPC22<6:4>
ADC Global Interrupt	_ADCInterrupt	98	90	0x0000C8	IFS5<10>	IEC5<10>	IPC22<10:8>
ADC AN0 Interrupt	_ADCAN0Interrupt	99	91	0x0000CA	IFS5<11>	IEC5<11>	IPC22<14:12>
ADC AN1 Interrupt	_ADCAN1Interrupt	100	92	0x0000CC	IFS5<12>	IEC5<12>	IPC23<2:0>
ADC AN2 Interrupt	_ADCAN2Interrupt	101	93	0x0000CE	IFS5<13>	IEC5<13>	IPC23<6:4>
ADC AN3 Interrupt	_ADCAN3Interrupt	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>
ADC AN4 Interrupt	_ADCAN4Interrupt	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>
ADC AN5 Interrupt	_ADCAN5Interrupt	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>
ADC AN6 Interrupt	_ADCAN6Interrupt	105	97	0x0000D6	IFS6<1>	IEC6<1>	IPC24<6:4>
ADC AN7 Interrupt	_ADCAN7Interrupt	106	98	0x0000D8	IFS6<2>	IEC6<2>	IPC24<10:8>
ADC AN8 Interrupt	_ADCAN8Interrupt	107	99	0x0000DA	IFS6<3>	IEC6<3>	IPC24<14:12>
ADC AN9 Interrupt	_ADCAN9Interrupt	108	100	0x0000DC	IFS6<4>	IEC6<4>	IPC25<2:0>
ADC AN10 Interrupt	_ADCAN10Interrupt	109	101	0x0000DE	IFS6<5>	IEC6<5>	IPC25<6:4>
ADC AN11 Interrupt	_ADCAN11Interrupt	110	102	0x0000E0	IFS6<6>	IEC6<6>	IPC25<10:8>
ADC AN12 Interrupt ⁽¹⁾	_ADCAN12Interrupt	111	103	0x0000E2	IFS6<7>	IEC6<7>	IPC25<14:12>
ADC AN13 Interrupt ⁽¹⁾	_ADCAN13Interrupt	112	104	0x0000E4	IFS6<8>	IEC6<8>	IPC26<2:0>
ADC AN14 Interrupt ⁽¹⁾	_ADCAN14Interrupt	113	105	0x0000E6	IFS6<9>	IEC6<9>	IPC26<6:4>
ADC AN15 Interrupt ⁽¹⁾	_ADCAN15Interrupt	114	106	0x0000E8	IFS6<10>	IEC6<10>	IPC26<10:8>
ADC AN16 Interrupt ⁽¹⁾	_ADCAN16Interrupt	115	107	0x0000EA	IFS6<11>	IEC6<11>	IPC26<14:12>
ADC AN17 Interrupt ⁽¹⁾	_ADCAN17Interrupt	116	108	0x0000EC	IFS6<12>	IEC6<12>	IPC27<2:0>
ADC AN18 Interrupt ⁽¹⁾	_ADCAN18Interrupt	117	109	0x0000EE	IFS6<13>	IEC6<13>	IPC27<6:4>
ADC AN19 Interrupt ⁽¹⁾	_ADCAN19Interrupt	118	110	0x0000F0	IFS6<14>	IEC6<14>	IPC27<10:8>
ADC AN20 Interrupt ⁽¹⁾	_ADCAN20Interrupt	119	111	0x0000F2	IFS6<15>	IEC6<15>	IPC27<14:12>
ADC AN21 Interrupt ⁽¹⁾	_ADCAN21Interrupt	120	112	0x0000F4	IFS7<0>	IEC7<0>	IPC28<2:0>
ADC AN22 Interrupt ⁽¹⁾	_ADCAN22Interrupt	121	113	0x0000F6	IFS7<1>	IEC7<1>	IPC28<6:4>
ADC AN23 Interrupt ⁽¹⁾	_ADCAN23Interrupt	122	114	0x0000F8	IFS7<2>	IEC7<2>	IPC28<10:8>
ADC Fault	_ADFLTInterrupt	123	115	0x0000FA	IFS7<3>	IEC7<3>	IPC28<14:12>
ADC Digital Comparator 0	_ADCMP0Interrupt	124	116	0x0000FC	IFS7<4>	IEC7<4>	IPC29<2:0>
ADC Digital Comparator 1	_ADCMP1Interrupt	125	117	0x0000FE	IFS7<5>	IEC7<5>	IPC29<6:4>
ADC Digital Comparator 2	_ADCMP2Interrupt	126	118	0x000100	IFS7<6>	IEC7<6>	IPC29<10:8>
ADC Digital Comparator 3	_ADCMP3Interrupt	127	119	0x000102	IFS7<7>	IEC7<7>	IPC29<14:12>
ADC Oversample Filter 0	_ADFLTR0Interrupt	128	120	0x000104	IFS7<8>	IEC7<8>	IPC30<2:0>
ADC Oversample Filter 1	_ADFLTR1Interrupt	129	121	0x000106	IFS7<9>	IEC7<9>	IPC30<6:4>
ADC Oversample Filter 2	_ADFLTR2Interrupt	130	122	0x000108	IFS7<10>	IEC7<10>	IPC30<10:8>
ADC Oversample Filter 3	_ADFLTR3Interrupt	131	123	0x00010A	IFS7<11>	IEC7<11>	IPC30<14:12>
CLC1 Positive Edge	_CLC1PInterrupt	132	124	0x00010C	IFS7<12>	IEC7<12>	IPC31<2:0>
CLC2 Positive Edge	_CLC2PInterrupt	133	125	0x00010E	IFS7<13>	IEC7<13>	IPC31<6:4>
SPI1 Error	_SPI1GInterrupt	134	126	0x000110	IFS7<14>	IEC7<14>	IPC31<10:8>
SPI2 Error	SPI2GInterrupt	135	127	0x000112	IFS7<15>	IEC7<15>	IPC31<14:12>
SPI3 Error	SPI3GInterrupt	136	128	0x000114	IFS8<0>	IEC8<0>	IPC32<2:0>

TABLE 7-2: INTERRUPT VECTOR DETAILS (CONTINUED)

**Note 1:** Availability dependent on number of supported ADC channels. Refer to Table 1 and Table 2 for ADC channel availability on package variants.

2: Availability dependent on supported I/O ports. Refer to Table 8-1 for availability on package variants.

# TABLE 7-2: INTERRUPT VECTOR DETAILS (CONTINUED)

	MPLAB [®] XC16	Vector	IRQ		Int	errupt Bit Lo	cation
Interrupt Source	ISR Name	#	#	IVT Address	Flag	Enable	Priority
Reserved	Reserved	137-149	129-141	0x000116-0x00012E	—	—	_
I2C3 Slave Event	_SI2C3Interrupt	150	142	0x000130	IFS8<14>	IEC8<14>	IPC35<10:8>
I2C3 Master Event	_MI2C3Interrupt	151	143	0x000132	IFS8<15>	IEC8<15>	IPC35<14:12>
I2C3 Bus Collision	_I2C3BCInterrupt	152	144	0x000134	IFS9<0>	IEC9<0>	IPC36<2:0>
Reserved	Reserved	153-156	145-148	0x000136-0x00013C	_	_	_
Input Capture/Output Compare 7	_CCP7Interrupt	157	149	0x00013E	IFS9<5>	IEC9<5>	IPC37<6:4>
CCP7 Timer	_CCT7Interrupt	158	150	0x000140	IFS9<6>	IEC9<6>	IPC37<10:8>
Reserved	Reserved	159	151	0x000142	_	_	_
Input Capture/Output Compare 8	_CCP8Interrupt	160	152	0x000144	IFS9<8>	IEC9<8>	IPC38<2:0>
CCP8 Timer	_CCT8Interrupt	161	153	0x000146	IFS9<9>	IEC9<9>	IPC38<6:4>
Reserved	Reserved	162-175	154-167	0x000148-0x000162	—	—	_
ADC FIFO Ready	_ADFIFOInterrupt	176	168	0x000164	IFS10<8>	IEC10<8>	IPC42<2:0>
PWM Event A	_PEVTAInterrupt	177	169	0x000166	IFS10<9>	IEC10<9>	IPC42<6:4>
PWM Event B	_PEVTBInterrupt	178	170	0x000168	IFS10<10>	IEC10<10>	IPC42<10:8>
PWM Event C	_PEVTCInterrupt	179	171	0x00016A	IFS10<11>	IEC10<11>	IPC42<14:12>
PWM Event D	_PEVTDInterrupt	180	172	0x00016C	IFS10<12>	IEC10<12>	IPC43<2:0>
PWM Event E	_PEVTEInterrupt	181	173	0x00016E	IFS10<13>	IEC10<13>	IPC43<6:4>
PWM Event F	_PEVTFInterrupt	182	174	0x000170	IFS10<14>	IEC10<14>	IPC43<10:8>
CLC3 Positive Edge	_CLC3PInterrupt	183	175	0x000172	IFS10<15>	IEC10<15>	IPC43<14:12>
CLC4 Positive Edge	_CLC4PInterrupt	184	176	0x000174	IFS11<0>	IEC11<0>	IPC44<2:0>
CLC1 Negative Edge	_CLC1NInterrupt	185	177	0x000176	IFS11<1>	IEC11<1>	IPC44<6:4>
CLC2 Negative Edge	_CLC2NInterrupt	186	178	0x000178	IFS11<2>	IEC11<2>	IPC44<10:8>
CLC3 Negative Edge	_CLC3NInterrupt	187	179	0x00017A	IFS11<3>	IEC11<3>	IPC44<14:>12>
CLC4 Negative Edge	_CLC4NInterrupt	188	180	0x00017C	IFS11<4>	IEC11<4>	IPC45<2:0>
Input Capture/Output Compare 9	_CCP9Interrupt	189	181	0x00017E	IFS11<5>	IEC11<5>	IPC45<6:4>
CCP9 Timer	_CCT9Interrupt	190	182	0x000180	IFS11<6>	IEC11<6>	IPC45<10:8>
Reserved	Reserved	191-196	183-188	0x00182-0x0018C			
UART1 Event	_U1EVTInterrupt	197	189	0x00018E	IFS11<13>	IF2C11<13>	IPC47<6:4>
UART2 Event	_U2EVTInterrupt	198	190	0x000190	IFS11<14>	IF2C11<14>	IPC47<12:8>
UART3 Event	_U3EVTInterrupt	199	191	0x000192	IFS11<15>	IF2C11<15>	IPC47<14:12>
AN24 Done	_AD1AN24Interrupt	200	192	0x000194	IFS12<0>	IEC12<0>	IPC48<2:0>
AN25 Done	_AD1AN25Interrupt	201	193	0x000196	IFS12<1>	IEC12<1>	IPC48<6:4>
PMP Event ⁽³⁾	_PMPInterrupt	202	194	0x000198	IFS12<2>	IEC12<2>	IPC48<10:8>
PMP Error Event ⁽³⁾	PMPEInterrupt	203	195	0x00019A	IFS12<3>	IEC12<3>	IPC48<14:12>

**Note 1:** Availability dependent on number of supported ADC channels. Refer to Table 1 and Table 2 for ADC channel availability on package variants.

2: Availability dependent on supported I/O ports. Refer to Table 8-1 for availability on package variants.

TABL	TABLE 7-3:	INTE	INTERRUPT FLAG REGISTERS	FLAG RE	EGISTEF	SS											
Register	Address	Bit 15	Bit14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IFS0	800h	INT1IF	NVMIF	ECCSBEIF	U1TXIF	U1RXIF	<b>SPI1TXIF</b>	<b>SPI1RXIF</b>	DMA1IF	CCT1IF	CCP1IF	I	DMA0IF	CNBIF	CNAIF	T1IF	INTOIF
IFS1	802h	C1RXIF	SPI2TXIF	SPI2RXIF	U2TXIF	UZRXIF	INT3IF	C1IF	<b>CCT2IF</b>	<b>CCP2IF</b>	I	DMA3IF	INT2IF	CNCIF	DMA2IF	MI2C1IF	SI2C1IF
IFS2	804h	<b>CCT6IF</b>	CCP6IF	DMTIF	CCT5IF	<b>CCP5IF</b>	I	CCT4IF	CCP4IF	I	<b>MI2C2IF</b>	SI2C2IF	<b>CCT3IF</b>	<b>CCP3IF</b>	I	I	I
IFS3	806h	PTGSTEPIF	JTAGIF	ICDIF	<b>SPI3TXIF</b>	SPI3RXIF	U3TXIF	U3RXIF	U3EIF	I	QEI2IF	I	C1TXIF	CRCIF	UZEIF	U1EIF	QE11IF
IFS4	808h	<b>CMP3IF</b>	<b>CMP2IF</b>	CMP1IF	CNEIF	CNDIF	<b>PWM8IF</b>	PWM7IF	PWM6IF	PWM5IF	PWM4IF	<b>PWM3IF</b>	PWM2IF	PWM1IF	I	I2C2BCIF	I2C1BCIF
IFS5	80Ah	ADCAN4IF	<b>ADCAN3IF</b>	ADCAN2IF	ADCAN1IF	ADCANOIF	ADCIF	SENT2EIF	SENT2IF	SENT1EIF	SENT1IF	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	I
IFS6	80Ch	ADCAN20IF	ADCAN19IF	ADCAN19IF ADCAN18IF	ADCAN17IF	ADCAN16IF	ADCAN15IF	ADCAN14IF	ADCAN15IF ADCAN14IF ADCAN13IF ADCAN12IF ADCAN11IF ADCAN10IF ADCAN9IF	ADCAN12IF	ADCAN111F	ADCAN10IF	ADCAN9IF	ADCAN8IF	ADCAN7IF	<b>ADCAN6IF</b>	ADCAN5IF
IFS7	80Eh	SPI2GIF	<b>SPI1GIF</b>	<b>CLC2PIF</b>	<b>CLC1PIF</b>	<b>ADFLTR3IF</b>	<b>ADFLTR2IF</b>	ADFLTR1IF	ADFLTROIF	ADCMP3IF	<b>ADCMP2IF</b>	ADCMP1IF	<b>ADCMP0IF</b>	ADFLTIF	ADCAN23IF	ADCAN23IF ADCAN22IF	ADCAN21IF
IFS8	810h	MI2C3IF	SI2C3IF	I	I	I	I	I	I	I	1	I	I	I	I	I	SPI3GIF
IFS9	812h	Ι	Ι	Ι	Ι	Ι	Ι	CCT8IF	CCP8IF	Ι	CCT7IF	CCP7IF	Ι	I	I	I	<b>I2C3BCIF</b>
IFS10	814h	CLC3PIF	PEVTFIF	PEVTEIF	PEVTDIF	PEVTCIF	PEVTBIF	PEVTAIF	ADFIFOIF	-	I	Ι	Ι	Ι	I	Ι	I
IFS11	816h	U3EVTIF	UZEVTIF	U1EVTIF	Ι	Ι	Ι	Ι	Ι	Ι	CCT9IF	CCP9IF	<b>CLC4NIF</b>	<b>CLC3NIF</b>	CLC2NIF	<b>CLC1NIF</b>	<b>CLC4PIF</b>
IFS12	818h	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	-	I	Ι	Ι	PMPEIF	PMPIF	ADCAN25IF	ADCAN24IF
Legend:		= Unimplemented.															
TABL	TABLE 7-4:	INTE	INTERRUPT ENABLE REGISTE	ENABLE	REGIST	TERS											

SS	
μ	
IST	
ច	
FLAG REGISTERS	ŀ
G	
P	
<u>ш</u>	
2	
R S	
TERRUPT	
Ë	
Ξ	
	ļ
ဗို	
~	
щ	ŀ

© 2017-2018 Microchip Technology Inc.

# dsPIC33CK256MP508 FAMILY

TABL	TABLE 7-4:		<b>RRUPT</b> E	ENABLE	INTERRUPT ENABLE REGISTE	ERS											
Register	Address	Bit 15	Bit14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IEC0	820h	INT1IE	NVMIE	ECCSBEIE	U1TXIE	U1RXIE	<b>SPI1TXIE</b>	<b>SPI1RXIE</b>	DMA1IE	CCT11E	CCP1IE	I	DMAOIE	CNBIE	CNAIE	T1IE	INTOIE
IEC1	822h	C1RXIE	SPI2TXIE	SPI2RXIE	UZTXIE	U2RXIE	<b>INT3IE</b>	C1IE	<b>CCT2IE</b>	<b>CCP2IE</b>	I	DMA3IE	INT2IE	CNCIE	DMA2IE	MI2C1IE	SI2C1IE
IEC2	824h	<b>CCT6IE</b>	<b>CCP6IE</b>	DMTIE	<b>CCT5IE</b>	CCP5IE	I	CCT4IE	CCP4IE	I	MI2C2IE	SI2C2IE	CCT3IE	<b>CCP3IE</b>	I	I	I
IEC3	826h	PTGSTEPIE	JTAGIE	ICDIE	SPI3TXIE	SPI3RXIE	U3TXIE	U3RXIE	U3EIE	I	QEIZIE	I	C1TXIE	CRCIE	U2EIE	U1EIE	QEI1IE
IEC4	828h	<b>CMP3IE</b>	CMP2IE	CMP1IE	CNEIE	CNDIE	PWM8IE	PWM7IE	PWM6IE	PWM5IE	PWM4IE	<b>PWM3IE</b>	PWM2IE	PWM1IE	I	12C2BCIE	I2C1BCIE
IEC5	82Ah	ADCAN4IE	<b>ADCAN3IE</b>	ADCAN2IE	ADCAN1IE	ADCANOIE	ADCIE	SENT2EIE	SENT2IE	SENT1EIE	<b>SENT1IE</b>	PTG3IE	PTG2IE	PTG1IE	<b>PTG0IE</b>	PTGWDTIE	I
IEC6	82Ch	ADCAN20IE	ADCAN19IE	ADCAN18IE	ADCAN17IE	ADCAN16IE	ADCAN15IE	ADCAN14IE	ADCAN13IE	ADCAN12IE	ADCAN11IE	ADCAN10IE	ADCAN9IE	<b>ADCAN8IE</b>	<b>ADCAN7IE</b>	<b>ADCAN6IE</b>	ADCAN5IE
IEC7	82Eh	SPI2GIE	SP11GIE	<b>CLC2PIE</b>	CLC1PIE	<b>ADFLTR3IE</b>	<b>ADFLTR2IE</b>	ADFLTR1IE	ADFLTROIE	ADCMP3IE	<b>ADCMP2IE</b>	ADCMP1IE	<b>ADCMP0IE</b>	ADFLTIE /	ADCAN23IE	ADCAN23IE ADCAN22IE ADCAN21IE	ADCAN21IE
IEC8	830h	MI2C3IE	SI2C3IE	Ι	Ι	Ι	Ι	Ι	1	I	I	Ι	1	1	Ι	Ι	<b>SPI3GIE</b>
IEC9	832h	Ι	Ι	Ι	Ι	Ι	Ι	<b>CCT8IE</b>	CCP8IE	Ι	CCT7IE	<b>CCP7IE</b>	Ι	I	Ι	Ι	12C3BCIE
IEC10	834h	<b>CLC3PIE</b>	PEVTFIE	PEVTEIE	PEVTDIE	PEVTCIE	PEVTBIE	PEVTAIE	ADFIFOIE	I	I	I	I	I	Ι	I	I
IEC11	836h	U3EVTIE	U2EVTIE	U1EVTIE	Ι	Ι	Ι	Ι	1	I	CCT9IE	<b>CCP9IE</b>	CLC4NIE	<b>CLC3NIE</b>	CLC2NIE	<b>CLC1NIE</b>	CLC4PIE
IEC12	838h	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	PMPEIE	PMPIE	ADCAN25IE ADCAN24IE	ADCAN24IE
Legend:		— = Unimplemented.															

TABLE 7-5	E 7-5:	≤	INTERRUPT PRIORITY REGISTI	T PRIORI	ITY REG	STEF	ERS										
Register	Address	Bit 15	Bit14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IPC0	840h	Ι	<b>CNBIP2</b>	CNBIP1	<b>CNBIPO</b>	I	<b>CNAIP2</b>	CNAIP1	<b>CNAIPO</b>	Ι	T1IP2	T1IP1	T1IP0	I	INT0IP2	INT0IP1	INTOIPO
IPC1	842h	I	CCT1IP2	CCT1IP1	CCT1IP0	I	CCP1IP2	CCP1IP1	CCP1IP0	Ι	I	1	I	I	DMA0IP2	DMA0IP1	DMA0IP0
IPC2	844h	Ι	U1RXIP2	U1RXIP1	U1RXIP0		SPI1TXIP2	SPI1TXIP1	SPI1TXIP0		SPI1RXIP2	SPI1RXIP1	SPI1RXIP0	I	DMA1IP2	DMA1IP1	DMA1IP0
IPC3	846h	Ι	INT1IP2	INT1IP1	INT1IP0		<b>NVMIP2</b>	NVMIP1	0dIM/N	Ι	<b>ECCSBEIP2</b>	ECCSBEIP1	ECCSBEIP0	Ι	U1TXIP2	U1TXIP1	U1TXIP0
IPC4	848h	Ι	<b>CNCIP2</b>	CNCIP1	CNCIPO	I	DMA2IP2	DMA2IP1	DMA2IP0		MI2C1IP2	MI2C1IP1	MI2C1IP0	I	SI2C1IP2	SI2C1IP1	SI2C1IP0
IPC5	84Ah	Ι	CCP2IP2	CCP2IP1	CCP2IP0		Ι	Ι	I		DMA3IP2	DMA3IP1	DMA3IP20	I	INT2IP2	INT2IP1	INT2IP0
IPC6	84Ch	Ι	U2RXIP2	U2RXIP1	U2RXIP0	I	INT3IP2	INT3IP1	INT3IP0	Ι	C1IP2	C1IP1	C1IP0	I	CCT2IP2	CCT2IP1	CCT2IP0
IPC7	84Eh	Ι	C1RXIP2	C1RXIP1	C1RXIP0	I	SPI2TXIP2	SPI2TXIP1	SPI2TXIP0		SPI2RXIP2	SPI2RXIP1	<b>SPI2RXIP0</b>	I	U2TXIP2	U2TXIP1	U2TXIP0
IPC8	850h	Ι	CCP3IP2	CCP3IP1	CCP3IP0		Ι	Ι	Ι	Ι	Ι	Ι	I	Ι	Ι	I	I
IPC9	852h	Ι	I	1	Ι		MI2C2IP2	MI2C2IP1	MI2C2IP0	Ι	SI2C2IP2	SI2C2IP1	SI2C2IP0	I	CCT3IP2	CCT3IP1	CCT3IP0
IPC10	854h	Ι	CCP5IP2	CCP5IP1	CCP5IP0		Ι	Ι	I		CCT4IP2	CCT4IP1	CCT4IP0	I	CCP4IP2	CCP4IP1	CCP4IP0
IPC11	856h	Ι	CCT6IP2	CCT6IP1	CCT6IP0		CCP6IP2	CCP6IP1	CCP6IP0	Ι	DMTIP2	DMTIP1	DMTIPO	Ι	CCT5IP2	CCT5IP1	CCT5IP0
IPC12	858h	Ι	CRCIP2	CRCIP1	<b>CRCIPO</b>	I	U2EIP2	U2EIP1	UZEIPO	Ι	U1EIP2	U1EIP1	U1EIP0	I	QEI1IP2	QEI1IP1	QEI1IP0
IPC13	85Ah	Ι	Ι	1	Ι		QEI2IP2	QEI2IP1	QEI2IPO		Ι	1	I	I	C1TXIP2	C1TXIP1	C1TXIP0
IPC14	85Ch	Ι	SPI3RXIP2	SPI3RXIP1	<b>SPI3RXIP0</b>	I	U3TXIP2	U3TXIP1	U3TXIP1	Ι	U3RXIP2	U3RXIP1	U3RXIP0	I	U3EIP2	U3EIP1	U3EIPO
IPC15	85Eh	Ι	PTGSTEPIP2	PTGSTEPIP1	<b>PTGSTEPIP0</b>	I	<b>JTAGIP2</b>	JTAGIP1	<b>JTAGIPO</b>	Ι	ICDIP2	ICDIP1	ICDIP0	I	SPI3TXIP2	SPI3TXIP1	SPI3TXIP0
IPC16	860h	Ι	PWM1IP2	PWM1IP1	PWM1IP0	I	Ι	Ι	I	Ι	I2C2BCIP2	I2C2BCIP1	12C2BCIP0	I	12C1BCIP2	I2C1BCIP1	I2C1BCIP0
IPC17	862h	Ι	PWM5IP2	PWM5IP1	PWM5IP0	I	PWM4IP2	PWM4IP1	PWM4IP0		PWM3IP2	PWM3IP1	PWM3IP0	I	PWM2IP2	PWM2IP1	PWM2IP0
IPC18	864h	Ι	<b>CNDIP2</b>	CNDIP1	<b>CNDIPO</b>		2418MWA	PWM8IP1	PW/M8IP0	Ι	PWM7IP2	1-417MW9	PWM7IP0	Ι	PWM6IP2	PWM6IP1	PWIM6IP0
IPC19	866h		CMP3IP2	CMP3IP1	CMP3IP0		CMP2IP2	CMP2IP1	CMP2IP0	Ι	CMP1IP2	CMP1IP1	CMP1IP0	Ι	<b>CNEIP2</b>	CNEIP1	<b>CNEIPO</b>
IPC20	868h		PTG1IP2	PTG1IP1	PTG1IP0		PTG0IP2	PTG0IP1	PTG0IP0	Ι	PTGWDTIP2	PTGWDTIP1	<b>PTGWDTIP0</b>	Ι	Ι	Ι	Ι
IPC21	86Ah		SENT1EIP2	SENT1EIP1	SENT1EIP0		SENT1IP2	SENT1IP1	SENT1IP0	Ι	PTG3IP2	PTG3IP1	PTG3IP0	Ι	PTG2IP2	PTG2IP1	PTG2IP0
IPC22	86Ch		ADCAN0IP2	ADCAN0IP1	<b>ADCAN0IP0</b>		ADCIP2	ADCIP1	ADCIP0	Ι	SENT2EIP2	SENT2EIP1	<b>SENT2EIP0</b>	Ι	SENT2IP2	SENT2IP1	SENT2IP0
IPC23	86Eh	Ι	ADCAN4IP2	ADCAN4IP1	ADCAN4IP0	Ι	ADCAN3IP2	ADCAN3IP1	ADCAN3IP0	Ι	ADCAN2IP2	ADCAN2IP1	<b>ADCAN2IP0</b>	Ι	ADCAN1IP2	ADCAN1IP1	ADCAN1IP0
IPC24	870h	Ι	ADCAN8IP2	ADCAN8IP1	ADCAN8IP0	Ι	ADCAN7IP2	ADCAN7IP1	<b>ADCAN7IP0</b>	Ι	ADCAN6IP2	ADCAN6IP1	<b>ADCAN6IP0</b>	I	ADCAN5IP2	ADCAN5IP1	ADCAN5IP0
IPC25	872h		ADCAN12IP2	ADCAN12IP1	ADCAN12IP0		ADCAN11IP2	ADCAN11IP1	ADCAN11IP0	Ι	ADCAN10IP2	ADCAN10IP1	ADCAN10IP0	Ι	ADCAN9IP2	ADCAN9IP1	ADCAN9IP0
IPC26	874h	Ι	ADCAN16IP2	ADCAN16IP2 ADCAN16IP2	ADCAN16IP2	Ι	ADCAN15IP2	ADCAN15IP1	ADCAN15IP0	Ι	ADCAN14IP2	ADCAN14IP2 ADCAN14IP1 ADCAN14IP0	ADCAN14IP0	I	ADCAN13IP2	ADCAN13IP1	ADCAN13IP0
IPC27	876h	Ι	ADCAN20IP2	ADCAN20IP1	ADCAN20IP0	Ι	ADCAN19IP2	ADCAN19IP2 ADCAN19IP1	ADCAN19IP0	Ι	ADCAN18IP2	ADCAN18IP2 ADCAN18IP1 ADCAN18IP0	ADCAN18IP0	I	ADCAN17IP2 ADCAN17IP1	ADCAN17IP1	ADCAN17IP0
IPC28	878h	Ι	ADFLTIP2	ADFLTIP1	<b>ADFLTIP0</b>	Ι	ADCAN23IP2	ADCAN23IP1	ADCAN22IP0		ADCAN22IP2	ADCAN22IP2 ADCAN22IP1 ADCAN22IP0	ADCAN22IP0	Ι	ADCAN21IP2 ADCAN21IP1	ADCAN21IP1	ADCAN21IP0
IPC29	87Ah		ADCMP3IP2	ADCMP3IP1	ADCMP3IP0		ADCMP2IP2	ADCMP2IP1	ADCMP2IP0	Ι	ADCMP1IP2	ADCMP1IP1	ADCMP1IP0	Ι	ADCMP0IP2	ADCMP0IP1	<b>ADCMP0IP0</b>
IPC30	87Ch	Ι	ADFLTR3IP2	ADFLTR3IP1	ADFLTR3IP0		<b>ADFLTR2IP2</b>	ADFLTR2IP1	ADFLTR2IP0	Ι	ADFLTR1IP2	ADFLTR1IP1	ADFLTR1IP0	Ι	ADFLTR0IP2	ADFLTR0IP1	<b>ADFLTR0IP0</b>
IPC31	87Eh	Ι	SPI2GIP0	SPI2GIP1	SPI2GIP0		SPI1GIP2	SPI1GIP1	SPI1GIP0	Ι	CLC2PIP2	CLC2PIP1	CLC2PIP0	Ι	CLC1PIP2	CLC1PIP1	CLC1PIP0
IPC32	880h	Ι	Ι	Ι	Ι		Ι	Ι	Ι	Ι	Ι	I	Ι	Ι	SPI3GIP2	SPI3GIP1	SPI3GIP0
IPC33	882h		Ι	Ι	Ι		Ι	Ι	Ι	Ι	Ι	I	Ι	Ι	Ι	Ι	Ι
IPC34	884h						Ι	Ι	I		1		Ι	I	Ι	Ι	I
Legend:			inted.														

# E 7-5: INTERRUPT PRIORITY REGIST

# dsPIC33CK256MP508 FAMILY

IABLE / -0:					שבר ב												
Register	Address	Bit 15	Bit14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IPC35	886h		MI2C3IP2	MI2C3IP1	MI2C3IP1		SI2C3IP2	SI2C3IP1	SI2C3IP0		I	I	I	I	I	I	I
IPC36	888h	I	I	I	I	Ι	I	I	Ι	I	I	I	I		12C3BCIP2	I2C3BCIP1	I2C3BCIP0
IPC37	88Ah	Ι	Ι	Ι	I	Ι	CCT7IP2	CCT7IP1	CCT7IP0	I	CCP7IP2	CCP7IP1	CCP7IP0	I	Ι	Ι	Ι
IPC38	88Ch	Ι	I	Ι	Ι	Ι	Ι	Ι	Ι	I	CCT8IP2	CCT8IP1	CCT8IP0	Ι	CCP8IP2	CCP8IP1	CCP8IP0
IPC39	88Eh	Ι	I	Ι	Ι	Ι	Ι	Ι	Ι	I	I	Ι	I	I	Ι	Ι	Ι
IPC40	890h	Ι	I	Ι	I	Ι	Ι	Ι	Ι	I	Ι	Ι	Ι	Ι	Ι	Ι	Ι
IPC41	892h	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	I	I	Ι	I	Ι	Ι	Ι	Ι
IPC42	894h	Ι	PEVTCIP2	<b>PEVTCIP1</b>	<b>PEVTCIP0</b>	Ι	PEVTBIP2	PEVTBIP1	PEVTBIP0	Ι	<b>PEVTAIP2</b>	PEVTAIP1	<b>PEVTAIP0</b>	Ι	ADFIFOIP2	ADFIFOIP1	<b>ADFIFOIP0</b>
IPC43	896h	Ι	CLC3PIP2	CLC3PIP1	CLC3PIP0	Ι	PEVTFIP2	PEVTFIP1	<b>PEVTFIPO</b>	Ι	PEVTEIP2	PEVTEIP1	PEVTEIP0	Ι	PEVTDIP2	PEVTDIP1	<b>PEVTDIP0</b>
IPC44	898h	Ι	<b>CLC3NIP2</b>	CLC3NIP1	<b>CLC3NIP0</b>	Ι	CLC2NIP2	CLC2NIP1	<b>CLC2NIP0</b>	Ι	CLC1NIP2	CLC1NIP1	CLC1NIP0	Ι	CLC4PIP2	CLC4PIP1	CLC4PIP0
IPC45	89Ah	Ι	Ι	Ι	Ι	Ι	CCT9IP2	CCT9IP1	CCT9IP0		CCP9IP2	CCP9IP1	CCP9IP0	Ι	CLC4NIP2	CLC4NIP1	CLC4NIP0
IPC46	89Ch	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	-	Ι	Ι	Ι
IPC47	89Eh	Ι	U3EVTIP2	U3EVTIP1	<b>U3EVTIP0</b>		U2EVTIP2	U2EVTIP1	U2EVTIP0	Ι	U1EVTIP2	U1EVTIP1	U1EVTIP0	-	Ι	Ι	Ι
IPC48	900h	Ι	PMPEIP2	PMPEIP1	PMPEIP0		PMPIP2	PMPIP1	PMPIP0		ADCAN25IP2 ADCAN25IP1	ADCAN25IP1	ADCAN25IP0		ADCAN24IP2 ADCAN24IP1		ADCAN24IP0
Legend:		Unimplemented.	nted.														

TABLE 7-5: INTERRUPT PRIORITY REGISTERS (CONTINUED)

# 7.3 Interrupt Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page contains the latest updates and additional information.

#### 7.3.1 KEY RESOURCES

- "Interrupts" (DS70000600) in the "dsPIC33/ PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

# 7.4 Interrupt Control and Status Registers

The dsPIC33CK256MP508 family devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON3
- INTCON4
- INTTREG

#### 7.4.1 INTCON1 THROUGH INTCON4

Global interrupt control functions are controlled from INTCON1, INTCON2, INTCON3 and INTCON4.

INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS), as well as the control and status flags for the processor trap sources.

The INTCON2 register controls external interrupt request signal behavior, contains the Global Interrupt Enable bit (GIE) and the Alternate Interrupt Vector Table Enable bit (AIVTEN).

INTCON3 contains the status flags for the Auxiliary PLL and DO stack overflow status trap sources.

The INTCON4 register contains the Software Generated Hard Trap Status bit (SGHT).

#### 7.4.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

# 7.4.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

#### 7.4.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of seven priority levels.

#### 7.4.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number (VECNUM<7:0>) and Interrupt Level bits (ILR<3:0>) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 7-2. For example, INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IP<2:0> bits in the first position of IPC0 (IPC0<2:0>).

# 7.4.6 STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers, refer to "dsPIC33E Enhanced CPU" (DS70005158) in the "dsPIC33/PIC24 Family Reference Manual".

- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit, which together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-3 through Register 7-7 in the following pages.

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15					•		bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7					•		bit 0
Legend:		C = Clearable	bit				

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits^(2,3)

111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled

- 110 = CPU Interrupt Priority Level is 6 (14)
- 101 = CPU Interrupt Priority Level is 5 (13)
- 100 = CPU Interrupt Priority Level is 4 (12)
- 011 = CPU Interrupt Priority Level is 3 (11)
- 010 = CPU Interrupt Priority Level is 2 (10)
- 001 = CPU Interrupt Priority Level is 1 (9)
- 000 = CPU Interrupt Priority Level is 0 (8)

**Note 1:** For complete register details, see Register 3-1.

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR		US1	US0	EDT	DL2	DL1	DL0
bit 15	•						bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7	·						bit 0
Legend:		C = Clearable	e bit				

# REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 VAR: Variable Exception Processing Latency Control bit

- 1 = Variable exception processing is enabled
- 0 = Fixed exception processing is enabled

# bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

#### **Note 1:** For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE		
bit 15							bit 8		
	D44/ 2	DAALO	D/4/ 0		D 44/ 2				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0		
SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'			
-n = Value at P		'1' = Bit is set		'0' = Bit is clea		x = Bit is unki	nown		
bit 15	NSTDIS: Inte	errupt Nesting	Disable bit						
		nesting is disa							
		nesting is ena							
bit 14	OVAERR: Accumulator A Overflow Trap Flag bit 1 = Trap was caused by an overflow of Accumulator A								
	<ul> <li>0 = Trap was not caused by an overflow of Accumulator A</li> </ul>								
bit 13	-		Overflow Trap F		L. L				
			overflow of Ac	0					
	0 = Trap was	s not caused by	y an overflow o	f Accumulator B	\$				
bit 12			•	Overflow Trap Fl	•				
		•	•	erflow of Accum					
bit 11	-			c overflow of Ac Overflow Trap F					
			-	erflow of Accum	-				
				c overflow of Ac					
bit 10	OVATE: Acc	umulator A Ov	erflow Trap En	able bit					
	1 = Trap ove 0 = Trap is d	erflow of Accun	nulator A						
bit 9			erflow Trap En	able bit					
	1 = Trap ove	erflow of Accun							
bit 8	0 = Trap is d		flow Trap Enat	ole hit					
DIL O		-	-	lator A or B is er	nabled				
	0 = Trap is d								
bit 7	SFTACERR	: Shift Accumu	ator Error State	us bit					
				alid accumulator invalid accumul					
bit 6		-	Error Status bit						
	1 = Math err	or trap was ca	used by a divid t caused by a d	e-by-zero					
bit 5		-	er Trap Status t	-					
		rror trap has o	-						
		rror trap has n							
bit 4	MATHERR:	Math Error Sta	tus bit						
		or trap has occ or trap has not							

#### REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

### REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred
	0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	<b>OSCFAIL:</b> Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0			
GIE	DISI	SWTRAP	—	—	—	—	AIVTEN			
bit 15							bit 8			
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	—	—	—	INT3EP	INT2EP	INT1EP	INT0EP			
bit 7							bit 0			
Legend:			••			(0)				
R = Readable		W = Writable I	oit		mented bit, read					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15	<b>CIE:</b> Clobal	Interrupt Enable	bit							
DIL 15		s and associate		nabled						
	0 = Interrupts are disabled, but traps are still enabled									
bit 14	DISI: DISI	Instruction Statu	s bit							
		struction is active								
		struction is not a								
bit 13		Software Trap St								
	<ul> <li>1 = Software trap is enabled</li> <li>0 = Software trap is disabled</li> </ul>									
bit 12-9	Unimplemented: Read as '0'									
bit 8	AIVTEN: Alt	ernate Interrupt	Vector Table	Enable bit						
	1 = Uses Alternate Interrupt Vector Table									
	0 = Uses sta	andard Interrupt	Vector Table							
bit 7-4	Unimplemented: Read as '0'									
bit 3	INT3EP: External Interrupt 3 Edge Detect Polarity Select bit									
	<ul> <li>1 = Interrupt on negative edge</li> <li>0 = Interrupt on positive edge</li> </ul>									
bit 2				Delarity Color	+ b;+					
DILZ	INT2EP: External Interrupt 2 Edge Detect Polarity Select bit 1 = Interrupt on negative edge									
		on positive edg								
bit 1	-	ternal Interrupt 1		Polarity Selec	t bit					
	1 = Interrupt	on negative edg	ge	-						
	•	on positive edg								
bit 0		ternal Interrupt 0	•	Polarity Selec	t bit					
		on negative edg								
	0 = interrupt	on positive edg	е							

#### REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0			
_	_	_	_	_	—	CAN ⁽¹⁾	NAE			
bit 15	•	·			•		bit 8			
U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0			
—	—	—	DOOVR		—	—	APLL			
bit 7							bit C			
Legend:										
R = Readab	ole bit	W = Writable	e bit	U = Unimple	mented bit, rea	d as '0'				
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15-10	•	nted: Read as								
bit 9	CAN: CAN A	CAN: CAN Address Error Soft Trap Status bit ⁽¹⁾								
		1 = CAN address error soft trap has occurred								
	0 = CAN address error soft trap has not occurred									
bit 8	NAE: NVM Address Error Soft Trap Status bit									
	1 = NVM address error soft trap has occurred									
	0 = NVM address error soft trap has not occurred									
bit 7-5	•	nted: Read as								
bit 4			w Soft Trap Sta							
			rap has occurr							
			rap has not oc	curred						
bit 3-1	Unimplemer	nted: Read as	'0'							
bit 0			of Lock Soft Tra	ap Status bit						
		k soft trap has								
	0 = APLL loc	k soft trap has	not occurred							

# REGISTER 7-5: INTCON3: INTERRUPT CONTROL REGISTER 3

Note 1: The CAN peripheral is not available on all devices. Refer to Table 1 and Table 2 for availability.

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4
-----------------------------------------------------

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	_	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
—	—	—	—	—	—	ECCDBE	SGHT		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							nown		
bit 15-2	2 Unimplemented: Read as '0'								
bit 1 ECCDBE: ECC Double-Bit Error Trap bit									
	1 = ECC doul	ble-bit error tra	p has occurred	k					
	0 = ECC doul	ble-bit error tra	p has not occu	irred					
bit 0	SGHT: Softwa	are Generated	Hard Trap Sta	tus bit					

1 = Software generated hard trap has occurred

0 = Software generated hard trap has not occurred

U-0	U-0	R-0	U-0	R-0	R-0	R-0	R-0			
	_	VHOLD	_	ILR3	ILR2	ILR1	ILR0			
bit 15							bit 8			
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0			
bit 7							bit 0			
Legend:										
R = Readable		W = Writable		•	mented bit, read					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15-14	Unimplemen	ted: Read as '	∩'							
bit 13	-			nit						
bit 15		<b>VHOLD:</b> Vector Number Capture Enable bit 1 = VECNUM<7:0> bits read current value of vector number encoding tree (i.e., highest priority pending								
	interrupt)					e (,geet p	percent			
	0 = Vector number latched into VECNUM<7:0> at Interrupt Acknowledge and retained until next IACK									
bit 12	Unimplemen	ted: Read as '	0'							
bit 11-8		w CPU Interru		el bits						
	1111 <b>= CPU</b>	Interrupt Priorit	y Level is 15							
	 0001 = CPU	Interrupt Priori	v Level is 1							
		Interrupt Priori								
bit 7-0	VECNUM<7:0	0>: Vector Nun	ber of Pendin	g Interrupt bits	6					
	11111111 = 2	255, Reserved	; do not use							
	•••	0.104	Dentune 4							
		9, IC1 – Input ( 8, INT0 – Exte		h						
		7, Reserved; d		,						
	00000110 =	6, Generic soft	error trap							
		5, Reserved; d								
		4, Math error tr 3, Stack error t								
		2, Generic har								
	0000001=	1, Address erro	or trap							
	00000000 =	0, Oscillator fai	l trap							

# REGISTER 7-7: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

# 8.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "I/O Ports with Edge Detect" (www.microchip.com/DS70005322) in the "dsPIC33/PIC24 Family Reference Manual".
  - 2: Some registers and associated bits described in this section may not be available on all devices.

Many of the device pins are shared among the peripherals and the Parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity. The PORT registers are located in the SFR.

Some of the key features of the I/O ports are:

- Individual Output Pin Open-Drain Enable/Disable
- Individual Input Pin Weak Pull-up and Pull-Down
- Monitor Selective Inputs and Generate Interrupt when Change in Pin State is Detected
- · Operation during Sleep and Idle modes

# 8.1 Parallel I/O (PIO) Ports

All port pins have 12 registers directly associated with their operation as digital I/Os. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input.

All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch. Any bit and its associated data and control registers that are not valid for a particular device are disabled. This means the corresponding LATx and TRISx registers, and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs. Table 8-1 shows the pin availability. Table 8-2 shows the 5V input tolerant pins across this device.

# TABLE 8-1: PIN AND ANSELx AVAILABILITY

Device	Rx15	Rx14	Rx13	Rx12	Rx11	Rx10	Rx9	Rx8	Rx7	Rx6	Rx5	Rx4	Rx3	Rx2	Rx1	Rx0
	•	•	•	•	-	POR	ГА	•		•			•			
dsPIC33XXXMP508/208					_	_	_		_		_	Х	Х	Х	Х	Х
dsPIC33XXXMP506/206	_	—	—	—	_	—	—	—	—	—	_	Х	Х	Х	Х	Х
dsPIC33XXXMP504/204	—	—	—	—	_	—	—	—	—	—	_	Х	Х	Х	Х	Х
dsPIC33XXXMP503/203	_	_	_	_	_	—	—	—	—	_	_	Х	Х	Х	Х	Х
dsPIC33XXXMP502/202	_	_	_	_	_	_	_	_	_	_	_	Х	Х	Х	Х	Х
ANSELA	—	—	—	—	—	—	—	—	—	—	—	Х	Х	Х	Х	Х
						POR	ГВ									
dsPIC33XXXMP508/208	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP506/206	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP504/204	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP503/203	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP502/202	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
ANSELB	—	—	—	—		—	Х	Х	Х	—	_	Х	Х	Х	Х	Х
PORTC																
dsPIC33XXXMP508/208	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP506/206	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP504/204	—	—	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP503/203	_	_	_	_		—	—	—	—	_	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP502/202	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	—
ANSELC	—	—	—	—	—	—	—	—	Х	Х	_	—	Х	Х	Х	Х
	-	-	-	-		POR	ΓD	-		-			-			
dsPIC33XXXMP508/208	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP506/206	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP504/204	—	—	Х	—	—	Х	—	Х	—	—	_	—	—	—	Х	—
dsPIC33XXXMP503/203	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	—
dsPIC33XXXMP502/202	—	—				—	—	—	—	—		—	—	—	—	—
ANSELD	—	—	Х	—	Х	Х	—	—	—	—	—	—	—	—	—	—
					-	POR	ΓE									
dsPIC33XXXMP508/208	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33XXXMP506/206	—	—	—	—	—	—	—	—	—	_		—	—	—	—	—
dsPIC33XXXMP504/204	—	—	—	—		—	—	—	—	_		—	—	—	—	—
dsPIC33XXXMP503/203	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
dsPIC33XXXMP502/202	_	—	_	_	_	_	—	—	—	_		—	—	—	—	—
ANSELE	—	_	—	—	_	_	—	—	_	—	_	Х	Х	Х	Х	Х

#### TABLE 8-2: 5V INPUT TOLERANT PORTS

PORTA	-	—	—	-	—	—	—	—	—	—	—	RA4	RA3	RA2	RA1	RA0
PORTB	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
PORTC	RC15	RC14	RC13	RC12	RC11	RC10	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
PORTD	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0
PORTE	RE15	RE14	RE13	RE12	RE11	RE10	RE9	RE8	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0

**Legend:** Shaded pins are up to 5.5 VDC input tolerant.



### 8.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Enable for PORTx register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs, other than VDD, by using external pull-up resistors. The maximum open-drain voltage allowed on any pin is the same as the maximum VIH specification for that particular pin.

# 8.2 Configuring Analog and Digital Port Pins

The ANSELx registers control the operation of the analog port pins. The port pins that are to function as analog inputs or outputs must have their corresponding ANSELx and TRISx bits set. In order to use port pins for I/O functionality with digital modules, such as timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx registers have a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

Pins with analog functions affected by the ANSELx registers are listed with a buffer type of analog in the Pinout I/O Descriptions (see Table 1-1).

If the TRISx bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or comparator module.

When the PORTx register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin, defined as a digital input (including the ANx pins), can cause the input buffer to consume current that exceeds the device specifications.

# 8.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

# 8.3 PORT Control Registers

The following registers are in the PORT module:

- Register 8-1: ANSELx (one per port)
- Register 8-2: TRISx (one per port)
- Register 8-3: PORTx (one per port)
- Register 8-4: LATx (one per port)
- Register 8-5: ODCx (one per port)
- Register 8-6: CNPUx (one per port)
- Register 8-7: CNPDx (one per port)
- Register 8-8: CNCONx (one per port optional)
- Register 8-9: CNEN0x (one per port)
- Register 8-10: CNSTATx (one per port optional)
- Register 8-11: CNEN1x (one per port)
- Register 8-12: CNFx (one per port)

# REGISTER 8-1: ANSELX: ANALOG SELECT FOR PORTX REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			ANSE	Lx<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			ANSE	Lx<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = E			nown	

bit 15-0

ANSELx<15:0>: Analog Select for PORTx bits

1 = Analog input is enabled and digital input is disabled on the PORTx[n] pin

0 = Analog input is disabled and digital input is enabled on the PORTx[n] pin

# REGISTER 8-2: TRISX: OUTPUT ENABLE FOR PORTX REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			TRIS	<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			TRIS	x<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	R = Readable bit W = Writable bit			U = Unimpler	nented bit, read	l as '0'	

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 TRISx<15:0>: Output Enable for PORTx bits

1 = LATx[n] is not driven on the PORTx[n] pin

 $\ensuremath{\texttt{0}}$  = LATx[n] is driven on the PORTx[n] pin

#### REGISTER 8-3: PORTX: INPUT DATA FOR PORTX REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			PORT	<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			PORT	x<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		t	U = Unimplemented bit, read as '0'				
-n = Value at F	n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-0 **PORTx<15:0>:** PORTx Data Input Value bits

# REGISTER 8-4: LATX: OUTPUT DATA FOR PORTX REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			LATX	<15:8>				
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			LAT	x<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	

bit 15-0 LATx<15:0>: PORTx Data Output Value bits

#### REGISTER 8-5: ODCx: OPEN-DRAIN ENABLE FOR PORTx REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			ODC	x<15:8>				
bit 15							bit 8	
[								
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			ODC	Cx<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unk			nown		

bit 15-0 **ODCx<15:0>:** PORTx Open-Drain Enable bits

1 = Open-drain is enabled on the PORTx pin

0 = Open-drain is disabled on the PORTx pin

#### REGISTER 8-6: CNPUX: CHANGE NOTIFICATION PULL-UP ENABLE FOR PORTX REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNPL	Jx<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNP	Ux<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		it	U = Unimpler	nented bit, rea	id as '0'		
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0

CNPUx<15:0>: Change Notification Pull-up Enable for PORTx bits

1 = The pull-up for PORTx[n] is enabled – takes precedence over the pull-down selection

0 = The pull-up for PORTx[n] is disabled

#### REGISTER 8-7: CNPDx: CHANGE NOTIFICATION PULL-DOWN ENABLE FOR PORTx REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNPDx	<15:8>			
bit 15							bit 8
<b>1</b>							

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNPD	x<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 CNPDx<15:0>: Change Notification Pull-Down Enable for PORTx bits

1 = The pull-down for PORTx[n] is enabled (if the pull-up for PORTx[n] is not enabled)

0 = The pull-down for PORTx[n] is disabled

R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
ON	—	—	—	CNSTYLE	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	<u> </u>	—			<u> </u>	
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	
bit 15	-	Notification (CN	<ol> <li>Control for</li> </ol>	PORTx On bit			
	1 = CN is ena						
	0 = CN is disa						
bit 14-12	Unimplemen	ted: Read as '	0'				
bit 11	CNSTYLE: C	hange Notificat	tion Style Sel	ection bit			
	1 = Edge style (detects edge transitions, CNFx<15:0> bits are used for a Change Notification event						
	<ul> <li>0 = Mismatch style (detects change from last port read, CNSTATx&lt;15:0&gt; bits are used for a Change Notification event)</li> </ul>						
bit 10-0	Unimplemen	ted: Read as '	0'				
	-						

#### REGISTER 8-8: CNCONX: CHANGE NOTIFICATION CONTROL FOR PORTX REGISTER

### REGISTER 8-9: CNEN0x: INTERRUPT CHANGE NOTIFICATION ENABLE FOR PORTX REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNEN	0x<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNEN	l0x<7:0>			
bit 7							bit 0
<u>.</u>							
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	

bit 15-0 CNEN0x<15:0>: Interrupt Change Notification Enable for PORTx bits

1 = Interrupt-on-change (from the last read value) is enabled for PORTx[n]

0 = Interrupt-on-change is disabled for PORTx[n]

#### REGISTER 8-10: CNSTATX: INTERRUPT CHANGE NOTIFICATION STATUS FOR PORTX REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			CNSTAT	「x<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			CNSTA	Tx<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **CNSTATx<15:0>:** Interrupt Change Notification Status for PORTx bits

When CNSTYLE (CNCONx<11>) = 0:

1 = Change occurred on PORTx[n] since last read of PORTx[n]

0 = Change did not occur on PORTx[n] since last read of PORTx[n]

# REGISTER 8-11: CNEN1x: INTERRUPT CHANGE NOTIFICATION EDGE SELECT FOR PORTX REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNEN	1x<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNEN	1x<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bit	t	U = Unimpler	mented bit, read	l as '0'	

		1 ,	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 CNEN1x<15:0>: Interrupt Change Notification Edge Select for PORTx bits

# REGISTER 8-12: CNFx: INTERRUPT CHANGE NOTIFICATION FLAG FOR PORTx REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNF	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNF	x<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplen	nented bit, rea	d as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	

bit 15- CNFx<15:0>: Interrupt Change Notification Flag for PORTx bits

When CNSTYLE (CNCONx<11>) = 1:

1 = An enabled edge event occurred on the PORTx[n] pin

0 = An enabled edge event did not occur on the PORTx[n] pin

# 8.4 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows the dsPIC33CK256MP508 family devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States, even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State. Five control registers are associated with the Change Notification (CN) functionality of each I/O port. To enable the Change Notification feature for the port, the ON bit (CNCONx<15>) must be set.

The CNEN0x and CNEN1x registers contain the CN interrupt enable control bits for each of the input pins. The setting of these bits enables a CN interrupt for the corresponding pins. Also, these bits, in combination with the CNSTYLE bit (CNCONx<11>), define a type of transition when the interrupt is generated. Possible CN event options are listed in Table 8-3.

#### TABLE 8-3: CHANGE NOTIFICATION EVENT OPTIONS

CNSTYLE Bit (CNCONx<11>)	CNEN1x Bit	CNEN0x Bit	Change Notification Event Description
0	Does not matter	0	Disabled
0	Does not matter	1	Detects a mismatch between the last read state and the current state of the pin
1	0	0	Disabled
1	0	1	Detects a positive transition only (from '0' to '1')
1	1	0	Detects a negative transition only (from '1' to '0')
1	1	1	Detects both positive and negative transitions

The CNSTATx register indicates whether a change occurred on the corresponding pin since the last read of the PORTx bit. In addition to the CNSTATx register, the CNFx register is implemented for each port. This register contains flags for Change Notification events. These flags are set if the valid transition edge, selected in the CNEN0x and CNEN1x registers, is detected. CNFx stores the occurrence of the event. CNFx bits must be cleared in software to get the next Change Notification interrupt. The CN interrupt is generated only for the I/Os configured as inputs (corresponding TRISx bits must be set).

Note:	Pull-ups and pull-downs on Input Change
	Notification pins should always be
	disabled when the port pin is configured
	as a digital output.

# 8.5 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features, while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

Peripheral Pin Select configuration provides an alternative to these choices by enabling peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

# 8.5.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the label, "RPn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions.

#### 8.5.2 AVAILABLE PERIPHERALS

The peripherals managed by the Peripheral Pin Select are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs.

In comparison, some digital only peripheral modules are never included in the Peripheral Pin Select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. One example includes I²C modules. A similar requirement excludes all modules with analog inputs, such as the A/D Converter (ADC)

A key difference between remappable and nonremappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral. When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/Os and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

#### 8.5.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral mapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. The dsPIC33CK256MP508 devices have implemented the control register lock sequence.

# 8.5.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes will appear to execute normally, but the contents of the registers will remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (RPCON<11>).

Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes. To set or clear IOLOCK, the NVMKEY unlock sequence must be executed:

- 1. Write 0x55 to NVMKEY.
- 2. Write 0xAA to NVMKEY.
- 3. Clear (or set) IOLOCK as a single operation.

IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence, followed by an update to all of the control registers. Then, IOLOCK can be set with a second lock sequence.

#### 8.5.4 CONSIDERATIONS FOR PERIPHERAL PIN SELECTION

The ability to control Peripheral Pin Selection introduces several considerations into application design that most users would never think of otherwise. This is particularly true for several common peripherals, which are only available as remappable peripherals.

The main consideration is that the Peripheral Pin Selects are not available on default pins in the device's default (Reset) state. More specifically, because all RPINRx registers reset to '1's and RPORx registers reset to '0's, this means all PPS inputs are tied to Vss, while all PPS outputs are disconnected. This means that before any other application code is executed, the user must initialize the device with the proper peripheral configuration. Because the IOLOCK bit resets in the unlocked state, it is not necessary to execute the unlock sequence after the device has come out of Reset. For application safety, however, it is always better to set IOLOCK and lock the configuration after writing to the control registers. The NVMKEY unlock sequence must be executed as an Assembly language routine. If the bulk of the application is written in C, or another high-level language, the unlock sequence should be performed by writing in-line assembly or by using the __builtin_write_RPCON(value) function provided by the compiler.

Choosing the configuration requires a review of all Peripheral Pin Selects and their pin assignments, particularly those that will not be used in the application. In all cases, unused pin-selectable peripherals should be disabled completely. Unused peripherals should have their inputs assigned to an unused RPn pin function. I/O pins with unused RPn functions should be configured with the null peripheral output.

Note:	MPLAB [®] XC16 provides a built-in C language function for unlocking and modifying the RPCON register:
	builtin_write_RPCON(value); For more information, see the "MPLAB [®] XC16 C Compiler User's Guide" (DS50002071).

#### 8.5.5 INPUT MAPPING

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping. Each register contains sets of 8-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 8-bit index value maps the RPn pin with the corresponding value, or internal signal, to that peripheral. See Table 8-4 for a list of available inputs.

For example, Figure 8-2 illustrates remappable pin selection for the U1RX input. Example 8-1 provides a configuration for bidirectional communication with flow control using UART1. The following input and output functions are used:

- Input Functions: U1RX, U1CTS
- Output Functions: U1TX, U1RTS

**FIGURE 8-2:** 

#### EXAMPLE 8-1: CONFIGURING UART1 INPUT AND OUTPUT FUNCTIONS

//
* * * * * * * * * * * * * * * * * * * *
// Unlock Registers
//***************
builtin_write_RPCON(0x0000);
//***************
// Configure Input Functions (See Table 8-5)
// Assign UlRx To Pin RP35
//************
_U1RXR = 35;
// Assign U1CTS To Pin RP36
//***********
_U1CTSR = 36;
//*************************************
<pre>// Configure Output Functions (See Table 8-7)</pre>
//*************************************
// Assign UlTx To Pin RP37
//************
_RP37 = 1;
//*************
// Assign UlRTS To Pin RP38
//**************
_RP38 = 2;
//*************************************
// Lock Registers
//*************************************
builtin_write_RPCON(0x0800);

#### U1RX U1RXR<7:0> 0 Vss $\mathbf{X}$ 1 CMP1 U1RX Input to Peripheral $\boxtimes$ 32 **R**P32 • • • n **RP181** Note: For input only, Peripheral Pin Select functionality does not have priority over TRISx settings. Therefore, when configuring an RPn pin for input, the corresponding bit in the TRISx register must also be configured for input (set to '1'). Physical connection to a pin can be made through RP32 through RP71. There are internal signals and virtual pins that can be connected to

an input. Table 8-4 shows the details of the input

assignment.

**REMAPPABLE INPUT FOR** 

RPINRx<15:8> or RPINRx<7:0>	Function	Available on Ports		
0	Vss	Internal		
1	Comparator 1	Internal		
2	Comparator 2	Internal		
3	Comparator 3	Internal		
4-5	RP4-RP5	Reserved		
6	PTG Trigger 26	Internal		
7	PTG Trigger 27	Internal		
8-10	RP8-RP10	Reserved		
11	PWM Event Out C	Internal		
12	PWM Event Out D	Internal		
13	PWM Event Out E	Internal		
14-31	RP14-RP31	Reserved		
32	RP32	Port Pin RB0		
33	RP33	Port Pin RB1		
34	RP34	Port Pin RB2		
35	RP35	Port Pin RB3		
36	RP36	Port Pin RB4		
37	RP37	Port Pin RB5		
38	RP38	Port Pin RB6		
39	RP39	Port Pin RB7		
40	RP40	Port Pin RB8		
41	RP41	Port Pin RB9		
42	RP42	Port Pin RB10		
43	RP43	Port Pin RB11		
44	RP44	Port Pin RB12		
45	RP45	Port Pin RB13		
46	RP46	Port Pin RB14		
47	RP47	Port Pin RB15		
48	RP48	Port Pin RC0		
49	RP49	Port Pin RC1		
50	RP50	Port Pin RC2		
51	RP51	Port Pin RC3		
52	RP52	Port Pin RC4		
53	RP53	Port Pin RC5		
54	RP54	Port Pin RC6		
55	RP55	Port Pin RC7		
56	RP56	Port Pin RC8		
57	RP57	Port Pin RC9		
58	RP58	Port Pin RC10		
59	RP59	Port Pin RC11		
60	RP60	Port Pin RC12		
61	RP61	Port Pin RC13		
62	RP62	Port Pin RC14		

### TABLE 8-4:REMAPPABLE PIN INPUTS

RPINRx<15:8> or RPINRx<7:0>	Function	Available on Ports
63	RP63	Port Pin RC15
64	RP64	Port Pin RD0
65	RP65	Port Pin RD1
66	RP66	Port Pin RD2
67	RP67	Port Pin RD3
68	RP68	Port Pin RD4
69	RP69	Port Pin RD5
70	RP70	Port Pin RD6
71	RP71	Port Pin RD7
72	RP72	Port Pin RD8
73	RP73	Port Pin RD9
74	RP74	Port Pin RD10
75	RP75	Port Pin RD11
76	RP76	Port Pin RD12
77	RP77	Port Pin RD13
78	RP78	Port Pin RD14
79	RP79	Port Pin RD15
80-175	RP80-RP175	Reserved
176	RP176	Virtual RPV0
177	RP177	Virtual RPV1
178	RP178	Virtual RPV2
179	RP179	Virtual RPV3
180	RP180	Virtual RPV4
181	RP181	Virtual RPV5

TABLE 8-4: REMAPPABLE PIN INPUTS (CONTINUED)

#### 8.5.6 VIRTUAL CONNECTIONS

The dsPIC33CK256MP508 devices support six virtual RPn pins (RP176-RP181), which are identical in functionality to all other RPn pins, with the exception of pinouts. These six pins are internal to the devices and are not connected to a physical device pin.

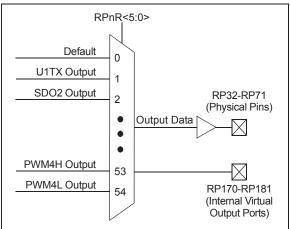
These pins provide a simple way for inter-peripheral connection without utilizing a physical pin. For example, the output of the analog comparator can be connected to RP176 and the PWM Fault input can be configured for RP176 as well. This configuration allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

INT1 INT2 INT3 T1CK TCK11 ICM1 TCK12 ICM2 TCK13 ICM3	RPINR0RPINR1RPINR1RPINR2RPINR3RPINR3RPINR4RPINR4RPINR5	INT1R<7:0>           INT2R<7:0>           INT3R<7:0>           T1CK<7:0>           TCKI1R<7:0>           ICM1R<7:0>           TCKI2R<7:0>
INT3 T1CK TCKI1 ICM1 TCKI2 ICM2 TCKI3 ICM3	RPINR1 RPINR2 RPINR3 RPINR3 RPINR4 RPINR4	INT3R<7:0> T1CK<7:0> TCKI1R<7:0> ICM1R<7:0> TCKI2R<7:0>
T1CK TCKI1 ICM1 TCKI2 ICM2 TCKI3 ICM3	RPINR2 RPINR3 RPINR3 RPINR4 RPINR4	T1CK<7:0>           TCKI1R<7:0>           ICM1R<7:0>           TCKI2R<7:0>
TCKI1 ICM1 TCKI2 ICM2 TCKI3 ICM3	RPINR3 RPINR3 RPINR4 RPINR4	TCKI1R<7:0> ICM1R<7:0> TCKI2R<7:0>
ICM1 TCKI2 ICM2 TCKI3 ICM3	RPINR3 RPINR4 RPINR4	ICM1R<7:0> TCKI2R<7:0>
TCKI2 ICM2 TCKI3 ICM3	RPINR4 RPINR4	TCKI2R<7:0>
ICM2 TCKI3 ICM3	RPINR4	
TCKI3 ICM3		
ICM3	DDINIDE	ICM2R<7:0>
	TTE INITED	TCKI3R<7:0>
	RPINR5	ICM3R<7:0>
TCKI4	RPINR6	TCKI4R<7:0>
ICM4	RPINR6	ICM4R<7:0>
TCKI5	RPINR7	TCKI5R<7:0>
ICM5	RPINR7	ICM5R<7:0>
TCKI6	RPINR8	TCKI6R<7:0>
ICM6	RPINR8	ICM6R<7:0>
TCKI7	RPINR9	TCKI7R<7:0>
ICM7	RPINR9	ICM7R<7:0>
TCKI8	RPINR10	TCKI8R<7:0>
ICM8	RPINR10	ICM8R<7:0>
OCFA	RPINR11	OCFAR<7:0>
OCFB	RPINR11	OCFBR<7:0>
PCI8	RPINR12	PCI8R<7:0>
PCI9	RPINR12	PCI9R<7:0>
PCI10	RPINR13	PCI10R<7:0>
PCI11	RPINR13	PCI11R<7:0>
QEIA1	RPINR14	QEIA1R<7:0>
QEIB1	RPINR14	QEIB1R<7:0>
QEINDX1	RPINR15	QEINDX1R<7:0>
QEIHOM1	RPINR15	QEIHOM1R<7:0>
QEIA2	RPINR16	QEIA2R<7:0>
QEIB2	RPINR16	QEIB2R<7:0>
QEINDX2	RPINR17	QEINDX2R<7:0>
QEIHOM2	RPINR17	QEIHOM2R<7:0>
U1RX	RPINR18	U1RXR<7:0>
U1DSR	RPINR18	U1DSRR<7:0>
U2RX	RPINR19	U2RXR<7:0>
U2DSR	RPINR19	U2DSRR<7:0>
SDI1	RPINR20	SDI1R<7:0>
		SCK1R<7:0>
		SS1R<7:0>
		REFOIR<7:0>
SDI2	RPINR22	SDI2R<7:0>
	ICM6           TCKI7           ICM7           TCKI8           ICM8           OCFA           OCFB           PCI8           PCI9           PCI10           PCI11           QEIA1           QEINDX1           QEINDX1           QEIB2           QEINDX2           QEINDX3           QEINDX2           QEINDX2           QEINDX2           QEINDX3           REFOI	ICM6         RPINR8           TCKI7         RPINR9           ICM7         RPINR9           TCKI8         RPINR10           ICM8         RPINR10           OCFA         RPINR11           OCFB         RPINR12           PCI9         RPINR12           PCI10         RPINR13           PCI11         RPINR13           QEIA1         RPINR14           QEIA1         RPINR15           QEIA2         RPINR16           QEIA2         RPINR16           QEIA2         RPINR17           QEIHOM1         RPINR17           QEIHOM2         RPINR17           QEIHOM2         RPINR18           QEIHOM2         RPINR17           QEIHOM3         RPINR17           QEIHOM4         RPINR18           QEIHOM5         RPINR18           QEIHOM2         RPINR17           QEIHOM3         RPINR18           QEIHOM4         RPINR18           QEIHOM5         RPINR18           QEIHOM2         RPINR18           QEIHOM3         RPINR18           QEIHOM4         RPINR18           QEIHOM5         RPINR19

#### TABLE 8-5: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)

Input Name ⁽¹⁾	Function Name	Register	Register Bits
SPI2 Clock Input	SCK2IN	RPINR22	SCK2R<7:0>
SPI2 Slave Select	SS2	RPINR23	SS2R<7:0>
CAN1 Input	CAN1RX	RPINR26	CAN1RXR<7:0>
UART3 Receive	U3RX	RPINR27	U3RXR<7:0>
UART3 Data-Set-Ready	U3DSR	RPINR27	U3DSRR<7:0>
SPI3 Data Input	SDI3	RPINR29	SDI3R<7:0>
SPI3 Clock Input	SCK3IN	RPINR29	SCK3R<7:0>
SPI3 Slave Select	SS3	RPINR30	SS3R<7:0>
MCCP Timer9	TCKI9	RPINR32	TCKI9R<7:0>
MCCP Capture 9	ICM9	RPINR33	ICM9R<7:0>
xCCP Fault C	OCFC	RPINR37	OCFCR<7:0>
PWM Input 17	PCI17	RPINR37	PCI17R<7:0>
PWM Input 18	PCI18	RPINR38	PCI18R<7:0>
PWM Input 12	PCI12	RPINR42	PCI12R<7:0>
PWM Input 13	PCI13	RPINR42	PCI13R<7:0>
PWM Input 14	PCI14	RPINR43	PCI14R<7:0>
PWM Input 15	PCI15	RPINR43	PCI15R<7:0>
PWM Input 16	PCI16	RPINR44	PCI16R<7:0>
SENT1 Input	SENT1	RPINR44	SENT1R<7:0>
SENT2 Input	SENT2	RPINR45	SENT2R<7:0>
CLC Input A	CLCINA	RPINR45	CLCINAR<7:0>
CLC Input B	CLCINB	RPINR46	CLCINBR<7:0>
CLC Input C	CLCINC	RPINR46	CLCINCR<7:0>
CLC Input D	CLCIND	RPINR47	CLCINDR<7:0>
ADC Trigger Input (ADTRIG31)	ADCTRG	RPINR47	ADCTRGR<7:0>
xCCP Fault D	OCFD	RPINR48	OCFDR<7:0>
UART1 Clear-to-Send	U1CTS	RPINR48	U1CTSR<7:0>
UART2 Clear-to-Send	U2CTS	RPINR49	U2CTSR<7:0>
UART3 Clear-to-Send	U3CTS	RPINR49	U3CTSR<7:0>

<b>TABLE 8-5</b> :		
IADLE 0-J.	SELECTABLE INFUT SOURCES	(MAPS INPUT TO FUNCTION) (CONTINUED)


Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

# 8.5.7 OUTPUT MAPPING

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Each register contains sets of 6-bit fields, with each set associated with one RPn pin (see Register 8-54 through Register 8-80). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 8-7 and Figure 8-3).

A null output is associated with the output register Reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

#### FIGURE 8-3: MULTIPLEXING REMAPPABLE OUTPUTS FOR RPn



**Note 1:** There are 6 virtual output ports which are not connected to any I/O ports (RP176-RP181). These virtual ports can be accessed by RPOR20, RPOR21 and RPOR22.

#### 8.5.8 MAPPING LIMITATIONS

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally, any combination of peripheral mappings, across any or all of the RPn pins, is possible. This includes both many-to-one and one-to-many mappings of peripheral inputs, and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view (see Table 8-6).

Register	RP Pin	I/O Port
RPOR0<5:0>	RP32	Port Pin RB0
RPOR0<13:8>	RP33	Port Pin RB1
RPOR1<5:0>	RP34	Port Pin RB2
RPOR1<13:8>	RP35	Port Pin RB3
RPOR2<5:0>	RP36	Port Pin RB4
RPOR2<13:8>	RP37	Port Pin RB5
RPOR3<5:0>	RP38	Port Pin RB6
RPOR3<13:8>	RP39	Port Pin RB7
RPOR4<5:0>	RP40	Port Pin RB8
RPOR4<13:8>	RP41	Port Pin RB9
RPOR5<5:0>	RP42	Port Pin RB10
RPOR5<13:8>	RP43	Port Pin RB11
RPOR6<5:0>	RP44	Port Pin RB12
RPOR6<13:8>	RP45	Port Pin RB13
RPOR7<5:0>	RP46	Port Pin RB14
RPOR7<13:8>	RP47	Port Pin RB15
RPOR8<5:0>(1)	RP48	Port Pin RC0
RPOR8<13:8> ⁽¹⁾	RP49	Port Pin RC1
RPOR9<5:0> ⁽¹⁾	RP50	Port Pin RC2
RPOR9<13:8>(1)	RP51	Port Pin RC3
RPOR10<5:0>(1)	RP52	Port Pin RC4
RPOR10<13:8> ⁽¹⁾	RP53	Port Pin RC5
RPOR11<5:0> ⁽¹⁾	RP54	Port Pin RC6
RPOR11<13:8> ⁽¹⁾	RP55	Port Pin RC7
RPOR12<5:0> ⁽¹⁾	RP56	Port Pin RC8
RPOR12<13:8> ⁽¹⁾	RP57	Port Pin RC9
RPOR13<5:0> ⁽¹⁾	RP58	Port Pin RC10
RPOR13<13:8> ⁽¹⁾	RP59	Port Pin RC11
RPOR14<5:0> ⁽¹⁾	RP60	Port Pin RC12
RPOR14<13:8> ⁽¹⁾	RP61	Port Pin RC13
RPOR15<5:0> ⁽¹⁾	RP62	Port Pin RC14
RPOR15<13:8> ⁽¹⁾	RP63	Port Pin RC15
RPOR16<5:0> ⁽¹⁾	RP64	Port Pin RD0
RPOR16<13:8> ⁽¹⁾	RP65	Port Pin RD1
RPOR17<5:0> ⁽¹⁾	RP66	Port Pin RD2
RPOR17<13:8> ⁽¹⁾	RP67	Port Pin RD3
RPOR18<5:0> ⁽¹⁾	RP68	Port Pin RD4
RPOR18<13:8> ⁽¹⁾	RP69	Port Pin RD5
RPOR19<5:0> ⁽¹⁾	RP70	Port Pin RD6
RPOR19<13:8> ⁽¹⁾	RP71	Port Pin RD7
RPOR20<5:0> ⁽¹⁾	RP72	Port Pin RD8
RPOR20<13:8> ⁽¹⁾	RP73	Port Pin RD9
RPOR21<5:0> ⁽¹⁾	RP74	Port Pin D10

TABLE 8-6: REMAPPABLE OUTPUT PIN REGISTERS

Note 1: Availability is dependent on supported I/O ports. Refer to Table 8-1 for availability on package variants.

TABLE 8-6: REMAP	PABLE OUTPUT PIN REGISTERS (CONTINUED)
------------------	----------------------------------------

Register	RP Pin	I/O Port
RPOR21<13:8> ⁽¹⁾	RP75	Port Pin RD11
RPOR22<5:0> ⁽¹⁾	RP76	Port Pin RD12
RPOR22<13:8> ⁽¹⁾	RP77	Port Pin RD13
RPOR23<5:0> ⁽¹⁾	RP78	Port Pin RD14
RPOR23<13:8> ⁽¹⁾	RP79	Port Pin RD15
	RP80-RP175	Reserved
RPOR24<5:0>	RP176	Virtual Pin RPV0
RPOR24<13:8>	RP177	Virtual Pin RPV1
RPOR25<5:0>	RP178	Virtual Pin RPV2
RPOR25<13:8>	RP179	Virtual Pin RPV3
RPOR26<5:0>	RP180	Virtual Pin RPV4
RPOR26<13:8>	RP181	Virtual Pin RPV5

Note 1: Availability is dependent on supported I/O ports. Refer to Table 8-1 for availability on package variants.

Function	RPnR<5:0>	Output Name
Default PORT	000000	RPn tied to Default Pin
U1TX	000001	RPn tied to UART1 Transmit
U1RTS	000010	RPn tied to UART1 Request-to-Send
U2TX	000011	RPn tied to UART2 Transmit
U2RTS	000100	RPn tied to UART2 Request-to-Send
SDO1	000101	RPn tied to SPI1 Data Output
SCK1	000110	RPn tied to SPI1 Clock Output
SS1	000111	RPn tied to SPI1 Slave Select
SDO2	001000	RPn tied to SPI2 Data Output
SCK2	001001	RPn tied to SPI2 Clock Output
SS2	001010	RPn tied to SPI2 Slave Select
SDO3	001011	RPn tied to SPI3 Data Output
SCK3	001100	RPn tied to SPI3 Clock Output
SS3	001101	RPn tied to SPI3 Slave Select
REFCLKO	001110	RPn tied to Reference Clock Output
OCM1	001111	RPn tied to SCCP1 Output
OCM2	010000	RPn tied to SCCP2 Output
OCM3	010001	RPn tied to SCCP3 Output
OCM4	010010	RPn tied to SCCP4 Output
OCM5	010011	RPn tied to SCCP5 Output
OCM6	010100	RPn tied to SCCP6 Output
CAN1	010101	RPn tied to CAN1 Output
CMP1	010111	RPn tied to Comparator 1 Output
CMP2	011000	RPn tied to Comparator 2 Output
CMP3	011001	RPn tied to Comparator 3 Output
U3TX	011011	RPn tied to UART3 Transmit
U3RTS	011100	RPn tied to UART3 Request-to-Send
PWM4H	100010	RPn tied to PWM4H Output
PWM4L	100011	RPn tied to PWM4L Output
PWMEA	100100	RPn tied to PWM Event A Output
PWMEB	100101	RPn tied to PWM Event B Output
QEICMP1	100110	RPn tied to QEI1 Comparator Output
QEICMP2	100111	RPn tied to QEI2 Comparator Output
CLC10UT	101000	RPn tied to CLC1 Output
CLC2OUT	101001	RPn tied to CLC2 Output
OCM7	101010	RPn tied to SCCP7 Output
OCM8	101011	RPn tied to SCCP8 Output
PWMEC	101100	RPn tied to PWM Event C Output
PWMED	101101	RPn tied to PWM Event D Output
PTGTRG24	101110	PTG Trigger Output 24
PTGTRG25	101111	PTG Trigger Output 25
SENT1OUT	110000	RPn tied to SENT1 Output
SENT2OUT	110001	RPn tied to SENT2 Output

Function	RPnR<5:0>	Output Name
MCCP9A	110010	RPn tied to MCCP9 Output A
MCCP9B	110011	RPn tied to MCCP9 Output B
MCCP9C	110100	RPn tied to MCCP9 Output C
MCCP9D	110101	RPn tied to MCCP9 Output D
MCCP9E	110110	RPn tied to MCCP9 Output E
MCCP9F	110111	RPn tied to MCCP9 Output F
CLC3OUT	111011	RPn tied to CLC4 Output
CLC4OUT	111100	RPn tied to CLC4 Output
U1DTR	111101	RPn tied to UART1 DTR
U2DTR	111110	RPn tied to UART2 DTR
U3DTR	111111	RPn tied to UART3 DTR

# TABLE 8-7: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn) (CONTINUED)

#### 8.5.9 I/O HELPFUL TIPS

- 1. In some cases, certain pins, as defined in Table 33-15 under "Injection Current", have internal protection diodes to VDD and Vss. The term, "Injection Current", is also referred to as "Clamp Current". On designated pins, with sufficient external current-limiting precautions by the user, I/O pin input voltages are allowed to be greater or lesser than the data sheet absolute maximum ratings, with respect to the Vss and VDD supplies. Note that when the user application forward biases either of the high or low-side internal input clamp diodes, that the resulting current being injected into the device that is clamped internally by the VDD and Vss power rails, may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin (i.e., ANx) are always analog pins, by default, after any Reset. Consequently, configuring a pin as an analog input pin automatically disables the digital input pin buffer and any attempt to read the digital input level by reading PORTx or LATx will always return a '0', regardless of the digital logic level on the pin. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the Analog Select for PORTx registers in the I/O ports module (i.e., ANSELx) by setting the appropriate bit that corresponds to that I/O port pin to a '0'.
  - **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function,  $TRISx = 0 \times 0$ , while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.

- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in this data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name, from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1; this indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.
- 4. Each pin has an internal weak pull-up resistor and pull-down resistor that can be configured using the CNPUx and CNPDx registers, respectively. These resistors eliminate the need for external resistors in certain applications. The internal pull-up is up to ~(VDD - 0.8), not VDD. This value is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristics specification. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH, and at or below the VOL levels. However, for LEDs, unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the Absolute Maximum Ratings in Section 33.0 "Electrical Characteristics" of this data sheet. For example:

VOH = 2.4v @ IOH = -8 mA and VDD = 3.3VThe maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current < 12 mA is technically permitted.

- 6. The Peripheral Pin Select (PPS) pin mapping rules are as follows:
  - a) Only one "output" function can be active on a given pin at any time, regardless if it is a dedicated or remappable function (one pin, one output).
  - b) It is possible to assign a "remappable output" function to multiple pins and externally short or tie them together for increased current drive.
  - c) If any "dedicated output" function is enabled on a pin, it will take precedence over any remappable "output" function.
  - d) If any "dedicated digital" (input or output) function is enabled on a pin, any number of "input" remappable functions can be mapped to the same pin.
  - e) If any "dedicated analog" function(s) are enabled on a given pin, "digital input(s)" of any kind will all be disabled, although a single "digital output", at the user's cautionary discretion, can be enabled and active as long as there is no signal contention with an external analog input signal. For example, it is possible for the ADC to convert the digital output logic level, or to toggle a digital output on a comparator or ADC input, provided there is no external analog input, such as for a built-in self-test.
  - f) Any number of "input" remappable functions can be mapped to the same pin(s) at the same time, including to any pin with a single output from either a dedicated or remappable "output".
  - g) The TRISx registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRISx setting. The TRISx register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRISx settings, which means that the TRISx bit must be set to input for pins with only remappable input function(s) assigned.
  - h) All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin has been disabled. Only the Analog Select for PORTx (ANSELx) registers control the digital input buffer, *not* the TRISx register. The user must disable the analog function on a pin using the Analog Select for PORTx registers in order to use any "digital input(s)" on a corresponding pin, no exceptions.

# 8.5.10 I/O PORTS RESOURCES

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page contains the latest updates and additional information.

#### 8.5.10.1 Key Resources

- "I/O Ports with Edge Detect" (DS70005322) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

<b>TABLE 8-8:</b>		<b>JRTA RE</b>	GISTER	PORTA REGISTER SUMMARY	۲۲											
Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ANSELA					I					1			4	ANSELA<4:0>		
TRISA				1	1	1		1	1	1	1			TRISA<4:0>		
PORTA			1	1	1	1		1	1	1	1			RA<4:0>		
LATA		Ι	Ι	I	I	1	1	1	1	1	1			LATA<4:0>		
ODCA				1	1	1		1	1	1	1			ODCA<4:0>		
CNPUA			I	1	I	1	1	1	1	1	1			CNPUA<4:0>		
CNPDA		Ι	Ι	I	I	1	1	1	1	1	1		-	CNPDA<4:0>		
CNCONA	NO	I	Ι	I	CNSTYLE	1			1			I	Ι		Ι	Ι
CNEN0A			I	1	I	1	1	1	1	1	1			CNEN0A<4:0>	_	
CNSTATA		Ι	Ι	I	I	1	1	1	1	1	1		0	CNSTATA<4:0>	4	
CNEN1A			Ι		Ι									CNEN1A<4:0>	^	
CNFA		I	I	I	I			1	1		I			CNFA<4:0>		

<b>TABLE 8-9:</b>		PORTB REGISTER SUMMARY	SISTER SI	UMMARY												
Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ANSELB					I		AN	ANSELB<9:7>	7>				A	ANSELB<4:0>	<0	
TRISB							TRI	TRISB<15:0>								
PORTB							R	RB<15:0>								
LATB							ΓA	LATB<15:0>								
ODCB							OD	ODCB<15:0>								
CNPUB							CNF	CNPUB<15:0>	^							
CNPDB							CNF	CNPDB<15:0>	^							
CNCONB	NO	Ι	Ι	Ι	CNSTYLE	I		1	1	1	1	I	I	Ι	Ι	Ι
CNENOB							CNE	CNEN0<15:0>								
CNSTATB							CNS.	CNSTATB<15:0>	<							
CNEN1B							CNE	CNEN1B<15:0>	4							
CNFB							CN	CNFB<15:0>								

# dsPIC33CK256MP508 FAMILY

© 2017-2018 Microchip Technology Inc.

	TABLE 8-10: PORTC REGISTER SUMMARY															
Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ANSELC	I	I	1	1	I	1	1		ANSE	ANSELC<7:6>				ANSEL	ANSELC<3:0>	
TRISC								TRISC<15:0>	<15:0>							
PORTC								RC<15:0>	5:0>							
LATC								LATC<15:0>	:15:0>							
ODCC								ODCC<15:0>	<15:0>							
CNPUC								CNPUC<15:0>	<15:0>							
CNPDC								CNPDC<15:0>	<15:0>							
CNCONC	NO	I		I	CNSTYLE	I ш						Ι	Ι	Ι		Ι
CNENOC								CNEN0C<15:0>	C<15:0>							
CNSTATC								CNSTATC<15:0>	C<15:0>							
CNEN1C								CNEN1C<15:0>	C<15:0>							
CNFC								CNFC<15:0>	<15:0>							
<b>TABLE 8-11</b> :		PORTD REGISTER SUMMARY	GISTER (	SUMMAR	۲											
Register	Bit 15	Bit 14	Bit 13	Bit 12		Bit 11 E	Bit 10 I	Bit 9	Bit 8	Bit 7 E	Bit 6 Bi	Bit 5 Bit 4	4 Bit 3	3 Bit 2	Bit 1	Bit 0
ANSELD			ANSELD<13>	13>	٩.	ANSELD<11:10>	10>									
TRISD								TRISD<15:0>	:15:0>							
PORTD								RD<15:0>	5:0>							
LATD								LATD<15:0>	15:0>							
ODCD								ODCD<15:0>	:15:0>							
CNPUD								CNPUD<15:0>	<15:0>							

#### DS70005349E-page 144

CNFD

CNPDD<15:0>

**CNSTYLE** 

NO

CNCOND

CNPDD

CNENOD

CNSTATD CNEN1D

CNEN0D<15:0> CNSTATD<15:0>

CNEN1D<15:0>

CNFD<15:0>

# dsPIC33CK256MP508 FAMILY

IABLE 8-12: PORIE REGISIER SUMMARY	רב: רב:		פוסובע	SUMINIAR	C L											
Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ANSLE	I	I			I			I		I	I	I	I	I	I	
TRISE							-	TRISE<15:0>	<0							
PORTE								RE<15:0>	۸							
LATE								LATE<15:0>	~							
ODCE								ODCE<15:0>	<0							
CNPUE							0	CNPUE<15:0>	<0;							
CNPDE							0	CNPDE<15:0>	<0>							
CNCONE	NO	Ι	Ι		CNSTYLE	I	1	1		1	I		I	I	I	I
CNENOE							Ū	CNEN0E<15:0>	5:0>							
CNSTATE							C	CNSTATE<15:0>	5:0>							
<b>CNEN1E</b>							Ū	CNEN1E<15:0>	2:0>							
CNFE							-	CNFE<15:0>	<0							

PORTE REGISTER SUMMARY TARI F 8-12.

## 8.5.11 PERIPHERAL PIN SELECT REGISTERS

# REGISTER 8-13: RPCON: PERIPHERAL REMAPPING CONFIGURATION REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
—	—	—	—	IOLOCK	—	—	—
bit 15	·			•			bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	_
bit 7	·			•			bit 0

# Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

bit 11 IOLOCK: Peripheral Remapping Register Lock bit

1 = All Peripheral Remapping registers are locked and cannot be written

0 = All Peripheral Remapping registers are unlocked and can be written

bit 10-0 Unimplemented: Read as '0'

Note 1: Writing to this register needs an unlock sequence (see Section 8.5.3 "Controlling Configuration Changes").

# REGISTER 8-14: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INT1R7	INT1R6	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	_	_	_	_
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 INT1R<7:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 Unimplemented: Read as '0'

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| INT3R7 | INT3R6 | INT3R5 | INT3R4 | INT3R3 | INT3R2 | INT3R1 | INT3R0 |
| bit 15 | •      |        |        |        |        |        | bit 8  |
|        |        |        |        |        |        |        |        |
| R/W-0  |
| INT2R7 | INT2R6 | INT2R5 | INT2R4 | INT2R3 | INT2R2 | INT2R1 | INT2R0 |
| bit 7  |        |        |        |        |        |        | bit 0  |

# REGISTER 8-15: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8INT3R<7:0>: Assign External Interrupt 3 (INT3) to the Corresponding RPn Pin bits<br/>See Table 8-4.bit 7-0INT2R<7:0>: Assign External Interrupt 2 (INT2) to the Corresponding RPn Pin bits

bit 7-0 INT2R<7:0>: Assign External Interrupt 2 (INT2) to the Corresponding RPn Pin bits See Table 8-4.

## REGISTER 8-16: RPINR2: PERIPHERAL PIN SELECT INPUT REGISTER 2

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| T1CKR7 | T1CKR6 | T1CKR5 | T1CKR4 | T1CKR3 | T1CKR2 | T1CKR1 | T1CKR0 |
| bit 15 |        |        |        |        |        |        | bit 8  |

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **T1CKR<7:0>:** Assign Timer1 External Clock (T1CK) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 Unimplemented: Read as '0'

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ICM1R7  | ICM1R6  | ICM1R5  | ICM1R4  | ICM1R3  | ICM1R2  | ICM1R1  | ICM1R0  |
| bit 15  | •       |         |         |         | •       | •       | bit 8   |
|         |         |         |         |         |         |         |         |
| R/W-0   |
TCKI1R7	TCKI1R6	TCKI1R5	TCKI1R4	TCKI1R3	TCKI1R2	TCKI1R1	TCKI1R0
bit 7					•	•	bit 0
Logondu							

## REGISTER 8-17: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

14	_egend:			
F	R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-	n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 ICM1R<7:0>: Assign SCCP Capture 1 (ICM1) Input to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **TCKI1<7:0>:** Assign SCCP Timer1 (TCKI1) Input to the Corresponding RPn Pin bits See Table 8-4.

# REGISTER 8-18: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ICM2R7 | ICM2R6 | ICM2R5 | ICM2R4 | ICM2R3 | ICM2R2 | ICM2R1 | ICM2R0 |
| bit 15 |        |        |        |        |        |        | bit 8  |

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TCKI2R7 | TCKI2R6 | TCKI2R5 | TCKI2R4 | TCKI2R3 | TCKI2R2 | TCKI2R1 | TCKI2R0 |
| bit 7   |         |         |         |         |         |         | bit 0   |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 ICM2R<7:0>: Assign SCCP Capture 2 (ICM2) Input to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **TCKI2R<7:0>:** Assign SCCP Timer2 (TCKI2) Input to the Corresponding RPn Pin bits See Table 8-4.

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ICM3R7 | ICM3R6 | ICM3R5 | ICM3R4 | ICM3R3 | ICM3R2 | ICM3R1 | ICM3R0 |
| bit 15 |        |        |        |        |        |        | bit 8  |
|        |        |        |        |        |        |        |        |

# REGISTER 8-19: RPINR5: PERIPHERAL PIN SELECT INPUT REGISTER 5

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TCKI3R7 | TCKI3R6 | TCKI3R5 | TCKI3R4 | TCKI3R3 | TCKI3R2 | TCKI3R1 | TCKI3R0 |
| bit 7   |         |         |         |         |         |         | bit 0   |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 ICM3R<7:0>: Assign SCCP Capture 3 (ICM3) Input to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **TCKI3R<7:0>:** Assign SCCP Timer3 (TCKI3) Input to the Corresponding RPn Pin bits See Table 8-4.

## REGISTER 8-20: RPINR6: PERIPHERAL PIN SELECT INPUT REGISTER 6

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ICM4R7 | ICM4R6 | ICM4R5 | ICM4R4 | ICM4R3 | ICM4R2 | ICM4R1 | ICM4R0 |
| bit 15 |        |        |        |        |        |        | bit 8  |

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TCKI4R7 | TCKI4R6 | TCKI4R5 | TCKI4R4 | TCKI4R3 | TCKI4R2 | TCKI4R1 | TCKI4R0 |
| bit 7   |         |         |         |         |         |         | bit 0   |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 ICM4R<7:0>: Assign SCCP Capture 4 (ICM4) Input to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **TCKI4R<7:0>:** Assign SCCP Timer4 (TCKI4) Input to the Corresponding RPn Pin bits See Table 8-4.

REGISTER 8-21:	<b>RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7</b>
----------------	-------------------------------------------------------

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ICM5R7  | ICM5R6  | ICM5R5  | ICM5R4  | ICM5R3  | ICM5R2  | ICM5R1  | ICM5R0  |
| bit 15  | •       |         |         |         |         |         | bit 8   |
|         |         |         |         |         |         |         |         |
| R/W-0   |
TCKI5R7	TCKI5R6	TCKI5R5	TCKI5R4	TCKI5R3	TCKI5R2	TCKI5R1	TCKI5R0
bit 7	•						bit 0
Legend:							

U			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 ICM5R<7:0>: Assign SCCP Capture 5 (ICM5) Input to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **TCKI5R<7:0>:** Assign SCCP Timer5 (TCKI5) Input to the Corresponding RPn Pin bits See Table 8-4.

# REGISTER 8-22: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ICM6R7 | ICM6R6 | ICM6R5 | ICM6R4 | ICM6R3 | ICM6R2 | ICM6R1 | ICM6R0 |
| bit 15 |        |        |        |        |        |        | bit 8  |

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TCKI6R7 | TCKI6R6 | TCKI6R5 | TCKI6R4 | TCKI6R3 | TCKI6R2 | TCKI6R1 | TCKI6R0 |
| bit 7   |         |         |         |         |         |         | bit 0   |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 ICM6R<7:0>: Assign SCCP Capture 6 (ICM6) Input to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **TCKI6R<7:0>:** Assign SCCP Timer6 (TCKI6) Input to the Corresponding RPn Pin bits See Table 8-4.

bit 15							bit 8
ICM7R7	ICM7R6	ICM7R5	ICM7R4	ICM7R3	ICM7R2	ICM7R1	ICM7R0
R/W-0							

# REGISTER 8-23: RPINR9: PERIPHERAL PIN SELECT INPUT REGISTER 9

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TCKI7R7 | TCKI7R6 | TCKI7R5 | TCKI7R4 | TCKI7R3 | TCKI7R2 | TCKI7R1 | TCKI7R0 |
| bit 7   |         |         |         |         |         |         | bit 0   |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 ICM7R<7:0>: Assign SCCP Capture 7 (ICM7) Input to the Corresponding RPn Pin bits See Table 8-4.

# REGISTER 8-24: RPINR10: PERIPHERAL PIN SELECT INPUT REGISTER 10

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ICM8R7 | ICM8R6 | ICM8R5 | ICM8R4 | ICM8R3 | ICM8R2 | ICM8R1 | ICM8R0 |
| bit 15 |        |        |        |        |        |        | bit 8  |

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TCKI8R7 | TCKI8R6 | TCKI8R5 | TCKI8R4 | TCKI8R3 | TCKI8R2 | TCKI8R1 | TCKI8R0 |
| bit 7   |         |         |         |         |         |         | bit 0   |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 ICM8R<7:0>: Assign SCCP Capture 8 (ICM8) Input to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **TCKI8R<7:0>:** Assign SCCP Timer8 (TCKI8) Input to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **TCKI7R<7:0>:** Assign SCCP Timer7 (TCKI7) Input to the Corresponding RPn Pin bits See Table 8-4.

## REGISTER 8-25: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| OCFBR7 | OCFBR6 | OCFBR5 | OCFBR4 | OCFBR3 | OCFBR2 | OCFBR1 | OCFBR0 |
| bit 15 |        |        |        |        |        |        | bit 8  |
|        |        |        |        |        |        |        |        |
| R/\/_0 | R/W_0  | R/W_0  | R/\/_0 | R/W_0  | R/\/_0 | R/\/_0 | R/\/_0 |

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| OCFAR7 | OCFAR6 | OCFAR5 | OCFAR4 | OCFAR3 | OCFAR2 | OCFAR1 | OCFAR0 |
| bit 7  |        |        |        |        |        |        | bit 0  |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **OCFBR<7:0>:** Assign SCCP Fault B (OCFB) Input to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 OCFAR<7:0>: Assign SCCP Fault A (OCFA) Input to the Corresponding RPn Pin bits See Table 8-4.

## REGISTER 8-26: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PCI9R7 | PCI9R6 | PCI9R5 | PCI9R4 | PCI9R3 | PCI9R2 | PCI9R1 | PCI9R0 |
| bit 15 |        |        |        |        |        |        | bit 8  |

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PCI8R7 | PCI8R6 | PCI8R5 | PCI8R4 | PCI8R3 | PCI8R2 | PCI8R1 | PCI8R0 |
| bit 7  |        |        |        |        |        |        | bit 0  |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **PCI9R<7:0>:** Assign PWM Input 9 (PCI9) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **PCI8R<7:0>:** Assign PWM Input 8 (PCI8) to the Corresponding RPn Pin bits See Table 8-4.

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI11R7 | PCI11R6 | PCI11R5 | PCI11R4 | PCI11R3 | PCI11R2 | PCI11R1 | PCI11R0 |
| bit 15  |         |         |         |         |         |         | bit 8   |

## REGISTER 8-27: RPINR13: PERIPHERAL PIN SELECT INPUT REGISTER 13

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI10R7 | PCI10R6 | PCI10R5 | PCI10R4 | PCI10R3 | PCI10R2 | PCI10R1 | PCI10R0 |
| bit 7   |         |         |         |         |         |         | bit 0   |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 PCI11R<7:0>: Assign PWM Input 11 (PCI11) to the Corresponding RPn Pin bits See Table 8-4. bit 7.0 PCI10P<7:0>: Assign PWM Input 10 (PCI10) to the Corresponding RPn Pin bits

bit 7-0 PCI10R<7:0>: Assign PWM Input 10 (PCI10) to the Corresponding RPn Pin bits See Table 8-4.

## REGISTER 8-28: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| QEIB1R7 | QEIB1R6 | QEIB1R5 | QEIB1R4 | QEIB1R3 | QEIB1R2 | QEIB1R1 | QEIB1R0 |
| bit 15  |         |         |         |         |         |         | bit 8   |

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| QEIA1R7 | QEIA1R6 | QEIA1R5 | QEIA1R4 | QEIA1R3 | QEIA1R2 | QEIA1R1 | QEIA1R0 |
| bit 7   |         |         |         |         |         |         | bit 0   |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **QEIB1R<7:0>:** Assign QEI1 Input B (QEIB1) to the Corresponding RPn Pin bits See Table 8-4. bit 7-0 **QEIA1R<7:0>:** Assign QEI1 Input A (QEIA1) to the Corresponding RPn Pin bits

bit 7-0 **QEIA1R<7:0>:** Assign QEI1 Input A (QEIA1) to the Corresponding RPn Pin bits See Table 8-4.

## REGISTER 8-29: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15

| R/W-0     |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| QEIHOM1R7 | QEIHOM1R6 | QEIHOM1R5 | QEIHOM1R4 | QEIHOM1R3 | QEIHOM1R2 | QEIHOM1R1 | QEIHOM1R0 |
| bit 15    |           |           |           |           |           | •         | bit 8     |
|           |           |           |           |           |           |           |           |
| R/W-0     |

	R/W-U	R/W-U	R/W-0	R/W-U	R/W-U	R/W-0	R/W-0	R/W-U
	QEINDX1R7	QEINDX1R6	QEINDX1R5	QEINDX1R4	QEINDX1R3	QEINDX1R2	QEINDX1R1	QEINDX1R0
k	pit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **QEIHOM1R<7:0>:** Assign QEI Home 1 Input (QEIHOM1) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **QEINDX1R<7:0>:** Assign QEI Index 1 Input (QEINDX1) to the Corresponding RPn Pin bits See Table 8-4.

#### REGISTER 8-30: RPINR16: PERIPHERAL PIN SELECT INPUT REGISTER 16

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| QEIB2R7 | QEIB2R6 | QEIB2R5 | QEIB2R4 | QEIB2R3 | QEIB2R2 | QEIB2R1 | QEIB2R0 |
| bit 15  |         |         |         |         |         |         | bit 8   |
|         |         |         |         |         |         |         |         |
| R/W-0   |
QEIA2R7	QEIA2R6	QEIA2R5	QEIA2R4	QEIA2R3	QEIA2R2	QEIA2R1	QEIA2R0
bit 7							bit 0
Legend:							

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **QEIB2R<7:0>:** Assign QEI2 Input B (QEIB2) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **QEIA2R<7:0>:** Assign QEI2 Input A (QEIA2) to the Corresponding RPn Pin bits See Table 8-4.

## REGISTER 8-31: RPINR17: PERIPHERAL PIN SELECT INPUT REGISTER 17

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QEIHOM2R7	QEIHOM2R6	QEIHOM2R5	QEIHOM2R4	QEIHOM2R3	QEIHOM2R2	QEIHOM2R1	QEIHOM2R0
bit 15				· · · · · ·			bit 8

| R/W-0     |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| QEINDX2R7 | QEINDX2R6 | QEINDX2R5 | QEINDX2R4 | QEINDX2R3 | QEINDX2R2 | QEINDX2R1 | QEINDX2R0 |
| bit 7     |           |           |           |           |           |           | bit 0     |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **QEIHOM2R<7:0>:** Assign QEI Home 2 Input (QEIHOM2) to the Corresponding RPn Pin bits See Table 8-4.

# REGISTER 8-32: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| U1DSRR7 | U1DSRR6 | U1DSRR5 | U1DSRR4 | U1DSRR3 | U1DSRR2 | U1DSRR1 | U1DSRR0 |
| bit 15  |         |         |         |         |         |         | bit 8   |

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| U1RXR7 | U1RXR6 | U1RXR5 | U1RXR4 | U1RXR3 | U1RXR2 | U1RXR1 | U1RXR0 |
| bit 7  |        |        |        |        |        |        | bit 0  |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 U1DSRR<7:0>: Assign UART1 Data-Set-Ready (U1DSR) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **U1RXR<7:0>:** Assign UART1 Receive (U1RX) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **QEINDX2R<7:0>:** Assign QEI Index 2 Input (QEINDX2) to the Corresponding RPn Pin bits See Table 8-4.

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| U2DSRR7 | U2DSRR6 | U2DSRR5 | U2DSRR4 | U2DSRR3 | U2DSRR2 | U2DSRR1 | U2DSRR0 |
| bit 15  |         |         |         |         |         |         | bit 8   |
|         |         |         |         |         |         |         |         |
| R/W-0   |
U2RXR7	U2RXR6	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0
bit 7							bit 0
Lonondu							

#### REGISTER 8-33: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 U2DSRR<7:0>: Assign UART2 Data-Set-Ready (U2DSR) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **U2RXR<7:0>:** Assign UART2 Receive (U2RX) to the Corresponding RPn Pin bits See Table 8-4.

## REGISTER 8-34: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| SCK1R7 | SCK1R6 | SCK1R5 | SCK1R4 | SCK1R3 | SCK1R2 | SCK1R1 | SCK1R0 |
| bit 15 |        |        |        |        |        |        | bit 8  |

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| SDI1R7 | SDI1R6 | SDI1R5 | SDI1R4 | SDI1R3 | SDI1R2 | SDI1R1 | SDI1R0 |
| bit 7  | •      |        |        |        |        |        | bit 0  |

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	nimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8 SCK1R<7:0>: Assign SPI1 Clock Input (SCK1IN) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **SDI1R<7:0>:** Assign SPI1 Data Input (SDI1) to the Corresponding RPn Pin bits See Table 8-4.

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| REFOIR7 | REFOIR6 | REFOIR5 | REFOIR4 | REFOIR3 | REFOIR2 | REFOIR1 | REFOIR0 |
| bit 15  | •       | •       | •       |         |         | •       | bit 8   |
|         |         |         |         |         |         |         |         |
| R/W-0   |
|         |         |         |         |         |         |         |         |

#### REGISTER 8-35: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

|--|

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **REFOIR<7:0>:** Assign Reference Clock Input (REFOI) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **SS1R<7:0>:** Assign SPI1 Slave Select (SS1) to the Corresponding RPn Pin bits See Table 8-4.

## REGISTER 8-36: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| SCK2R7 | SCK2R6 | SCK2R5 | SCK2R4 | SCK2R3 | SCK2R2 | SCK2R1 | SCK2R0 |
| bit 15 |        |        |        |        |        |        | bit 8  |

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| SDI2R7 | SDI2R6 | SDI2R5 | SDI2R4 | SDI2R3 | SDI2R2 | SDI2R1 | SDI2R0 |
| bit 7  |        |        |        |        |        |        | bit 0  |

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8 SCK2R<7:0>: Assign SPI2 Clock Input (SCK2IN) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **SDI2R<7:0>:** Assign SPI2 Data Input (SDI2) to the Corresponding RPn Pin bits See Table 8-4.

bit 0

## REGISTER 8-37: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15					·		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SS2R7	SS2R6	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
bit 7		•	•	•	·		bit 0
Leaend:							

Legenu.				
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

 bit 15-8
 Unimplemented: Read as '0'

 bit 7-0
 SS2R<7:0>: Assign SPI2 Slave Select (SS2) to the Corresponding RPn Pin bits See Table 8-4.

## REGISTER 8-38: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

| R/W-0    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CAN1RXR7 | CAN1RXR6 | CAN1RXR5 | CAN1RXR4 | CAN1RXR3 | CAN1RXR2 | CAN1RXR1 | CAN1RXR0 |
| bit 7    |          |          |          |          |          |          | bit 0    |

Legend:				
R = Readable bit	adable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8 Unimplemented: Read as '0'

bit 7-0 CAN1RXR<7:0>: Assign CAN1 Input (CAN1RX) to the Corresponding RPn Pin bits See Table 8-4.

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| U3DSRR7 | U3DSRR6 | U3DSRR5 | U3DSRR4 | U3DSRR3 | U3DSRR2 | U3DSRR1 | U3DSRR0 |
| bit 15  |         |         |         |         |         |         | bit 8   |
|         |         |         |         |         |         |         |         |
| R/W-0   |

## REGISTER 8-39: RPINR27: PERIPHERAL PIN SELECT INPUT REGISTER 27

	1011 0		1011 0	1011 0	1011 0	1011 0	1011 0
U3RXR7	U3RXR6	U3RXR5	U3RXR4	U3RXR3	U3RXR2	U3RXR1	U3RXR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 U3DSRR<7:0>: Assign UART3 Data-Set-Ready (U3DSR) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 U3RXR<7:0>: Assign UART3 Receive (U3RX) to the Corresponding RPn Pin bits See Table 8-4.

#### REGISTER 8-40: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| SCK3R7 | SCK3R6 | SCK3R5 | SCK3R4 | SCK3R3 | SCK3R2 | SCK3R1 | SCK3R0 |
| bit 15 |        |        |        |        |        |        | bit 8  |

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| SDI3R7 | SDI3R6 | SDI3R5 | SDI3R4 | SDI3R3 | SDI3R2 | SDI3R1 | SDI3R0 |
| bit 7  |        |        |        |        |        |        | bit 0  |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 SCK3R<7:0>: Assign SPI3 Clock Input (SCK3IN) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **SDI3R<7:0>:** Assign SPI3 Data Input (SDI3) to the Corresponding RPn Pin bits See Table 8-4.

# REGISTER 8-41: RPINR30: PERIPHERAL PIN SELECT INPUT REGISTER 30

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	_	—	—	_	_
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SS3R7	SS3R6	SS3R5	SS3R4	SS3R3	SS3R2	SS3R1	SS3R0
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 15-8
 Unimplemented: Read as '0'

 bit 7-0
 SS3R<7:0>: Assign SPI3 Slave Select (SS2) to the Corresponding RPn Pin bits See Table 8-4.

## REGISTER 8-42: RPINR32: PERIPHERAL PIN SELECT INPUT REGISTER 32

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TCKI9R7	TCKI9R6	TCKI9R5	TCKI9R4	TCKI9R3	TCKI9R2	TCKI9R1	TCKI9R0
bit 15		•			•		bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown
bit 15-8	TCKI9R<7:0>	Assign MCC	> Timer9 Inpu	t (TCKI9) to th	e Correspondin	g RPn Pin bits	
	See Table 8-4	k.					
bit 7-0	Unimplemented: Read as '0'						

#### REGISTER 8-43: RPINR33: PERIPHERAL PIN SELECT INPUT REGISTER 33

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	_	_	—
bit 15							bit 8

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ICM9R7 | ICM9R6 | ICM9R5 | ICM9R4 | ICM9R3 | ICM9R2 | ICM9R1 | ICM9R0 |
| bit 7  | •      |        |        |        |        |        | bit 0  |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 ICM9R<7:0>: Assign MCCP Capture 9 Input (ICM9) to the Corresponding RPn Pin bits See Table 8-4.

#### REGISTER 8-44: RPINR37: PERIPHERAL PIN SELECT INPUT REGISTER 37

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI17R7 | PCI17R6 | PCI17R5 | PCI17R4 | PCI17R3 | PCI17R2 | PCI17R1 | PCI17R0 |
| bit 15  |         |         |         | •       |         |         | bit 8   |

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| OCFCR7 | OCFCR6 | OCFCR5 | OCFCR4 | OCFCR3 | OCFCR2 | OCFCR1 | OCFCR0 |
| bit 7  |        |        |        |        |        |        | bit 0  |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8PCI17R<7:0>: Assign PWM Input 17 (PCI17) to the Corresponding RPn Pin bits<br/>See Table 8-4.bit 7-0OCFCR<7:0>: Assign xCCP Fault C (OCFC) to the Corresponding RPn Pin bits

See Table 8-4.

## REGISTER 8-45: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	—	—	—	—	—	—
bit 15							bit 8

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI18R7 | PCI18R6 | PCI18R5 | PCI18R4 | PCI18R3 | PCI18R2 | PCI18R1 | PCI18R0 |
| bit 7   |         |         |         |         |         |         | bit 0   |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 15-8
 Unimplemented: Read as '0'

 bit 7-0
 PCI17R<7:0>: Assign PWM Input 17 (PCI17) to the Corresponding RPn Pin bits See Table 8-4.

#### REGISTER 8-46: RPINR42: PERIPHERAL PIN SELECT INPUT REGISTER 42

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCI13R7	PCI13R6	PCI13R5	PCI13R4	PCI13R3	PCI13R2	PCI13R1	PCI13R0
bit 15				·		•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCI12R7	PCI12R6	PCI12R5	PCI12R4	PCI12R3	PCI12R2	PCI12R1	PCI12R0
bit 7				•		•	bit 0
Legend:							
P - Poadabla	hit	M = M/ritable	hit		monted hit read	as 'O'	

Logona.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

 bit 15-8
 PCI13R<7:0>: Assign PWM Input 13 (PCI13) to the Corresponding RPn Pin bits See Table 8-4.

 bit 7-0
 PCI12R<7:0>: Assign PWM Input 12 (PCI12) to the Corresponding RPn Pin bits See Table 8-4.

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI15R7 | PCI15R6 | PCI15R5 | PCI15R4 | PCI15R3 | PCI15R2 | PCI15R1 | PCI15R0 |
| bit 15  |         |         |         |         |         |         | bit 8   |
|         |         |         |         |         |         |         |         |

## REGISTER 8-47: RPINR43: PERIPHERAL PIN SELECT INPUT REGISTER 43

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI14R7 | PCI14R6 | PCI14R5 | PCI14R4 | PCI14R3 | PCI14R2 | PCI14R1 | PCI14R0 |
| bit 7   |         |         |         |         |         |         | bit 0   |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 PCI15R<7:0>: Assign PWM Input 15 (PCI15) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **PCI14R<7:0>:** Assign PWM Input 14 (PCI14) to the Corresponding RPn Pin bits See Table 8-4.

## REGISTER 8-48: RPINR44: PERIPHERAL PIN SELECT INPUT REGISTER 44

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SENT1R7 | SENT1R6 | SENT1R5 | SENT1R4 | SENT1R3 | SENT1R2 | SENT1R1 | SENT1R0 |
| bit 15  |         |         |         |         |         |         | bit 8   |

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PCI16R7 | PCI16R6 | PCI16R5 | PCI16R4 | PCI16R3 | PCI16R2 | PCI16R1 | PCI16R0 |
| bit 7   | •       |         |         |         |         |         | bit 0   |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8SENT1R<7:0>: Assign SENT1 Input (SENT1) to the Corresponding RPn Pin bits<br/>See Table 8-4.bit 7-0PCI16<7:0>: Assign PWM Input 16 (PCI16) to the Corresponding RPn Pin bits

See Table 8-4.

© 2017-2018 Microchip Technology Inc.

REGISTER 8-49:	<b>RPINR45: PERIPHERAL PIN SELECT INPUT REGISTER 45</b>
----------------	---------------------------------------------------------

| R/W-0    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINAR7 | CLCINAR6 | CLCINAR5 | CLCINAR4 | CLCINAR3 | CLCINAR2 | CLCINAR1 | CLCINAR0 |
| bit 15   |          |          |          |          |          |          | bit 8    |

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SENT2R7 | SENT2R6 | SENT2R5 | SENT2R4 | SENT2R3 | SENT2R2 | SENT2R1 | SENT2R0 |
| bit 7   | •       |         |         |         |         |         | bit 0   |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 15-8
 CLCINAR<7:0>: Assign CLC Input A (CLCINA) to the Corresponding RPn Pin bits See Table 8-4.

 bit 7-0
 SENT2R<7:0>: Assign SENT2 Input (SENT2) to the Corresponding RPn Pin bits

SENT2R<7:0>: Assign SENT2 Input (SENT2) to the Corresponding RPn Pin bits See Table 8-4.

# REGISTER 8-50: RPINR46: PERIPHERAL PIN SELECT INPUT REGISTER 46

| R/W-0    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINCR7 | CLCINCR6 | CLCINCR5 | CLCINCR4 | CLCINCR3 | CLCINCR2 | CLCINCR1 | CLCINCR0 |
| bit 15   |          |          |          |          |          |          | bit 8    |

| R/W-0    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINBR7 | CLCINBR6 | CLCINBR5 | CLCINBR4 | CLCINBR3 | CLCINBR2 | CLCINBR1 | CLCINBR0 |
| bit 7    |          |          |          |          |          |          | bit 0    |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 CLCINCR<7:0>: Assign CLC Input C (CLCINC) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 CLCINBR<7:0>: Assign CLC Input B (CLCINB) to the Corresponding RPn Pin bits See Table 8-4.

#### REGISTER 8-51: RPINR47: PERIPHERAL PIN SELECT INPUT REGISTER 47

| R/W-0    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| ADCTRGR7 | ADCTRGR6 | ADCTRGR5 | ADCTRGR4 | ADCTRGR3 | ADCTRGR2 | ADCTRGR1 | ADCTRGR0 |
| bit 15   |          |          |          |          |          |          | bit 8    |

| R/W-0    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINDR7 | CLCINDR6 | CLCINDR5 | CLCINDR4 | CLCINDR3 | CLCINDR2 | CLCINDR1 | CLCINDR0 |
| bit 7    |          |          |          |          |          |          | bit 0    |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 ADCTRGR<7:0>: Assign ADC Trigger Input (ADCTRG) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 CLCINDR<7:0>: Assign CLC Input D (CLCIND) to the Corresponding RPn Pin bits See Table 8-4.

#### REGISTER 8-52: RPINR48: PERIPHERAL PIN SELECT INPUT REGISTER 48

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| U1CTSR7 | U1CTSR6 | U1CTSR5 | U1CTSR4 | U1CTSR3 | U1CTSR2 | U1CTSR1 | U1CTSR0 |
| bit 15  |         |         |         |         |         |         | bit 8   |

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| OCFDR7 | OCFDR6 | OCFDR5 | OCFDR4 | OCFDR3 | OCFDR2 | OCFDR1 | OCFDR0 |
| bit 7  |        |        |        |        |        |        | bit 0  |

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8 U1CTSR<7:0>: Assign UART1 Clear-to-Send (U1CTS) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **OCFDR<7:0>:** Assign xCCP Fault D (OCFD) to the Corresponding RPn Pin bits See Table 8-4.

R/W-0 U3CTSR7	R/W-0	R/W-0	R/W-0	R/W-0		DALO	DALA
U3CTSR7 I			1011 0	K/VV-0	R/W-0	R/W-0	R/W-0
	J3CTSR6	U3CTSR5	U3CTSR4	U3CTSR3	U3CTSR2	U3CTSR1	U3CTSR0
bit 15		•				•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2CTSR7 U	J2CTSR6	U2CTSR5	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0
bit 7		•				•	bit 0
Legend:							
R = Readable bit		W = Writable b	oit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			own	

# REGISTER 8-53: RPINR49: PERIPHERAL PIN SELECT INPUT REGISTER 49

bit 7-0 U2CTSR<7:0>: Assign UART2 Clear-to-Send (U2CTS) to the Corresponding RPn Pin bits See Table 8-4.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP33R5	RP33R4	RP33R3	RP33R2	RP33R1	RP33R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP32R5	RP32R4	RP32R3	RP32R2	RP32R1	RP32R0
bit 7							bit 0

#### REGISTER 8-54: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	<b>RP33R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to RP33 Output Pin bits (see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	<b>RP32R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to RP32 Output Pin bits (see Table 8-7 for peripheral function numbers)

#### REGISTER 8-55: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP34R5	RP34R4	RP34R3	RP34R2	RP34R1	RP34R0
bit 7							bit 0
Legend:							
D - Doodoblo I	ait	M = M/ritoblo	hit		monted hit read	aa '0'	

R = Readable bit	W = Writable bit	table bit U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP35R<5:0>:** Peripheral Output Function is Assigned to RP35 Output Pin bits (see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP34R<5:0>:** Peripheral Output Function is Assigned to RP34 Output Pin bits (see Table 8-7 for peripheral function numbers)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				
•							

## REGISTER 8-56: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

bit 15-14	Unimplemented: Read as '0'
bit 13-8	<b>RP37R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to RP37 Output Pin bits (see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	<b>RP36R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 8-7 for peripheral function numbers)

#### REGISTER 8-57: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP39R5	RP39R4	RP39R3	RP39R2	RP39R1	RP39R0
bit 15		•				•	bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP38R5	RP38R5	RP38R5	RP38R5	RP38R5	RP38R5
bit 7						•	bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknow			iown	
bit 15-14	Unimplemen	ted: Read as '	כי				
bit 13-8	RP39R<5:0>:	Peripheral Ou	tput Function	is Assigned to	RP39 Output P	in bits	

bit 13-8 **RP39R<5:0>:** Peripheral Output Function is Assign (see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP38R<5:0>:** Peripheral Output Function is Assigned to RP38 Output Pin bits (see Table 8-7 for peripheral function numbers)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0
bit 7							bit 0

#### REGISTER 8-58: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14	Unimplemented: Read as '0'
bit 13-8	<b>RP41R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to RP41 Output Pin bits (see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	<b>RP40R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to RP40 Output Pin bits (see Table 8-7 for peripheral function numbers)

#### REGISTER 8-59: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0
bit 15	•						bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0
bit 7							bit 0
Legend:							

Legena.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP43R<5:0>:** Peripheral Output Function is Assigned to RP43 Output Pin bits (see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP42R<5:0>:** Peripheral Output Function is Assigned to RP42 Output Pin bits (see Table 8-7 for peripheral function numbers)

. .

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP45R5	RP45R4	RP45R3	RP45R2	RP45R1	RP45R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP44R5	RP44R4	RP44R3	RP44R2	RP44R1	RP44R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

## REGISTER 8-60: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

bit 15-14	Unimplemented: Read as '0'
bit 13-8	<b>RP45R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to RP45 Output Pin bits (see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	<b>RP44R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to RP44 Output Pin bits (see Table 8-7 for peripheral function numbers)

#### REGISTER 8-61: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP47R5	RP47R4	RP47R3	RP47R2	RP47R1	RP47R0
bit 15	·	•		•			bit 8
		DAALO	DAMA	DAALO	DAALO	DAALO	DAMA
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP46R5	RP46R4	RP46R3	RP46R2	RP46R1	RP46R0
bit 7	•						bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		
bit 15-14	Unimplemen	ted: Read as '	)'				

bit 13-8 **RP47R<5:0>:** Peripheral Output Function is Assigned to RP47 Output Pin bits (see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP46R<5:0>:** Peripheral Output Function is Assigned to RP46 Output Pin bits (see Table 8-7 for peripheral function numbers)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP49R5	RP49R4	RP49R3	RP49R2	RP49R1	RP49R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP48R5	RP48R4	RP48R3	RP48R2	RP48R1	RP48R0
bit 7							bit 0

#### REGISTER 8-62: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	<b>RP49R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to RP49 Output Pin bits (see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	<b>RP48R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to RP48 Output Pin bits (see Table 8-7 for peripheral function numbers)

#### REGISTER 8-63: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

Legend:							
bit 7							bit 0
_	—	RP50R5	RP50R4	RP50R3	RP50R2	RP50R1	RP50R0
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
—	—	RP51R5	RP51R4	RP51R3	RP51R2	RP51R1	RP51R0
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP51R<5:0>:** Peripheral Output Function is Assigned to RP51 Output Pin bits (see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP50R<5:0>:** Peripheral Output Function is Assigned to RP50 Output Pin bits (see Table 8-7 for peripheral function numbers)

Unimplemented: Read as '0'

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP53R5	RP53R4	RP53R3	RP53R2	RP53R1	RP53R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP52R5	RP52R4	RP52R3	RP52R2	RP52R1	RP52R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, r			nented bit, read	as '0'			
-n = Value at P	n = Value at POR (1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			

## REGISTER 8-64: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10

	(see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	<b>RP52R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to RP52 Output Pin bits (see Table 8-7 for peripheral function numbers)

RP53<5:0>: Peripheral Output Function is Assigned to RP53 Output Pin bits

## REGISTER 8-65: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	RP55R5	RP55R4	RP55R3	RP55R2	RP55R1	RP55R0	
bit 15	•		•			•	bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	RP54R5	RP54R4	RP54R3	RP54R2	RP54R1	RP54R0	
bit 7							bit C	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown					
bit 15-14	Unimplemer	ted: Read as '	)'					
bit 13-8	RP55R<5:0>	: Peripheral Ou	tput Function	is Assigned to	RP55 Output F	Pin bits		

(see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP54R<5:0>:** Peripheral Output Function is Assigned to RP54 Output Pin bits (see Table 8-7 for peripheral function numbers)

bit 15-14

bit 13-8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP57R5	RP57R4	RP57R3	RP57R2	RP57R1	RP57R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP56R5	RP56R4	RP56R3	RP56R2	RP56R1	RP56R0
 bit 7	—	RP56R5	RP56R4	RP56R3	RP56R2	RP56R1	RP56R0 bit 0

# REGISTER 8-66: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	<b>RP57R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to RP57 Output Pin bits (see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	<b>RP56R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to RP56 Output Pin bits (see Table 8-7 for peripheral function numbers)

#### REGISTER 8-67: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP59R5	RP59R4	RP59R3	RP59R2	RP59R1	RP59R0
bit 15	-						bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		RP58R5	RP58R4	RP58R3	RP58R2	RP58R1	RP58R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR (1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP59R<5:0>:** Peripheral Output Function is Assigned to RP59 Output Pin bits (see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP58R<5:0>:** Peripheral Output Function is Assigned to RP58 Output Pin bits (see Table 8-7 for peripheral function numbers)

Unimplemented: Read as '0'

Unimplemented: Read as '0'

(see Table 8-7 for peripheral function numbers)

(see Table 8-7 for peripheral function numbers)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP61R5	RP61R4	RP61R3	RP61R2	RP61R1	RP61R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP60R5	RP60R4	RP60R3	RP60R2	RP60R1	RP60R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				as '0'			
-n = Value at P	n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is ur			x = Bit is unkn	iown		

RP61R<5:0>: Peripheral Output Function is Assigned to RP61 Output Pin bits

RP60R<5:0>: Peripheral Output Function is Assigned to RP60 Output Pin bits

## REGISTER 8-68: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14

REGISTER 8-69:	<b>RPOR15: PERIPHERAL PIN SELECT OUTPUT REGISTER 15</b>

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	_	RP63R5	RP63R4	RP63R3	RP63R2	RP63R1	RP63R0		
bit 15		•		·			bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	_	RP62R5	RP62R4	RP62R3	RP62R2	RP62R1	RP62R0		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
<u>.</u>									
bit 15-14	Unimplemen	ted: Read as '	0'						
bit 13-8									

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP62R<5:0>:** Peripheral Output Function is Assigned to RP62 Output Pin bits (see Table 8-7 for peripheral function numbers)

bit 15-14

bit 13-8

bit 7-6

bit 5-0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP65R5	RP65R4	RP65R3	RP65R2	RP65R1	RP65R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP64R5	RP64R4	RP64R3	RP64R2	RP64R1	RP64R0
bit 7							bit 0

# REGISTER 8-70: RPOR16: PERIPHERAL PIN SELECT OUTPUT REGISTER 16

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13-8	<b>RP65R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to RP65 Output Pin bits (see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	<b>RP64R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to RP64 Output Pin bits (see Table 8-7 for peripheral function numbers)

#### REGISTER 8-71: RPOR17: PERIPHERAL PIN SELECT OUTPUT REGISTER 17

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP67R5	RP67R4	RP67R3	RP67R2	RP67R1	RP67R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP66R5	RP66R4	RP66R3	RP66R2	RP66R1	RP66R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		nown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP67R<5:0>:** Peripheral Output Function is Assigned to RP67 Output Pin bits (see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP66R<5:0>:** Peripheral Output Function is Assigned to RP66 Output Pin bits (see Table 8-7 for peripheral function numbers)

'1' = Bit is set

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP69R5	RP69R4	RP69R3	RP69R2	RP69R1	RP69R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP68R5	RP68R4	RP68R3	RP68R2	RP68R1	RP68R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimpler	nented bit, read	as '0'		

'0' = Bit is cleared

#### REGISTER 8-72: RPOR18: PERIPHERAL PIN SELECT OUTPUT REGISTER 18

bit 15-14	Unimplemented: Read as '0'
bit 13-8	<b>RP69R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to RP69 Output Pin bits (see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'

bit 5-0 **RP68R<5:0>:** Peripheral Output Function is Assigned to RP68 Output Pin bits (see Table 8-7 for peripheral function numbers)

# REGISTER 8-73: RPOR19: PERIPHERAL PIN SELECT OUTPUT REGISTER 19

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP71R5	RP71R4	RP71R3	RP71R2	RP71R1	RP71R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP70R5	RP70R4	RP70R3	RP70R2	RP70R1	RP70R0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP71R<5:0>:** Peripheral Output Function is Assigned to RP71 Output Pin bits (see Table 8-7 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP70R<5:0>:** Peripheral Output Function is Assigned to RP70 Output Pin bits (see Table 8-7 for peripheral function numbers)

-n = Value at POR

x = Bit is unknown

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP73R5	RP73R4	RP73R3	RP73R2	RP73R1	RP73R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP72R5	RP72R4	RP72R3	RP72R2	RP72R1	RP72R0
bit 7							bit 0

## REGISTER 8-74: RPOR20: PERIPHERAL PIN SELECT OUTPUT REGISTER 20

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14	Unimplemented: Read as '0'
bit 13-8	<b>RP73R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to RP73 Output Pin bits (see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	<b>RP72R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to RP72 Output Pin bits (see Table 8-7 for peripheral function numbers)

# REGISTER 8-75: RPOR21: PERIPHERAL PIN SELECT OUTPUT REGISTER 21

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP75R5	RP75R4	RP75R3	RP75R2	RP75R1	RP75R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP74R5	RP74R4	RP74R3	RP74R2	RP74R1	RP74R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8**RP75R<5:0>:** Peripheral Output Function is Assigned to RP75 Output Pin bits<br/>(see Table 8-7 for peripheral function numbers)bit 7-6**Unimplemented:** Read as '0'

bit 5-0 **RP74R<5:0>:** Peripheral Output Function is Assigned to RP74 Output Pin bits (see Table 8-7 for peripheral function numbers)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP77R5	RP77R4	RP77R3	RP77R2	RP77R1	RP77R0
bit 15				·			bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP76R5	RP76R4	RP76R3	RP76R2	RP76R1	RP76R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

## REGISTER 8-76: RPOR22: PERIPHERAL PIN SELECT OUTPUT REGISTER 22

bit 15-14	Unimplemented: Read as '0'
bit 13-8	<b>RP77R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to RP77 Output Pin bits (see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	<b>RP76R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to RP76 Output Pin bits (see Table 8-7 for peripheral function numbers)

# REGISTER 8-77: RPOR23: PERIPHERAL PIN SELECT OUTPUT REGISTER 23

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	RP79R5	RP79R4	RP79R3	RP79R2	RP79R1	RP79R0
bit 15		•					bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP78R5	RP78R4	RP78R3	RP78R2	RP78R1	RP78R0
bit 7							bit 0
Legend:							
R = Readable b	R = Readable bit W = Writable bit		bit	U = Unimpler	nented bit, read	as '0'	

'0' = Bit is cleared

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP79R<5:0>:** Peripheral Output Function is Assigned to RP79 Output Pin bits (see Table 8-7 for peripheral function numbers)

'1' = Bit is set

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP78R<5:0>:** Peripheral Output Function is Assigned to RP78 Output Pin bits (see Table 8-7 for peripheral function numbers)

-n = Value at POR

x = Bit is unknown

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP177R5 ⁽¹⁾	RP177R4 ⁽¹⁾	RP177R3 ⁽¹⁾	RP177R2 ⁽¹⁾	RP177R1 ⁽¹⁾	RP177R0 ⁽¹⁾
bit 15							bit 8

#### REGISTER 8-78: RPOR24: PERIPHERAL PIN SELECT OUTPUT REGISTER 24

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP176R5 ⁽¹⁾	RP176R4 ⁽¹⁾	RP176R3 ⁽¹⁾	RP176R2 ⁽¹⁾	RP176R1 ⁽¹⁾	RP176R0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	<b>RP177R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to RP177 Output Pin bits ⁽¹⁾ (see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	<b>RP176R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to RP176 Output Pin bits ⁽¹⁾ (see Table 8-7 for peripheral function numbers)

Note 1: These are virtual output ports.

## REGISTER 8-79: RPOR25: PERIPHERAL PIN SELECT OUTPUT REGISTER 25

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP179R5 ⁽¹⁾	RP179R4 ⁽¹⁾	RP179R3 ⁽¹⁾	RP179R2 ⁽¹⁾	RP179R1 ⁽¹⁾	RP179R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP178R5 ⁽¹⁾	RP178R4 ⁽¹⁾	RP178R3 ⁽¹⁾	RP178R2 ⁽¹⁾	RP178R1 ⁽¹⁾	RP178R0 ⁽¹⁾
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP179R<5:0>:** Peripheral Output Function is Assigned to RP179 Output Pin bits⁽¹⁾ (see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP178R<5:0>:** Peripheral Output Function is Assigned to RP178 Output Pin bits⁽¹⁾ (see Table 8-7 for peripheral function numbers)

Note 1: These are virtual output ports.

R/W-0

•••	•••						
—	_	RP181R5 ⁽¹⁾	RP181R4 ⁽¹⁾	RP181R3 ⁽¹⁾	RP181R2 ⁽¹⁾	RP181R1 ⁽¹⁾	RP181R0 ⁽¹⁾
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP180R5 ⁽¹⁾	RP180R4 ⁽¹⁾	RP180R3 ⁽¹⁾	RP180R2 ⁽¹⁾	RP180R1 ⁽¹⁾	RP180R0 ⁽¹⁾
bit 7							bit 0
Legend:							

R/W-0

R/W-0

R/W-0

R/W-0

# REGISTER 8-80: RPOR26: PERIPHERAL PIN SELECT OUTPUT REGISTER 26

R/W-0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

U-0

U-0

bit 13-8 **RP181R<5:0>:** Peripheral Output Function is Assigned to RP181 Output Pin bits (see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP180R<5:0>:** Peripheral Output Function is Assigned to RP180 Output Pin bits (see Table 8-7 for peripheral function numbers)

Note 1: These are virtual output ports.

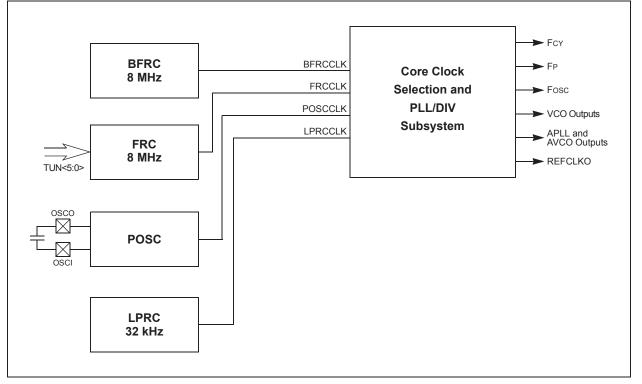
TABLE 8-13:	8-13:	PPS INP	UT CON	PPS INPUT CONTROL REGISTE	EGISTER	RS										
Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RPCON	1	Ι	Ι	Ι	IOLOCK	I	Ι	Ι	I	Ι	I	Ι	I	1	1	I
<b>RPINRO</b>	INT1R7	INT1R6	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0	I	Ι	Ι	Ι	Ι	1	Ι	
<b>RPINR1</b>	INT3R7	INT3R6	INT3R5	INT3R4	INT3R3	INT3R2	INT3R1	INT3R0	INT2R7	INT2R6	INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0
<b>RPINR2</b>	T1CKR7	T1CKR6	T1CKR5	T1CKR4	T1CKR3	T1CKR2	T1CKR1	T1CKR0		I	I	Ι		Ι	Ι	
<b>RPINR3</b>	ICM1R7	ICM1R6	ICM1R5	ICM1R4	ICM1R3	ICM1R2	ICM1R1	ICM1R0	TCKI1R7	TCKI1R6	TCKI1R5	TCKI1R4	TCKI1R3	TCKI1R2	TCKI1R1	TCKI1R0
<b>RPINR4</b>	ICM2R7	ICM2R6	ICM2R5	ICM2R4	ICM2R3	ICM2R2	ICM2R1	ICM2R0	TCKI2R7	TCKI2R6	TCKI2R5	TCKI2R4	TCKI2R3	TCKI2R2	TCKI2R1	TCKI2R0
<b>RPINR5</b>	ICM3R7	ICM3R6	ICM3R5	ICM3R4	ICM3R3	ICM3R2	ICM3R1	ICM3R0	TCKI3R7	TCKI3R6	TCKI3R5	TCKI3R4	TCKI3R3	TCKI3R2	TCKI3R1	<b>TCKI3R0</b>
<b>RPINR6</b>	ICM4R7	ICM4R6	ICM4R5	ICM4R4	ICM4R3	ICM4R2	ICM4R1	ICM4R0	TCKI4R7	TCKI4R	TCKI4R5	TCKI4R4	TCKI4R3	TCKI4R2	TCKI4R1	TCKI4R0
<b>RPINR7</b>	ICM5R7	ICM5R6	ICM5R5	ICM5R4	ICM5R3	ICM5R2	ICM5R1	ICM5R0	TCKI5R7	TCKI5R6	TCKI5R5	TCKI5R4	TCKI5R3	TCKI5R2	TCKI5R1	<b>TCKI5R0</b>
<b>RPINR8</b>	ICM6R7	ICM6R6	ICM6R5	ICM6R4	ICM6R3	ICM6R2	ICM6R1	ICM6R0	TCKI6R7	<b>TCKI6R6</b>	TCKI6R5	TCKI6R4	TCKI6R3	TCKI6R2	TCKI6R1	<b>TCKI6R0</b>
<b>RPINR9</b>	ICM7R7	ICM7R6	ICM7R5	ICM7R4	ICM7R3	ICM7R2	ICM7R1	ICM7R0	TCKI7R7	TCKI7R6	TCKI7R5	TCKI7R4	TCKI7R3	TCKI7R2	TCKI7R1	TCKI7R0
<b>RPINR10</b>	ICM8R7	ICM8R6	ICM8R5	ICM8R4	ICM8R3	ICM8R2	ICM8R1	ICM8R0	TCKI8R7	TCKI8R6	TCKI8R5	TCKI8R4	TCK18R3	TCKI8R2	TCKI8R1	TCKI8R0
<b>RPINR11</b>	OCFBR7	OCFBR6	<b>OCFBR5</b>	OCFBR4	<b>OCFBR3</b>	<b>OCFBR2</b>	OCFBR1	OCFBR0	OCFAR7	<b>OCFAR6</b>	<b>OCFAR5</b>	OCFAR4	<b>OCFAR3</b>	<b>OCFAR2</b>	OCFAR1	OCFAR0
<b>RPINR12</b>	PCI9R7	PC19R6	PC19R5	PCI9R4	PCI9R3	PC19R2	PCI9R1	PCI9R0	PCI8R7	PCI8R6	PCI8R5	PCI8R4	PCI8R3	PCI8R2	PCI8R1	PCI8R0
<b>RPINR13</b>	PCI11R7	PCI11R6	PCI11R5	PCI11R4	PCI11R3	PCI11R2	PCI11R1	PCI11R0	PCI10R7	PCI10R6	PC110R5	PCI10R4	PCI10R3	PC110R2	PCI10R1	PCI10R0
<b>RPINR14</b>	QEIB1R7	QEIB1R6	QEIB1R5	QEIB1R4	QEIB1R3	QEIB1R2	QEIB1R1	QEIB1R0	QEIA1R7	QEIA1R6	QEIA1R5	QEIA1R4	QEIA1R3	QEIA1R2	QEIA1R1	QEIA1R0
<b>RPINR15</b>	<b>QEIHOM1R7</b>	QEIHOM1R6	<b>QEIHOM1R5</b>	<b>QEIHOM1R4</b>	<b>GEIHOM1R3</b>	QEIHOM1R2	QEIHOM1R1	QEIHOM1R0	QEINDX1R7	<b>QEINDX1R6</b>	QEINDX1R5	QEINDX1R4	QEINDX1R3	QEINDX1R2	QEINDX1R1	QEINDX1R0
<b>RPINR16</b>	QEIB2R7	QEIB2R6	QEIB2R5	QEIB2R4	QEIB2R3	QEIB2R2	QEIB2R1	QEIB2R0	QEIA2R7	QEIA2R6	QEIA2R5	QEIA2R4	QEIA2R3	QEIA2R2	QEIA2R1	QEIA2R0
<b>RPINR17</b>	<b>QEIHOM2R7</b>	QEIHOM2R6	<b>QEIHOM2R5</b>	QEIHOM2R4	<b>QEIHOM2R3</b>	<b>QEIHOM2R2</b>	QEIHOM2R1	<b>QEIHOM2R0</b>	QEINDX2R7	<b>QEINDX2R6</b>	QEINDX2R5	QEINDX2R4	<b>QEINDX2R3</b>	QEINDX2R2	QEINDX2R1	QEINDX2R0
<b>RPINR18</b>	U1DSRR7	U1DSRR6	U1DSRR5	U1DSRR4	U1DSRR3	U1DSRR2	U1DSRR1	U1DSRR0	U1RXR7	U1RXR6	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0
<b>RPINR19</b>	U2DSRR7	U2DSRR6	U2DSRR5	U2DSRR4	U2DSRR3	U2DSRR2	U2DSRR1	UZDSRR0	U2RXR7	U2RXR6	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0
<b>RPINR20</b>	SCK1R7	SCK1R6	SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0	SDI1R7	SDI1R6	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0
<b>RPINR21</b>	<b>REFOIR7</b>	<b>REFOIR6</b>	<b>REFOIR5</b>	<b>REFOIR4</b>	<b>REFOIR3</b>	<b>REFOIR2</b>	REFOIR1	REFOIR0	SS1R7	SS1R6	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0
<b>RPINR22</b>	SCK2R7	SCK2R6	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0	SDI2R7	SDI2R6	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SD12R0
<b>RPINR23</b>	Ι		Ι	Ι		Ι	Ι		SS2R7	SS2R6	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
<b>RPINR26</b>	Ι	Ι	Ι	Ι		Ι	Ι	Ι	CAN1RXR7	CAN1RXR6	CAN1RXR5	CAN1RXR4	CAN1RXR3	CAN1RXR2	CAN1RXR1	CAN1RXR0
<b>RPINR27</b>	U3DSRR7	<b>U3DSRR6</b>	U3DSRR5	U3DSRR4	U3DSRR3	U3DSRR2	U3DSRR1	U3DSRR0	U3RXR7	U3RXR6	U3RXR5	U3RXR4	U3RXR3	U3RXR2	U3RXR1	U3RXR0
RPINR29	SCK3R7	SCK3R6	SCK3R5	SCK3R4	SCK3R3	SCK3R2	SCK3R1	SCK3R0	SDI3R7	SDI3R6	SDI3R5	SDI3R4	SDI3R3	SDI3R2	SDI3R1	SDI3R0
<b>RPINR30</b>	I	Ι	Ι	Ι	I	I	I	I	SS3R7	SS3R6	SS3R5	SS3R4	SS3R3	SS3R2	SS3R1	SS3R0
<b>RPINR32</b>	TCKI9R7	TCKI9R6	TCKI9R5	TCKI9R4	TCKI9R3	TCKI9R2	TCKI9R1	TCKI9R0	I	I	I	I	I	I	I	
<b>RPINR33</b>	I		Ι	Ι		I	Ι		ICM9R7	ICM9R6	ICM9R5	ICM9R4	ICM9R3	ICM9R2	ICM9R1	ICM9R0
<b>RPINR37</b>	PCI17R7	PCI17R6	PCI17R5	PCI17R4	PCI17R3	PCI17R2	PCI17R1	PCI17R0	OCFCR7	<b>OCFCR6</b>	OCFCR5	OCFCR4	<b>OCFCR3</b>	OCFCR2	OCFCR1	<b>OCFCR0</b>
<b>RPINR38</b>	Ι		Ι	Ι		Ι	Ι		PCI18R7	PCI18R6	PCI18R5	PCI18R4	PCI18R3	PC118R2	PC118R1	PCI18R0
<b>RPINR42</b>	PCI13R7	PC113R6	PCI13R5	PCI13R4	PCI13R3	PCI13R2	PCI13R1	PCI13R0	PCI12R7	PCI12R6	PCI12R5	PCI12R4	PCI12R3	PC112R2	PCI12R1	PCI12R0
<b>RPINR43</b>	PCI15R7	PCI15R6	PCI15R5	PCI15R4	PCI15R3	PCI15R2	PCI15R1	PCI15R0	PCI14R7	PCI14R6	PCI14R5	PCI14R4	PCI14R3	PC114R2	PCI14R1	PCI14R0
<b>RPINR44</b>	SENT1R7	SENT1R6	SENT1R5	SENT1R4	SENT1R3	SENT1R2	SENT1R1	SENT1R0	PCI16R7	PCI16R6	PCI16R5	PCI16R4	PCI16R3	PCI16R2	PCI16R1	PCI16R0
<b>RPINR45</b>	<b>CLCINAR7</b>	<b>CLCINAR6</b>	<b>CLCINAR5</b>	CLCINAR4	<b>CLCINAR3</b>	<b>CLCINAR2</b>	CLCINAR1	CLCINARO	SENT2R7	SENT2R6	SENT2R5	SENT2R4	SENT2R3	SENT2R2	SENT2R1	SENT2R0
<b>RPINR46</b>	CLCINCR7	<b>CLCINCR6</b>	<b>CLCINCR5</b>	CLCINCR4	<b>CLCINCR3</b>	<b>CLCINCR2</b>	CLCINCR1	CLCINCRO	CLCINBR7	<b>CLCINBR6</b>	<b>CLCINBR5</b>	CLCINBR4	<b>CLCINBR3</b>	CLCINBR2	CLCINBR1	<b>CLCINBR0</b>
<b>RPINR47</b>	ADCTRGR7	ADCTRGR6	ADCTRGR5	ADCTRGR4	ADCTRGR3	ADCTRGR2	ADCTRGR1	ADCTRGR0	CLCINDR7	<b>CLCINDR6</b>	CLCINDR5	CLCINDR4	<b>CLCINDR3</b>	CLCINDR2	CLCINDR1	CLCINDRO
<b>RPINR48</b>	U1CTSR7	U1CTSR6	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0	OCFDR7	OCFDR6	OCFDR5	OCFDR4	<b>OCFDR3</b>	OCFDR2	OCFDR1	<b>OCFDR0</b>
<b>RPINR49</b>	U3CTSR7	<b>U3CTSR6</b>	U3CTSR5	U3CTSR4	U3CTSR3	U3CTSR2	U3CTSR1	U3CTSR0	U2CTSR7	U2CTSR6	U2CTSR5	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0

© 2017-2018 Microchip Technology Inc.

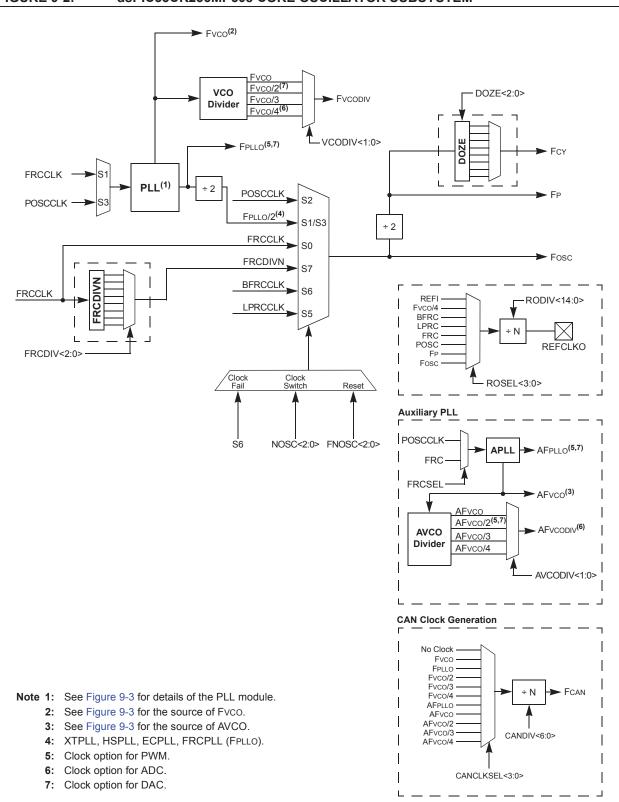
# dsPIC33CK256MP508 FAMILY

TABLE 8-14:		S OUTP	PPS OUTPUT CONTROL REG	ITROL R	EGISTERS	RS										
Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RPOR0	I	I	RP33R5	RP33R4	RP33R3	RP33R2	RP33R1	RP33R0	1	I	RP32R5	RP32R4	RP32R3	RP32R2	RP32R1	RP32R0
RPOR1	I	Ι	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0		Ι	RP34R5	RP34R4	RP34R3	RP34R2	RP34R1	RP34R0
RPOR2	I	Ι	RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0		Ι	RP36R5	RP36R4	RP36R3	RP36R2	<b>RP36R1</b>	RP36R0
<b>RPOR3</b>		Ι	RP39R5	RP39R4	RP39R3	RP39R2	RP39R1	RP39R0	I	I	RP38R5	RP38R4	RP38R3	RP38R2	RP38R1	RP38R0
RPOR4	Ι	Ι	RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0	1	Ι	RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0
<b>RPOR5</b>	I	Ι	RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0	1	Ι	RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0
<b>RPOR6</b>	Ι	Ι	RP45R5	RP45R4	RP45R3	RP45R2	RP45R1	RP45R0	1	Ι	RP44R5	RP44R4	RP44R3	RP44R2	RP44R1	RP44R0
<b>RPOR7</b>	I	Ι	RP47R5	RP47R4	RP47R3	RP47R2	RP47R1	RP47R0	1	I	RP46R5	RP46R4	RP46R3	RP46R2	RP46R1	RP46R0
RPOR8 ⁽¹⁾	I		RP49R5	RP49R4	RP49R3	RP49R2	RP49R1	RP49R0	I	I	RP48R5	RP48R4	RP48R3	RP48R2	RP48R1	RP48R0
RPOR9 ⁽¹⁾	Ι	Ι	RP51R5	RP51R4	RP51R3	RP51R2	RP51R1	RP51R0	1	I	RP50R5	RP50R4	RP50R3	RP50R2	RP50R1	RP50R0
RPOR10 ⁽¹⁾		I	RP53R5	RP53R4	RP53R3	RP53R2	RP53R1	RP53R0	1	I	RP52R5	RP52R4	RP52R3	RP52R2	RP52R1	RP52R0
RPOR11 ⁽¹⁾			RP55R5	RP55R4	RP55R3	RP55R2	RP55R1	RP55R0	1	I	RP54R5	RP54R4	RP54R3	RP54R2	RP54R1	RP54R0
RPOR12 ⁽¹⁾	I	Ι	RP57R5	RP57R4	RP57R3	RP57R2	RP57R1	RP57R0	1	I	RP56R5	RP56R4	RP56R3	RP56R2	<b>RP56R1</b>	RP56R0
RPOR13 ⁽¹⁾	Ι	Ι	RP59R5	RP59R4	RP59R3	RP59R2	RP59R1	RP59R0	1	Ι	RP58R5	RP58R4	RP58R3	RP58R2	RP58R1	RP58R0
RPOR14 ⁽¹⁾	Ι	Ι	RP61R5	RP61R4	RP61R3	RP61R2	RP61R1	RP61R0	1	Ι	RP60R5	RP60R4	RP60R3	RP60R2	RP60R1	RP60R0
RPOR15 ⁽¹⁾	Ι	Ι	RP63R5	RP63R4	RP63R3	RP63R2	RP63R1	RP63R0	1	Ι	RP62R5	RP62R4	RP62R3	RP62R2	RP62R1	RP62R0
RPOR16 ⁽¹⁾	Ι	Ι	RP65R5	RP65R4	RP65R3	RP65R2	RP65R1	RP65R0	1	Ι	RP64R5	RP64R4	RP64R3	RP64R2	RP64R1	RP64R0
RPOR17 ⁽¹⁾	I	I	RP67R5	RP67R4	RP67R3	RP67R2	RP67R1	RP67R0	I	I	RP66R5	RP66R4	RP66R3	RP66R2	RP66R1	RP66R0
RPOR18 ⁽¹⁾		Ι	RP69R5	RP69R4	RP69R3	RP69R2	RP69R1	RP69R0	Ι	Ι	RP68R5	RP68R4	RP68R3	RP68R2	RP68R1	RP68R0
RPOR19 ⁽¹⁾		Ι	RP71R5	RP71R4	RP71R3	RP71R2	RP71R1	RP71R0	Ι	Ι	<b>RP70R5</b>	<b>RP70R4</b>	<b>RP70R3</b>	RP70R2	<b>RP70R1</b>	RP70R0
RPOR20 ⁽¹⁾	Ι	Ι	RP73R5	RP73R4	RP73R3	RP73R2	RP73R1	RP73R0	1	Ι	RP72R5	RP72R4	RP72R3	RP72R2	RP72R1	RP72R0
RPOR21 ⁽¹⁾	Ι	Ι	<b>RP75R5</b>	RP75R4	RP75R3	RP75R2	RP75R1	RP75R0	1	Ι	RP74R5	RP74R4	RP74R3	RP74R2	RP74R1	RP74R0
RPOR22 ⁽¹⁾	Ι	Ι	RP77R5	RP77R4	RP77R3	RP77R2	RP77R1	RP77R0	1	I	RP76R5	RP76R4	RP76R3	RP76R2	RP76R1	RP76R0
RPOR23 ⁽¹⁾	Ι	Ι	RP79R5	RP79R4	RP79R3	RP79R2	RP79R1	RP79R0	1	Ι	<b>RP78R5</b>	RP78R4	RP78R3	RP78R2	RP78R1	RP78R0
<b>RPOR24</b>		Ι	RP177R5	RP177R4	RP177R3	RP177R2	RP177R1	RP177R0	Ι	Ι	RP176R5	RP176R4	RP176R3	RP176R2	RP176R1	RP176R0
RPOR25		Ι	RP179R5	RP179R4	RP179R3	RP179R2	RP179R1	RP179R0	Ι	Ι	RP178R5	RP178R4	RP178R3	RP178R2	RP178R1	RP178R0
RPOR26		Ι	RP181R5	RP181R4	RP181R3	RP181R2	RP181R1	RP181R0	Ι	Ι	RP180R5	RP180R4	RP180R3	RP180R2	RP180R1	RP180R0
Note 1: Avail	lability is de	pendent on	Availability is dependent on supported I/O ports. Refer to	O ports. Refé	er to Table 8-	-1 and Table	8-6 for avail	ability on pac	Table 8-1 and Table 8-6 for availability on package variants.	S.						

~
щ.
<u>0</u>
G
Ш
R
<b>_</b>
5
8
Ľ
5
5
Ŋ.
U
F-
Δ
F
D.
Ο
S
ă
Ξ
_
÷
4
Å.
8
щ
_


# 9.0 OSCILLATOR WITH HIGH-FREQUENCY PLL

Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Oscillator Module with High-Speed PLL" (www.microchip.com/DS70005255) in the "dsPIC33/PIC24 Family Reference Manual". The dsPIC33CK256MP508 family oscillator with high-frequency PLL includes these characteristics:


- On-Chip Phase-Locked Loop (PLL) to Boost Internal Operating Frequency on Select Internal and External Oscillator Sources
- Auxiliary PLL (APLL) Clock Generator to Boost Operating Frequency for Peripherals
- Doze mode for System
   Power Savings
- Scalable Reference Clock Output (REFCLKO)
- On-the-Fly Clock Switching between Various Clock Sources
- Fail-Safe Clock Monitoring (FSCM) that Detects Clock Failure and Permits Safe Application Recovery or Shutdown

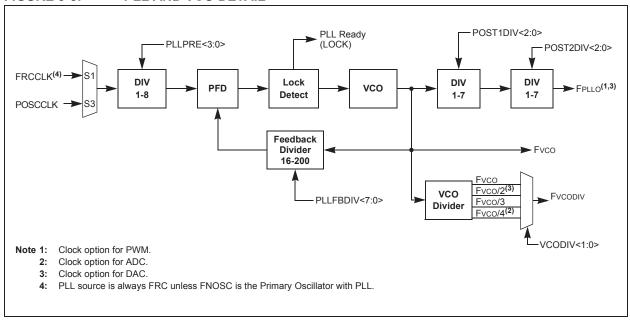
A block diagram of the dsPIC33CK256MP508 oscillator system is shown in Figure 9-1.

# FIGURE 9-1: dsPIC33CK256MP508 CORE CLOCK SOURCES BLOCK DIAGRAM



# dsPIC33CK256MP508 FAMILY




#### FIGURE 9-2: dsPIC33CK256MP508 CORE OSCILLATOR SUBSYSTEM

The Primary Oscillator and internal FRC Oscillator sources can optionally use an on-chip PLL to obtain higher operating speeds. Figure 9-3 illustrates a block diagram of the PLL module.

For PLL operation, the following requirements must be met at all times without exception:

- The PLL Input Frequency (FPLLI) must be in the range of 8 MHz to 64 MHz
- The PFD Input Frequency (FPFD) must be in the range of 8 MHz to (FvCo/16) MHz

The VCO Output Frequency (Fvco) must be in the range of 400 MHz to 1600 MHz



# FIGURE 9-3: PLL AND VCO DETAIL

Equation 9-1 provides the relationship between the PLL Input Frequency (FPLLI) and VCO Output Frequency (FVCO).

### EQUATION 9-1: Fvco CALCULATION

 $FVCO = FPLLI \times \left(\frac{M}{N1}\right) = FPLLI \times \left(\frac{PLLFBDIV < 7:0>}{PLLPRE < 3:0>}\right)$ 

Equation 9-2 provides the relationship between the PLL Input Frequency (FPLLI) and PLL Output Frequency (FPLLO).

#### EQUATION 9-2: FPLLO CALCULATION

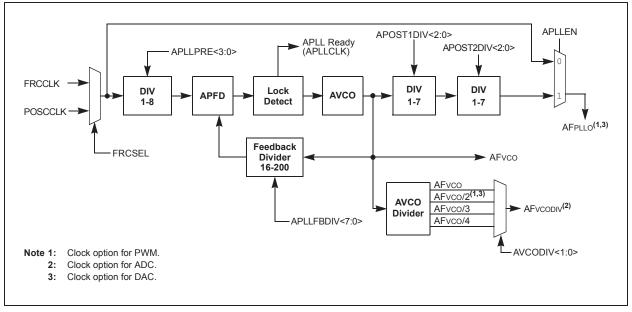
 $FPLLO = FPLLI \times \left(\frac{M}{N1 \times N2 \times N3}\right) = FPLLI \times \left(\frac{PLLFBDIV<7:0>}{PLLPRE<3:0> \times POST1DIV<2:0> \times POST2DIV<2:0>}\right)$ 

Where:

M = PLLFBDIV<7:0> N1 = PLLPRE<3:0> N2 = POST1DIV<2:0> N3 = POST2DIV<2:0>

**Note:** The PLL Phase Detector Input Divider Select (PLLPREx) bits and the PLL Feedback Divider (PLLFBDIVx) bits should not be changed when operating in PLL mode. Therefore, the user must start in either a non-PLL mode or clock switch to a non-PLL mode (e.g., internal FRC Oscillator) to make any necessary changes and then clock switch to the desired PLL mode.

It is not permitted to directly clock switch from one PLL clock source to a different PLL clock source. The user would need to transition between PLL clock sources with a clock switch to a non-PLL clock source.


#### EXAMPLE 9-1: CODE EXAMPLE FOR USING PRIMARY PLL WITH 8 MHz INTERNAL FRC

```
//code example for 50 MIPS system clock using 8MHz FRC
// Select FRC on POR
#pragma config FNOSC = FRC
                                // Oscillator Source Selection (Internal Fast RC (FRC))
#pragma config IESO = OFF
// Enable Clock Switching
#pragma config FCKSM = CSECMD
int
    main()
// Configure PLL prescaler, both PLL postscalers, and PLL feedback divider
CLKDIVbits.PLLPRE = 1; // N1=1
PLLFBDbits.PLLFBDIV = 125;
                               // M = 125
PLLDIVbits.POST1DIV = 5;
                                // N2=5
PLLDIVbits.POST2DIV = 1;
                                // N3=1
// Initiate Clock Switch to FRC with PLL (NOSC=0b001)
 builtin write OSCCONH(0x01);
 builtin write OSCCONL(OSCCON | 0x01);
// Wait for Clock switch to occur
while (OSCCONbits.OSWEN!= 0);
```

The dsPIC33CK256MP508 device family implements an Auxiliary PLL (APLL) module, which is used to generate various peripheral clock sources independent of the system clock. Figure 9-4 shows a block diagram of the APLL module.

For APLL operation, the following requirements must be met at all times without exception:

- The APLL Input Frequency (AFPLLI) must be in the range of 8 MHz to 64 MHz
- The APFD Input Frequency (AFPFD) must be in the range of 8 MHz to (AFvco/16) MHz
- The AVCO Output Frequency (AFvco) must be in the range of 400 MHz to 1600 MHz





# dsPIC33CK256MP508 FAMILY

Equation 9-3 provides the relationship between the APLL Input Frequency (AFPLLI) and the AVCO Output Frequency (AFvCO).

### EQUATION 9-3: AFvco CALCULATION

$$AFVCO = AFPLLI \times \left(\frac{M}{N1}\right) = AFPLLI \times \left(\frac{APLLFBDIV<7:0>}{APLLPRE<3:0>}\right)$$

Equation 9-4 provides the relationship between the APLL Input Frequency (AFPLLI) and APLL Output Frequency (AFPLLO).

#### EQUATION 9-4: AFPLLO CALCULATION

$$AFPLLO = AFPLLI \times \left(\frac{M}{N1 \times N2 \times N3}\right) = AFPLLI \times \left(\frac{APLLFBDIV<7:0>}{APLLPRE<3:0> \times APOST1DIV<2:0> \times APOST2DIV<2:0>}\right)$$

Where:

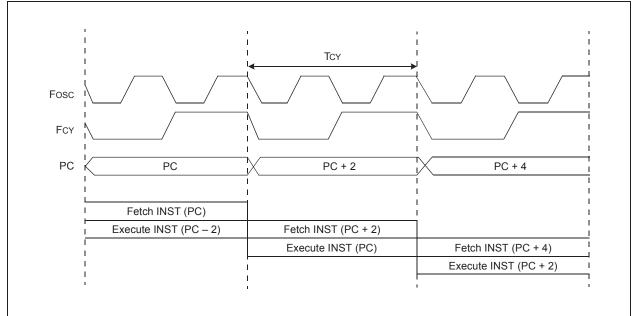
M = APLLFBDIV<7:0> N1 = APLLPRE<3:0> N2 = APOST1DIV<2:0> N3 = APOST2DIV<2:0>

# EXAMPLE 9-2: CODE EXAMPLE FOR USING AUXILIARY PLL WITH THE INTERNAL FRC OSCILLATOR

```
//code example for AFVCO = 1 GHz and AFPLLO = 500 MHz using 8 MHz internal FRC
// Configure the source clock for the APLL
ACLKCON1bits.FRCSEL = 1; // Select internal FRC as the clock source
// Configure the APLL prescaler, APLL feedback divider, and both APLL postscalers.
ACLKCON1bits.APLLPRE = 1; // N1 = 1
APLLFBD1bits.APLLFBDIV = 125; // M = 125
APLLDIV1bits.APOST1DIV = 2; // N2 = 2
APLLDIV1bits.APOST2DIV = 1; // N3 = 1
// Enable APLL
ACLKCON1bits.APLLEN = 1;
```

Note: Even with the APLLEN bit set, another peripheral must generate a clock request before the APLL will start.

# 9.1 CPU Clocking


The dsPIC33CK256MP508 devices can be configured to use any of the following clock configurations:

- Primary Oscillator (POSC) on the OSCI and OSCO pins
- Internal Fast RC Oscillator (FRC) with optional clock divider
- Internal Low-Power RC Oscillator (LPRC)
- Primary Oscillator with PLL (ECPLL, HSPLL, XTPLL)
- Internal Fast RC Oscillator with PLL (FRCPLL)
- Backup Internal Fast RC Oscillator (BFRC)

The system clock source is divided by two to produce the internal instruction cycle clock. In this document, the instruction cycle clock is denoted by FCY. The timing diagram in Figure 9-5 illustrates the relationship between the system clock (FOSC), the instruction cycle clock (FCY) and the Program Counter (PC).

The internal instruction cycle clock (FCY) can be output on the OSCO I/O pin if the Primary Oscillator mode (POSCMD<1:0>) is not configured as HS/XT. For more information, see **Section 9.0 "Oscillator with High-Frequency PLL"**.

#### FIGURE 9-5: CLOCK AND INSTRUCTION CYCLE TIMING



# 9.2 Primary Oscillator (POSC)

The dsPIC33CK256MP508 family devices feature a Primary Oscillator (POSC) and it is available on the OSCI and OSCO pins. This connection enables an external crystal (or ceramic resonator) to provide the clock to the device. The Primary Oscillator provides three modes of operation:

- Medium Speed Oscillator (XT Mode): The XT mode is a Medium Gain, Medium Frequency mode used to work with crystal frequencies of 3.5 MHz to 10 MHz.
- High-Speed Oscillator (HS Mode): The HS mode is a High-Gain, High-Frequency mode used to work with crystal frequencies of 10 MHz to 32 MHz.
- External Clock Source Operation (EC Mode): If the on-chip oscillator is not used, the EC mode allows the internal oscillator to be bypassed. The device clocks are generated from an external source (0 MHz to up to 64 MHz) and input on the OSCI pin.

# 9.3 Internal Fast RC (FRC) Oscillator

The dsPIC33CK256MP508 family devices contain one instance of the internal Fast RC (FRC) Oscillator and it provides a nominal 8 MHz clock without requiring an external crystal or ceramic resonator, which results in system cost savings for applications that do not require a precise clock reference.

The application software can tune the frequency of the oscillator using the FRC Oscillator Tuning bits (TUN<5:0>) in the FRC Oscillator Tuning register (OSCTUN<5:0>).

# 9.4 Low-Power RC (LPRC) Oscillator

The dsPIC33CK256MP508 family devices contain one instance of the Low-Power RC (LPRC) Oscillator and it provides a nominal clock frequency of 32 kHz, and is the clock source for the Power-up Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM) circuits in the clock subsystem.

The LPRC Oscillator is the clock source for the PWRT, WDT and FSCM. The LPRC Oscillator is enabled at power-on.

The LPRC Oscillator remains enabled under these conditions:

- The FSCM is enabled
- · The WDT is enabled
- The LPRC Oscillator is selected as the system clock

If none of these conditions is true, the LPRC Oscillator shuts off after the PWRT expires. The LPRC Oscillator is shut off in Sleep mode.

Example 9-3 illustrates code for using the PLL (50 MIPS) with the Primary Oscillator.

#### EXAMPLE 9-3: CODE EXAMPLE FOR USING PLL (50 MIPS) WITH PRIMARY OSCILLATOR (POSC)

```
//code example for 50 MIPS system clock using POSC with 10 MHz external crystal
// Select FRC on POR
#pragma config FNOSC = FRC
                                   // Oscillator Source Selection (Internal Fast RC (FRC))
#pragma config IESO = OFF
/// Enable Clock Switching and Configure POSC in XT mode
#pragma config POSCMD = XT
#pragma config FCKSM = CSECMD
int
       main()
{
       // Configure PLL prescaler, both PLL postscalers, and PLL feedback divider
       CLKDIVbits.PLLPRE = 1; // N1=1
       PLLFBDbits.PLLFBDIV = 100; // M = 100
       PLLDIVbits.POSTIDIV = 5; // N2=5
       PLLDIVbits.POST2DIV = 1;
                                   // N3=1
      // Initiate Clock Switch to Primary Oscillator with PLL (NOSC=0b011)
       __builtin_write_OSCCONH(0x03);
       __builtin_write_OSCCONL(OSCCON | 0x01);
       // Wait for Clock switch to occur
       while (OSCCONbits.OSWEN!= 0);
       // Wait for PLL to lock
       while (OSCCONbits.LOCK!= 1);
```

# 9.5 Oscillator Configuration

The oscillator system has both Configuration registers and SFRs to configure, control and monitor the system. The FOSCSEL and FOSC Configuration registers (Register 30-4 and Register 30-5, respectively) are used for initial setup. Table 9-1 lists the configuration settings that select the device's oscillator source and operating mode at a Power-on Reset (POR).

Oscillator Source	Oscillator Mode	FNOSC<2:0> Value	POSCMD<1:0> Value	Notes
S0	Fast RC Oscillator (FRC)	000	XX	1
S1	Fast RC Oscillator with PLL (FRCPLL)	001	XX	1
S2	Primary Oscillator (EC)	010	00	1
S2	Primary Oscillator (XT)	010	01	
S2	Primary Oscillator (HS)	010	10	
S3	Primary Oscillator with PLL (ECPLL)	011	00	1
S3	Primary Oscillator with PLL (XTPLL)	011	01	
S3	Primary Oscillator with PLL (HSPLL)	011	10	
S4	Reserved	100	XX	
S5	Low-Power RC Oscillator (LPRC)	101	XX	1
S6	Backup FRC (BFRC)	110	XX	1
S7	Fast RC Oscillator with ÷ N Divider (FRCDIVN)	111	XX	1, 2

### TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: The OSCO pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

# 9.6 OSCCON Unlock Sequence

The OSCCON register is protected against unintended writes through a lock mechanism. The upper and lower bytes of OSCCON have their own unlock sequence, and both must be used when writing to both bytes of the register.

Before OSCCON can be written to, the following unlock sequence must be used:

1. Execute the unlock sequence for the OSCCON high byte.

In two back-to-back instructions:

- Write 0x78 to OSCCON<15:8>
- Write 0x9A to OSCCON<15:8>
- 2. In the instruction immediately following the unlock sequence, the OSCCON<10:8> bits can be modified.

3. Execute the unlock sequence for the OSCCON low byte.

In two back-to-back instructions:

- Write 0x46 to OSCCON<7:0>
- Write 0x57 to OSCCON<7:0>
- 4. In the instruction immediately following the unlock sequence, the OSCCON<7:0> bits can be modified.

Note: MPLAB[®] XC16 provides built-in C language function for unlocking the OSCCON register: __builtin_write_OSCCONH(value)

> __builtin_write_OSCCONL(OSCCON | value) For more information, see the "MPLAB[®] XC16 C Compiler User's Guide" (DS50002071).

# 9.7 Oscillator Control Registers

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
—	COSC2	COSC1	COSC0	—	NOSC2 ⁽²⁾	NOSC1 ⁽²⁾	NOSC0 ⁽²⁾
bit 15							bit 8
R/W-0	U-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0
CLKLOCK	_	LOCK	—	CF ⁽³⁾	—	—	OSWEN
bit 7							bit 0

# **REGISTER 9-1:** OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

Legend:	y = Value set from Co	nfiguration bits on POR	
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	COSC<2:0>: Current Oscillator Selection bits (read-only)
	111 = Fast RC Oscillator (FRC) with Divide-by-n (FRCDIVN)
	110 = Backup FRC (BFRC)
	101 = Low-Power RC Oscillator (LPRC)
	100 = Reserved – default to FRC 011 = Primary Oscillator (XT, HS, EC) with PLL (XTPLL, HSPLL, ECPLL)
	010 = Primary Oscillator (XT, HS, EC)
	001 = Fast RC Oscillator (FRC) with PLL (FRCPLL)
	000 = Fast RC Oscillator (FRC)
bit 11	Unimplemented: Read as '0'
bit 10-8	NOSC<2:0>: New Oscillator Selection bits ⁽²⁾
	111 = Fast RC Oscillator (FRC) with Divide-by-n (FRCDIVN)
	110 = Backup FRC (BFRC)
	101 = Low-Power RC Oscillator (LPRC) 100 = Reserved – default to FRC
	011 = Primary Oscillator (XT, HS, EC) with PLL (XTPLL, HSPLL, ECPLL)
	010 = Primary Oscillator (XT, HS, EC)
	001 = Fast RC Oscillator (FRC) with PLL (FRCPLL)
	000 = Fast RC Oscillator (FRC)
bit 7	CLKLOCK: Clock Lock Enable bit
	<ul> <li>1 = If (FCKSM0 = 1), then clock and PLL configurations are locked; if (FCKSM0 = 0), then clock and PLL configurations may be modified</li> </ul>
	0 = Clock and PLL selections are not locked, configurations may be modified
bit 6	Unimplemented: Read as '0'
bit 5	LOCK: PLL Lock Status bit (read-only)
	1 = Indicates that PLL is in lock or PLL start-up timer is satisfied
	0 = Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled
bit 4	Unimplemented: Read as '0'
Note 1:	Writes to this register require an unlock sequence (see Section 9.6 "OSCCON Unlock Sequence").
2:	Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permit- ted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.

**3:** This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and will trigger an oscillator failure trap.

# **REGISTER 9-1:** OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 3 **CF:** Clock Fail Detect bit⁽³⁾
  - 1 = FSCM has detected a clock failure
    - 0 = FSCM has not detected a clock failure
- bit 2-1 Unimplemented: Read as '0'
- bit 0 OSWEN: Oscillator Switch Enable bit
  - 1 = Requests oscillator switch to the selection specified by the NOSC<2:0> bits
  - 0 = Oscillator switch is complete
- Note 1: Writes to this register require an unlock sequence (see Section 9.6 "OSCCON Unlock Sequence").
  - 2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
  - **3:** This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and will trigger an oscillator failure trap.

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI	DOZE2 ⁽¹⁾	DOZE1 ⁽¹⁾	DOZE0 ⁽¹⁾	DOZEN ^(2,3)	FRCDIV2	FRCDIV1	FRCDIV0
bit 15			1	1			bit 8
U-0	U-0	r-0	r-0	R/W-0	R/W-0	R/W-0	R/W-1
_			—	PLLPRE3 ⁽⁴⁾	PLLPRE2 ⁽⁴⁾	PLLPRE1 ⁽⁴⁾	PLLPRE0 ⁽⁴
bit 7							bit
Legend:		r = Reserved	bit				
R = Read	able bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	iown
bit 15	1 = Interrupts		OZEN bit and t	he processor cl	ock, and the pe	ripheral clock ra	itio is set to 1
		s have no effec					
bit 14-12		Processor Cloc	k Reduction S	elect bits ⁽¹⁾			
	111 <b>= F</b> P divi						
	110 = FP divi						
	101 = FP divi 100 = FP divi	•					
		ded by 8 (defau	ult)				
	010 = FP divi		,				
	001 <b>= Fp divi</b>						
	000 <b>= Fp divi</b>	•					
bit 11		e Mode Enable					
				ween the periplation is forced to		id the processo	r clocks
bit 10-8	FRCDIV<2:0	>: Internal Fast	RC Oscillator	Postscaler bits			
	111 <b>= FRC d</b> i	ivided by 256					
	110 <b>= FRC di</b>	ivided by 64					
	101 <b>= FRC d</b> i						
	100 <b>= FRC d</b> i						
	011 = FRC di 010 = FRC di						
	001 = FRC di						
		ivided by 1 (def	ault)				
bit 7-6	Unimplemen	ted: Read as '	)'				
bit 5-4	Reserved: Re	ead as '0'					
Note 1:	The DOZE<2:0> DOZE<2:0> are i	-	e written to who	en the DOZEN	bit is clear. If D	OZEN = 1, any	writes to
2:	This bit is cleared	I when the ROI	bit is set and a	an interrupt occ	urs.		
3:	The DOZEN bit caset the DOZEN bit	annot be set if l		-		y attempt by us	er software t
4.		-		a anarating bu			

#### REGISTER 9-2: CLKDIV: CLOCK DIVIDER REGISTER

4: PLLPRE<3:0> may be updated while the PLL is operating, but the VCO may overshoot.

#### REGISTER 9-2: CLKDIV: CLOCK DIVIDER REGISTER (CONTINUED)

bit 3-0

**PLLPRE<3:0>:** PLL Phase Detector Input Divider Select bits (also denoted as 'N1', PLL prescaler)⁽⁴⁾ 11111 = Reserved

- ... 1001 **= Reserved**
- 1000 = Input divided by 8
- 0111 = Input divided by 7
- 0110 = Input divided by 6
- 0101 = Input divided by 5
- 0100 =Input divided by 4
- 0011 = Input divided by 3
- 0010 = Input divided by 2
- 0001 = Input divided by 1 (power-on default selection)
- 0000 = Reserved
- **Note 1:** The DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
  - 2: This bit is cleared when the ROI bit is set and an interrupt occurs.
  - **3:** The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.
  - 4: PLLPRE<3:0> may be updated while the PLL is operating, but the VCO may overshoot.

<b>REGISTER 9-3:</b> PLLFBD: PLL FEEDBACK DIVIDER REGISTER
------------------------------------------------------------

U-0	U-0	U-0	U-0	r-0	r-0	r-0	r-0
_	_	—	_	_	_	_	_
bit 15							bit 8
R/W-1	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1	R/W-1	R/W-0
			PLLFBI	DIV<7:0>			
bit 7							bit 0
Legend:		r = Reserved b	nit				
R = Readab	le hit	W = Writable b		LI = Linimplen	nented bit, read	1 as 'N'	
-n = Value a		'1' = Bit is set	710	'0' = Bit is clea		x = Bit is unkr	
						X Bit lo uniu	
bit 15-12	Unimpleme	nted: Read as '0	3				
bit 11-8	Reserved: N	<b>//aintain as</b> '0'					
bit 7-0	PLLFBDIV<	7:0>: PLL Feedb	ack Divider b	its (also denote	d as 'M', PLL n	nultiplier)	
	11111111 =	Reserved					
	 11001000 =	= 200 Maximum ⁽¹	)				
	 10010110 =	= 150 (default)					
	 00010000 =	= 16 Minimum ⁽¹⁾					
	 00000010 = 00000001 =						

- 00000001 = Reserved 00000000 = Reserved
- **Note 1:** The allowed range is 16-200 (decimal). The rest of the values are reserved and should be avoided. The power on the default feedback divider is 150 (decimal) with an 8 MHz FRC input clock. The VCO frequency is 1.2 GHz.

# REGISTER 9-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—		—		—	—			
bit 15							bit 8			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
				TUN	<5:0>					
bit 7							bit 0			
Legend:										
R = Readab	ole bit	W = Writable I	oit	U = Unimplem	ented bit, read	l as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-6	Unimplemen	ted: Read as '0	)'							
bit 5-0	TUN<5:0>: FRC Oscillator Tuning bits									
	011111 = Maximum frequency deviation of 1.45% (MHz) 011110 = Center frequency + 1.40% (MHz)									
	000000 <b>= Ce</b>	nter frequency nter frequency nter frequency	(8.00 MHz nor	ninal)						
		nter frequency nimum frequenc								

#### REGISTER 9-5: PLLDIV: PLL OUTPUT DIVIDER REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	VCODIV1	VCODIV0
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-1
	POST1DIV2 ^(1,2)	POST1DIV1 ^(1,2)	POST1DIV0 ^(1,2)	_	POST2DIV2 ^(1,2)	POST2DIV1 ^(1,2)	POST2DIV0 ^(1,2)
bit 7							bit 0

# Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

#### bit 15-10 Unimplemented: Read as '0'

#### bit 9-8 VCODIV<1:0>: PLL VCO Output Divider Select bits

- 11 = Fvco 10 = Fvco/2
- 01 = Fvco/3
- 00 = Fvco/4

#### bit 7 Unimplemented: Read as '0'

# bit 6-4 **POST1DIV<2:0>:** PLL Output Divider #1 Ratio bits^(1,2) POST1DIV<2:0> can have a valid value, from 1 to 7 (POST1DIVx value should be greater than or equal to the POST2DIVx value). The POST1DIVx divider is designed to operate at higher clock rates than the POST2DIVx divider.

#### bit 3 Unimplemented: Read as '0'

#### bit 2-0 **POST2DIV<2:0>:** PLL Output Divider #2 Ratio bits^(1,2)

POST2DIV<2:0> can have a valid value, from 1 to 7 (POST2DIVx value should be less than or equal to the POST1DIVx value). The POST1DIVx divider is designed to operate at higher clock rates than the POST2DIVx divider.

- Note 1: The POST1DIVx and POST2DIVx divider values must not be changed while the PLL is operating.
  - 2: The default values for POST1DIVx and POST2DIVx are 4 and 1, respectively, yielding a 150 MHz system source clock.

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0
APLLEN ⁽¹⁾	APLLCK	—	—	—	—	_	FRCSEL
bit 15							bit 8
U-0	U-0	r-0	r-0	R/W-0	R/W-0	R/W-0	R/W-1
—	_	—	—	APLLPRE3	APLLPRE2	APLLPRE1	APLLPRE0
bit 7							bit C
1		n. Deserved b	:4				
Legend:	L.14	r = Reserved b			antad bit vaca		
R = Readable		W = Writable k	DIT	U = Unimplem			0.1172
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	area	x = Bit is unkn	IOWN
bit 15		iliary PLL Enat	Na/Rynass sale	act hit(1)			
Sit To		connected to t			bypass disable	ed)	
		connected to t		• •		,	
bit 14	APLLCK: API	LL Phase-Lock	ed State Status	s bit			
	1 = Auxiliary I						
	-	PLL is not in loo					
bit 13-9	•	ted: Read as '0					
bit 8		C Clock Source					
		e clock source Oscillator is the					
bit 7-6	-	ted: Read as '0					
bit 5-4	Reserved: Ma						
bit 3-0		0>: Auxiliary Pl	I Phase Dete	ctor Input Divid	ler hits		
	1111 = Reser	-					
	1001 = Reser						
	1000 = Input o 0111 = Input o						
	0110 = Input o						
	0101 = Input o	divided by 5					
	0100 = Input o						
	0011 = Input ( 0010 = Input (						
		divided by 2 divided by 1 (po	ower-on defaul	t selection)			
	0000 = Reser			,			
Note 1: Ev	en with the APL	I FN hit set an	other nerinher	al must denera	te a clock requ	lest hefore the	APLI will start
				a maor genera			

## REGISTER 9-6: ACLKCON1: AUXILIARY CLOCK CONTROL REGISTER

#### REGISTER 9-7: APLLFBD1: APLL FEEDBACK DIVIDER REGISTER

U-0	U-0	U-0	U-0	r-0	r-0	r-0	r-0
_	_	_	_	_	_	_	—
bit 15							bit 8
R/W-1	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1	R/W-1	R/W-0
			APLLFE	3DIV<7:0>			

bit 7		bit 0
Legend:	r = Reserved bit	

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

bit 11-8 Reserved: Maintain as '0'

- bit 7-0 APLLFBDIV<7:0>: APLL Feedback Divider bits
  - 11111111 = Reserved
    - 11001000 = 200 maximum⁽¹⁾

10010110 = 150 (default)

... 00010000 = 16 minimum⁽¹⁾

- ... 00000010 = Reserved 00000001 = Reserved
- 00000000 = Reserved
- **Note 1:** The allowed range is 16-200 (decimal). The rest of the values are reserved and should be avoided. The power-on default feedback divider is 150 (decimal) with an 8 MHz FRC input clock; the VCO frequency is 1.2 GHz.

# REGISTER 9-8: APLLDIV1: APLL OUTPUT DIVIDER REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0			
_	—	_	—	—	_	AVCOD	IV<1:0>			
bit 15	·			·			bit			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-1			
	APO	DST1DIV<2:0> ⁽¹	, <b>2</b> )		APO	APOST2DIV<2:0>(1,2)				
bit 7							bit			
Legend:										
R = Readable	e bit	W = Writable b	it	U = Unimpler	mented bit, rea	ıd as '0'				
-n = Value at POR (1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unk	nown			
bit 15-10 bit 9-8		ed: Read as '0' >: APLL VCO C	utput Divider	Select bits						
bit 7	•	ed: Read as '0'								
bit 6-4	APOST1DIV<2 or equal to the	<b>2:0&gt;:</b> APLL Outp 2:0> can have a APOST2DIVx v APOST2DIVx di	valid value, fr alue). The AF	om 1 to 7 (the						
bit 3	Unimplement	ed: Read as '0'								
bit 2-0	APOST2DIV<	2:0>: APLL Outp	out Divider #2	Ratio bits ^(1,2)						
	equal to the A	2:0> can have a POST1DIVx val APOST2DIVx di	ue). The APC							

- Note 1: The APOST1DIVx and APOST2DIVx values must not be changed while the PLL is operating.
  - 2: The default values for APOST1DIVx and APOST2DIVx are 4 and 1, respectively, yielding a 150 MHz system source clock.

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
CANCLKEN	_	—	_		CANCLK	SEL<3:0> ⁽¹⁾		
bit 15		· ·					bit	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			CA	NCLKDIV<6:0>	_{&gt;} (2,3)			
bit 7							bit	
Legend:								
R = Readabl	e bit	W = Writable b	it	U = Unimplem	nented bit, rea	id as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	iown	
bit 15		Enables the CA						
		k generation circ						
bit 14-12	0 = CAN clock generation circuitry is disabled							
oit 11-8	Unimplemented: Read as '0' CANCLKSEL<3:0>: CAN Clock Source Select bits ⁽¹⁾							
		= Reserved (no d						
	1010 = AFvc	•		')				
	1001 <b>= AFvo</b>	0/3						
	1000 <b>= AFvo</b>							
	0111 = AFvc							
	0110 = AFPL 0101 = FVCC							
	0100 = Fvcc							
	0011 = Fvcc	0/2						
	0010 = FPLL							
	0001 = Fvcc							
bit 7		clock selected) ted: Read as '0'						
bit 6-0		(<6:0>: CAN Close		le et hite $(2.3)$				
		Divide-by-128						
	0000010 = E 0000001 = E							
	0000001 = L 0000000 = L							
		nsure the input c will result in unp			ss. Operation	with input refere	nce frequenc	
a		win result in unp						

- 2: The CANCLKDIVx divider value must not be changed during CAN module operation.
- 3: The user must ensure the maximum clock output frequency of the divider is 80 MHz or less.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R-0, HSC			
ROEN	—	ROSIDL	ROOUT	ROSLP		ROSWEN	ROACTIV			
bit 15				•			bit 8			
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
	_		<u> </u>	ROSEL3	ROSEL2	ROSEL1	ROSEL0			
bit 7							bit C			
Legend:		HC = Hardware	Clearable bit	HSC = Hardw	ara Sattabla/C	loorable bit				
R = Readab	la hit	W = Writable b		U = Unimpler						
-n = Value a		'1' = Bit is set	11	'0' = Bit is clea						
	IPUR	I = BILIS SEL			areu	x = Bit is unkr	IOWII			
bit 15	ROEN: Re	ference Clock En	able bit							
	1 = Refere	nce Oscillator is e	enabled on the	REFCLKO pin						
	0 = Refere	nce Oscillator is o	lisabled							
bit 14	Unimplem	ented: Read as '	0'							
bit 13	ROSIDL: F	Reference Clock \$	Stop in Idle bit							
		nce Oscillator co								
1.11.4.0		nce Oscillator is o								
bit 12		Reference Clock C	-							
		ence clock externa ence clock externa			ie on the REF	CLKO pin				
bit 11		eference Clock S	•							
		nce Oscillator co								
		nce Oscillator is o		•						
bit 10	Unimplem	ented: Read as '	0'							
bit 9	ROSWEN:	Reference Clock	Output Enable	e bit						
	1 = Clock divider change (requested by changes to RODIVx) is requested or is in progress (set in									
	software, cleared by hardware upon completion) 0 = Clock divider change has completed or is not pending									
bit 8		Reference Clock	•	r is not pending						
DILO		nce clock is activ		no clock source						
		nce clock is stop			ation may be s	afely changed				
bit 7-4		ented: Read as '		0	,	, U				
bit 3-0	•	:0>: Reference C		lect bits						
	1111 <b>= Re</b>	eserved								
		1000 = Reserved								
	0111 = RE 0110 = Fv									
	0110 - IV									
	0100 = LP	RC								
	0011 = FR									
		imary Oscillator	<b>`</b>							
		ripheral clock (FP stem clock (Fosc								
	0000-30	SIEM CIOCK LEOSE								

#### REGISTER 9-10: REFOCONL: REFERENCE CLOCK CONTROL LOW REGISTER

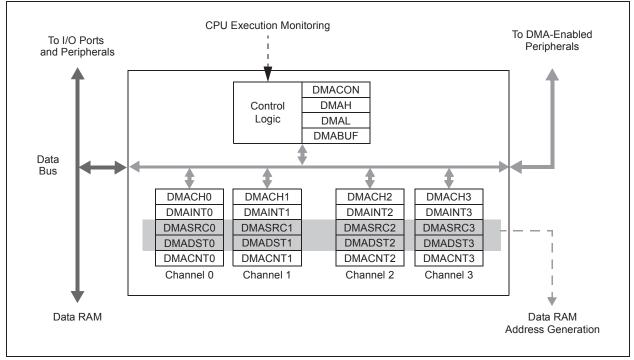
# REGISTER 9-11: REFOCONH: REFERENCE CLOCK CONTROL HIGH REGISTER

	5 4 4 4	<b>D</b> # 4 / 4	-	5	5444.0	54446	5444.0
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				RODIV<14:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			RODI	V<7:0>			
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable b	it	U = Unimplem	nented bit, read	d as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
<u></u>							
bit 15	Unimpleme	nted: Read as '0	,				
bit 14-0	RODIV<14:0	0>: Reference Clo	ock Integer Di	vider Select bit	s		
		ne selected input	•			e.	
		1111 1111 <b>= Ba</b>					
		1111 1110 <b>= Ba</b>				,	
	111 1111	1111 1101 <b>= Ba</b>	ase clock valu	e divided by 65	,530 (2 * 7FFE	Dh)	
		0000 0010 <b>= Ba</b>		-			
		0000 0001 <b>= Ba</b>			(2 * 1)		
	000 0000	0000 0000 <b>= Ba</b>	ise clock valu	e			

NOTES:

# 10.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER

Note 1: This data sheet summarizes the features of this group of dsPIC33 devices. It is not intended to be a comprehensive reference source. For more information, refer to "Direct Memory Access Controller (DMA)" (www.microchip.com/DS39742) in the "dsPIC33/PIC24 Family Reference Manual".


The Direct Memory Access (DMA) Controller is designed to service high data throughput peripherals operating on the SFR bus, allowing them to access data memory directly and alleviating the need for CPU-intensive management. By allowing these data-intensive peripherals to share their own data path, the main data bus is also deloaded, resulting in additional power savings.

The DMA Controller functions both as a peripheral and a direct extension of the CPU. It is located on the microcontroller data bus, between the CPU and DMA-enabled peripherals, with direct access to SRAM. This partitions the SFR bus into two buses, allowing the DMA Controller access to the DMA-capable peripherals located on the new DMA SFR bus. The controller serves as a Master device on the DMA SFR bus, controlling data flow from DMA-capable peripherals. The controller also monitors CPU instruction processing directly, allowing it to be aware of when the CPU requires access to peripherals on the DMA bus and automatically relinquishing control to the CPU as needed. This increases the effective bandwidth for handling data without DMA operations, causing a processor Stall. This makes the controller essentially transparent to the user.

The DMA Controller has these features:

- Four Independently Programmable Channels
- Concurrent Operation with the CPU (no DMA caused Wait states)
- DMA Bus Arbitration
- · Five Programmable Address modes
- Four Programmable Transfer modes
- Four Flexible Internal Data Transfer modes
- · Byte or Word Support for Data Transfer
- 16-Bit Source and Destination Address Register for each Channel, Dynamically Updated and Reloadable
- 16-Bit Transaction Count Register, Dynamically Updated and Reloadable
- Upper and Lower Address Limit Registers
- Counter Half-Full Level Interrupt
- Software Triggered Transfer
- Null Write mode for Symmetric Buffer Operations
- A simplified block diagram of the DMA Controller is shown if Figure 10-1.





# 10.1 Summary of DMA Operations

The DMA Controller is capable of moving data between addresses according to a number of different parameters. Each of these parameters can be independently configured for any transaction. In addition, any or all of the DMA channels can independently perform a different transaction at the same time. Transactions are classified by these parameters:

- · Source and destination (SFRs and data RAM)
- Data size (byte or word)
- Trigger source
- Transfer mode (One-Shot, Repeated or Continuous)
- Addressing modes (Fixed Address or Address Blocks with or without Address Increment/Decrement)

In addition, the DMA Controller provides channel priority arbitration for all channels.

#### 10.1.1 SOURCE AND DESTINATION

Using the DMA Controller, data may be moved between any two addresses in the Data Space. The SFR space (0000h to 0FFFh) or the data RAM space (1000h to 4FFFh) can serve as either the source or the destination. Data can be moved between these areas in either direction or between addresses in either area. The four different combinations are shown in Figure 10-2.

If it is necessary to protect areas of data RAM, the DMA Controller allows the user to set upper and lower address boundaries for operations in the Data Space above the SFR space. The boundaries are set by the DMAH and DMAL Limit registers. If a DMA channel attempts an operation outside of the address boundaries, the transaction is terminated and an interrupt is generated.

#### 10.1.2 DATA SIZE

The DMA Controller can handle both 8-bit and 16-bit transactions. Size is user-selectable using the SIZE bit (DMACHn<1>). By default, each channel is configured for word-size transactions. When byte-size transactions are chosen, the LSB of the source and/or destination address determines if the data represents the upper or lower byte of the data RAM location.

#### 10.1.3 TRIGGER SOURCE

The DMA Controller can use 82 of the device's interrupt sources to initiate a transaction. The DMA trigger sources occur in reverse order from their natural interrupt priority and are shown in Table 10-1. Since the source and destination addresses for any transaction can be programmed independently of the trigger source, the DMA Controller can use any trigger to perform an operation on any peripheral. This also allows DMA channels to be cascaded to perform more complex transfer operations.

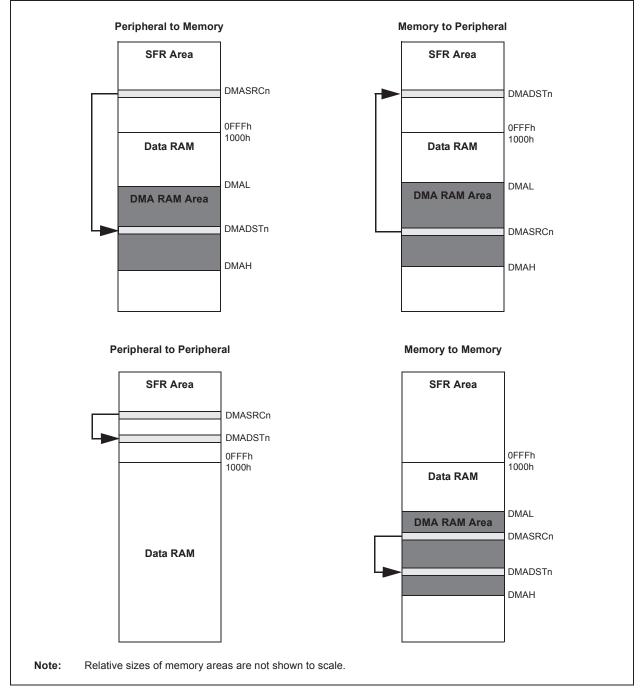
#### 10.1.4 TRANSFER MODE

The DMA Controller supports four types of data transfers, based on the volume of data to be moved for each trigger.

- One-Shot: A single transaction occurs for each trigger.
- Continuous: A series of back-to-back transactions occur for each trigger; the number of transactions is determined by the DMACNTn transaction counter.
- Repeated One-Shot: A single transaction is performed repeatedly, once per trigger, until the DMA channel is disabled.
- Repeated Continuous: A series of transactions are performed repeatedly, one cycle per trigger, until the DMA channel is disabled.

All transfer modes allow the option to have the source and destination addresses, and counter value, automatically reloaded after the completion of a transaction.

#### 10.1.5 ADDRESSING MODES


The DMA Controller also supports transfers between single addresses or address ranges. The four basic options are:

- Fixed-to-Fixed: Between two constant addresses
- Fixed-to-Block: From a constant source address to a range of destination addresses
- Block-to-Fixed: From a range of source addresses to a single, constant destination address
- Block-to-Block: From a range of source addresses to a range of destination addresses

The option to select auto-increment or auto-decrement of source and/or destination addresses is available for Block Addressing modes.

In addition to the four basic modes, the DMA Controller also supports Peripheral Indirect Addressing (PIA) mode, where the source or destination address is generated jointly by the DMA Controller and a PIA-capable peripheral. When enabled, the DMA channel provides a base source and/or destination address, while the peripheral provides a fixed range offset address.

# FIGURE 10-2: TYPES OF DMA DATA TRANSFERS



#### 10.1.6 CHANNEL PRIORITY

Each DMA channel functions independently of the others, but also competes with the others for access to the data and DMA buses. When access collisions occur, the DMA Controller arbitrates between the channels using a user-selectable priority scheme. Two schemes are available:

- Round Robin: When two or more channels collide, the lower numbered channel receives priority on the first collision. On subsequent collisions, the higher numbered channels each receive priority based on their channel number.
- Fixed: When two or more channels collide, the lowest numbered channel always receives priority, regardless of past history; however, any channel being actively processed is not available for an immediate retrigger. If a higher priority channel is continually requesting service, it will be scheduled for service after the next lower priority channel with a pending request.

# 10.2 Typical Setup

To set up a DMA channel for a basic data transfer:

- Enable the DMA Controller (DMAEN = 1) and select an appropriate channel priority scheme by setting or clearing PRSSEL.
- 2. Program DMAH and DMAL with appropriate upper and lower address boundaries for data RAM operations.
- Select the DMA channel to be used and disable its operation (CHEN = 0).
- Program the appropriate source and destination addresses for the transaction into the channel's DMASRCn and DMADSTn registers. For PIA mode addressing, use the base address value.
- Program the DMACNTn register for the number of triggers per transfer (One-Shot or Continuous modes) or the number of words (bytes) to be transferred (Repeated modes).
- 6. Set or clear the SIZE bit to select the data size.
- 7. Program the TRMODE<1:0> bits to select the Data Transfer mode.
- Program the SAMODE<1:0> and DAMODE<1:0> bits to select the addressing mode.
- 9. Enable the DMA channel by setting CHEN.
- 10. Enable the trigger source interrupt.

# 10.3 Peripheral Module Disable

The channels of the DMA Controller can be individually powered down using the Peripheral Module Disable (PMD) registers.

# 10.4 Registers

The DMA Controller uses a number of registers to control its operation. The number of registers depends on the number of channels implemented for a particular device.

There are always four module-level registers (one control and three buffer/address):

- DMACON: DMA Engine Control Register (Register 10-1)
- DMAH and DMAL: DMA High and Low Address Limit Registers
- DMABUF: DMA Transfer Data Buffer

Each of the DMA channels implements five registers (two control and three buffer/address):

- DMACHn: DMA Channel n Control Register (Register 10-2)
- DMAINTn: DMA Channel n Interrupt Register (Register 10-3)
- DMASRCn: DMA Data Source Address Pointer for Channel n Register
- DMADSTn: DMA Data Destination Source for Channel n Register
- DMACNTn: DMA Transaction Counter for Channel n Register

For dsPIC33CK256MP508 devices, there are a total of 34 registers.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
DMAEN	—	DMASIDL	—	—	—	—	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
							PRSSEL
bit 7							bit 0
Legend:							
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	DMAEN: DM	A Module Enab	le bit				
	1 = Enables n 0 = Disables r		minates all act	ive DMA operat	tion(s)		
bit 14	Unimplemen	ted: Read as '	)'				
bit 13	DMASIDL: DI	MA Stop in Idle	bit				
		tinues to run in isabled in Idle					
bit 12-1	Unimplemen	ted: Read as '	)'				
bit 0	<b>PRSSEL:</b> Cha 1 = Round ro 0 = Fixed prior		cheme Selecti	on bit			

#### REGISTER 10-1: DMACON: DMA ENGINE CONTROL REGISTER

#### REGISTER 10-2: DMACHn: DMA CHANNEL n CONTROL REGISTER

U-0	U-0	U-0	r-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	NULLW	RELOAD ⁽¹⁾	CHREQ ⁽³⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SAMODE1	SAMODE0	DAMODE1	DAMODE0	TRMODE1	TRMODE0	SIZE	CHEN
bit 7 bit 0							

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	Reserved: Maintain as '0'
bit 11	Unimplemented: Read as '0'
bit 10	NULLW: Null Write Mode bit
	1 = A dummy write is initiated to DMASRCn for every write to DMADSTn
	0 = No dummy write is initiated
bit 9	RELOAD: Address and Count Reload bit ⁽¹⁾
	1 = DMASRCn, DMADSTn and DMACNTn registers are reloaded to their previous values upon the
	start of the next operation 0 = DMASRCn, DMADSTn and DMACNTn are not reloaded on the start of the next operation ⁽²⁾
bit 8	CHREQ: DMA Channel Software Request bit ⁽³⁾
DILO	1 = A DMA request is initiated by software; automatically cleared upon completion of a DMA transfer
	0 = No DMA request is pending
bit 7-6	SAMODE<1:0>: Source Address Mode Selection bits
	11 = DMASRCn is used in Peripheral Indirect Addressing and remains unchanged
	10 = DMASRCn is decremented based on the SIZE bit after a transfer completion
	<ul> <li>01 = DMASRCn is incremented based on the SIZE bit after a transfer completion</li> <li>00 = DMASRCn remains unchanged after a transfer completion</li> </ul>
bit 5-4	DAMODE<1:0>: Destination Address Mode Selection bits
DIL 0-4	11 = DMADSTn is used in Peripheral Indirect Addressing and remains unchanged
	10 = DMADSTn is decremented based on the SIZE bit after a transfer completion
	01 = DMADSTn is incremented based on the SIZE bit after a transfer completion
	00 = DMADSTn remains unchanged after a transfer completion
bit 3-2	TRMODE<1:0>: Transfer Mode Selection bits
	11 = Repeated Continuous 10 = Continuous
	01 = Repeated One-Shot
	00 = One-Shot
bit 1	SIZE: Data Size Selection bit
	1 = Byte (8-bit)
	0 = Word (16-bit)
bit 0	CHEN: DMA Channel Enable bit
	<ol> <li>The corresponding channel is enabled</li> <li>The corresponding channel is disabled</li> </ol>
Note 1:	Only the original DMACNTn is required to be stored to recover the original DMASRCn and DMADSTn values.
2:	DMACNTn will always be reloaded in Repeated mode transfers, regardless of the state of the RELOAD bit.

3: The number of transfers executed while CHREQ is set depends on the configuration of TRMODE<1:0>.

R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
DBUFWF ⁽¹⁾	CHSEL6	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSEL0		
bit 15		•					bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0		
HIGHIF ^(1,2)	LOWIF ^(1,2)	DONEIF ⁽¹⁾	HALFIF ⁽¹⁾	OVRUNIF ⁽¹⁾	_	_	HALFEN		
bit 7		•					bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkr	nown		
bit 15	1 = The cont DMASRO 0 = The cont	Cn in Null Write	A buffer has r mode /A buffer has	bit ⁽¹⁾ not been written been written t					
bit 14-8		: DMA Channe		tion bits					
		1 for a comple							
bit 7	HIGHIF: DMA High Address Limit Interrupt Flag bit ^(1,2)								
	<ul> <li>1 = The DMA channel has attempted to access an address higher than DMAH or the upper limit of the data RAM space</li> </ul>								
			ot invoked the	high address li	mit interrupt				
bit 6				-					
	<b>LOWIF:</b> DMA Low Address Limit Interrupt Flag bit ^(1,2) 1 = The DMA channel has attempted to access the DMA SFR address lower than DMAL, but above								
	the SFR I	range (07FFh)	·	low address lin					
bit 5		A Complete Op			in interrupt				
bit 0	If CHEN = 1:			per lag ble					
	1 = The previous DMA session has ended with completion								
	0 = The current DMA session has not yet completed								
				with completion without complet					
bit 4	•								
	<b>HALFIF:</b> DMA 50% Watermark Level Interrupt Flag bit ⁽¹⁾ 1 = DMACNTn has reached the halfway point to 0000h								
		n has not reach							
bit 3	OVRUNIF: DMA Channel Overrun Flag bit ⁽¹⁾								
		channel is trigg un condition ha		still completing	the operation	based on the p	revious trigger		
bit 2-1	Unimplement	ted: Read as '	)'						
bit 0	-	fway Completi		bit					
		• •		n has reached it	s halfway poin	t and at comple	etion		
				oletion of the tra					
Note 1: Se	tting these flag	s in software d	oes not genera	ate an interrupt.					
	sting for addres		-	-	either areate	r than DMAH o	r loce than		

# REGISTER 10-3: DMAINTn: DMA CHANNEL n INTERRUPT REGISTER

2: Testing for address limit violations (DMASRCn or DMADSTn is either greater than DMAH or less than DMAL) is NOT done before the actual access.

TABLE	10-1	: DMA CHANNEL	INIGOL		CORCEO			
CHSEL<6:0>		Trigger (Interrupt)	CHSEL<6:0>		Trigger (Interrupt)	CHSEL<6:0>		Trigger (Interrupt)
0000000	00h	INT0 – External Interrupt 0	0100011	23h	PWM Generator 8	1000100	44h	CLC1 Positive Edge Interrupt
0000001	01h	SCCP1 Interrupt	0100100	24h	PWM Event C	1000101	45h	CLC2 Positive Edge Interrupt
0000010	02h	SPI1 Receiver	0100101	25h	SENT1 TX/RX	1000110	46h	SPI1 – Fault Interrupt
0000011	03h	SPI1 Transmitter	0100110	26h	SENT2 TX/RX	1000111	47h	SPI2 – Fault Interrupt
0000100	04h	UART1 Receiver	0100111	27h	ADC1 Group Convert Done	1001000	48h	
0000101	05h	UART1 Transmitter	0101000	28h	ADC Done AN0			(Reserved, do not use)
0000110	06h	ECC Single Bit Error	0101001	29h	ADC Done AN1	1010110	56h	
0000111	07h	NVM Write Complete	0101010	2Ah	ADC Done AN2	1010111	57h	PWM Event D
0001000	08h	INT1 – External Interrupt 1	0101011	2Bh	ADC Done AN3	1011000	58h	PWM Event E
0001001	09h	SI2C1 – I2C1 Slave Event	0101100	2Ch	ADC Done AN4	1011001	59h	PWM Event F
0001010	0Ah	MI2C1 – I2C1 Master Event	0101101	2Dh	ADC Done AN5	1011010	5Ah	(Reserved, do not use)
0001011	0Bh	INT2 – External Interrupt 2	0101110	2Eh	ADC Done AN6	1011011	5Bh	(Reserved, do not use)
0001100	0Ch	SCCP2 Interrupt	0101111	2Fh	ADC Done AN7	1011100	5Ch	SCCP7 Interrupt
0001101	0Dh	INT3 – External Interrupt 3	0110000	30h	ADC Done AN8	1011101	5Dh	SCCP8 Interrupt
0001110	0Eh	UART2 Receiver	0110001	31h	ADC Done AN9	1011110	5Eh	(Reserved, do not use)
0001111	0Fh	UART2 Transmitter	0110010	32h	ADC Done AN10	1011111	5Fh	ADC FIFO Ready Interrupt
0010000	10h	SPI2 Receiver	0110011	33h	ADC Done AN11	1100000	60h	CLC3 Positive Edge Interrupt
0010001	11h	SPI2 Transmitter	0110100	34h	ADC Done AN12	1100001	61h	CLC4 Positive Edge Interrupt
0010010	12h	SCCP3 Interrupt	0110101	35h	ADC Done AN13	1100010	62h	SPI3 Receiver
0010011	13h	SI2C2 – I2C2 Slave Event	0110110	36h	ADC Done AN14	1100011	63h	SPI3 Transmitter
0010100	14h	MI2C2 – I2C1 Master Event	0110111	37h	ADC Done AN15	1100100	64h	SI2C3 – I2C3 Slave Event
0010101	15h	SCCP4 Interrupt	0111000	38h	ADC Done AN16	1100101	65h	MI2C3 – I2C3 Master Event
0010110	16h	SCCP5 Interrupt	0111001	39h	ADC Done AN17	1100110	66h	SPI3 Fault
0010111	17h	SCCP6 Interrupt	0111010	3Ah	ADC Done AN18	1100111	67h	MCCP9
0011000	18h	CRC Generator Interrupt	0111011	3Bh	ADC Done AN19	1101000	68h	UART3 Receiver
0011001	19h	PWM Event A	0111100	3Ch	ADC Done AN20	1101001	69h	UART3 Transmitter
0011010	1Ah	(Reserved, do not use)	0111101	3Dh	ADC Done AN21	1101010	6Ah	ADC Done AN24
0011011	1Bh	PWM Event B	0111110	3Eh	ADC Done AN22	1101011	6Bh	ADC Done AN25
0011100	1Ch	PWM Generator 1	0111111	3Fh	ADC Done AN23	1101100	6Ch	PMP Event
0011101	1Dh	PWM Generator 2	1000000	40h	AD1FLTR1 – Oversample Filter 1	1101101	6Dh	PMP Error Event
0011110	1Eh	PWM Generator 3	1000001	41h	AD1FLTR2 – Oversample Filter 2	1101110	6Eh	
0011111	1Fh	PWM Generator 4	1000010	42h	AD1FLTR3 – Oversample Filter 3			(Reserved, do not use)
0100000	20h	PWM Generator 5	1000011	43h	AD1FLTR4 – Oversample Filter 4	1111111	7Fh	
0100001	21h	PWM Generator 6						
0100010	22h	PWM Generator 7						

<b>TABLE 10-1</b> :	DMA CHANNEL	TRIGGER SOURCES
---------------------	-------------	-----------------

NOTES:

# 11.0 CONTROLLER AREA NETWORK (CAN FD) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. For more information, refer to "CAN Flexible Data-Rate (FD) Protocol Module" (www.microchip.com/DS70005340) in the "dsPIC33/PIC24 Family Reference Manual".
  - 2: Not all device variants include the CAN FD peripheral. Refer to Table 1 and Table 2 for availability.

# 11.1 Features

The CAN FD module has the following features:

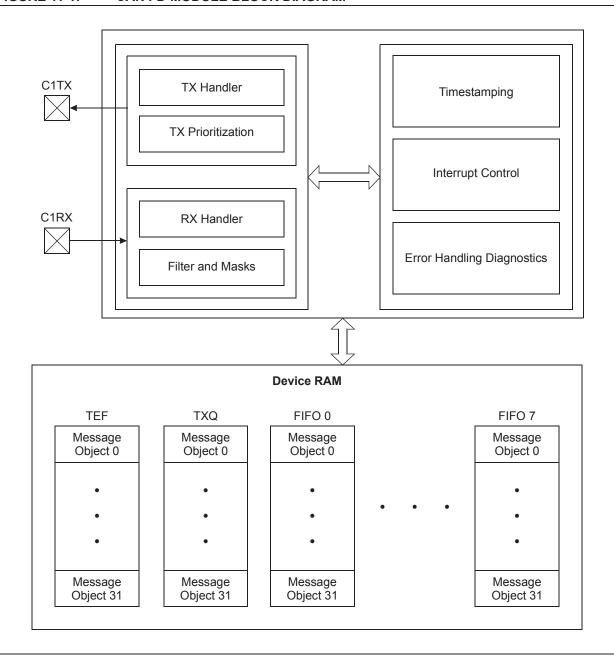
#### General

- Nominal (Arbitration) Bit Rate up to 1 Mbps
- Data Bit Rate up to 8 Mbps
- CAN FD Controller modes:
  - Mixed CAN 2.0B and CAN FD mode
- CAN 2.0B mode
- Conforms to ISO11898-1:2015

#### **Message FIFOs**

- Seven FIFOs, Configurable as Transmit or Receive FIFOs
- One Transmit Queue (TXQ)
- Transmit Event FIFO (TEF) with 32-Bit Timestamp

#### Message Transmission


- Message Transmission Prioritization:
  - Based on priority bit field, and/or
  - Message with lowest ID gets transmitted first using the TXQ
- Programmable Automatic Retransmission Attempts: Unlimited, Three Attempts or Disabled

#### **Message Reception**

- 16 Flexible Filter and Mask Objects.
- Each Object can be Configured to Filter either:
  - Standard ID + first 18 data bits or
- Extended ID
- 32-Bit Timestamp.
- The CAN FD Bit Stream Processor (BSP) Implements the Medium Access Control of the CAN FD Protocol Described in ISO11898-1:2015. It serializes and deserializes the bit stream, encodes and decodes the CAN FD frames, manages the medium access, Acknowledges frames, and detects and signals errors.
- The TX Handler Prioritizes the Messages that are Requested for Transmission by the Transmit FIFOs. It uses the RAM interface to fetch the transmit data from RAM and provides it to the BSP for transmission.
- The BSP provides Received Messages to the RX Handler. The RX handler uses acceptance filters to filter out messages that shall be stored in the Receive FIFOs. It uses the RAM interface to store received data into RAM.
- Each FIFO can be Configured either as a Transmit or Receive FIFO. The FIFO control keeps track of the FIFO head and tail, and calculates the user address. In a TX FIFO, the user address points to the address in RAM where the data for the next transmit message shall be stored. In an RX FIFO, the user address points to the address in RAM where the data of the next receive message shall be read. The user notifies the FIFO that a message was written to or read from RAM by incrementing the head/tail of the FIFO.
- The Transmit Queue (TXQ) is a Special Transmit FIFO that Transmits the Messages based on the ID of the Messages Stored in the Queue.
- The Transmit Event FIFO (TEF) Stores the Message IDs of the Transmitted Messages.
- A Free-Running Time Base Counter is used to Timestamp Received Messages. Messages in the TEF can also be timestamped.
- The CAN FD Controller module Generates Interrupts when New Messages are Received or when Messages were Transmitted Successfully.

Figure 11-1 shows the CAN FD system block diagram.

# dsPIC33CK256MP508 FAMILY



# FIGURE 11-1: CAN FD MODULE BLOCK DIAGRAM

# 11.2 Can Control Registers

#### REGISTER 11-1: C1CONH: CAN CONTROL REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	S/HC-0	R/W-1	R/W-0	R/W-0
TXBWS3	TXBWS2	TXBWS1	TXBWS0	ABAT	REQOP2	REQOP1	REQOP0
bit 15							bit 8

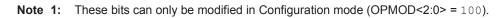
R-1	R-0	R-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
OPMOD2	OPMOD1	OPMOD0	TXQEN ⁽¹⁾	STEF ⁽¹⁾	SERRLOM ⁽¹⁾	ESIGM ⁽¹⁾	RTXAT ⁽¹⁾
bit 7							bit 0

Legend:	S = Settable bit	HC = Hardware Clearat	HC = Hardware Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-12 **TXBWS<3:0>:** Transmit Bandwidth Sharing bits

DIL 15-12	
	1111-1100 <b>= 4096</b>
	1011 <b>= 2048</b>
	1010 <b>= 1024</b>
	1001 <b>= 512</b>
	1000 <b>= 256</b>
	0111 <b>= 128</b>
	0110 = 64
	0101 <b>= 32</b>
	0100 = 16
	0011 = 8
	0010 = 4
	0001 <b>= 2</b>
	0000 <b>= No delay</b>
bit 11	ABAT: Abort All Pending Transmissions bit
	1 = Signals all transmit buffers to abort transmission
	0 = Module will clear this bit when all transmissions are aborted
bit 10-8	REQOP<2:0>: Request Operation Mode bits
	111 = Sets Restricted Operation mode
	110 = Sets Normal CAN 2.0 mode; error frames on CAN FD frames
	101 = Sets External Loopback mode
	100 = Sets Configuration mode
	011 = Sets Listen Only mode
	010 = Sets Internal Loopback mode
	001 = Sets Disable mode
	000 = Sets Normal CAN FD mode; supports mixing of full CAN FD and classic CAN 2.0 frames
bit 7-5	OPMOD<2:0>: Operation Mode Status bits
	111 = Module is in Restricted Operation mode
	110 = Module is in Normal CAN 2.0 mode; error frames on CAN FD frames
	101 = Module is in External Loopback mode
	100 = Module is in Configuration mode
	011 = Module is in Listen Only mode
	010 = Module is in Internal Loopback mode
	001 = Module is in Disable mode
	000 = Module is in Normal CAN FD mode; supports mixing of full CAN FD and classic CAN 2.0 frames

# REGISTER 11-1: C1CONH: CAN CONTROL REGISTER HIGH (CONTINUED)


bit 4	TXQEN: Enable Transmit Queue bit ⁽¹⁾
	1 = Enables Transmit Message Queue (TXQ) and reserves space in RAM
	0 = Does not reserve space in RAM for TXQ
bit 3	STEF: Store in Transmit Event FIFO bit ⁽¹⁾
	1 = Saves transmitted messages in TEF
	0 = Does not save transmitted messages in TEF
bit 2	SERRLOM: Transition to Listen Only Mode on System Error bit ⁽¹⁾
	1 = Transitions to Listen Only mode
	0 = Transitions to Restricted Operation mode
bit 1	ESIGM: Transmit ESI in Gateway Mode bit ⁽¹⁾
	1 = ESI is transmitted as recessive when ESI of the message is high or CAN controller is error passive
	0 = ESI reflects error status of CAN controller
bit 0	RTXAT: Restrict Retransmission Attempts bit ⁽¹⁾
	1 = Restricted retransmission attempts, uses TXAT<1:0> bits (C1TXQCONH<6:5>)
	0 = Unlimited number of retransmission attempts, TXAT<1:0> bits will be ignored

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1				
CON		SIDL	BRSDIS	BUSY	WFT1	WFT0	WAKFIL ⁽¹⁾				
bit 15							bit 8				
R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
CLKSEL ⁽¹⁾	PXEDIS ⁽¹⁾	ISOCRCEN ⁽¹⁾	DNCNT4	DNCNT3	DNCNT2	DNCNT1	DNCNT0				
bit 7		1					bit C				
Legend:											
R = Readable	bit	W = Writable bit		U = Unimpler	mented bit, read	d as '0'					
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown				
bit 15	CON: CAN E	nable bit									
		lule is enabled lule is disabled									
bit 14	Unimplemen	ted: Read as '0'									
bit 13		top in Idle Contro									
		dule operation in stop module ope		mode							
bit 12	BRSDIS: Bit Rate Switching (BRS) Disable bit										
		Switching is disab Switching depend				ssage object					
bit 11	BUSY: CAN Module is Busy bit										
		module is active module is inactive	e								
bit 10-9	WFT<1:0>: S	electable Wake-u	p Filter Time	e bits							
	11 = T11FILTE 10 = T10FILTE 01 = T01FILTE 00 = T00FILTE	R R									
bit 8		able CAN Bus Lin	e Wake-up F	ilter bit ⁽¹⁾							
	1 = Uses CAN	N bus line filter fo line filter is not us	r wake-up								
bit 7	CLKSEL: Mo	dule Clock Sourc	e Select bit ^{(*}	)							
		clock is active wh k is not active wh									
bit 6	PXEDIS: Prof	tocol Exception E	vent Detection	on Disabled bit	(1)						
	1 = Protocol E	reserved bit" follo Exception is treat col Exception is d	ed as a form	error							
bit 5		Enable ISO CRC			bus integrating	JSIAIC					
bit 5	1 = Includes s	stuff bit count in C	RC field and	l uses non-zer			all zeros				
bit 4-0		: DeviceNet™ Fi									
	10011-1111	1 = Invalid select	ion (compare	es up to 18 bits	s of data with E	ID)					
	 00001 = Com	npares up to Data s not compare da		with EID0							

#### REGISTER 11-2: C1CONL: CAN CONTROL REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			BRP	<7:0>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0		
			TSEG	1<7:0>					
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable b	e bit U = Unimplemented bit, read as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-8	BRP<7:0>:	Baud Rate Presc	aler bits						
	1111 1111	1 = TQ = 256/Fsys	3						
	0000 0000	0 = TQ = 1/FSYS							
bit 7-0	TSEG1<7:0	G1<7:0>: Time Segment 1 bits (Propagation Segment + Phase Segment 1)							
	1111 1111	1 = Length is 256	χ Το						
	• • •		_						
	0000 0000	D = Length is 1 x 1	Q						

# **REGISTER 11-3:** C1NBTCFGH: CAN NOMINAL BIT TIME CONFIGURATION REGISTER HIGH⁽¹⁾



# **REGISTER 11-4:** C1NBTCFGL: CAN NOMINAL BIT TIME CONFIGURATION REGISTER LOW⁽¹⁾

U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1
_				TSEG2<6:0>			
bit 15							bit 8
r							
U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1
				SJW<6:0>			
bit 7							bit 0
r							
Legend:							
R = Readab	ole bit	W = Writable b	W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15	Unimpleme	ented: Read as '0	)'				
bit 14-8	TSEG2<6:0	>: Time Segment	t 2 bits (Phase	e Segment 2)			
	111 1111:	= Length is 128 x	ΤQ				
		– Levethie 4 v To	_				
		= Length is 1 x To					
bit 7	Unimpleme	ented: Read as '0	)'				
bit 6-0	SJW<6:0>:	Synchronization	Jump Width b	oits			
	111 1111:	= Length is 128 x	ΤQ				
		- Longth is 1 + T	<u>_</u>				
	000 0000:	= Length is 1 x To	2				

# **REGISTER 11-5:** C1DBTCFGH: CAN DATA BIT TIME CONFIGURATION REGISTER HIGH⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			BRP	<7:0>			
bit 15							bit 8
			-	<b>5</b> 4 4 4	<b>D</b> 444 4	<b>D</b> 444 4	5444.6
U-0	U-0	U-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0
		—			TSEG1<4:0>		
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable bi	t	U = Unimpler	mented bit, rea	d as '0'	
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknow			nown	
			1				
bit 15-8		Baud Rate Presca	aler bits				
	1111 1111	= TQ = 256/Fsys					
		= Tq = 1/Fsys					
bit 7-5		nted: Read as '0'					
bit 4-0	-	: Time Segment	1 hite (Propa	aation Seame	nt + Phase Sec	(ment 1)	
DIL 4-0		-	T DILS (FTOPA	gation Segmen	ni + Fhase Sey	ment I)	
		ength is 32 x TQ					
	0 0000 = Le	ength is 1 x TQ					
		0					

**Note 1:** This register can only be modified in Configuration mode (OPMOD<2:0> = 100).

#### **REGISTER 11-6:** C1DBTCFGL: CAN DATA BIT TIME CONFIGURATION REGISTER LOW⁽¹⁾

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-1	R/W-1	
_			_					
bit 15				·			bit 8	
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-1	R/W-1	
	—	—	—		SJW	<3:0>		
bit 7							bit 0	
Legend:								
R = Readab	ole bit	W = Writable bi	it	U = Unimplemented bit, read as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15-12	Unimplomo	nted: Read as '0'						
	-							
bit 11-8		>: Time Segment	2 bits (Phas	e Segment 2)				
	1111 <b>= Len</b> (	gth is 16 x TQ						
	 0000 = Len	gth is 1 x Tq						
hit 7 1		-						
bit 7-4	-	nted: Read as '0'						
bit 3-0		Synchronization J	Jump Width I	DItS				
	1111 <b>= Len</b> ę	gth is 16 x TQ						
	• • •							

**Note 1:** This register can only be modified in Configuration mode (OPMOD<2:0> = 100).

 $0000 = \text{Length is } 1 \times TQ$ 

REGISTER 11-7:	C1TDCH: CAN TRANSMITTER DELAY COMPENSATION REGISTER HIGH ⁽¹⁾
----------------	-------------------------------------------------------------------------

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	—	—	—	—	—	EDGFLTEN	SID11EN
bit 15	bit 15						bit 8
r							
U-0	U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0
—	_	_	—	—	—	TDCMOD1	TDCMOD0
bit 7							bit 0
r							
Legend:							
R = Readable	e bit	W = Writable b	it	U = Unimplei	mented bit, re	ad as '0'	
-n = Value at	-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown	
E							
bit 15-10	Unimplemen	ted: Read as '0	3				
bit 9	EDGFLTEN:	Enable Edge Fil	tering During	g Bus Integratio	n State bit		
	1 = Edge filte	ring is enabled a	according to	ISO11898-1:20	15		
	0 = Edge filte	ring is disabled					
bit 8	SID11EN: En	able 12-Bit SID	in CAN FD B	Base Format Me	essages bit		
	1 = RRS is us	sed as SID11 in	CAN FD bas	e format messa	ages: SID<11:	0> = {SID<10:0>	•, SID11}
	0 = Does not	use RRS; SID<	10:0>				
bit 7-2	Unimplemen	ted: Read as '0	3				
bit 1-0	TDCMOD<1:	0>: Transmitter	Delay Comp	ensation Mode	bits (Seconda	ry Sample Point	(SSP))
	10-11 <b>= Auto</b>	o: Measures dela	ay and adds	TSEG1<4:0> (0	C1DBTCFGH	<4:0>), adds TD0	CO<6:0>
		Does not meas	ure, uses TD	0CV<5:0> + TD	CO<6:0> from	n register	
	00 = Disable						

# **REGISTER 11-8:** C1TDCL: CAN TRANSMITTER DELAY COMPENSATION REGISTER LOW⁽¹⁾

U-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
_				TDCO<6:0>			
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—			TDCV	/<5:0>		
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable bit		U = Unimpler	nented bit, rea	d as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nwn
		1 Bit lo cot					iowii
bit 15	Unimpleme	nted: Read as '0'					
bit 14-8	TDCO<6:0>	: Transmitter Delay	Compensa	ation Offset bits	(Secondary S	ample Point (S	SP))
	111 1111 =	-64 x Tsys					
	•••						
	011 1111 =	63 X ISYS					
	000 0000 =	0 x Tsys					
bit 7-6	Unimpleme	nted: Read as '0'					
bit 5-0	-	: Transmitter Delay	Compensa	ation Value bits	(Secondary Sa	ample Point (SS	(P))
	11 1111 =		Compense				,,,
	00 0000 = 0	0 x Fp					

# **REGISTER 11-9:** C1TBCH: CAN TIME BASE COUNTER REGISTER HIGH^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TBC<	31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TBC<	23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpler	nented bit, rea	id as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							

bit 15-0 **TBC<31:16>** CAN Time Base Counter bits

This is a free-running timer that increments every TBCPREx clock when TBCEN is set.

Note 1: The Time Base Counter (TBC) will be stopped and reset when TBCEN = 0 to save power.

2: The TBC prescaler count will be reset on any write to C1TBCH/L (TBCPREx will be unaffected).

# **REGISTER 11-10:** C1TBCL: CAN TIME BASE COUNTER REGISTER LOW^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TBC<	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TBC	<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bit		U = Unimpler	mented bit, read	d as '0'	

R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0 **TBC<15:0>** CAN Time Base Counter bits

This is a free-running timer that increments every TBCPREx clock when TBCEN is set.

**Note 1:** The TBC will be stopped and reset when TBCEN = 0 to save power.

2: The TBC prescaler count will be reset on any write to C1TBCH/L (TBCPREx will be unaffected).

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		—	—			<u> </u>	<u> </u>
bit 15							bit 8
r							
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
		—			TSRES	TSEOF	TBCEN
bit 7							bit 0
r							
Legend:							
R = Readab	le bit	W = Writable b	it	U = Unimple	mented bit, read	1 as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-3	Unimplemen	ted: Read as '0	,				
bit 2		estamp Reset bit	•				
		e point of the bit	0				
L 10 A		e point of Start-o					
bit 1		estamp End-of-F	( )				
		np when frame is error until last, b		,	).		
		error until the er		LOP			
		np at "beginning"					
		cal Frame: At sa		SOF			
		me: See TSRE					
bit 0	TBCEN: Time	e Base Counter	Enable bit				
	1 = Enables 1	ГВС					
	0 = Stops and	d resets TBC					

#### REGISTER 11-11: C1TSCONH: CAN TIMESTAMP CONTROL REGISTER HIGH

#### REGISTER 11-12: C1TSCONL: CAN TIMESTAMP CONTROL REGISTER LOW

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	—	_	—	—	TBCPF	RE<9:8>
bit 15				•	·	•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TBCPF	RE<7:0>			
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable bi	it	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-10	Unimplemer	ted: Read as '0'					
bit 9-0	TBCPRE<9:	0>: CAN Time Ba	ase Counter	Prescaler bits			
			4004				

1023 = TBC increments every 1024 clocks

. . . 0 = TBC increments every 1 clock

U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0					
—				RXCODE<6:0>	>							
bit 15							bit 8					
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0					
—				TXCODE<6:0>	>							
bit 7							bit 0					
<del></del>												
Legend:			••									
R = Readal		W = Writable b	It	U = Unimplen								
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
L:1 4 F	11	autada Daadaa (o)	,									
bit 15	-	ented: Read as '0										
bit 14-8		RXCODE<6:0>: Receive Interrupt Flag Code bits 1000001-1111111 = Reserved										
		1000001-1111111 = Reserved 1000000 = No interrupt										
		01111111 = Reserv	ved									
		FIFO 7 interrupt (		)								
				<b>`</b>								
		FIFO 2 interrupt ( FIFO 1 interrupt (										
		Reserved; FIFO (										
bit 7	Unimplem	ented: Read as '0	1									
bit 6-0	TXCODE<	6:0>: Transmit Inte	errupt Flag C	ode bits								
		1111111 <b>= Reser</b> v	/ed									
		No interrupt										
		0111111 = Reserver FIFO 7 interrupt (		)								
	•••			/								
		FIFO 1 interrupt (										
	0000000 =	FIFO 0 interrupt (	I FIF0 is set)	)								

#### REGISTER 11-13: C1VECH: CAN INTERRUPT CODE REGISTER HIGH

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0				
	_	_			FILHIT<4:0>						
bit 15	·						bit				
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0				
				ICODE<6:0>							
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable b	it	U = Unimpler	nented bit, read	d as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown				
bit 15-13	Unimplemen	ted: Read as '0	,								
bit 12-8	FILHIT<4:0>:	Filter Hit Numb	er bits								
	01111 = Filte										
	01110 = Filte	er 14									
	 00001 = Filte	vr 1									
	00000 = Filte										
bit 7	Unimplemen	ted: Read as '0	,								
bit 6-0	ICODE<6:0>: Interrupt Flag Code bits										
	1001011-1111111 = Reserved										
		ransmit attempt									
		ransmit event F nvalid message			EFSTA is set)						
		CAN module mo			-//F)						
		CAN timer overflo			/						
		RX/TX MAB ove									
		aved to memory					nt data)				
		Address error inte Receive FIFO ov									
		Vake-up interrup				()					
		Error interrupt (C		,							
	1000000 = N	•									
		11111 = Reser									
	0000111 = FIFO 7 interrupt (TFIF7 or RFIF7 is set)										
	0000111 = F	IFO 7 interrupt	(TFIF7 or RFI	F7 is set)							
		FIFO 7 interrupt	-								

# REGISTER 11-14: C1VECL: CAN INTERRUPT CODE REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
IVMIE	WAKIE	CERRIE	SERRIE	RXOVIE	TXATIE	—	_
bit 15	•		•				bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	TEFIE	MODIE	TBCIE	RXIE	TXIE
bit 7	•		•				bit C
Legend:							
R = Readable	e bit	W = Writable b	it	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	IVMIE: Invali	d Message Inter	rupt Enable b	it			
		essage interrupt					
		essage interrupt					
bit 14		Wake-up Activity		able bit			
		activity interrupt Activity Interrup					
bit 13		N Bus Error Inte		oit			
		error interrupt is					
	0 = CAN bus	error interrupt is	disabled				
bit 12	SERRIE: Sys	stem Error Interr	upt Enable bit				
		error interrupt is e					
		error interrupt is					
bit 11		ceive Buffer Ove					
		buffer overflow in buffer overflow in	•				
bit 10		nsmit Attempt Int	•				
		attempt interrup	•				
		attempt interrup					
bit 9-5	Unimplemer	nted: Read as '0	,				
bit 4	TEFIE: Trans	smit Event FIFO	Interrupt Enal	ble bit			
		event FIFO inter	•				
		event FIFO inte	-				
bit 3		le Change Interr	•				
		ange interrupt is ange interrupt is					
bit 2		Timer Interrupt					
		er interrupt is ena					
		er interrupt is dis					
bit 1	RXIE: Receiv	ve Object Interru	pt Enable bit				
		object interrupt i					
1.1.0		object interrupt is					
bit 0		nit Object Interru					
	$\perp$ = ransmit	object interrupt i	senabled				

# REGISTER 11-15: C1INTH: CAN INTERRUPT REGISTER HIGH

HS/C-0	HS/C-0	HS/C-0	HS/C-0	R-0	R-0	U-0	U-0
IVMIF ⁽¹⁾	WAKIF ⁽¹⁾	CERRIF ⁽¹⁾	SERRIF ⁽¹⁾	RXOVIF	TXATIF		
oit 15		L		<u> </u>		1	bit
U-0	U-0	U-0	R-0	HS/C-0	HS/C-0	R-0	R-0
—	—	_	TEFIF	MODIF ⁽¹⁾	TBCIF ⁽¹⁾	RXIF	TXIF
bit 7							bit
Legend:		C = Clearable	bit	HS = Hardwa	re Settable bit		
R = Readable	bit	W = Writable b	it	U = Unimplen	nented bit, read	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
			(1)				
bit 15		d Message Inter					
		essage interrupt d message inter					
bit 14		Wake-up Activit	•	a hit(1)			
		activity interrupt		y bit.			
		-up activity interi					
bit 13	CERRIF: CA	N Bus Error Inte	rrupt Flag bit ⁽¹	1)			
	1 = CAN bus	error interrupt o	ccurred				
		bus error interru	•				
bit 12	SERRIF: Sys	tem Error Interr	upt Flag bit ⁽¹⁾				
		error interrupt oc					
		m error interrupt					
bit 11		ceive Buffer Ove		-			
		buffer overflow in ve buffer overflov					
bit 10		nsmit Attempt Ini					
		attempt interrup		L			
		nit attempt Inter					
bit 9-5	Unimplemen	ted: Read as '0	,				
bit 4	TEFIF: Trans	mit Event FIFO	Interrupt Flag	bit			
	1 = Transmit	event FIFO inte	rrupt occurred				
		nit event FIFO ii	-				
bit 3		Mode Change					
		ule mode chang change occurre		)PMOD<2:0> h	nave changed t	o reflect REQO	)P<2:0>)
bit 2		Timer Overflow		bit ⁽¹⁾			
	1 = TBC has						
	0 = TBC has	not overflowed					
bit 1	RXIF: Receiv	e Object Interru	pt Flag bit				
		object interrupt i					
		ve object interrup		g			
bit 0		nit Object Interru					
		object interrupt					
	v = i no transr	nit object interru	pis are pendir	iy			

#### REGISTER 11-16: C1INTL: CAN INTERRUPT REGISTER LOW

Note 1: C1INTL: Flags are set by hardware and cleared by application.

# REGISTER 11-17: C1RXIFH: CAN RECEIVE INTERRUPT STATUS REGISTER HIGH⁽¹⁾

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RFIF<	31:24>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RFIF<	23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpleme	ented bit, rea	ad as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unkn	own

bit 15-0 RFIF<31:16>: Unimplemented

Note 1: C1RXIFH: FIFO: RFIFx = 'or' of enabled RX FIFO flags (flags need to be cleared in the FIFO register).

# REGISTER 11-18: C1RXIFL: CAN RECEIVE INTERRUPT STATUS REGISTER LOW⁽¹⁾

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RFIF	<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	U-0
			RFIF<7:1>				_
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable b	bit	U = Unimpleme	ented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unkn	own
bit 15-8	RFIF<15:8	>: Unimplemented	t				
bit 7-1	RFIF<7:1>	: Receive FIFO In	terrupt Pendi	ing bits			

1 = One or more enabled receive FIFO interrupts are pending

0 = No enabled receive FIFO interrupts are pending

bit 0 Unimplemented: Read as '0'

**Note 1:** C1RXIFL: FIFO: RFIFx = 'or' of enabled RX FIFO flags (flags need to be cleared in the FIFO register).

# REGISTER 11-19: C1RXOVIFH: CAN RECEIVE OVERFLOW INTERRUPT STATUS REGISTER HIGH⁽¹⁾

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RFOVIE	-<31:24>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RFOVIE	-<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpleme	ented bit, re	ad as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unkr	nown

bit 15-0 **RFOVIF<31:16>:** Unimplemented

Note 1: C1RXOVIFH: FIFO: RFOVIFx (flag needs to be cleared in the FIFO register).

#### REGISTER 11-20: C1RXOVIFL: CAN RECEIVE OVERFLOW INTERRUPT STATUS REGISTER LOW⁽¹⁾

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
			RFOV	′IF<15:8>					
bit 15							bit 8		
R-0	R-0	R-0	R-0	R-0	R-0	R-0	U-0		
		F	RFOVIF<7:1	>			—		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable b	it	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown					
L									
bit 15-8	RFOVIF<1	5:8>: Unimplemen	ted						

bit 7-1 RFOVIF<7:1>: Receive FIFO Overflow Interrupt Pending bits

1 = Interrupt is pending

0 = Interrupt is not pending

bit 0 Unimplemented: Read as '0'

Note 1: C1RXOVIFL: FIFO: RFOVIFx (flag needs to be cleared in the FIFO register).

# **REGISTER 11-21:** C1TXIFH: CAN TRANSMIT INTERRUPT STATUS REGISTER HIGH⁽¹⁾

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TFIF<	31:24>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TFIF<	23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpleme	ented bit, re	ad as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						'n	

bit 15-0 TFIF<31:16>: Unimplemented

Note 1: C1TXIFH: FIFO: TFIFx = 'or' of the enabled TX FIFO flags (flags need to be cleared in the FIFO register).

# REGISTER 11-22: C1TXIFL: CAN TRANSMIT INTERRUPT STATUS REGISTER LOW⁽¹⁾

R-0	R-0	R-0	R-0	R-0	R-0	R-0	
		TFIF	<15:8>				
						bit 8	
R-0	R-0	R-0	R-0	R-0	R-0	R-0	
		TFIF	<7:0> ⁽²⁾				
						bit 0	
oit	W = Writable bit		U = Unimplen	nented bit, re	ad as '0'		
ue at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unknown		
	R-0	R-0 R-0 bit W = Writable bit	TFIF R-0 R-0 R-0 TFIF Dit W = Writable bit	$\frac{\text{TFIF}<15:8>}{\text{R-0} \text{ R-0} \text{ R-0}}$ $\frac{\text{TFIF}<7:0>^{(2)}}{\text{Dit}}$ $W = \text{Writable bit} \qquad U = \text{Unimplement}$	$TFIF<15:8>$ $R-0 R-0 R-0 R-0 R-0$ $TFIF<7:0>^{(2)}$ Dit W = Writable bit U = Unimplemented bit, re	$TFIF<15:8>$ $R-0 R-0 R-0 R-0 R-0 R-0$ $TFIF<7:0>^{(2)}$ Dit W = Writable bit U = Unimplemented bit, read as '0'	

bit 15-8 TFIF<15:8>: Unimplemented

bit 7-0 **TFIF<7:0>:** Transmit FIFO/TXQ Interrupt Pending bits⁽²⁾

1 = One or more enabled transmit FIFO/TXQ interrupts are pending

0 = No enabled transmit FIFO/TXQ interrupts are pending

Note 1: C1TXIFL: FIFO: TFIFx = 'or' of the enabled TX FIFO flags (flags need to be cleared in the FIFO register).
 2: TFIF0 is for the transmit queue.

# REGISTER 11-23: C1TXATIFH: CAN TRANSMIT ATTEMPT INTERRUPT STATUS REGISTER HIGH⁽¹⁾

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TFATIF	<31:24>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			<b>TFATIF</b>	<23:16>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bit		U = Unimpleme	ented bit, rea	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unkn	nown

bit 15-0 TFATIF<31:16>: Unimplemented

Note 1: C1TXATIFH: FIFO: TFATIFx (flag needs to be cleared in the FIFO register).

#### REGISTER 11-24: C1TXATIFL: CAN TRANSMIT ATTEMPT INTERRUPT STATUS REGISTER LOW⁽¹⁾

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
			TFATI	F<15:8>					
bit 15							bit 8		
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
			TFATI	F<7:0> ⁽²⁾					
bit 7							bit 0		
Legend:									
R = Readable I	bit	W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			nown		

bit 15-8 **TFATIF<15:8>:** Unimplemented

bit 7-0 TFATIF<7:0>: Transmit FIFO/TXQ Attempt Interrupt Pending bits⁽²⁾

1 = Interrupt is pending

0 = Interrupt is not pending

Note 1: C1TXATIFL: FIFO: TFATIFx (flag needs to be cleared in the FIFO register).

**2:** TFATIF0 is for the transmit queue.

#### REGISTER 11-25: C1TXREQH: CAN TRANSMIT REQUEST REGISTER HIGH

S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0		
		TXREC	<31:24>					
						bit 8		
S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0		
		TXREC	<23:16>					
						bit 0		
	S = Settable bit		HC = Hardwa	are Clearable b	it			
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
-n = Value at POR (1' = Bit is set (0' = Bit is cleared				ared	x = Bit is unkr	nown		
	S/HC-0	S/HC-0 S/HC-0 S = Settable bit t W = Writable bit	S/HC-0 S/HC-0 S/HC-0 TXREC S = Settable bit t W = Writable bit	S/HC-0     S/HC-0     S/HC-0     S/HC-0       S/HC-0     S/HC-0     S/HC-0       TXREQ<23:16>       S = Settable bit     HC = Hardwa       W = Writable bit     U = Unimpler	S/HC-0     S/HC-0     S/HC-0     S/HC-0       S/HC-0     S/HC-0     S/HC-0       TXREQ<23:16>       S = Settable bit     HC = Hardware Clearable b       t     W = Writable bit     U = Unimplemented bit, rea	S/HC-0     S/HC-0     S/HC-0     S/HC-0     S/HC-0       S/HC-0     S/HC-0     S/HC-0     S/HC-0       TXREQ<23:16>         S = Settable bit     HC = Hardware Clearable bit       W = Writable bit     U = Unimplemented bit, read as '0'		

#### bit 15-0 TXREQ<31:16>: Unimplemented

# REGISTER 11-26: C1TXREQL: CAN TRANSMIT REQUEST REGISTER LOW

S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	
			TXREC	2<15:8>				
bit 15							bit 8	
S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	S/HC-0	
			TXREQ<7:1>				TXREQ0	
bit 7							bit 0	
Legend:		S = Settable b	it	HC = Hardwa	are Clearable b	it		
R = Readable	e bit	W = Writable k	pit	U = Unimpler	mented bit, rea	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown	
bit 15-8	TXREQ<15:	8>: Unimplemen	ited					
bit 7-1	TXREQ<7:1	>: Message Sen	d Request bit	S				
		bject configured						
		bit to '1' requests e object is (are) s						
	TXEN = 0 (object configured as a receive object): This bit has no effect.							
bit 0	Setting this b	ransmit Queue N bit to '1' requests e object is (are) s	sending a me	ssage. The bit		•	• • • •	

#### REGISTER 11-27: C1FIFOBAH: CAN MESSAGE MEMORY BASE ADDRESS REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			<b>FIFOB</b>	A<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			<b>FIFOB</b>	4<23:16>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR (1' = Bit is set			'0' = Bit is cleared x = Bit is unknow			nown	

bit 15-0 FIFOBA<31:16>: Message Memory Base Address bits

Defines the base address for the transmit event FIFO followed by the message objects.

#### REGISTER 11-28: C1FIFOBAL: CAN MESSAGE MEMORY BASE ADDRESS REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			FIFOB.	A<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0
			FIFOE	8A<7:0>			
bit 7							bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at F	n = Value at POR (1' = Bit is set			'0' = Bit is cleared x = Bit is unknow			nown

bit 15-0 **FIFOBA<15:0>:** Message Memory Base Address bits Defines the base address for the transmit event FIFO followed by the message objects.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLSIZE2 ⁽¹⁾	PLSIZE1 ⁽¹⁾	PLSIZE0 ⁽¹⁾	FSIZE4 ⁽¹⁾	FSIZE3 ⁽¹⁾	FSIZE2 ⁽¹⁾	FSIZE1 ⁽¹⁾	FSIZE0 ⁽¹⁾
bit 15						·	bit 8
U-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	TXAT1	TXAT0	TXPRI4	TXPRI3	TXPRI2	TXPRI1	TXPRI0
bit 7							bit C
Legend:							
R = Readable I		W = Writable bi	t	•	nented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13 bit 12-8	111 = 64 data 110 = 48 data 101 = 32 data 100 = 24 data 011 = 20 data 010 = 16 data 001 = 12 data 000 = 8 data <b>FSIZE&lt;4:0&gt;:</b>	a bytes a bytes a bytes a bytes a bytes a bytes a bytes	1				
	00001 = FIFC 00000 = FIFC	) is 3 messages ) is 2 messages ) is 1 message c	deep				
bit 7	-	ted: Read as '0'					
bit 6-5	This feature is 11 = Unlimite 10 = Unlimite 01 = Three re	Retransmission A s enabled when I d number of retra d number of retra transmission atta s retransmission	RTXAT (C1C) ansmission a ansmission a empts	ttempts	:t.		
bit 4-0	TXPRI<4:0>:	Message Transr	nit Priority bit	ts			
	11111 = High	lest message pri	ority				
			5				
	 00000 = Low	est message pric	-				

# REGISTER 11-29: C1TXQCONH: CAN TRANSMIT QUEUE CONTROL REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	_	_	_	_	FRESET	TXREQ	UINC
bit 15							bit 8
			DAMA	11.0	DAMA		DAMA
R-0 TXEN	U-0	U-0	R/W-0	U-0	R/W-0	U-0	R/W-0
bit 7	_	_	TXAIIE	—	TXQEIE	_	TXQNIE bit 0
							bit c
Legend:							
R = Readab	ole bit	W = Writable b	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 1E 11	Unimplanter	ted. Dood on 10	<b>3</b>				
bit 15-11 bit 10	FRESET: FIF	ted: Read as '0	)				
		l be reset wher	n hit is set cle	eared by hard	ware when FIF	O is reset: us	er should nol
		this bit is clear b				0 10 10000, 00	
	0 = No effect	t					
bit 9		sage Send Req					
		s sending a me are successfull		will automatic	ally clear when	all the messag	ges queued in
		the bit to '0' wh		request a me	essage abort		
bit 8		nent Head/Tail b			0		
	When this bit	is set, the FIFO	head will incr	ement by a si	ngle message.		
bit 7	TXEN: TX Er	nable bit					
bit 6-5	Unimplemer	nted: Read as '0	)'				
bit 4		nsmit Attempts E	Exhausted Inte	errupt Enable I	bit		
	1 = Enables i						
bit 3	0 = Disables	nterrupt	,				
bit 2	-	nsmit Queue En		Enable bit			
		is enabled for T					
		is disabled for T					
	Unimplemer	ted: Read as '0	)'				
bit 1	e i in presidente i						
bit 1 bit 0	-	nsmit Queue No	ot Full Interrup	t Enable bit			
	<b>TXQNIE:</b> Tra 1 = Interrupt		XQ not full	t Enable bit			

# REGISTER 11-30: C1TXQCONL: CAN TRANSMIT QUEUE CONTROL REGISTER LOW

R-0	R-0	R-0	R-0	R-0
TXQCI4 ⁽¹⁾	I) TXQCI3	(1) TXQCI2 ⁽¹⁾	TXQCI1 ⁽¹⁾	TXQCI0 ⁽¹⁾
			·	bit 8
C/HS-0	U-0	R-1	U-0	R-1
TXATIF	—	TXQEIF		TXQNIF
				bit (
ble bit	HS = Har	dware Settable bi	t	
le bit		plemented bit, rea		
set	'0' = Bit is	•	x = Bit is unki	nown
<b>s</b> '0'				
essage Queue Ind	Index bits ⁽¹⁾			
return an index to	to the mess	age that the FIFO	will next attemp	ot to transmit.
d Status bit ⁽²⁾				
t				
successfully				
Arbitration Status				
on while being se arbitration while t				
Ouring Transmissio	sion bit			
while the message				
cur while the mes	•	•		
ts Exhausted Inte	nterrupt Penc	ling bit		
Ig				
iy is '0'				
Empty Interrupt F	t Elag bit			
	n i lag bit			
east 1 message is	e is queued t	o be transmitted		
<b>s</b> '0'				
Not Full Interrupt	upt Flag bit			
	-			
Ze	zero-indexed val	zero-indexed value to the me	zero-indexed value to the message in the TXQ.	zero-indexed value to the message in the TXQ. If the TXQ is fo

# REGISTER 11-31: C1TXQSTA: CAN TRANSMIT QUEUE STATUS REGISTER

Note 1: The TXQCI<4:0> bits give a zero-indexed value to the message in the TXQ. If the TXQ is four message deep (FSIZE<4:0> = 3), TXQCIx will take on a value of 0 to 3, depending on the state of the TXQ.

2: This bit is updated when a message completes (or aborts) or when the TXQ is reset.

			D/11/0	DAVA			DAALO			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PLSIZE2 ⁽¹⁾	PLSIZE1 ⁽¹⁾	PLSIZE0 ⁽¹⁾	FSIZE4 ⁽¹⁾	FSIZE3 ⁽¹⁾	FSIZE2 ⁽¹⁾	FSIZE1 ⁽¹⁾	FSIZE0 ⁽¹⁾			
bit 15							bit 8			
11.0						DAMA	DAALO			
U-0	R/W-1	R/W-1 TXAT0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
bit 7	TXAT1	IAATU	TXPRI4	TXPRI3	TXPRI2	TXPRI1	TXPRI0			
							bit 0			
Legend:										
R = Readable	bit	W = Writable b	it	=   Inimpler	mented bit, read	las 'N'				
-n = Value at F		'1' = Bit is set	it.	'0' = Bit is cle		x = Bit is unkr	own			
	OIT				area					
bit 15-13	PLSIZE<2:0>	·: Payload Size I	oits ⁽¹⁾							
	111 = 64 data	-								
	110 = 48 data bytes 101 = 32 data bytes									
	100 = 24 data bytes									
	011 = 20 data bytes									
	010 = 16 data bytes									
	001 = 12 data									
	000 = 8 data bytes									
bit 12-8	FSIZE<4:0>: FIFO Size bits ⁽¹⁾									
	11111 = FIFO is 32 messages deep									
	10010 = EIEO is 3 massages deep									
	00010 = FIFO is 3 messages deep 00001 = FIFO is 2 messages deep									
	00000 = FIFO is 1 message deep									
bit 7		ted: Read as '0	•							
bit 6-5	TXAT<1:0>: Retransmission Attempts bits									
	This feature is enabled when RTXAT (C1CONH<0>) is set.									
	11 = Unlimited number of retransmission attempts									
	10 = Unlimited number of retransmission attempts									
	01 = Three retransmission attempts									
	00 = Disables retransmission attempts									
bit 4-0	TXPRI<4:0>:	Message Trans	mit Priority bit	S						
	11111 = High	nest message pr	iority							
	 00000 = Low	est message pri	ority							
Note 1. The		v be modified in				)				
NULE I. INC		v be mouneo m	CONTRACTOR		777207 - 100	1.				

# REGISTER 11-32: C1FIFOCONHx: CAN FIFO CONTROL REGISTER x (x = 1 TO 7) HIGH

# REGISTER 11-33: C1FIFOCONLx: CAN FIFO CONTROL REGISTER x (x = 1 TO 7) LOW

U-0	U-0	U-0	U-0	U-0	S/HC-1	R/W/HC-0	S/HC-0		
	_	—	_	_	FRESET	TXREQ	UINC		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
TXEN	RTREN	RXTSEN ⁽¹⁾	TXATIE	RXOVIE	TFERFFIE	TFHRFHIE	TFNRFNIE		
bit 7							bit C		
<u> </u>									
Legend:		S = Settable bit			are Clearable b				
R = Readable		W = Writable bi	t		mented bit, read				
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown		
6:4 4 F 44		tad: Dead as (o)							
bit 15-11 bit 10	FRESET: FIF	ted: Read as '0'							
		l be reset when	hit is set cl	eared by bard	ware when FIF	O is reset: us	er should not		
		this bit is clear b				O 13 Teset, us			
	0 = No effect		0						
bit 9	TXREQ: Mes	sage Send Requ	uest bit						
	TXEN = 1 (FIFO configured as a transmit FIFO):								
	1 = Requests sending a message; the bit will automatically clear when all the messages queued in the EIEO are successfully sent								
	the FIFO are successfully sent 0 = Clearing the bit to '0' while set ('1') will request a message abort								
	TXEN = $0$ (FIFO configured as a receive FIFO):								
	This bit has n			/_					
bit 8	UINC: Increm	ent Head/Tail bi	t						
		KEN = 1 (FIFO configured as a transmit FIFO): hen this bit is set, the FIFO head will increment by a single message.							
	TXEN = $0$ (FIFO configured as a receive FIFO):								
	When this bit	is set, the FIFO	tail will increr	ment by a singl	le message.				
bit 7		K Buffer Selection							
	1 = Transmits message object								
bit 6	<ul> <li>0 = Receives message object</li> <li>RTREN: Auto-Remote Transmit (RTR) Enable bit</li> </ul>								
bit 0			( )		set				
	<ol> <li>When a Remote Transmit is received, TXREQ will be set</li> <li>When a Remote Transmit is received, TXREQ will be unaffected</li> </ol>								
bit 5	RXTSEN: Re	ceived Message	Timestamp E	Enable bit ⁽¹⁾					
DIL D	<b>RXTSEN:</b> Received Message Timestamp Enable bit ⁽¹⁾ 1 = Captures timestamp in received message object in RAM								
Situ		timestamp in red	ceived messa	ige object in R	AIVI				
Sit O		timestamp in rec capture timestar		ige object in R	Alvi				
bit 4	0 = Does not <b>TXATIE:</b> Tran	capture timestar smit Attempts E	np						
	0 = Does not <b>TXATIE:</b> Tran 1 = Enables in	capture timestar nsmit Attempts E nterrupt	np						
bit 4	0 = Does not <b>TXATIE:</b> Tran 1 = Enables in 0 = Disables in	capture timestar Ismit Attempts E Interrupt interrupt	np xhausted Inte						
	0 = Does not <b>TXATIE:</b> Tran 1 = Enables in 0 = Disables <b>RXOVIE:</b> Over	capture timestar Ismit Attempts E Interrupt Interrupt erflow Interrupt E	np xhausted Inte nable bit						
bit 4	0 = Does not <b>TXATIE:</b> Tran 1 = Enables in 0 = Disables in <b>RXOVIE:</b> Over 1 = Interrupt in	capture timestar Ismit Attempts E Interrupt interrupt	np xhausted Inte nable bit erflow event						

#### REGISTER 11-33: C1FIFOCONLx: CAN FIFO CONTROL REGISTER x (x = 1 TO 7) LOW (CONTINUED)

bit 2	TFERFFIE: Transmit/Receive FIFO Empty/Full Interrupt Enable bit
	TXEN = 1 (FIFO configured as a transmit FIFO):
	Transmit FIFO Empty Interrupt Enable
	1 = Interrupt is enabled for FIFO empty
	0 = Interrupt is disabled for FIFO empty
	TXEN = 0 (FIFO configured as a receive FIFO):
	Receive FIFO Full Interrupt Enable
	1 = Interrupt is enabled for FIFO full
	0 = Interrupt is disabled for FIFO full
bit 1	TFHRFHIE: Transmit/Receive FIFO Half Empty/Half Full Interrupt Enable bit
	TXEN = 1 (FIFO configured as a transmit FIFO):
	Transmit FIFO Half Empty Interrupt Enable
	1 = Interrupt is enabled for FIFO half empty
	0 = Interrupt is disabled for FIFO half empty
	TXEN = 0 (FIFO configured as a receive FIFO):
	Receive FIFO Half Full Interrupt Enable
	1 = Interrupt is enabled for FIFO half full
	0 = Interrupt is disabled for FIFO half full
bit 0	TFNRFNIE: Transmit/Receive FIFO Not Full/Not Empty Interrupt Enable bit
	TXEN = 1 (FIFO configured as a transmit FIFO):
	Transmit FIFO Not Full Interrupt Enable
	1 = Interrupt is enabled for FIFO not full
	0 = Interrupt is disabled for FIFO not full
	TXEN = 0 (FIFO configured as a receive FIFO):
	Receive FIFO Not Empty Interrupt Enable
	1 = Interrupt is enabled for FIFO not empty
	0 = Interrupt is disabled for FIFO not empty

REGISTER 11-34: C1FIFOSTAX: CAN FIFO STATUS REGISTER x (x = 1 TO 7)

#### U-0 U-0 U-0 R-0 R-0 R-0 R-0 R-0 FIFOCIO⁽¹⁾ FIFOCI4⁽¹⁾ FIFOCI3⁽¹⁾ FIFOCI2⁽¹⁾ FIFOCI1⁽¹⁾ bit 15 bit 8 R-0 R-0 R-0 C/HS-0 C/HS-0 R-0 R-0 R-0 TXLARB⁽²⁾ TXABT⁽³⁾ TXERR⁽²⁾ TXATIF RXOVIF TFERFFIF TFHRFHIF TFNRFNIF bit 7 bit 0 Legend: C = Clearable bit HS = Hardware Settable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as '0' bit 12-8 FIFOCI<4:0>: FIFO Message Index bits⁽¹⁾ TXEN = 1 (FIFO configured as a transmit buffer): A read of this register will return an index to the message that the FIFO will next attempt to transmit. TXEN = 0 (FIFO configured as a receive buffer): A read of this register will return an index to the message that the FIFO will use to save the next message. bit 7 **TXABT:** Message Aborted Status bit⁽³⁾ 1 = Message was aborted 0 = Message completed successfully TXLARB: Message Lost Arbitration Status bit⁽²⁾ bit 6 1 = Message lost arbitration while being sent 0 = Message did not lose arbitration while being sent TXERR: Error Detected During Transmission bit⁽²⁾ bit 5 1 = A bus error occurred while the message was being sent 0 = A bus error did not occur while the message was being sent bit 4 **TXATIF:** Transmit Attempts Exhausted Interrupt Pending bit TXEN = 1 (FIFO configured as a transmit buffer): 1 = Interrupt is pending 0 = Interrupt is not pending TXEN = 0 (FIFO configured as a receive buffer): Unused, read as '0'. bit 3 **RXOVIF:** Receive FIFO Overflow Interrupt Flag bit TXEN = 1 (FIFO configured as a transmit buffer): Unused, read as '0'. TXEN = 0 (FIFO configured as a receive buffer): 1 = Overflow event has occurred 0 = No overflow event has occurred Note 1: FIFOCI<4:0> gives a zero-indexed value to the message in the FIFO. If the FIFO is 4 messages deep (FSIZE<4:0> = 3), FIFOCIx will take on a value of 0 to 3, depending on the state of the FIFO.

- 2: These bits are updated when a message completes (or aborts) or when the FIFO is reset.
- **3:** This bit is reset on any read of this register or when the TXQ is reset. The bits are cleared when TXREQ is set or using an SPI write.

#### REGISTER 11-34: C1FIFOSTAX: CAN FIFO STATUS REGISTER x (x = 1 TO 7) (CONTINUED)

bit 2	TFERFFIF: Transmit/Receive FIFO Empty/Full Interrupt Flag bit
	TXEN = 1 (FIFO configured as a transmit FIFO):
	Transmit FIFO Empty Interrupt Flag
	1 = FIFO is empty
	0 = FIFO is not empty, at least 1 message is queued to be transmitted
	TXEN = 0 (FIFO configured as a receive FIFO):
	Receive FIFO Full Interrupt Flag
	1 = FIFO is full
	0 = FIFO is not full
bit 1	TFHRFHIF: Transmit/Receive FIFO Half Empty/Half Full Interrupt Flag bit
	TXEN = 1 (FIFO configured as a transmit FIFO):
	Transmit FIFO Half Empty Interrupt Flag
	1 = FIFO is ≤ half full
	0 = FIFO is > half full
	TXEN = 0 (FIFO configured as a receive FIFO):
	Receive FIFO Half Full Interrupt Flag
	1 = FIFO is ≥ half full 0 = FIFO is < half full
bit 0	TFNRFNIF: Transmit/Receive FIFO Not Full/Not Empty Interrupt Flag bit
	TXEN = 1 (FIFO configured as a transmit FIFO):
	Transmit FIFO Not Full Interrupt Flag
	1 = FIFO is not full
	0 = FIFO  is full
	TXEN = 0 (FIFO configured as a receive FIFO):
	Receive FIFO Not Empty Interrupt Flag 1 = FIFO is not empty, has at least 1 message
	0 = FIFO is empty
Note 1	EIEOCIZ4:05 gives a zero indexed value to the message in the EIEO. If the EIEO is 4 messages

- Note 1: FIFOCI<4:0> gives a zero-indexed value to the message in the FIFO. If the FIFO is 4 messages deep (FSIZE<4:0> = 3), FIFOCIx will take on a value of 0 to 3, depending on the state of the FIFO.
  - 2: These bits are updated when a message completes (or aborts) or when the FIFO is reset.
  - **3:** This bit is reset on any read of this register or when the TXQ is reset. The bits are cleared when TXREQ is set or using an SPI write.

REGISTER 11-35:	C1TEFCONH: CAN TRANSMIT EVENT FIFO CONTROL REGISTER HIGH
-----------------	----------------------------------------------------------

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			FSIZE<4:0>(1)	)	
bit 15	L						bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—		—	—	—	—
bit 7	÷	•		·		•	bit 0
Legend:							
R = Readab	le bit	W = Writable bi	it	U = Unimpler	mented bit, read	1 as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			iown
bit 15-13	Unimplemen	ted: Read as '0'	,				
bit 12-8	FSIZE<4:0>:	FIFO Size bits ⁽¹	)				
	11111 = FIFC	D is 32 message	s deep				
		D is 3 messages					
		D is 2 messages					
		D is 1 message of	-				
bit 7-0	Unimplemen	ted: Read as '0'					

U-0	U-0	U-0	U-0	U-0	S/HC-0	U-0	S/HC-0
_	-	—	_	—	FRESET	—	UINC
bit 15							bit 8
U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
		TEFTSEN ⁽¹⁾		TEFOVIE	TEFFIE	TEFHIE	TEFNEIE
bit 7		TELTOEN					bit
Legend:		S = Settable bit		HC = Hardwa	are Clearable b	vit	
R = Readat	ole hit	W = Writable bit			mented bit, rea		
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unk	nown
							liowii
bit 15-11	Unimpleme	nted: Read as '0'					
bit 10	-	FO Reset bit					
	-	ill be reset when b	it is sot cle	ared by bardwa	are when EIEO	is reset. the us	er should no
						15 16561, 116 03	sei siluulu pu
		r this bit is clear be					·
bit 9	whether 0 = No effect	r this bit is clear be					·
	whether 0 = No effect	r this bit is clear be ct • <b>nted:</b> Read as '0'					
	whether 0 = No effect Unimpleme UINC: Incret 1 = When th	r this bit is clear be ct • <b>nted:</b> Read as '0' ment Tail bit nis bit is set, the FII	fore taking FO tail will i	any action			
	whether 0 = No effect Unimpleme UINC: Incret 1 = When th	r this bit is clear be ct • <b>nted:</b> Read as '0' ment Tail bit	fore taking FO tail will i	any action			
bit 8	whether 0 = No effect Unimpleme UINC: Incre 1 = When th 0 = FIFO tai	r this bit is clear be ct • <b>nted:</b> Read as '0' ment Tail bit nis bit is set, the FII	fore taking FO tail will i	any action			
bit 8 bit 7-6	whether 0 = No effect Unimpleme UINC: Incre 1 = When th 0 = FIFO tai Unimpleme	r this bit is clear be ct • <b>nted:</b> Read as '0' ment Tail bit nis bit is set, the FII il will not increment	efore taking FO tail will i t	any action	single message		
bit 8 bit 7-6	whether 0 = No effect Unimpleme UINC: Increa 1 = When th 0 = FIFO tai Unimpleme TEFTSEN: 7 1 = Timestar	r this bit is clear be ct ment: Read as '0' ment Tail bit is bit is set, the FII i will not increment onted: Read as '0' Transmit Event FIF mps elements in T	FO tail will i t FO Timestai EF	any action	single message		
bit 8 bit 7-6 bit 5	whether 0 = No effect Unimpleme UINC: Incred 1 = When the 0 = FIFO tai Unimpleme TEFTSEN: 1 1 = Timestar 0 = Does no	r this bit is clear be ct ented: Read as '0' ment Tail bit his bit is set, the FII will not increment ented: Read as '0' Transmit Event FIF mps elements in T ot timestamp eleme	FO tail will i t FO Timestai EF	any action	single message		
bit 8 bit 7-6 bit 5 bit 4	whether 0 = No effect Unimpleme UINC: Increa 1 = When th 0 = FIFO tai Unimpleme TEFTSEN: 1 = Timestar 0 = Does no Unimpleme	r this bit is clear be ct ment: Read as '0' ment Tail bit his bit is set, the FII will not increment onted: Read as '0' Transmit Event FIF mps elements in T ot timestamp eleme onted: Read as '0'	FO tail will i t FO Timestai EF ents in TEF	any action increment by a s mp Enable bit ⁽¹⁾	single message		
bit 8 bit 7-6 bit 5 bit 4	whether 0 = No effect Unimpleme UINC: Incred 1 = When th 0 = FIFO tai Unimpleme TEFTSEN: T 1 = Timestar 0 = Does no Unimpleme TEFOVIE: T	r this bit is clear be ct inted: Read as '0' ment Tail bit his bit is set, the FII i will not increment inted: Read as '0' Transmit Event FIF mps elements in T ot timestamp eleme inted: Read as '0' Transmit Event FIF	FO tail will i t FO Timestai EF ents in TEF O Overflow	any action increment by a s mp Enable bit ⁽¹⁾	single message		
bit 8 bit 7-6 bit 5 bit 4	whether 0 = No effect Unimpleme UINC: Incred 1 = When the 0 = FIFO tai Unimpleme TEFTSEN: T 1 = Timestar 0 = Does not Unimpleme TEFOVIE: T 1 = Interrupt	r this bit is clear be ct inted: Read as '0' ment Tail bit his bit is set, the FII i will not increment inted: Read as '0' Transmit Event FIF mps elements in T ot timestamp eleme inted: Read as '0' fransmit Event FIF t is enabled for ove	FO tail will i FO Timestar EF ents in TEF O Overflow	any action increment by a s mp Enable bit ⁽¹⁾ Interrupt Enabl	single message		
bit 8 bit 7-6 bit 5 bit 4 bit 3	whether 0 = No effect Unimpleme UINC: Increa 1 = When th 0 = FIFO tai Unimpleme TEFTSEN: 1 = Timestar 0 = Does no Unimpleme TEFOVIE: T 1 = Interrupt 0 = Interrupt	r this bit is clear be ct ment Read as '0' ment Tail bit is bit is set, the FII will not increment onted: Read as '0' Transmit Event FIF mps elements in T ot timestamp eleme onted: Read as '0' Transmit Event FIF t is enabled for over t is disabled for over	FO tail will i FO Timestar EF ents in TEF O Overflow erflow event	any action increment by a s mp Enable bit ⁽¹⁾ Interrupt Enabl t t	single message		
bit 8 bit 7-6 bit 5 bit 4 bit 3	whether 0 = No effect Unimpleme UINC: Increa 1 = When th 0 = FIFO tai Unimpleme TEFTSEN: 1 = Timestar 0 = Does no Unimpleme TEFOVIE: T 1 = Interrupt 0 = Interrupt	r this bit is clear be ct anted: Read as '0' ment Tail bit his bit is set, the FII a will not increment anted: Read as '0' Transmit Event FIF mps elements in T bot timestamp eleme anted: Read as '0' Transmit Event FIF t is enabled for ove t is disabled for ove ansmit Event FIFO	FO tail will i FO tail will i FO Timestai EF ents in TEF O Overflow erflow even Full Interru	any action increment by a s mp Enable bit ⁽¹⁾ Interrupt Enabl t t	single message		
bit 8 bit 7-6 bit 5 bit 4 bit 3	whether 0 = No effect Unimpleme UINC: Increa 1 = When th 0 = FIFO tai Unimpleme TEFTSEN: 1 = Timestar 0 = Does no Unimpleme TEFOVIE: T 1 = Interrupt 0 = Interrupt 1 = Interrupt	r this bit is clear be ct inted: Read as '0' ment Tail bit is bit is set, the FII i will not increment inted: Read as '0' Transmit Event FIF mps elements in T bit timestamp elements in ted: Read as '0' Transmit Event FIF t is enabled for over ansmit Event FIFO t is enabled for FIF	FO tail will i FO tail will i FO Timestai EF ents in TEF O Overflow erflow even Full Interru FO full	any action increment by a s mp Enable bit ⁽¹⁾ Interrupt Enabl t t	single message		
bit 8 bit 7-6 bit 5 bit 4 bit 3 bit 2	whether 0 = No effect Unimpleme UINC: Incred 1 = When th 0 = FIFO tai Unimpleme TEFTSEN: 1 1 = Timestar 0 = Does no Unimpleme TEFOVIE: T 1 = Interrupt 0 = Interrupt 0 = Interrupt 0 = Interrupt	r this bit is clear be ct inted: Read as '0' ment Tail bit his bit is set, the FII i will not increment inted: Read as '0' Transmit Event FIF mps elements in T bit timestamp eleme inted: Read as '0' Transmit Event FIF t is enabled for ove t is disabled for ove t is enabled for FIF t is enabled for FIF	FO tail will i FO tail will i t FO Timestar EF ents in TEF O Overflow erflow even Full Interru FOI Interru FO full	any action increment by a s mp Enable bit ⁽¹⁾ Interrupt Enabl t t t pt Enable bit	single message		
bit 8 bit 7-6 bit 5 bit 4 bit 3 bit 2	whether 0 = No effect Unimpleme UINC: Increant 1 = When the 0 = FIFO taint Unimpleme TEFTSEN: 1 1 = Timestant 0 = Does not Unimpleme TEFOVIE: The 1 = Interrupt 0 = Interrupt 0 = Interrupt 0 = Interrupt 0 = Interrupt 0 = Interrupt	r this bit is clear be ct inted: Read as '0' ment Tail bit is bit is set, the FII will not increment inted: Read as '0' Transmit Event FIF mps elements in T ot timestamp eleme inted: Read as '0' Transmit Event FIF t is enabled for ove t is disabled for ove t is disabled for FIF t is enabled for FIF t is disabled for FIF t is disabled for FIF ansmit Event FIFO	FO tail will i FO tail will i EF Ents in TEF O Overflow erflow event Foll Interru O full FO full Half Full In	any action increment by a s mp Enable bit ⁽¹⁾ Interrupt Enabl t t t pt Enable bit	single message		
bit 8 bit 7-6 bit 5 bit 4 bit 3 bit 2	whether 0 = No effect Unimpleme UINC: Increant 1 = When the 0 = FIFO taint Unimpleme TEFTSEN: 1 1 = Timestant 0 = Does not Unimpleme TEFOVIE: The 1 = Interrupt 0 = Interrupt 0 = Interrupt 0 = Interrupt 1 = Interrupt	r this bit is clear be ct ented: Read as '0' ment Tail bit his bit is set, the FII will not increment ented: Read as '0' Transmit Event FIF mps elements in T bit timestamp eleme ented: Read as '0' Transmit Event FIF t is enabled for ove t is disabled for ove t is disabled for FIF t is disabled for FIF t is disabled for FIF ansmit Event FIFO t is enabled for FIF ansmit Event FIFO t is enabled for FIF	FO tail will i FO tail will i TO Timestar EF ents in TEF O Overflow erflow event erflow event Full Interru O full FO full Half Full In O half full	any action increment by a s mp Enable bit ⁽¹⁾ Interrupt Enabl t t t pt Enable bit	single message		
bit 8 bit 7-6 bit 5 bit 4 bit 3 bit 2 bit 1	whether 0 = No effect Unimpleme UINC: Increa 1 = When th 0 = FIFO tai Unimpleme TEFTSEN: 1 = Timestar 0 = Does no Unimpleme TEFOVIE: T 1 = Interrupt 0 = Interrupt	r this bit is clear be ct anted: Read as '0' ment Tail bit his bit is set, the FII a will not increment anted: Read as '0' Transmit Event FIF mps elements in T bot timestamp eleme anted: Read as '0' Transmit Event FIF t is enabled for over t is disabled for over t is disabled for FIF t is enabled for FIF t is enabled for FIF t is enabled for FIF ansmit Event FIFO t is enabled for FIF t is enabled for FIF	FO tail will i FO tail will i FO Timestal EF ents in TEF O Overflow erflow event erflow event Full Interru O full FO full Half Full In FO half full	any action increment by a s mp Enable bit ⁽¹⁾ Interrupt Enable t t pt Enable bit	single message e bit bit		
bit 9 bit 8 bit 7-6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 1	whether 0 = No effect Unimpleme UINC: Increant 1 = When than 0 = FIFO taile Unimpleme TEFTSEN: 1 1 = Timestant 0 = Does not Unimpleme TEFOVIE: Than 1 = Interrupt 0 = Interrupt 0 = Interrupt 0 = Interrupt 1 = Interrupt 0 = Interrupt 1 = Interrupt 0 = Interrupt 1 = Interrupt 0 = Interrupt	r this bit is clear be ct ented: Read as '0' ment Tail bit his bit is set, the FII will not increment ented: Read as '0' Transmit Event FIF mps elements in T bit timestamp eleme ented: Read as '0' Transmit Event FIF t is enabled for ove t is disabled for ove t is disabled for FIF t is disabled for FIF t is disabled for FIF ansmit Event FIFO t is enabled for FIF ansmit Event FIFO t is enabled for FIF	FO tail will i t FO tail will i t FO Timestau EF ents in TEF O Overflow erflow even Full Interru FO full FO full Half Full In FO half full FO half full O Not Emp	any action increment by a s mp Enable bit ⁽¹⁾ Interrupt Enable t t nterrupt Enable bit ty Interrupt Enable b	single message e bit bit		

# REGISTER 11-37: C1TEFSTA: CAN TRANSMIT EVENT FIFO STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	_	—	_	—
bit 15							bit 8

U-0	U-0	U-0	U-0	S/HC-0	R-0	R-0	R-0
—	—	—	—	TEFOVIF	TEFFIF ⁽¹⁾	TEFHIF ⁽¹⁾	TEFNEIF ⁽¹⁾
bit 7							bit 0

Legend:	HC = Hardware Clearable bit	S = Settable bit Can Set by	'1'
R = Readable bit	W = Writable bit	t U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4	Unimplemented: Read as '0'
bit 3	TEFOVIF: Transmit Event FIFO Overflow Interrupt Flag bit
	<ul><li>1 = Overflow event has occurred</li><li>0 = No overflow event has occurred</li></ul>
bit 2	TEFFIF: Transmit Event FIFO Full Interrupt Flag bit ⁽¹⁾
	1 = FIFO is full 0 = FIFO is not full
bit 1	<b>TEFHIF:</b> Transmit Event FIFO Half Full Interrupt Flag bit ⁽¹⁾ 1 = FIFO is ≥ half full 0 = FIFO is < half full
bit 0	<b>TEFNEIF:</b> Transmit Event FIFO Not Empty Interrupt Flag bit ⁽¹⁾ 1 = FIFO is not empty 0 = FIFO is empty

**Note 1:** These bits are read-only and reflect the status of the FIFO.

#### REGISTER 11-38: C1FIFOUAHx: CAN FIFO USER ADDRESS REGISTER x (x = 1 TO 7) HIGH⁽¹⁾

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	<31:24>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOUA	<23:16>			
bit 7							bit 0
Legend:							

Legenu.					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0
FIFOUA<31:16>: FIFO User Address bits
TXEN = 1 (FIFO configured as a transmit buffer):
A read of this register will return the address where the next message is to be written (FIFO head).
TXEN = 0 (FIFO configured as a receive buffer):
A read of this register will return the address where the next message is to be read (FIFO tail).

**Note 1:** This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

# REGISTER 11-39: C1FIFOUALx: CAN FIFO USER ADDRESS REGISTER x (x = 1 TO 7) LOW⁽¹⁾

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOU	A<15:8>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FIFOL	JA<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemer	nted bit, re	ad as '0'	
-n = Value at P	POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknow			x = Bit is unknowr	ı

bit 15-0 **FIFOUA<15:0>:** FIFO User Address bits <u>TXEN = 1 (FIFO configured as a transmit buffer)</u>: A read of this register will return the address where the next message is to be written (FIFO head). <u>TXEN = 0 (FIFO configured as a receive buffer)</u>: A read of this register will return the address where the next message is to be read (FIFO tail).

**Note 1:** This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

# REGISTER 11-40: C1TEFUAH: CAN TRANSMIT EVENT FIFO USER ADDRESS REGISTER HIGH⁽¹⁾

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			<b>TEFUA</b>	<31:24>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			TEFUA	<23:16>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bit		U = Unimplem	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set	"'''''''''''''''''''''''''''''''''''''				

A read of this register will return the address where the next event is to be read (FIFO tail).

Note 1: This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

#### REGISTER 11-41: C1TEFUAL: CAN TRANSMIT EVENT FIFO USER ADDRESS REGISTER LOW⁽¹⁾

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			TEFU	A<15:8>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
				IA<7:0>			
bit 7				-			bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

TEFUA<15:0>: Transmit Event FIFO User Address bits bit 15-0

A read of this register will return the address where the next event is to be read (FIFO tail).

Note 1: This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

TEFUA<31:16>: Transmit Event FIFO User Address bits bit 15-0

# REGISTER 11-42: C1TXQUAH: CAN TRANSMIT QUEUE USER ADDRESS REGISTER HIGH⁽¹⁾

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			TXQUA-	<31:24>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			TXQUA	<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit	it U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown			nown	

#### bit 15-0 **TXQUA<31:16>:** TXQ User Address bits

A read of this register will return the address where the next message is to be written (TXQ head).

**Note 1:** This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

#### REGISTER 11-43: C1TXQUAL: CAN TRANSMIT QUEUE USER ADDRESS REGISTER LOW⁽¹⁾

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			TXQU	A<15:8>			
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
				JA<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'			
-n = Value at P	OR				x = Bit is unknov	vn	

bit 15-0 TXQUA<15:0>: TXQ User Address bits

A read of this register will return the address where the next message is to be written (TXQ head).

**Note 1:** This register is not ensured to read correctly in Configuration mode and should only be accessed when the module is not in Configuration mode.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	R-1	R-0	R-0	R-0	R-0	R-0
—	—	ТХВО	TXBP	RXBP	TXWARN	RXWARN	EWARN
bit 7	·			•	•	•	bit 0
							,
Logond:							

#### REGISTER 11-44: C1TRECH: CAN TRANSMIT/RECEIVE ERROR COUNT REGISTER HIGH

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-6	Unimplemented: Read as '0'
bit 5	<b>TXBO:</b> Transmitter in Error State Bus Off bit (TERRCNT<7:0> > 255)
	In Configuration mode, TXBO is set since the module is not on the bus.
bit 4	<b>TXBP:</b> Transmitter in Error State Bus Passive bit (TERRCNT<7:0> > 127)
bit 3	<b>RXBP:</b> Receiver in Error State Bus Passive bit (RERRCNT<7:0> > 127)
bit 2	TXWARN: Transmitter in Error State Warning bit (128 > TERRCNT<7:0> > 95)
bit 1	<b>RXWARN:</b> Receiver in Error State Warning bit (128 > RERRCNT<7:0> > 95)
bit 0	EWARN: Transmitter or Receiver in Error State Warning bit

# REGISTER 11-45: C1TRECL: CAN TRANSMIT/RECEIVE ERROR COUNT REGISTER LOW

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TERRCI	NT<7:0>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RERRCI	NT<7:0>			
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

# bit 15-8 **TERRCNT<7:0>:** Transmit Error Counter bits

bit 7-0 **RERRCNT<7:0>:** Receive Error Counter bits

### REGISTER 11-46: C1BDIAG0H: CAN BUS DIAGNOSTICS REGISTER 0 HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DTERF	RCNT<7:0>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DRERF	RCNT<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpleme	ented bit, rea	ad as '0'	
-n = Value at I	= Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkr		nown				

bit 7-0 DRERRCNT<7:0>: Data Bit Rate Receive Error Counter bits

### REGISTER 11-47: C1BDIAG0L: CAN BUS DIAGNOSTICS REGISTER 0 LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NTERF	CNT<7:0>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NRERF	CNT<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit i		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-8 NTERRCNT<7:0>: Nominal Bit Rate Transmit Error Counter bits

bit 7-0 NRERRCNT<7:0>: Nominal Bit Rate Receive Error Counter bits

R/W-0	R/W-0	R/C-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
DLCMM	ESI	DCRCERR	DSTUFERR	DFORMERR	0-0	DBIT1ERR	DBITOERR
bit 15	E31	DCRCERR	DSTOFERK	DFORIVIERR	—	DDITIERK	bit 8
							Dit 0
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TXBOERR		NCRCERR	NSTUFERR	NFORMERR	NACKERR	NBIT1ERR	NBIT0ERR
bit 7							
							bit 0
Legend:		C = Clearable	bit				
R = Readable bit $W = Writable bit$ $U = Unimplemented bit, read as '0'$					as '0'		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clear		x = Bit is unkno	own
							]
bit 15	DLCMM: DLC	Mismatch bit					
	During a trans	mission or rece	otion, the specif	fied DLC is large	r than the PLSI	ZE<2:0> of the	FIFO element.
bit 14	ESI: ESI Flag	of a Received O	CAN FD Messa	ge Set bit			
bit 13	DCRCERR: S	ame as for nom	inal bit rate				
bit 12	DSTUFERR: S	Same as for nor	ninal bit rate				
bit 11	DFORMERR:	Same as for no	minal bit rate				
bit 10	Unimplement	ed: Read as '0'					
bit 9	DBIT1ERR: S	ame as for nom	inal bit rate				
bit 8	DBIT0ERR: S	ame as for nom	inal bit rate				
bit 7	TXBOERR: D	evice Went to B	us Off bit (and	auto-recovered)	1		
bit 6	Unimplement	ed: Read as '0'					
bit 5	NCRCERR: R	eceived Messa	ge with CRC In	correct Checksu	ım bit		
		cksum of a rece CRC calculate	•	was incorrect.	The CRC of ar	incoming mes	sage does not
bit 4	NSTUFERR: F	Received Messa	age with Illegal	Sequence bit			
	More than 5 ec	qual bits in a seq	uence have occ	curred in a part of	a received mes	sage where this	s is not allowed.
bit 3	NFORMERR:	Received Fram	e Fixed Forma	t bit			
	A fixed format	part of a receiv	ed frame has th	ne wrong format			
bit 2		ransmitted Mes	•	•			
	Transmitted m	lessage was no	t acknowledged	J.			
bit 1		ransmitted Mes	•				
				e exception of the monitored b			wanted to send
bit 0	NBIT0ERR: T	ransmitted Mes	sage Dominant	Level bit			
	wanted to send recessive. Dur monitored. The	d a dominant lev ring bus off reco	vel (data or ider overy, this statu CPU to monitor	cknowledge bit, ntifier bit of logica is is set each tin the proceeding isly disturbed).	al value '0'), bu ne a sequence	t the monitored of 11 recessive	bus value was bits has been

# REGISTER 11-48: C1BDIAG1H: CAN BUS DIAGNOSTICS REGISTER 1 HIGH

### REGISTER 11-49: C1BDIAG1L: CAN BUS DIAGNOSTICS REGISTER 1 LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EFMSG	CNT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EFMSG	GCNT<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown				nown			

bit 15-0 EFMSGCNT<15:0>: Error Free Message Counter bits

# REGISTER 11-50: C1FLTCONxH: CAN FILTER CONTROL REGISTER x HIGH (x = 0 TO 3;

	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
FLTENd		_	FdBP4	FdBP3	FdBP2	FdBP1	FdBP0			
bit 15				•			bit 8			
5444			54446	5444.6	<b>D</b> 444 A					
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
FLTENc bit 7	—	-	FcBP4	FcBP3	FcBP2	FcBP1	FcBP0			
DIL 7							bit			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'				
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
bit 15	FLTENd: Enable Filter d to Accept Messages bit									
	<ul> <li>1 = Filter is enabled</li> <li>0 = Filter is disabled</li> </ul>									
bit 14-13	Unimpleme	nted: Read as '	0'							
bit 12-8	FdBP<4:0>: Pointer to Object When Filter d Hits bits									
	11111 to 11000 = Reserved									
	00111 = Message matching filter is stored in Object 7 00110 = Message matching filter is stored in Object 6									
	 00010 <b>= M</b> e	esade matching	n filter is stored	in Object 2						
	00010 = Message matching filter is stored in Object 2 00001 = Message matching filter is stored in Object 1									
	00000 <b>= Re</b>	served; Object	) is the TX Que	ue and can't re	ceive messag	es				
bit 7	FLTENc: En	FLTENC: Enable Filter c to Accept Messages bit								
	1 = Filter is e									
Sit i		disabled	0 = Filter is disabled Unimplemented: Read as '0'							
	0 = Filter is o		0'							
bit 6-5	0 = Filter is o Unimpleme			c Hits bits						
bit 6-5	0 = Filter is 0 Unimpleme FcBP<4:0>: 11111 to 11	nted: Read as ' Pointer to Obje	ect When Filter							
bit 6-5 bit 4-0	0 = Filter is 0 Unimpleme FcBP<4:0>: 11111 to 11 00111 = Me	nted: Read as ' Pointer to Obje	ect When Filter d g filter is stored	in Object 7						
bit 6-5	0 = Filter is 0 Unimpleme FcBP<4:0>: 11111 to 11 00111 = Me 00110 = Me	nted: Read as ' Pointer to Obje 000 = Reserve	ect When Filter d g filter is stored g filter is stored	in Object 7 in Object 6						

### REGISTER 11-51: C1FLTCONxL: CAN FILTER CONTROL REGISTER x LOW (x = 0 TO 3; a = 0, 4, 8, 12; b = 1, 5, 9, 13)

	u v	, 4, 0, 12, 0	1, 0, 0, 10)						
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
FLTENb		_	FbBP4	FbBP3	FbBP2	FbBP1	FbBP0		
bit 15							bit 8		
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
FLTENa		_	FaBP4	FaBP3	FaBP2	FaBP1	FaBP0		
bit 7			I	I		I	bit 0		
Legend:									
R = Readab	le bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'			
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown		
		1 Dit lo det		0 Dit io olo	area		lown		
bit 15	<b>FLTENb:</b> Ena 1 = Filter is e 0 = Filter is d		ccept Messag	jes bit					
bit 14-13	Unimplemer	nted: Read as 'o	)'						
bit 12-8	FbBP<4:0>:	FbBP<4:0>: Pointer to Object When Filter b Hits bits							
	00111 <b>= Me</b> s	1111 to 11000 = Reserved 0111 = Message matching filter is stored in Object 7 0110 = Message matching filter is stored in Object 6							
	00001 <b>= Me</b> s	ssage matching ssage matching served; Object 0	filter is stored	in Object 1	eceive message	es			
bit 7		able Filter a to A							
	1 = Filter is e 0 = Filter is d	nabled							
bit 6-5	Unimplemer	nted: Read as '	)'						
bit 4-0	-	Pointer to Object		a Hits bits					
		000 = Reserved							
	00110 <b>= Me</b> s	ssage matching ssage matching							
	00001 = Mes	ssage matching ssage matching served; Object 0	filter is stored	in Object 1	eceive message	es			

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	EXIDE	SID11	EID17	EID16	EID15	EID14	EID13
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
EID12	EID11	EID10	EID9	EID8	EID7	EID6	EID5
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	)'				
bit 14	EXIDE: Exter	nded Identifier E	Enable bit				
	If MIDE = 1:						
				l Identifier addre			
	0 = Matches	only messages	with Standard	Identifier addre	sses		
bit 13	SID11: Stand	ard Identifier Fi	lter bit				

### REGISTER 11-52: C1FLTOBJxH: CAN FILTER OBJECT REGISTER x HIGH (x = 0 TO 15)

DIL 13	SIDTT: Standard Identilier Filter bit
bit 12-0	EID<17:5>: Extended Identifier Filter bits

In DeviceNet[™] mode, these are the filter bits for the first two data bytes.

### **REGISTER 11-53:** C1FLTOBJxL: CAN FILTER OBJECT REGISTER x LOW (x = 0 TO 15)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
EID4	EID3	EID2	EID1	EID0	SID10	SID9	SID8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0
bit 7			-				bit 0
<u>.</u>							
Leaend:							

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11 EID<4:0>: Extended Identifier Filter bits

In DeviceNet[™] mode, these are the filter bits for the first two data bytes.

bit 10-0 SID<10:0>: Standard Identifier Filter bits

U-0	R/W-0						
—	MIDE	MSID11	MEID17	MEID16	MEID15	MEID14	MEID13
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
MEID12	MEID11	MEID10	MEID9	MEID8	MEID7	MEID6	MEID5
bit 7							bit 0
Legend:							

### REGISTER 11-54: C1MASKxH: CAN MASK REGISTER x HIGH (x = 0 TO 15)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14 MIDE: Identifier Receive Mode bit

- 1 = Matches only message types (standard or extended address) that correspond to the EXIDE bit in the filter
- 0 = Matches either standard or extended address message if filters match
- (i.e., if (Filter SID) = (Message SID) or if (Filter SID/EID) = (Message SID/EID))

bit 13 MSID11: Standard Identifier Mask bit

bit 12-0 MEID<17:5>: Extended Identifier Mask bits

In DeviceNet[™] mode, these are the mask bits for the first two data bytes.

### REGISTER 11-55: C1MASKxL: CAN MASK REGISTER x LOW (x = 0 TO 15)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
MEID4	MEID3	MEID2	MEID1	MEID0	MSID10	MSID9	MSID8
bit 15				•			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
MSID7	MSID6	MSID5	MSID4	MSID3	MSID2	MSID1	MSID0
bit 7				•	·		bit 0
•							
Leaend:							

R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown	Logona.			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown	R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
	-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11 MEID<4:0>: Extended Identifier Mask bits

In DeviceNet[™] mode, these are the mask bits for the first two data bytes.

bit 10-0 MSID<10:0>: Standard Identifier Mask bits

NOTES:

# 12.0 HIGH-RESOLUTION PWM WITH FINE EDGE PLACEMENT

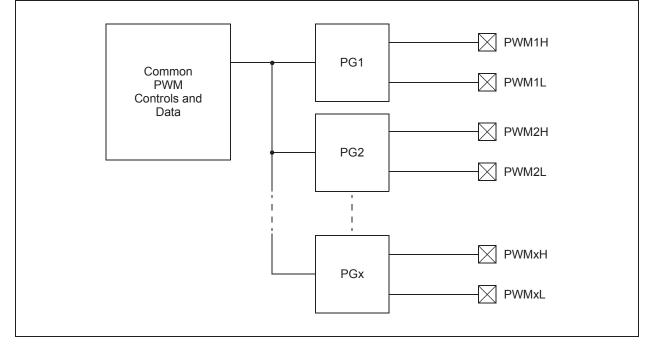
Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Resolution PWM with Fine Edge Placement" (www.microchip.com/DS70005320) in the "dsPIC33/PIC24 Family Reference Manual".

The High-Speed PWM (HSPWM) module is a Pulse-Width Modulated (PWM) module to support both motor control and power supply applications. This flexible module provides features to support many types of Motor Control (MC) and Power Control (PC) applications, including:

- AC-to-DC Converters
- DC-to-DC Converters
- AC and DC Motors: BLDC, PMSM, ACIM, SRM, etc.
- Inverters
- · Battery Chargers
- Digital Lighting
- Power Factor Correction (PFC)

Due to pin limitations, only the larger pin count packages have all eight pairs of PWM outputs available. PWM4H and PWM4L are always available on Peripheral Pin Select (PPS). See Table 12-1 for PWM output availability.

TABLE 12-1:	PWM OUTPUT	<b>AVAILABILITY</b>
-------------	------------	---------------------


Package Type			Dedicated + PPS Outputs
28-pin	8	8 pairs	8 pairs
36-pin	36-pin 8		8 pairs
48-pin	48-pin 8		8 pairs
64-pin 8		5 pairs	6 pairs
80-pin	8	3 pairs	4 pairs

### 12.1 Features

- Eight Independent PWM Generators, each with Dual Outputs
- · Operating modes:
  - Independent Edge mode
  - Variable Phase PWM mode
  - Center-Aligned mode
  - Double Update Center-Aligned mode
  - Dual Edge Center-Aligned mode
  - Dual PWM mode
- Output modes:
  - Complementary
  - Independent
  - Push-Pull
- Dead-Time Generator
- Leading-Edge Blanking (LEB)
- · Output Override for Fault Handling
- · Flexible Period/Duty Cycle Updating Options
- Programmable Control Inputs (PCI)
- Advanced Triggering Options
- Six Combinatorial Logic Outputs
- · Six PWM Event Outputs

# 12.2 Architecture Overview

The PWM module consists of a common set of controls and features, and multiple instantiations of PWM Generators (PGs). Each PWM Generator can be independently configured or multiple PWM Generators can be used to achieve complex multiphase systems. PWM Generators can also be used to implement sophisticated triggering, protection and logic functions. A high-level block diagram is shown in Figure 12-1.



### FIGURE 12-1: PWM HIGH-LEVEL BLOCK DIAGRAM

# 12.3 Lock and Write Restrictions

The LOCK bit (PCLKCON<8>) may be set in software to block writes to certain registers. For more information, refer to "High-Resolution PWM with Fine Edge Placement" (DS70005320) in the "dsPIC33/PIC24 Family Reference Manual".

The following lock/unlock sequence is required to set or clear the LOCK bit.

- 1. Write 0x55 to NVMKEY.
- 2. Write 0xAA to NVMKEY.
- 3. Clear (or set) the LOCK bit (PCLKCON<8>) as a single operation.

In general, modifications to configuration controls should not be done while the module is running, as indicated by the ON bit (PGxCONL<15>) being set.

# 12.4 Control Registers

There are two categories of Special Function Registers (SFRs) used to control the operation of the PWM module:

- Common, shared by all PWM Generators
- PWM Generator-specific

An 'x' in the register name denotes an instance of a PWM Generator.

A 'y' in the register name denotes an instance of the common function.

### REGISTER 12-1: PCLKCON: PWM CLOCK CONTROL REGISTER

R/W-C	R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0						
HRRD	Y HRERR	—	—	_	—	_	LOCK ⁽¹⁾						
bit 15							bit 8						
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0						
	—	DIVSEL1	DIVSEL0	—	—	MCLKSEL1 ⁽²⁾	MCLKSEL0 ⁽²⁾						
bit 7							bit 0						
Legend:													
R = Reada		W = Writable		U = Unimplei									
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	wn						
bit 15	•	h-Resolution R											
		<ul> <li>1 = The high-resolution circuitry is ready</li> <li>0 = The high-resolution circuitry is not ready</li> </ul>											
bit 14	-	HRERR: High-Resolution Error bit											
	•	1 = An error has occurred; PWM signals will have limited resolution											
						en HRRDY = 1							
bit 13-9	Unimplemer	nted: Read as '	0'										
bit 8	LOCK: Lock	bit ⁽¹⁾											
	1 = Write-pro	otected register	s and bits are	locked									
	0 = Write-pro	otected register	rs and bits are	unlocked									
bit 7-6	Unimplemer	nted: Read as '	0'										
bit 5-4	DIVSEL<1:0	>: PWM Clock	Divider Select	ion bits									
	11 = Divide r												
		10 = Divide ratio is 1:8 01 = Divide ratio is 1:4											
	01 = Divide r 00 = Divide r												
bit 3-2		nted: Read as '	0'										
bit 1-0		MCLKSEL<1:0>: PWM Master Clock Selection bits ⁽²⁾											
Sit i o		– Auxiliary PLI											
	10 = Fpllo -	- Primary PLL p	ost-divider ou										
		2 – Auxiliary V	CO/2										
	00 <b>= Fosc</b>												
Note 1:	An unlock sequen	ce must be per	formed before	this bit can be	cleared (se	e Section 12.3 "I	ock and Write						
	Restrictions").												

2: Changing the MCLKSEL<1:0> bits while ON (PGxCONL<15>) = 1 is not recommended.

### REGISTER 12-2: FSCL: FREQUENCY SCALE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			FSCI	_<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			FSC	L<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR (1' = Bit is set (0' = Bit is cleared			x = Bit is unk	nown			

bit 15-0 **FSCL<15:0>:** Frequency Scale Register bits The value in this register is added to the frequency scaling accumulator at each pwm_master_clk. When the accumulated value exceeds the value of FSMINPER, a clock pulse is produced.

### REGISTER 12-3: FSMINPER: FREQUENCY SCALING MINIMUM PERIOD REGISTER

-n = Value at POR	Ilue at POR '1' = Bit is set '0' = Bit is cleared x = Bit is un			x = Bit is unkn	own		
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'			
Legend:							
bit 7							bit (
			FSMINF	PER<7:0>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
			FSMINP	ER<15:8>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-0 **FSMINPER<15:0>:** Frequency Scaling Minimum Period Register bits This register holds the minimum clock period (maximum clock frequency) that can be produced by the frequency scaling circuit.

### REGISTER 12-4: MPHASE: MASTER PHASE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MPHA	SE<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MPHA	SE<7:0>			
bit 7						bit 0	
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkr			nown				

bit 15-0 MPHASE<15:0>: Master Phase Register bits

This register holds the phase offset value that can be shared by multiple PWM Generators.

### REGISTER 12-5: MDC: MASTER DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MDC-	<15:8> ⁽¹⁾			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FV/VV-0	FV/VV-0	FX/VV-0		<7:0>(1)	N/W-0	FX/ VV-0	N/W-0
			MDC	<7:0>(1)			
bit 7							bit (
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown

bit 15-0MDC<15:0>: Master Duty Cycle Register bits⁽¹⁾This register holds the duty cycle value that can be shared by multiple PWM Generators.

Note 1: Duty cycle values less than '0x0008' should not be used ('0x0020' in High-Resolution mode).

# REGISTER 12-6: MPER: MASTER PERIOD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MPER	<15:8> ⁽¹⁾			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MPE	R<7:0>(1)			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read		ad as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-0 MPER<15:0>: Master Period Register bits⁽¹⁾

This register holds the period value that can be shared by multiple PWM Generators.

**Note 1:** Period values less than '0x0010' should not be used ('0x0080' in High-Resolution mode).

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	_	—	—	_	—	_	_				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
CTA8EN	CTA7EN	CTA6EN	CTA5EN	CTA4EN	CTA3EN	CTA2EN	CTA1EN				
bit 7							bit C				
Legend:						(0)					
R = Readable		W = Writable		-	mented bit, read						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown				
bit 15-8	Unimplomor	nted: Read as '	0'								
bit 7	•			M Concrator t	8 as Source for	Combinationa	I Triggor A bit				
			-		Combinatorial T						
	0 = Disabled					ligger / Signal					
bit 6	CTA7EN: En	able Trigger O	utput from PW	M Generator #	7 as Source for	Combinationa	I Trigger A bit				
	1 = Enables 0 = Disabled		er signal to be	OR'd into the	Combinatorial T	rigger A signal					
bit 5		-	utput from PW	M Generator #	6 as Source for	Combinationa	l Triager A bit				
	<b>CTAGEN:</b> Enable Trigger Output from PWM Generator #6 as Source for Combinational Trigger A bit 1 = Enables specified trigger signal to be OR'd into the Combinatorial Trigger A signal										
	0 = Disabled		0								
bit 4	CTA5EN: Enable Trigger Output from PWM Generator #5 as Source for Combinational Trigger A b										
	CIAJEN. LI	able Trigger O	utput from PW	M Generator #	5 as Source for	Combinationa					
		specified trigge	-		5 as Source for Combinatorial T		I Trigger A bit				
bit 3	1 = Enables 0 = Disabled	specified trigge	er signal to be	OR'd into the		rigger A signal	I Trigger A bit				
bit 3	1 = Enables 0 = Disabled <b>CTA4EN:</b> En	specified trigge l able Trigger Or specified trigge	er signal to be utput from PW	OR'd into the M Generator #	Combinatorial T	rigger A signal Combinationa	I Trigger A bit I Trigger A bit				
bit 3 bit 2	1 = Enables 0 = Disabled <b>CTA4EN:</b> En 1 = Enables 0 = Disabled	specified trigge able Trigger Ou specified trigge	er signal to be utput from PW er signal to be	OR'd into the M Generator # OR'd into the	Combinatorial T	rigger A signal Combinationa rigger A signal	I Trigger A bit I Trigger A bit				
	1 = Enables 0 = Disabled CTA4EN: En 1 = Enables 0 = Disabled CTA3EN: En 1 = Enables	specified trigge able Trigger Ou specified trigge able Trigger Ou specified trigge	er signal to be utput from PW er signal to be utput from PW	OR'd into the M Generator # OR'd into the M Generator #	Combinatorial T 4 as Source for Combinatorial T	rigger A signal Combinationa rigger A signal Combinationa	I Trigger A bit I Trigger A bit I Trigger A bit				
bit 2	1 = Enables 0 = Disabled CTA4EN: En 1 = Enables 0 = Disabled CTA3EN: En 1 = Enables 0 = Disabled	specified trigge able Trigger Or specified trigge able Trigger Or specified trigge	er signal to be utput from PW er signal to be utput from PW er signal to be	OR'd into the M Generator # OR'd into the M Generator # OR'd into the	Combinatorial T 44 as Source for Combinatorial T 43 as Source for Combinatorial T	rigger A signal Combinationa rigger A signal Combinationa rigger A signal	I Trigger A bit I Trigger A bit I Trigger A bit				
	<ul> <li>1 = Enables</li> <li>0 = Disabled</li> <li>CTA4EN: En</li> <li>1 = Enables</li> <li>0 = Disabled</li> <li>CTA3EN: En</li> <li>1 = Enables</li> <li>0 = Disabled</li> <li>CTA2EN: En</li> </ul>	specified trigger able Trigger Or specified trigger able Trigger Or specified trigger able Trigger Or able Trigger Or	er signal to be utput from PW er signal to be utput from PW er signal to be utput from PW	OR'd into the M Generator # OR'd into the M Generator # OR'd into the M Generator #	Combinatorial T 4 as Source for Combinatorial T 3 as Source for Combinatorial T 2 as Source for	rigger A signal Combinationa rigger A signal Combinationa rigger A signal Combinationa	I Trigger A bit I Trigger A bit I Trigger A bit I Trigger A bit				
bit 2	<ul> <li>1 = Enables</li> <li>0 = Disabled</li> <li>CTA4EN: En</li> <li>1 = Enables</li> <li>0 = Disabled</li> <li>CTA3EN: En</li> <li>1 = Enables</li> <li>0 = Disabled</li> <li>CTA2EN: En</li> <li>1 = Enables</li> </ul>	specified trigge able Trigger Ou specified trigge able Trigger Ou specified trigge able Trigger Ou specified trigge	er signal to be utput from PW er signal to be utput from PW er signal to be utput from PW	OR'd into the M Generator # OR'd into the M Generator # OR'd into the M Generator #	Combinatorial T 44 as Source for Combinatorial T 43 as Source for Combinatorial T	rigger A signal Combinationa rigger A signal Combinationa rigger A signal Combinationa	I Trigger A bit I Trigger A bit I Trigger A bit I Trigger A bit				
bit 2	<ul> <li>1 = Enables</li> <li>0 = Disabled</li> <li>CTA4EN: En</li> <li>1 = Enables</li> <li>0 = Disabled</li> <li>CTA3EN: En</li> <li>1 = Enables</li> <li>0 = Disabled</li> <li>CTA2EN: En</li> <li>1 = Enables</li> <li>0 = Disabled</li> </ul>	specified trigger able Trigger Or specified trigger able Trigger Or specified trigger able Trigger Or specified trigger	er signal to be utput from PW er signal to be utput from PW er signal to be utput from PW er signal to be	OR'd into the M Generator # OR'd into the M Generator # OR'd into the M Generator # OR'd into the	Combinatorial T 4 as Source for Combinatorial T 3 as Source for Combinatorial T 2 as Source for	rigger A signal Combinationa rigger A signal Combinationa rigger A signal Combinationa rigger A signal	I Trigger A bit I Trigger A bit I Trigger A bit I Trigger A bit				

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 15							bit	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CTB8EN	CTB7EN	CTB6EN	CTB5EN	CTB4EN	CTB3EN	CTB2EN	CTB1EN	
bit 7	OTBIEN	OTBOLIN	OTBOLIN	OTDALIN	OTBOLIN	OTBZEN	bit	
5101								
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown	
bit 15-8	Unimplemen	ted: Read as '	0'					
bit 7			•		#8 as Source for			
	1 = Enables 0 = Disabled		er signal to be	OR'd into the	Combinatorial T	rigger B signal		
bit 6	CTB7EN: En	able Trigger O	utput from PW	/M Generator #	#7 as Source for	Combinationa	I Trigger B b	
		specified trigge	•		Combinatorial T			
bit 5	CTB6EN: En	able Trigger O	utput from PW	/M Generator #	#6 as Source for	Combinationa	I Trigger B b	
	1 = Enables 0 = Disabled		er signal to be	OR'd into the	Combinatorial T	rigger B signal		
bit 4	<b>CTB5EN:</b> Enable Trigger Output from PWM Generator #5 as Source for Combinational Trigger B							
	1 = Enables		αιραι ποπι Ενν	IN Generator #	+5 as Source 101	Compinationa	I Trigger B b	
L:1 0	0 = Disabled		-		Combinatorial T			
DIT 3			er signal to be	OR'd into the		rigger B signal		
DIT 3	CTB4EN: En	able Trigger O specified trigge	er signal to be utput from PW	OR'd into the /M Generator #	Combinatorial T	rigger B signal ⁻ Combinationa	l Trigger B b	
	<b>CTB4EN:</b> En 1 = Enables 0 = Disabled	able Trigger O specified trigge	er signal to be utput from PW er signal to be	OR'd into the /M Generator # OR'd into the	Combinatorial T #4 as Source for	rigger B signal ⁻ Combinationa rigger B signal	l Trigger B b	
	CTB4EN: En 1 = Enables 0 = Disabled CTB3EN: En	able Trigger O specified trigge able Trigger O specified trigge	er signal to be utput from PW er signal to be utput from PW	OR'd into the /M Generator # OR'd into the /M Generator #	Combinatorial T #4 as Source for Combinatorial T	rigger B signal ⁻ Combinationa rigger B signal ⁻ Combinationa	I Trigger B b I Trigger B b	
bit 2	CTB4EN: En 1 = Enables 0 = Disabled CTB3EN: En 1 = Enables 0 = Disabled	able Trigger O specified trigge able Trigger O specified trigge	er signal to be utput from PW er signal to be utput from PW er signal to be	OR'd into the /M Generator # OR'd into the /M Generator # OR'd into the	Combinatorial T #4 as Source for Combinatorial T #3 as Source for	rigger B signal Combinationa rigger B signal Combinationa rigger B signal	I Trigger B b I Trigger B b	
bit 2	CTB4EN: En 1 = Enables 0 = Disabled CTB3EN: En 1 = Enables 0 = Disabled CTB2EN: En	able Trigger O specified trigge able Trigger O specified trigge able Trigger O specified trigge	er signal to be utput from PW er signal to be utput from PW er signal to be utput from PW	OR'd into the /M Generator # OR'd into the /M Generator # OR'd into the /M Generator #	Combinatorial T #4 as Source for Combinatorial T #3 as Source for Combinatorial T	rigger B signal Combinationa rigger B signal Combinationa rigger B signal	I Trigger B b I Trigger B b I Trigger B b	
bit 2 bit 1 bit 0	CTB4EN: En 1 = Enables 0 = Disabled CTB3EN: En 1 = Enables 0 = Disabled CTB2EN: En 1 = Enables 0 = Disabled	able Trigger O specified trigge able Trigger O specified trigge able Trigger O specified trigge	er signal to be utput from PW er signal to be utput from PW er signal to be utput from PW er signal to be	OR'd into the /M Generator # OR'd into the /M Generator # OR'd into the /M Generator # OR'd into the	Combinatorial T #4 as Source for Combinatorial T #3 as Source for Combinatorial T #2 as Source for	rigger B signal Combinationa rigger B signal Combinationa rigger B signal Combinationa rigger B signal	I Trigger B b I Trigger B b I Trigger B b	

### REGISTER 12-8: CMBTRIGH: COMBINATIONAL TRIGGER REGISTER HIGH

# REGISTER 12-9: LOGCONY: COMBINATORIAL PWM LOGIC CONTROL REGISTER $y^{(2)}$

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PWMS1y3 ⁽¹⁾	PWMS1y2 ⁽¹⁾	PWMS1y1 ⁽¹⁾	PWMS1y0 ⁽¹⁾	PWMS2y3 ⁽¹⁾	PWMS2y2 ⁽¹⁾	PWMS2y1 ⁽¹⁾	PWMS2y0 ⁽¹⁾
bit 15	•	•		•			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
S1yPOL	S2yPOL	PWMLFy1	PWMLFy0		PWMLFyD2 ⁽³⁾	PWMLFyD1 ⁽³⁾	PWMLFyD0 ⁽³⁾
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15-12	PWMS1y<3:0	>: Combinato	rial PWM Logic	c Source #1 Se	election bits ⁽¹⁾		
	1111 <b>= PWM</b>	8L					
	1110 = PWM						
	1101 = PWM 1100 = PWM						
	1011 <b>= PWM</b>						
	1010 = PWM						
	1001 = PWM 1000 = PWM						
	0111 = PWM						
	0110 = PWM						
	0101 = PWM 0100 = PWM						
	0011 = PWM						
	0010 = PWM						
	0001 = PWM						
hit 11 0	0000 = PWM				le etien hite(1)		
bit 11-8	1111 = PWM		nai Pvvivi Logic	c Source #2 Se	election bits "		
	1111 = PWM						
	1101 = PWM	7L					
	1100 = PWM						
	1011 = PWM 1010 = PWM						
	1001 <b>= PWM</b>						
	1000 = PWM						
	0111 = PWM						
	0110 = PWM 0101 = PWM						
	0100 = PWM						
	0011 = PWM						
	0010 = PWM						
	0001 = PWM 0000 = PWM						

**Note 1:** Logic function input will be connected to '0' if the PWM channel is not present.

- **2:** 'y' denotes a common instance (A-F).
- **3:** Instances of y = A, C, E of LOGCONy assign logic function output to the PWMxH pin. Instances of y = B, D, F of LOGCONy assign logic function to the PWMxL pin.

# REGISTER 12-9: LOGCONY: COMBINATORIAL PWM LOGIC CONTROL REGISTER y⁽²⁾ (CONTINUED)

- bit 7 S1yPOL: Combinatorial PWM Logic Source #1 Polarity bit 1 = Input is inverted 0 = Input is positive logic bit 6 S2yPOL: Combinatorial PWM Logic Source #2 Polarity bit 1 = Input is inverted 0 = Input is positive logic bit 5-4 **PWMLFy<1:0>:** Combinatorial PWM Logic Function Selection bits 11 = Reserved 10 = PWMS1y ^ PWMS2y (XOR) 01 = PWMS1y & PWMS2y (AND) 00 = PWMS1y | PWMS2y (OR) bit 3 Unimplemented: Read as '0' PWMLFyD<2:0>: Combinatorial PWM Logic Destination Selection bits⁽³⁾ bit 2-0 111 = Logic function is assigned to PWM8H or PWM8L pin 110 = Logic function is assigned to PWM7H or PWM7L pin
  - 101 = Logic function is assigned to PWM6H or PWM6L pin
  - 100 = Logic function is assigned to PWM5H or PWM5L pin
  - 011 = Logic function is assigned to PWM4H or PWM4L pin
  - 010 = Logic function is assigned to PWM3H or PWM3L pin
  - 001 = Logic function is assigned to PWM2H or PWM2L pin
  - 000 = No assignment, combinatorial PWM logic function is disabled
- **Note 1:** Logic function input will be connected to '0' if the PWM channel is not present.
  - 2: 'y' denotes a common instance (A-F).
  - **3:** Instances of y = A, C, E of LOGCONy assign logic function output to the PWMxH pin. Instances of y = B, D, F of LOGCONy assign logic function to the PWMxL pin.

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0					
EVTyOE	N EVTyPOL	EVTySTRD	EVTySYNC	—		—	—					
bit 15	L				1		bit					
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0					
EVTySEL	_3 EVTySEL2	EVTySEL1	EVTySEL0	—	EVTyPGS2 ⁽²⁾	EVTyPGS1 ⁽²⁾	EVTyPGS0 ⁽²					
bit 7							bit (					
Legend:			L:+		mented bit meet							
R = Reada		W = Writable		•	mented bit, read		011/2					
-n = Value	alpor	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkn	own					
bit 15	EVTVOEN P	WM Event Out	nut Enable bit									
bit 10	-	itput signal is o	-	Ev pin								
		itput signal is ir	•	-,								
bit 14	EVTyPOL: P	WM Event Out	put Polarity bit									
		<ul> <li>1 = Event output signal is active-low</li> <li>0 = Event output signal is active-high</li> </ul>										
			•									
bit 13		PWM Event Ou										
		itput signal puls			cycles minimur	m(1)						
bit 12		<ul> <li>Event output signal is stretched to eight PWM clock cycles minimum⁽¹⁾</li> <li>EVTySYNC: PWM Event Output Sync bit</li> </ul>										
	1 = Event ou	<ul> <li>1 = Event output signal is synchronized to the system clock</li> <li>0 = Event output is not synchronized to the system clock</li> </ul>										
bit 11-8	-	ited: Read as '	-	IN CIOCKS WHE	en this bit is set a	and EV IYSTRD	/ = ⊥.					
bit 7-4	-	0>: PWM Ever		e								
DIL 7-4	-	-resolution erro		5								
	1110-1010 =											
		Trigger 2 signa										
		Trigger 1 signa ER signal (avai		Pull Output m	odes only) ⁽⁴⁾							
		ALF signal (ava										
	0101 = PCI F	ault active out	put signal									
		Current-limit ac Feed-forward a										
		Sync active out		Jilai								
	0001 = PWN	Generator out	put signal ⁽³⁾									
		ce is selected b	-	SEL<2:0> bit	S							
bit 3	Unimplemen	ted: Read as '	0'									
	The event signal is from different cloc		ng peripheral_c	clk because d	ifferent PWM G	enerators may l	be operating					
	No event will be p				-							
	This is the PWM G		•	•	•	•	•					
4:	This signal should	be the PGx_cl	k domain signa	al prior to any	synchronization	n into the syster	n clock					

# REGISTER 12-10: PWMEVTy: PWM EVENT OUTPUT CONTROL REGISTER y⁽⁵⁾

domain. 5: 'y' denotes a common instance (A-F).

# **REGISTER 12-10: PWMEVTy: PWM EVENT OUTPUT CONTROL REGISTER y**⁽⁵⁾ **(CONTINUED)**

bit 2-0 EVTyPGS<2:0>: PWM Event Source Selection bits⁽²⁾ 111 = PWM Generator 8 110 = PWM Generator 7 ... 000 = PWM Generator 1

- **Note 1:** The event signal is stretched using peripheral_clk because different PWM Generators may be operating from different clock sources.
  - 2: No event will be produced if the selected PWM Generator is not present.
  - 3: This is the PWM Generator output signal prior to output mode logic and any output override logic.
  - 4: This signal should be the PGx_clk domain signal prior to any synchronization into the system clock domain.
  - 5: 'y' denotes a common instance (A-F).

### REGISTER 12-11: LFSR: LINEAR FEEDBACK SHIFT REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				LFSR<14:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			LF	SR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable bit	t	U = Unimpleme	ented bit, read	as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			

bit 15 Unimplemented: Read as '0'

bit 14-0 LFSR<14:0>: Linear Feedback Shift Register bits

A read of this register will provide a 15-bit pseudorandom value.

R/W-0	r-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0						
ON			_	—	TRGCNT2	TRGCNT1	TRGCNT0						
bit 15		I	1	•		1	bit 8						
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
HREN			CLKSEL1	CLKSEL0	MODSEL2	MODSEL1	MODSEL0						
bit 7							bit 0						
Legend:		r = Reserved	l bit										
R = Readat	ole bit	W = Writable		U = Unimple	mented bit, read	l as '0'							
-n = Value a		'1' = Bit is se		'0' = Bit is cle		x = Bit is unk	nown						
			•	0 200000									
bit 15	ON: Enable b	oit											
		enerator is ena											
		enerator is not	enabled										
bit 14	Reserved: M												
bit 13-11	-	ted: Read as											
bit 10-8	TRGCNT<2:0>: Trigger Count Select bits												
		<ul><li>111 = PWM Generator produces eight PWM cycles after triggered</li><li>110 = PWM Generator produces seven PWM cycles after triggered</li></ul>											
		<ul> <li>110 = PWM Generator produces seven PWM cycles after triggered</li> <li>101 = PWM Generator produces six PWM cycles after triggered</li> </ul>											
		101 = PWM Generator produces six PWM cycles after triggered 100 = PWM Generator produces five PWM cycles after triggered											
		011 = PWM Generator produces four PWM cycles after triggered											
	010 = PWM Generator produces three PWM cycles after triggered 001 = PWM Generator produces two PWM cycles after triggered												
L:1 7		•	duces one PW		riggered								
bit 7	<ul> <li>HREN: PWM Generator x High-Resolution Enable bit</li> <li>1 = PWM Generator x operates in High-Resolution mode⁽²⁾</li> </ul>												
			rates in Hign-F rates in standa		ie ⁽⁻⁾								
bit 6-5		ited: Read as											
bit 4-3	-												
	CLKSEL<1:0>: Clock Selection bits 11 = PWM Generator uses Master clock scaled by frequency scaling circuit ⁽¹⁾												
	<ul> <li>11 = PWM Generator uses Master clock scaled by frequency scaling circuit⁽¹⁾</li> <li>10 = PWM Generator uses Master clock divided by clock divider circuit⁽¹⁾</li> </ul>												
	01 = PWM G	01 = PWM Generator uses Master clock selected by the MCLKSEL<1:0> (PCLKCON<1:0>) control bits											
				is in lowest po	wer state (defau	lt)							
bit 2-0		0>: Mode Sele											
					register update								
		•	ter-Aligned PW	• •	register update	once per cycle	)						
		-Aligned PWN		in mode									
	011 = Reser	ved											
			WM mode, du	al output									
		le Phase PWN endent Edge F											
	The PWM Genera duty cycle and per				scaling circuit cl	ock, effectively	scaling the						
	nput frequency of			-	n mode								
<b>4</b> .			א הרב הסבר ותן ב	1141-176301410									

### REGISTER 12-12: PGxCONL: PWM GENERATOR x CONTROL REGISTER LOW

2: Input frequency of 500 MHz must be used for High-Resolution mode.

# REGISTER 12-13: PGxCONH: PWM GENERATOR x CONTROL REGISTER HIGH

REGISIE	:R 12-13: PG)				ROL REGISTE		
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
MDCSE	L MPERSEL	MPHSEL	—	MSTEN	UPDMOD2	UPDMOD1	UPDMOD
oit 15							bit
r O	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
r-0	-	0-0	0-0	SOCS3 ^(1,2,3)	SOCS2 ^(1,2,3)	SOCS1 ^(1,2,3)	SOCS0 ^(1,2,3)
	TRGMOD		_	50053(1,=,=)	50052(1,=,0)	500510,-,-,-	
oit 7							bit
Legend:		r = Reserved	bit				
R = Reada	able bit	W = Writable	bit	U = Unimpleme	ented bit, read as	'0'	
-n = Value		'1' = Bit is set		'0' = Bit is clear		x = Bit is unkno	own
							-
oit 15	MDCSEL: M	Aaster Duty Cy	cle Register	Select bit			
		enerator uses	-				
	0 = PWM G	enerator uses	PGxDC reg	ister			
oit 14	MPERSEL:	Master Period	Register Se	elect bit			
		enerator uses					
		enerator uses		•			
bit 13		laster Phase F	-				
		enerator uses					
		enerator uses		register			
bit 12	-	nted: Read as					
oit 11		ister Update E					
		enerator broa	dcasts softw	are set/clear of t	he UPDREQ stat	us bit and EOC	signal to oth
	-		not broadca	ast the UPDREQ	status bit state o	r EOC signal	
bit 10-8	UPDMOD<2	2:0>: PWM Bu	ffer Update	Mode Selection b	oits	-	
		ed immediate u	-				
					le, when a Maste		
			est will be tra	ansmitted if MSTE	EN = 1 and UPDA	TE = 1 for the re	equesting PW
		erator. ed SOC update	2				
				cycle if a Master	r update request	is received. A	master upda
			smitted if MS	STEN = 1 and UF	PDATE = 1 for the	e requesting PW	M Generator
		ediate update					
					ole, if UPDATE = (UPDATE = 1).		
				update occurs.			
	000 <b>= SOC</b>	update	-				
		registers at stand			ATE = 1. The UP	DATE status bit	will be cleare
bit 7		Maintain as '0'					
Note 1:	The PCI selecte	ed Sync signal	is alwavs av	vailable to be OR	d with the select	ed SOC signal r	per the
	SOCS<3:0> bits						
2:					e from the same o		
	Generator. If no synchronized to				CI Sync logic so t	he trigger signa:	Il may be
3:	PWM Generato	rs are groupe	d into aroups	s of four: PG1-PG	4 and PG5-PG8	if available. An	v generator

**3:** PWM Generators are grouped into groups of four: PG1-PG4 and PG5-PG8, if available. Any generator within a group of four may be used to trigger another generator within the same group.

### REGISTER 12-13: PGxCONH: PWM GENERATOR x CONTROL REGISTER HIGH (CONTINUED)

- bit 6 **TRGMOD:** PWM Generator Trigger Mode Selection bit
  - 1 = PWM Generator operates in Retriggerable mode
     0 = PWM Generator operates in Single Trigger mode
- bit 5-4 Unimplemented: Read as '0'
- bit 3-0 SOCS<3:0>: Start-of-Cycle Selection bits^(1,2,3)
  - 1111 = TRIG bit or PCI Sync function only (no hardware trigger source is selected) 1110-0101 = Reserved
  - 0100 = Trigger output selected by PG4 or PG8 PGTRGSEL<2:0> bits (PGxEVTL<2:0>)
  - 0011 = Trigger output selected by PG3 or PG7 PGTRGSEL<2:0> bits (PGxEVTL<2:0>)
  - 0010 = Trigger output selected by PG2 or PG6 PGTRGSEL<2:0> bits (PGxEVTL<2:0>)
  - 0001 = Trigger output selected by PG1 or PG5 PGTRGSEL<2:0> bits (PGxEVTL<2:0>)
  - 0000 = Local EOC PWM Generator is self-triggered
- **Note 1:** The PCI selected Sync signal is always available to be OR'd with the selected SOC signal per the SOCS<3:0> bits if the PCI Sync function is enabled.
  - 2: The source selected by the SOCS<3:0> bits MUST operate from the same clock source as the local PWM Generator. If not, the source must be routed through the PCI Sync logic so the trigger signal may be synchronized to the PWM Generator clock domain.
  - **3:** PWM Generators are grouped into groups of four: PG1-PG4 and PG5-PG8, if available. Any generator within a group of four may be used to trigger another generator within the same group.

# REGISTER 12-14: PGxSTAT: PWM GENERATOR x STATUS REGISTER

HS/C-0	HS/C-0	HS/C-0	HS/C-0	R-0	R-0	R-0	R-0				
SEVT	FLTEVT	CLEVT	FFEVT	SACT	FLTACT	CLACT	FFACT				
bit 15	-	•			•		bit 8				
W-0	W-0	HS/R/W-0	R-0	W-0	R-0	R-0	R-0				
TRSET	TRCLR	CAP ⁽¹⁾	UPDATE	UPDREQ	STEER	CAHALF	TRIG				
bit 7							bit				
Legend:		C = Clearable	e bit	HC = Hardwa	re Clearable bit	HS = Hardware	e Settable bit				
R = Readab	le bit	W = Writable	bit	'0' = Bit is cle	ared	x = Bit is unkn	own				
-n = Value a	It POR	'1' = Bit is se	t	U = Unimpler	nented bit, read a	as '0'					
bit 15	1 = A PCI S module	Sync Event bit Sync event has is enabled) Sync event ha		g edge on PCI	Sync output or	PCI Sync outpu	t is high whe				
bit 14		CI Fault Active									
	1 = A Fault is enabl	event has occu	urred (rising edg	e on PCI Fault	output or PCI Fa	ult output is high	when modul				
bit 13		Current-Limit									
	1 = A PCI c put is hi	urrent-limit eve gh when modu	nt has occurred		PCI current-limit	output or PCI cu	ırrent-limit ou				
bit 12	FFEVT: PCI	<b>FEVT:</b> PCI Feed-Forward Active Status bit = A PCI feed-forward event has occurred (rising edge on PCI feed-forward output or PCI feed-forward									
	output i	s high when m	ent has occurre odule is enableo event has occurr	(b	on PCI feed-forw	ard output or PC	l feed-forwar				
bit 11	SACT: PCI	Sync Status bit									
		nc output is act									
bit 10	FLTACT: PC	I Fault Active	Status bit								
		ult output is act ult output is ina									
bit 9	CLACT: PCI Current-Limit Status bit										
		rent-limit outpu rent-limit outpu									
	<b>FFACT:</b> PCI Feed-Forward Active Status bit										
bit 8	FFACT: PCI	Feed-Forward	Active Status L								
bit 8	1 = PCI fee	Feed-Forwarc d-forward outp d-forward outp	ut is active								
bit 8 bit 7	1 = PCI fee 0 = PCI fee	d-forward outp d-forward outp	ut is active								
	1 = PCI fee 0 = PCI fee <b>TRSET:</b> PW User softwa	d-forward outp d-forward outp M Generator S re writes a '1'	ut is active ut is inactive Software Trigger to this bit locatio	Set bit on to trigger a	PWM Generator Generator is trig		ocation alway				
	1 = PCI fee 0 = PCI fee <b>TRSET:</b> PW User softwa reads as '0'.	d-forward outp d-forward outp M Generator S re writes a '1' The TRIG bit	ut is active ut is inactive Software Trigger to this bit locatio	Set bit on to trigger a when the PWM			ocation alway				

**Note 1:** User software may write a '1' to CAP as a request to initiate a software capture. The CAP status bit will be set when the capture event has occurred. No further captures will occur until CAP is cleared by software.

© 2017-2018 Microchip Technology Inc.

### REGISTER 12-14: PGxSTAT: PWM GENERATOR x STATUS REGISTER (CONTINUED)

bit 5	CAP: Capture Status bit ⁽¹⁾
	<ul><li>1 = PWM Generator time base value has been captured in PGxCAP</li><li>0 = No capture has occurred</li></ul>
bit 4	UPDATE: PWM Data Register Update Status/Control bit
	<ul> <li>1 = PWM Data register update is pending – user Data registers are not writable</li> <li>0 = No PWM Data register update is pending</li> </ul>
bit 3	UPDREQ: PWM Data Register Update Request bit
	User software writes a '1' to this bit location to request a PWM Data register update. The bit location always reads as '0'. The UPDATE status bit will indicate '1' when an update is pending.
bit 2	STEER: Output Steering Status bit (Push-Pull Output mode only)
	<ul> <li>1 = PWM Generator is in 2nd cycle of Push-Pull mode</li> <li>0 = PWM Generator is in 1st cycle of Push-Pull mode</li> </ul>
bit 1	CAHALF: Half Cycle Status bit (Center-Aligned modes only)
	<ul> <li>1 = PWM Generator is in 2nd half of time base cycle</li> <li>0 = PWM Generator is in 1st half of time base cycle</li> </ul>
bit 0	TRIG: PWM Trigger Status bit
	<ul> <li>1 = PWM Generator is triggered and PWM cycle is in progress</li> <li>0 = No PWM cycle is in progress</li> </ul>

**Note 1:** User software may write a '1' to CAP as a request to initiate a software capture. The CAP status bit will be set when the capture event has occurred. No further captures will occur until CAP is cleared by software.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CLMOD	SWAP	OVRENH	OVRENL	OVRDAT1	OVRDAT0	OSYNC1	OSYNC0			
bit 15		· · ·		- -	•	•	bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	FFDAT1	FFDAT0	DBDAT1	DBDAT0			
bit 7				1		1	bit (			
Legend:										
R = Readat	ole bit	W = Writable b	bit	U = Unimplen	nented bit, read a	s '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
bit 15		urrent-Limit Mod								
		urrent limit is ac CLDAT<1:0> b			WMxL output sig	nals are inverte	d (bit flipping),			
					ts define the PWN	V output levels				
bit 14		ap PWM Signals								
					the PWMxL signal	l is connected to t	the PWMxH pin			
		I/L signals are n								
bit 13	OVRENH: U	Jser Override Er	hable for PWN	/IxH Pin bit						
		T1 provides dat			in					
		Senerator provid		•						
bit 12	<b>OVRENL:</b> User Override Enable for PWMxL Pin bit 1 = OVRDAT0 provides data for output on the PWMxL pin									
		AT0 provides dat Generator provid			in					
bit 11-10	OVRDAT<1:0>: Data for PWMxH/PWMxL Pins if Override is Enabled bits									
		H = 1, then OVR _ = 1, then OVR								
bit 9-8	OSYNC<1:0	>: User Output	Override Syn	chronization Co	ntrol bits					
	<b>OSYNC&lt;1:0&gt;:</b> User Output Override Synchronization Control bits 11 = Reserved									
	10 = User output overrides via the OVRENH/L and OVRDAT<1:0> bits occur when specified by the URDMOD $< 2:0$ bits in the RCxCONH register.									
	UPDMOD<2:0> bits in the PGxCONH register 01 = User output overrides via the OVRENH/L and OVRDAT<1:0> bits occur immediately (as soon a									
	possib						, (			
		utput overrides v ase (next Start-c		NH/L and OVRD	AT<1:0> bits are	synchronized to	the local PWM			
bit 7-6	FLTDAT<1:	0>: Data for PW	MxH/PWMxL	Pins if Fault Ev	ent is Active bits					
		tive, then FLTD								
bit 5-4	CLDAT<1:0	>: Data for PWN	/IxH/PWMxL I	Pins if Current-L	imit Event is Acti	ve bits				
		nit is active, then nit is active, then								
bit 3-2	FFDAT<1:0	>: Data for PWN	1xH/PWMxL F	Pins if Feed-For	ward Event is Act	tive bits				
		ard is active, the ard is active, the								
		,								
bit 1-0	DBDAI<1:0	>: Data for PWI	MxH/PWMxI	Pins if Debug M	ode is Active bits					

## REGISTER 12-15: PGxIOCONL: PWM GENERATOR x I/O CONTROL REGISTER LOW

### REGISTER 12-16: PGxIOCONH: PWM GENERATOR x I/O CONTROL REGISTER HIGH

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0				
_	CAPSRC2 ⁽¹⁾	CAPSRC1 ⁽¹⁾	CAPSRC0 ⁽¹⁾	_	_	_	DTCMPSEL				
bit 15							bit 8				
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	—	PMOD1	PMOD0	PENH	PENL	POLH	POLL				
bit 7							bit 0				
Legend:											
R = Readal	ole bit	W = Writable I	bit	U = Unimplen	nented bit, read a	as 'O'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	-	ted: Read as '			. (1)						
bit 14-12		0>: Time Base	Capture Sourc	e Selection bit	S						
	111 = Reserved 110 = Reserved										
	101 = Reserved										
	100 = Capture time base value at assertion of selected PCI Fault signal										
	011 = Capture time base value at assertion of selected PCI current-limit signal 010 = Capture time base value at assertion of selected PCI feed-forward signal										
	010 = Capture time base value at assertion of selected PCI feed-forward signal 001 = Capture time base value at assertion of selected PCI Sync signal										
		00 = No hardware source selected for time base capture – software only									
bit 11-9	Unimplemen	ted: Read as '	)'								
bit 8	DTCMPSEL:	Dead-Time Co	mpensation Se	elect bit							
		ne compensatio ne compensatio			orward limit logic						
bit 7-6	Unimplemen	ted: Read as '	)'								
bit 5-4	PMOD<1:0>:	PWM Generat	or Output Mod	e Selection bit	s						
	11 = Reserve	PMOD<1:0>: PWM Generator Output Mode Selection bits 11 = Reserved									
	10 = PWM Generator outputs operate in Push-Pull mode										
		<ul> <li>01 = PWM Generator outputs operate in Independent mode</li> <li>00 = PWM Generator outputs operate in Complementary mode</li> </ul>									
bit 3		xH Output Port	-	omplementary	mode						
DIL O		enerator control		output pin							
		enerator does n			t pin						
bit 2		xL Output Port									
		enerator control		output pin							
	0 = PWM Ge	enerator does n	ot control the F	PWMxL output	pin						
bit 1	POLH: PWM	xH Output Pola	rity bit								
		in is active-low									
1.1.0		in is active-high									
bit 0		xL Output Polar	ity bit								
		in is active-low in is active-high									
		-									
Note 1:	A capture may b	be initiated in so	oftware at any t	time by writing	a '1' to CAP (PC	GxSTAT<5>).					

U-0       U-0       U-0       R/W-0       R/W-0       R/W-0       R/W-0       R/W-0       R/W-0         -       -       -       UPDTRG1       UPDTRG0       PGTRGSEL2 ⁽¹⁾ PGTRGSEL1 ⁽¹⁾ PGTRGS												
bit 15       bit 2         U-0       U-0       R/W-0       R/W-0       R/W-0       R/W-0       R/W-0         -       -       -       UPDTRG1       UPDTRG0       PGTRGSEL2 ⁽¹⁾ PGTRGSEL1 ⁽¹⁾	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
U-0       U-0       R/W-0       R/W-0       R/W-0       R/W-0       R/W-0         -       -       -       UPDTRG1       UPDTRG0       PGTRGSEL2 ⁽¹⁾ PGTRGSEL1 ⁽¹⁾ PGTRGESCEL1 ⁽¹⁾ PGTRGESCOMPARE	ADTR1PS4	ADTR1PS3	ADTR1PS2	ADTR1PS1	ADTR1PS0	ADTR1EN3	ADTR1EN2	ADTR1EN1				
-       -       UPDTRG1       UPDTRG0       PGTRGSEL2 ⁽¹⁾ PGTRGSEL1 ⁽¹⁾ PGTRGSEL1 ⁽¹⁾ bit 7       -       -       -       -       bit 7         bit 7       -       -       -       -       -       bit 7         bit 7       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	bit 15							bit 8				
-       -       UPDTRG1       UPDTRG0       PGTRGSEL2 ⁽¹⁾ PGTRGSEL1 ⁽¹⁾ PGTRGSEL1 ⁽¹⁾ bit 7       -       -       -       -       bit 7         bit 7       -       -       -       -       -       bit 7         bit 7       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -												
bit 7 bit 8	U-0	U-0	U-0	R/W-0	R/W-0							
Legend:         R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         -n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15-11       ADTR1PS<4:0>: ADC Trigger 1 Postscaler Selection bits         11111 = 1:32       00010 = 1:3       00001 = 1:2         00000 = 1:1       00000 = 1:1       00000 = 1:1         00000 = 1:1       00000 = 1:1       00000 = 1:1         00010 = 0000000000000000000000000000000		—	—	UPDTRG1	UPDTRG0	PGTRGSEL2 ⁽¹⁾	PGTRGSEL1 ⁽¹⁾	PGTRGSEL0 ⁽¹⁾				
R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         -n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15-11       ADTR1PS<4:0>: ADC Trigger 1 Postscaler Selection bits       11111 = 1:32         00010 = 1:3       00001 = 1:2       00000 = 1:1         bit 10       ADTR1EN3: ADC Trigger 1 Source is PGxTRIGC Compare Event Enable bit       1 = PGxTRIGC register compare event is enabled as trigger source for ADC Trigger 1         o = PGxTRIGC register compare event is enabled as trigger source for ADC Trigger 1       0 = PGxTRIGB register compare event is enabled as trigger source for ADC Trigger 1         bit 9       ADTR1EN1: ADC Trigger 1 Source is PGxTRIGB Compare Event Enable bit         1 = PGxTRIGB register compare event is enabled as trigger source for ADC Trigger 1         0 = PGxTRIGB register compare event is enabled as trigger source for ADC Trigger 1         0 = PGxTRIGA register compare event is enabled as trigger source for ADC Trigger 1         0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1         0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1         0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1         0 = PGxTRIGA register automatically sets the UPDATE bit         1 = A write of the PGxPLASE register automatically sets the UPDATE bit         0 = A write of the PGxPLASE	bit 7							bit 0				
R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         -n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15-11       ADTR1PS<4:0>: ADC Trigger 1 Postscaler Selection bits       11111 = 1:32         00010 = 1:3       00001 = 1:2       00000 = 1:1         bit 10       ADTR1EN3: ADC Trigger 1 Source is PGxTRIGC Compare Event Enable bit       1 = PGxTRIGC register compare event is enabled as trigger source for ADC Trigger 1         o = PGxTRIGC register compare event is enabled as trigger source for ADC Trigger 1       0 = PGxTRIGB register compare event is enabled as trigger source for ADC Trigger 1         bit 9       ADTR1EN1: ADC Trigger 1 Source is PGxTRIGB Compare Event Enable bit         1 = PGxTRIGB register compare event is enabled as trigger source for ADC Trigger 1         0 = PGxTRIGB register compare event is enabled as trigger source for ADC Trigger 1         0 = PGxTRIGA register compare event is enabled as trigger source for ADC Trigger 1         0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1         0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1         0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1         0 = PGxTRIGA register automatically sets the UPDATE bit         1 = A write of the PGxPLASE register automatically sets the UPDATE bit         0 = A write of the PGxPLASE												
.n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15-11       ADTR1PS<4:0>: ADC Trigger 1 Postscaler Selection bits       11111 = 1:32          00010 = 1:3       00001 = 1:2         00000 = 1:1       00000 = 1:1       1         bit 10       ADTR1EN3: ADC Trigger 1 Source is PGxTRIGC Compare Event Enable bit       1 = PGxTRIGC register compare event is enabled as trigger source for ADC Trigger 1         0 = PGxTRIGC register compare event is disabled as trigger source for ADC Trigger 1       0 = PGxTRIGE register compare event is disabled as trigger source for ADC Trigger 1         bit 9       ADTR1EN2: ADC Trigger 1 Source is PGxTRIGB Compare Event Enable bit       1 = PGxTRIGB register compare event is disabled as trigger source for ADC Trigger 1         0 = PGxTRIGB register compare event is enabled as trigger source for ADC Trigger 1       0 = PGxTRIGB register compare event is disabled as trigger source for ADC Trigger 1         bit 8       ADTR1EN1: ADC Trigger 1 Source is PGxTRIGA Compare Event Enable bit       1 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1         bit 7-5       Unimplemented: Read as '0'       10 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1         0 = Vber must set the UPDATE bit       0 = A write of the PGxDC register automatically sets the UPDATE bit         0 = A write of the PGxTRIGA register automatically sets the UPDATE bit       0 = A write of the	Legend:											
bit 15-11 ADTR1PS<4:0>: ADC Trigger 1 Postscaler Selection bits 11111 = 1:32  00010 = 1:3 00001 = 1:2 00000 = 1:1 bit 10 ADTR1EN3: ADC Trigger 1 Source is PGxTRIGC Compare Event Enable bit 1 = PGxTRIGC register compare event is enabled as trigger source for ADC Trigger 1 0 = PGxTRIGC register compare event is disabled as trigger source for ADC Trigger 1 bit 9 ADTR1EN2: ADC Trigger 1 Source is PGxTRIGB Compare Event Enable bit 1 = PGxTRIGB register compare event is enabled as trigger source for ADC Trigger 1 0 = PGxTRIGB register compare event is disabled as trigger source for ADC Trigger 1 0 = PGxTRIGB register compare event is disabled as trigger source for ADC Trigger 1 bit 8 ADTR1EN2: ADC Trigger 1 Source is PGxTRIGA Compare Event Enable bit 1 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1 0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1 0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1 bit 7-5 Unimplemented: Read as '0' 11 = A write of the PGxTRIGA register automatically sets the UPDATE bit 10 = A write of the PGxTRIGA register automatically sets the UPDATE bit 10 = A write of the PGxDC register automatically sets the UPDATE bit 10 = A write of the PGxDC Trigger Output Selection bits ⁽¹⁾ 111 = Reserved 110 = Reserved 110 = Reserved 111 = Reserved 112 = Reserved 113 = Reserved 114 = Reserved 115 = Reserved 116 = Reserved 117 = PGxTRIGC compare event is the PWM Generator trigger 118 = PGxTRIGB compare event is the PWM Generator trigger 119 = PGxTRIGB compare event is the PWM Generator trigger 119 = PGxTRIGB compare event is the PWM Generator trigger	R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'					
<ul> <li>11111 = 1:32</li> <li>00010 = 1:3</li> <li>00001 = 1:2</li> <li>00000 = 1:1</li> <li>bit 10 ADTR1EN3: ADC Trigger 1 Source is PGxTRIGC Compare Event Enable bit</li> <li>1 = PGxTRIGC register compare event is enabled as trigger source for ADC Trigger 1</li> <li>0 = PGxTRIGC register compare event is disabled as trigger source for ADC Trigger 1</li> <li>bit 9 ADTR1EN2: ADC Trigger 1 Source is PGxTRIGB Compare Event Enable bit</li> <li>1 = PGxTRIGB register compare event is disabled as trigger source for ADC Trigger 1</li> <li>0 = PGxTRIGB register compare event is disabled as trigger source for ADC Trigger 1</li> <li>0 = PGxTRIGB register compare event is disabled as trigger source for ADC Trigger 1</li> <li>bit 8 ADTR1EN1: ADC Trigger 1 Source is PGxTRIGA Compare Event Enable bit</li> <li>1 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1</li> <li>bit 7-5 Unimplemented: Read as '0'</li> <li>bit 4-3 UPDTRG1:0&gt;: Update Trigger Select bits</li> <li>11 = A write of the PGxTRIGA register automatically sets the UPDATE bit</li> <li>10 = A write of the PGxTRIGA register automatically sets the UPDATE bit</li> <li>10 = A write of the PGxDC register automatically sets the UPDATE bit</li> <li>10 = A write of the PGxDC register automatically sets the UPDATE bit</li> <li>11 = A write of the PGxDC register automatically sets the UPDATE bit</li> <li>11 = Reserved</li> <li>110 = Reserved</li> <li>110 = Reserved</li> <li>111 = Reserved</li> <li>112 = Reserved</li> <li>113 = Reserved</li> <li>114 = Reserved</li> <li>115 = Reserved</li> <li>115 = Reserved</li> <li>115 = Reserved</li> <li>116 = Reserved</li> <li>117 =</li></ul>	-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unknow	n				
<ul> <li>11111 = 1:32</li> <li>00010 = 1:3</li> <li>00001 = 1:2</li> <li>00000 = 1:1</li> <li>bit 10 ADTR1EN3: ADC Trigger 1 Source is PGxTRIGC Compare Event Enable bit</li> <li>1 = PGxTRIGC register compare event is enabled as trigger source for ADC Trigger 1</li> <li>0 = PGxTRIGC register compare event is disabled as trigger source for ADC Trigger 1</li> <li>bit 9 ADTR1EN2: ADC Trigger 1 Source is PGxTRIGB Compare Event Enable bit</li> <li>1 = PGxTRIGB register compare event is disabled as trigger source for ADC Trigger 1</li> <li>0 = PGxTRIGB register compare event is disabled as trigger source for ADC Trigger 1</li> <li>0 = PGxTRIGB register compare event is disabled as trigger source for ADC Trigger 1</li> <li>bit 8 ADTR1EN1: ADC Trigger 1 Source is PGxTRIGA Compare Event Enable bit</li> <li>1 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1</li> <li>bit 7-5 Unimplemented: Read as '0'</li> <li>bit 4-3 UPDTRG1:0&gt;: Update Trigger Select bits</li> <li>11 = A write of the PGxTRIGA register automatically sets the UPDATE bit</li> <li>10 = A write of the PGxTRIGA register automatically sets the UPDATE bit</li> <li>10 = A write of the PGxDC register automatically sets the UPDATE bit</li> <li>10 = A write of the PGxDC register automatically sets the UPDATE bit</li> <li>11 = A write of the PGxDC register automatically sets the UPDATE bit</li> <li>11 = Reserved</li> <li>110 = Reserved</li> <li>110 = Reserved</li> <li>111 = Reserved</li> <li>112 = Reserved</li> <li>113 = Reserved</li> <li>114 = Reserved</li> <li>115 = Reserved</li> <li>115 = Reserved</li> <li>115 = Reserved</li> <li>116 = Reserved</li> <li>117 =</li></ul>												
<ul> <li>00010 = 1:3 00001 = 1:2 00000 = 1:1</li> <li>bit 10 ADTR1EN3: ADC Trigger 1 Source is PGxTRIGC Compare Event Enable bit 1 = PGxTRIGC register compare event is enabled as trigger source for ADC Trigger 1 0 = PGxTRIGC register compare event is disabled as trigger source for ADC Trigger 1 bit 9 ADTR1EN2: ADC Trigger 1 Source is PGxTRIGB Compare Event Enable bit 1 = PGxTRIGB register compare event is enabled as trigger source for ADC Trigger 1 0 = PGxTRIGB register compare event is disabled as trigger source for ADC Trigger 1 0 = PGxTRIGB register compare event is enabled as trigger source for ADC Trigger 1 bit 8 ADTR1EN1: ADC Trigger 1 Source is PGxTRIGA Compare Event Enable bit 1 = PGxTRIGA register compare event is enabled as trigger source for ADC Trigger 1 0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1 0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1 bit 7-5 Unimplemented: Read as '0' bit 4-3 UPDTRG&lt;1:0&gt;: Update Trigger Select bits 11 = A write of the PGxTRIGA register automatically sets the UPDATE bit 10 = A write of the PGxTRIGA register automatically sets the UPDATE bit 10 = A write of the PGxTRIGA register automatically sets the UPDATE bit 10 = A write of the PGxTRIGA register automatically sets the UPDATE bit 10 = A write of the PGxTRIGA register automatically sets the UPDATE bit 10 = Reserved 110 = Reserved 110 = Reserved 110 = Reserved 110 = Reserved 111 = Reserved 111 = Reserved 112 = Reserved 113 = Reserved 114 = Reserved 115 = PGxTRIGC compare event is the PWM Generator trigger 115 = PGxTRIGB compare event is the PWM Generator trigger 115 = PGxTRIGA compare event is the PWM Generator trigger 115 = PGxTRIGA compare event is the PWM Generator trigger 115 = PGxTRIGA compare event is the PWM Generator trigger</li> </ul>	bit 15-11	ADTR1PS<4	4:0>: ADC Tri	gger 1 Posts	caler Selection	n bits						
<ul> <li>00010 = 1:3 00001 = 1:2 00000 = 1:1</li> <li>bit 10 ADTR1EN3: ADC Trigger 1 Source is PGxTRIGC Compare Event Enable bit 1 = PGxTRIGC register compare event is enabled as trigger source for ADC Trigger 1 0 = PGxTRIGC register compare event is disabled as trigger source for ADC Trigger 1 0 = PGxTRIGB register compare event is enabled as trigger source for ADC Trigger 1 0 = PGxTRIGB register compare event is enabled as trigger source for ADC Trigger 1 0 = PGxTRIGB register compare event is disabled as trigger source for ADC Trigger 1 0 = PGxTRIGB register compare event is enabled as trigger source for ADC Trigger 1 0 = PGxTRIGA register compare event is enabled as trigger source for ADC Trigger 1 0 = PGxTRIGA register compare event is enabled as trigger source for ADC Trigger 1 0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1 0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1 0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1 0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1 0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1 0 = PGxTRIGA register automatically sets the UPDATE bit 10 = A write of the PGxPHASE register automatically sets the UPDATE bit 00 = User must set the UPDATE bit (PGxSTAT&lt;4&gt;) manually</li> <li>bit 2-0 PGTRGSEL&lt;2:0&gt;: PVWM Generator Trigger Output Selection bits⁽¹⁾ 111 = Reserved 102 = Reserved 103 = Reserved 104 = Reserved 105 = Reserved 105 = Reserved 106 = Reserved 107 = PGxTRIGB compare event is the PWM Generator trigger 011 = PGxTRIGB compare event is the PWM Generator trigger 011 = PGxTRIGB compare event is the PWM Generator trigger</li> </ul>		11111 <b>= 1</b> :3	32									
00001 = 1:2         00000 = 1:1         bit 10       ADTR1EN3: ADC Trigger 1 Source is PGxTRIGC Compare Event Enable bit         1 = PGxTRIGC register compare event is enabled as trigger source for ADC Trigger 1         0 = PGxTRIGC register compare event is disabled as trigger source for ADC Trigger 1         bit 9       ADTR1EN2: ADC Trigger 1 Source is PGxTRIGB Compare Event Enable bit         1 = PGxTRIGB register compare event is enabled as trigger source for ADC Trigger 1         0 = PGxTRIGB register compare event is disabled as trigger source for ADC Trigger 1         0 = PGxTRIGA register compare event is enabled as trigger source for ADC Trigger 1         0 = PGxTRIGA register compare event is enabled as trigger source for ADC Trigger 1         0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1         0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1         0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1         0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1         0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1         0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1         0 = PGxTRIGA register automatically sets the UPDATE bit         10 = A write of the PGxPIASE register automatically sets the UPDATE bit         0 = User must set the UPDATE bit (PGxSTAT<4>) manually <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
00000 = 1:1         bit 10       ADTR1EN3: ADC Trigger 1 Source is PGxTRIGC Compare Event Enable bit         1 = PGxTRIGC register compare event is enabled as trigger source for ADC Trigger 1         0 = PGxTRIGC register compare event is disabled as trigger source for ADC Trigger 1         bit 9       ADTR1EN2: ADC Trigger 1 Source is PGxTRIGB Compare Event Enable bit         1 = PGxTRIGB register compare event is enabled as trigger source for ADC Trigger 1         0 = PGxTRIGB register compare event is disabled as trigger source for ADC Trigger 1         bit 8       ADTR1EN1: ADC Trigger 1 Source is PGxTRIGA Compare Event Enable bit         1 = PGxTRIGA register compare event is enabled as trigger source for ADC Trigger 1         0 = PGxTRIGA register compare event is enabled as trigger source for ADC Trigger 1         0 = PGxTRIGA register compare event is enabled as trigger source for ADC Trigger 1         0 = PGxTRIGA register compare event is enabled as trigger source for ADC Trigger 1         0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1         bit 4.3       UPDTRG<1:0>: Update Trigger Select bits         11 = A write of the PGxTRIGA register automatically sets the UPDATE bit         10 = A write of the PGxDC register automatically sets the UPDATE bit         10 = A write of the PGxDC register automatically sets the UPDATE bit         10 = Reserved         10 = Reserved         10 = Reserved												
<ul> <li>1 = PGxTRIGC register compare event is enabled as trigger source for ADC Trigger 1</li> <li>0 = PGxTRIGC register compare event is disabled as trigger source for ADC Trigger 1</li> <li>bit 9 ADTR1EN2: ADC Trigger 1 Source is PGxTRIGB Compare Event Enable bit</li> <li>1 = PGxTRIGB register compare event is enabled as trigger source for ADC Trigger 1</li> <li>0 = PGxTRIGB register compare event is disabled as trigger source for ADC Trigger 1</li> <li>0 = PGxTRIGB register compare event is disabled as trigger source for ADC Trigger 1</li> <li>0 = PGxTRIGA register compare event is enabled as trigger source for ADC Trigger 1</li> <li>0 = PGxTRIGA register compare event is enabled as trigger source for ADC Trigger 1</li> <li>0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1</li> <li>0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1</li> <li>0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1</li> <li>0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1</li> <li>0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1</li> <li>0 = PGxTRIGA register acompare event is disabled as trigger source for ADC Trigger 1</li> <li>0 = PGxTRIGA register acompare event is disabled as trigger source for ADC Trigger 1</li> <li>0 = Uptrgc</li> <li>1 = A write of the PGxTRIGA register automatically sets the UPDATE bit</li> <li>1 = A write of the PGxDC register automatically sets the UPDATE bit</li> <li>0 = User must set the UPDATE bit (PGxSTAT&lt;4&gt;) manually</li> <li>bit 2-0 PGTRGSEL&lt;2:0&gt;: PWM Generator Trigger Output Selection bits⁽¹⁾</li> <li>11 = Reserved</li> <li>10 = PGxTRIGC compare event is the PWM Generator trigger</li> <li>01 = PGxTRIGB co</li></ul>												
<ul> <li>PGxTRIGC register compare event is disabled as trigger source for ADC Trigger 1</li> <li>bit 9 ADTR1EN2: ADC Trigger 1 Source is PGxTRIGB Compare Event Enable bit         <ol> <li>PGxTRIGB register compare event is enabled as trigger source for ADC Trigger 1</li> <li>PGxTRIGB register compare event is disabled as trigger source for ADC Trigger 1</li> </ol> </li> <li>DE PGxTRIGB register compare event is enabled as trigger source for ADC Trigger 1</li> <li>PGxTRIGB register compare event is disabled as trigger source for ADC Trigger 1</li> <li>PGxTRIGA register compare event is enabled as trigger source for ADC Trigger 1</li> <li>PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1</li> <li>PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1</li> <li>PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1</li> <li>PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1</li> <li>PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1</li> <li>PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1</li> <li>PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1</li> <li>PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1</li> <li>PGxTRIGSEL</li> <li>UPDTRG</li> <li>PGxTRIGA register automatically sets the UPDATE bit</li> <li>A write of the PGxDC register automatically sets the UPDATE bit</li> <li>A write of the PGxDC register automatically sets the UPDATE bit</li> <li>A write of the PGxDC register automatically sets the UPDATE bit</li> <li>A write of the PGxDC register automatically sets the UPDATE bit</li> <li>A write of the PGxDC register automatically sets the UPDATE bit</li> <li>A write of the PGxDC register automatically sets the UPDATE bit</li> <li>Reserved</li> <li>Res</li></ul>	bit 10	ADTR1EN3	: ADC Trigger	1 Source is I	PGxTRIGC C	ompare Event En	able bit					
bit 9       ADTR1EN2: ADC Trigger 1 Source is PGxTRIGB Compare Event Enable bit         1 = PGxTRIGB register compare event is enabled as trigger source for ADC Trigger 1         0 = PGxTRIGB register compare event is disabled as trigger source for ADC Trigger 1         bit 8       ADTR1EN1: ADC Trigger 1 Source is PGxTRIGA Compare Event Enable bit         1 = PGxTRIGA register compare event is enabled as trigger source for ADC Trigger 1         0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1         0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1         0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1         0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1         0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1         bit 7-5       Unimplemented: Read as '0'         bit 4-3       UPDTRG<1:0>: Update Trigger Select bits         11 = A write of the PGxTRIGA register automatically sets the UPDATE bit         10 = A write of the PGxDC register automatically sets the UPDATE bit         10 = A write of the PGxDC register automatically sets the UPDATE bit         00 = User must set the UPDATE bit (PGxSTAT<4>) manually         bit 2-0       PGTRGSEL<2:0>: PWM Generator Trigger Output Selection bits ⁽¹⁾ 111 = Reserved       100 = Reserved         100 = Reserved       100 = Reserved												
<ul> <li>1 = PGxTRIGB register compare event is enabled as trigger source for ADC Trigger 1</li> <li>0 = PGxTRIGB register compare event is disabled as trigger source for ADC Trigger 1</li> <li>bit 8 ADTR1EN1: ADC Trigger 1 Source is PGxTRIGA Compare Event Enable bit</li> <li>1 = PGxTRIGA register compare event is enabled as trigger source for ADC Trigger 1</li> <li>0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1</li> <li>bit 7-5 Unimplemented: Read as '0'</li> <li>bit 4-3 UPDTRG&lt;1:0&gt;: Update Trigger Select bits</li> <li>11 = A write of the PGxTRIGA register automatically sets the UPDATE bit</li> <li>10 = A write of the PGxDC register automatically sets the UPDATE bit</li> <li>00 = User must set the UPDATE bit (PGxSTAT&lt;4&gt;) manually</li> <li>bit 2-0 PGTRGSEL&lt;2:0&gt;: PWM Generator Trigger Output Selection bits⁽¹⁾</li> <li>111 = Reserved</li> <li>110 = Reserved</li> <li>110 = Reserved</li> <li>110 = Reserved</li> <li>110 = Reserved</li> <li>111 = Reserved</li> <li>112 = Reserved</li> <li>113 = Reserved</li> <li>114 = Reserved</li> <li>115 = Reserved</li> <li>115 = Reserved</li> <li>116 = Reserved</li> <li>117 = Reserved</li> <li>118 = Reserved</li> <li>119 = Reserved</li> <li>110 = Reserved</li> <li>111 = Reserved</li> <li>111 = Reserved</li> <li>112 = Reserved</li> <li>113 = Reserved</li> <li>114 = Reserved</li> <li>115 = Reserved</li> <li>115 = Reserved</li> <li>115 = Reserved</li> <li>116 = Reserved</li> <li>117 = Reserved</li> <li>118 = Reserved</li> <li>119 = Reserved</li> <li>110 = Reserved</li> <li>111 = Reserved</li> <li>112 = Reserved</li> <li>113 = Reserved</li> <li>114 = Reserved</li> <li>115 = Reserved</li> <li>115 = Reserved</li> <li>116 = Reserved</li> <li>117 = Reserved</li> <li>118 = Reserved</li> <li>119 = Reserved</li> <li>110 = Reserved</li> <li>111 = Rese</li></ul>												
<ul> <li>0 = PGxTRIGB register compare event is disabled as trigger source for ADC Trigger 1</li> <li>bit 8 ADTR1EN1: ADC Trigger 1 Source is PGxTRIGA Compare Event Enable bit         <ol> <li>1 = PGxTRIGA register compare event is enabled as trigger source for ADC Trigger 1</li> <li>0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1</li> </ol> </li> <li>bit 7-5 Unimplemented: Read as '0'         <ol> <li>UPDTRG&lt;1:0&gt;: Update Trigger Select bits                 <ol> <li>1 = A write of the PGxTRIGA register automatically sets the UPDATE bit</li></ol></li></ol></li></ul>	bit 9					•						
<ul> <li>1 = PGxTRIGA register compare event is enabled as trigger source for ADC Trigger 1</li> <li>0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1</li> <li>bit 7-5 Unimplemented: Read as '0'</li> <li>bit 4-3 UPDTRG&lt;1:0&gt;: Update Trigger Select bits</li> <li>11 = A write of the PGxTRIGA register automatically sets the UPDATE bit</li> <li>10 = A write of the PGxDC register automatically sets the UPDATE bit</li> <li>01 = A write of the PGxDC register automatically sets the UPDATE bit</li> <li>00 = User must set the UPDATE bit (PGxSTAT&lt;4&gt;) manually</li> <li>bit 2-0 PGTRGSEL&lt;2:0&gt;: PWM Generator Trigger Output Selection bits⁽¹⁾</li> <li>111 = Reserved</li> <li>110 = Reserved</li> <li>110 = Reserved</li> <li>111 = PGxTRIGC compare event is the PWM Generator trigger</li> <li>011 = PGxTRIGB compare event is the PWM Generator trigger</li> <li>012 = PGxTRIGA compare event is the PWM Generator trigger</li> </ul>												
<ul> <li>0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 1</li> <li>bit 7-5 Unimplemented: Read as '0'</li> <li>bit 4-3 UPDTRG&lt;1:0&gt;: Update Trigger Select bits         <ol> <li>11 = A write of the PGxTRIGA register automatically sets the UPDATE bit                 10 = A write of the PGxPHASE register automatically sets the UPDATE bit                 01 = A write of the PGxDC register automatically sets the UPDATE bit                 00 = User must set the UPDATE bit (PGxSTAT&lt;4&gt;) manually</li> </ol> </li> <li>bit 2-0 PGTRGSEL&lt;2:0&gt;: PWM Generator Trigger Output Selection bits⁽¹⁾ <ol> <li>11 = Reserved                 10 = Reserved                 101 = PGxTRIGC compare event is the PWM Generator trigger                 011 = PGxTRIGB compare event is the PWM Generator trigger                 010 = PGxTRIGB compare event is the PWM Generator trigger                 011 = PGxTRIGA compare event is the PWM Generator trigger</li> </ol></li></ul>	bit 8	ADTR1EN1:	: ADC Trigger	1 Source is I	PGxTRIGA Co	ompare Event En	able bit					
<ul> <li>bit 7-5 Unimplemented: Read as '0'</li> <li>bit 4-3 UPDTRG&lt;1:0&gt;: Update Trigger Select bits <ul> <li>11 = A write of the PGxTRIGA register automatically sets the UPDATE bit</li> <li>10 = A write of the PGxPHASE register automatically sets the UPDATE bit</li> <li>01 = A write of the PGxDC register automatically sets the UPDATE bit</li> <li>00 = User must set the UPDATE bit (PGxSTAT&lt;4&gt;) manually</li> </ul> </li> <li>bit 2-0 PGTRGSEL&lt;2:0&gt;: PWM Generator Trigger Output Selection bits⁽¹⁾ <ul> <li>111 = Reserved</li> <li>102 = Reserved</li> <li>103 = Reserved</li> <li>104 = Reserved</li> <li>105 = Reserved</li> <li>105 = Reserved</li> <li>106 = Reserved</li> <li>107 = PGxTRIGC compare event is the PWM Generator trigger</li> <li>108 = PGxTRIGB compare event is the PWM Generator trigger</li> <li>111 = PGxTRIGA compare event is the PWM Generator trigger</li> </ul> </li> </ul>												
bit 4-3 UPDTRG<1:0>: Update Trigger Select bits 11 = A write of the PGxTRIGA register automatically sets the UPDATE bit 10 = A write of the PGxPHASE register automatically sets the UPDATE bit 01 = A write of the PGxDC register automatically sets the UPDATE bit 00 = User must set the UPDATE bit (PGxSTAT<4>) manually bit 2-0 PGTRGSEL<2:0>: PWM Generator Trigger Output Selection bits ⁽¹⁾ 111 = Reserved 110 = Reserved 101 = Reserved 100 = Reserved 101 = PGxTRIGC compare event is the PWM Generator trigger 010 = PGxTRIGB compare event is the PWM Generator trigger 011 = PGxTRIGA compare event is the PWM Generator trigger	bit 7-5		-	-		00	00					
<ul> <li>11 = A write of the PGxTRIGA register automatically sets the UPDATE bit</li> <li>10 = A write of the PGxPHASE register automatically sets the UPDATE bit</li> <li>01 = A write of the PGxDC register automatically sets the UPDATE bit</li> <li>00 = User must set the UPDATE bit (PGxSTAT&lt;4&gt;) manually</li> <li>bit 2-0</li> <li>PGTRGSEL&lt;2:0&gt;: PWM Generator Trigger Output Selection bits⁽¹⁾</li> <li>111 = Reserved</li> <li>101 = PGxTRIGC compare event is the PWM Generator trigger</li> <li>010 = PGxTRIGB compare event is the PWM Generator trigger</li> <li>010 = PGxTRIGA compare event is the PWM Generator trigger</li> </ul>	bit 4-3	-			bits							
<ul> <li>01 = A write of the PGxDC register automatically sets the UPDATE bit</li> <li>00 = User must set the UPDATE bit (PGxSTAT&lt;4&gt;) manually</li> <li>bit 2-0 PGTRGSEL&lt;2:0&gt;: PWM Generator Trigger Output Selection bits⁽¹⁾</li> <li>111 = Reserved</li> <li>110 = Reserved</li> <li>101 = Reserved</li> <li>100 = Reserved</li> <li>101 = PGxTRIGC compare event is the PWM Generator trigger</li> <li>010 = PGxTRIGB compare event is the PWM Generator trigger</li> <li>010 = PGxTRIGA compare event is the PWM Generator trigger</li> </ul>			-			sets the UPDATI	E bit					
00 = User must set the UPDATE bit (PGxSTAT<4>) manually bit 2-0 PGTRGSEL<2:0>: PWM Generator Trigger Output Selection bits ⁽¹⁾ 111 = Reserved 110 = Reserved 101 = Reserved 100 = Reserved 011 = PGxTRIGC compare event is the PWM Generator trigger 010 = PGxTRIGB compare event is the PWM Generator trigger 001 = PGxTRIGA compare event is the PWM Generator trigger												
bit 2-0 PGTRGSEL<2:0>: PWM Generator Trigger Output Selection bits ⁽¹⁾ 111 = Reserved 110 = Reserved 101 = Reserved 100 = Reserved 011 = PGxTRIGC compare event is the PWM Generator trigger 010 = PGxTRIGB compare event is the PWM Generator trigger 001 = PGxTRIGA compare event is the PWM Generator trigger							t					
<ul> <li>111 = Reserved</li> <li>110 = Reserved</li> <li>101 = Reserved</li> <li>100 = Reserved</li> <li>011 = PGxTRIGC compare event is the PWM Generator trigger</li> <li>010 = PGxTRIGB compare event is the PWM Generator trigger</li> <li>001 = PGxTRIGA compare event is the PWM Generator trigger</li> </ul>	hit 2.0				,	•						
<ul> <li>110 = Reserved</li> <li>101 = Reserved</li> <li>100 = Reserved</li> <li>011 = PGxTRIGC compare event is the PWM Generator trigger</li> <li>010 = PGxTRIGB compare event is the PWM Generator trigger</li> <li>001 = PGxTRIGA compare event is the PWM Generator trigger</li> </ul>	DIL 2-0					Selection bits.						
<ul> <li>100 = Reserved</li> <li>011 = PGxTRIGC compare event is the PWM Generator trigger</li> <li>010 = PGxTRIGB compare event is the PWM Generator trigger</li> <li>001 = PGxTRIGA compare event is the PWM Generator trigger</li> </ul>												
<ul> <li>011 = PGxTRIGC compare event is the PWM Generator trigger</li> <li>010 = PGxTRIGB compare event is the PWM Generator trigger</li> <li>001 = PGxTRIGA compare event is the PWM Generator trigger</li> </ul>		101 = Rese	rved									
010 = PGxTRIGB compare event is the PWM Generator trigger 001 = PGxTRIGA compare event is the PWM Generator trigger												
001 = PGxTRIGA compare event is the PWM Generator trigger												

### REGISTER 12-17: PGxEVTL: PWM GENERATOR x EVENT REGISTER LOW

Note 1: These events are derived from the internal PWM Generator time base comparison events.

REGISTER 12-18: PGxEVTH: PWM GENERATOR x EVENT REGISTER HIGH

#### R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0 FI TIFN⁽¹⁾ CLIEN⁽²⁾ FFIFN⁽³⁾ SIFN⁽⁴⁾ **IEVTSEL1 IEVTSEL0** ____ _ bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 ADTR2EN3 ADTR2EN2 ADTR2EN1 ADTR10FS4 ADTR10FS3 ADTR10FS2 ADTR10FS1 ADTR10FS0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown FLTIEN: PCI Fault Interrupt Enable bit⁽¹⁾ bit 15 1 = Fault interrupt is enabled 0 = Fault interrupt is disabled bit 14 CLIEN: PCI Current-Limit Interrupt Enable bit⁽²⁾ 1 = Current-limit interrupt is enabled 0 = Current-limit interrupt is disabled bit 13 FFIEN: PCI Feed-Forward Interrupt Enable bit⁽³⁾ 1 = Feed-forward interrupt is enabled 0 = Feed-forward interrupt is disabled SIEN: PCI Sync Interrupt Enable bit⁽⁴⁾ bit 12 1 = Sync interrupt is enabled 0 = Sync interrupt is disabled bit 11-10 Unimplemented: Read as '0' bit 9-8 IEVTSEL<1:0>: Interrupt Event Selection bits 11 = Time base interrupts are disabled (Sync, Fault, current-limit and feed-forward events can be independently enabled) 10 = Interrupts CPU at ADC Trigger 1 event 01 = Interrupts CPU at TRIGA compare event 00 = Interrupts CPU at EOC bit 7 ADTR2EN3: ADC Trigger 2 Source is PGxTRIGC Compare Event Enable bit 1 = PGxTRIGC register compare event is enabled as trigger source for ADC Trigger 2 0 = PGxTRIGC register compare event is disabled as trigger source for ADC Trigger 2 bit 6 ADTR2EN2: ADC Trigger 2 Source is PGxTRIGB Compare Event Enable bit 1 = PGxTRIGB register compare event is enabled as trigger source for ADC Trigger 2 0 = PGxTRIGB register compare event is disabled as trigger source for ADC Trigger 2 bit 5 ADTR2EN1: ADC Trigger 2 Source is PGxTRIGA Compare Event Enable bit 1 = PGxTRIGA register compare event is enabled as trigger source for ADC Trigger 2 0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 2 bit 4-0 ADTR10FS<4:0>: ADC Trigger 1 Offset Selection bits 11111 = Offset by 31 trigger events 00010 = Offset by 2 trigger events 00001 = Offset by 1 trigger event 00000 = No offset **Note 1:** An interrupt is only generated on the rising edge of the PCI Fault active signal. An interrupt is only generated on the rising edge of the PCI current-limit active signal.

# An interrupt is only generated on the rising edge of the PCI feed-forward active signal.

An interrupt is only generated on the rising edge of the PCI Sync active signal. 4:

# REGISTER 12-19: PGxyPCIL: PWM GENERATOR xy PCI REGISTER LOW (x = PWM GENERATOR #; y = F, CL, FF OR S)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
TSYNCDIS	TERM2	TERM1	TERM0	AQPS	AQSS2	AQSS1	AQSS0		
bit 15		·	•			·	bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
SWTERM	PSYNC	PPS	PSS4	PSS3	PSS2	PSS1	PSS0		
bit 7							bit 0		
Legend:									
R = Readal	ole bit	W = Writable	bit	U = Unimpler	mented bit, read a	as '0'			
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	TSYNCDIS:	Termination S	ynchronization	Disable bit					
			PCI occurs im						
			PCI occurs at						
bit 14-12			Event Selection	bits					
	111 = Selects PCI Source #9 110 = Selects PCI Source #8								
	101 = Selects PCI Source #1 (PWM Generator output selected by the PWMPCI<2:0> bits)								
	100 = PGxTRIGC trigger event								
	011 = PGxTRIGB trigger event								
	010 = PGxTRIGA trigger event								
	001 = Auto-Terminate: Terminate when PCI source transitions from active to inactive 000 = Manual Terminate: Terminate on a write of '1' to the SWTERM bit location								
bit 11	AQPS: Acceptance Qualifier Polarity Select bit								
	1 = Inverted	-	<b>,</b>						
	0 = Not inve	erted							
bit 10-8	AQSS<2:0>: Acceptance Qualifier Source Selection bits								
	111 = SWPCI control bit only (qualifier forced to '0')								
	110 = Selects PCI Source #9 101 = Selects PCI Source #8								
	101 = Selects PCI Source #8 100 = Selects PCI Source #1 (PWM Generator output selected by the PWMPCI<2:0> bits)								
	011 = PWM Generator is triggered								
	010 = LEB is active								
	001 = Duty cycle is active (base PWM Generator signal)								
h:+ 7	000 = No acceptance qualifier is used (qualifier forced to '1')								
bit 7	<b>SWTERM:</b> PCI Software Termination bit A write of '1' to this location will produce a termination event. This bit location always reads as '0'.								
hit C									
bit 6	PSYNC: PCI Synchronization Control bit 1 = PCI source is synchronized to PWM EOC								
	0 = PCI source is synchronized to PWM EOC								
bit 5		-							
bit 5	PP3: PUIP	Diarity Select D	IT						
bit 5	1 = Inverted	olarity Select b I	It						

### REGISTER 12-19: PGxyPCIL: PWM GENERATOR xy PCI REGISTER LOW (x = PWM GENERATOR #; y = F, CL, FF OR S) (CONTINUED)

- bit 4-0 PSS<4:0>: PCI Source Selection bits 11111 = CLC1 11110 = Reserved 11101 = Comparator 3 output 11100 = Comparator 2 output 11011 = Comparator 1 output 11010 = PWM Event D 11001 = PWM Event C 11000 = PWM Event B 10111 = PWM Event A 10110 = Device pin, PCI<22> 10101 = Device pin, PCI<21> 10100 = Device pin, PCI<20> 10011 = Device pin, PCI<19> 10010 = RPn input, PCI18R 10001 = RPn input, PCI17R 10000 = RPn input, PCI16R 01111 = RPn input, PCI15R 01110 = RPn input, PCI14R 01101 = RPn input, PCI13R 01100 = RPn input, PCI12R 01011 = RPn input, PCI11R 01010 = RPn input, PCI10R 01001 = RPn input, PCI9R 01000 = RPn input, PCI8R 00111 = Reserved 00110 = Reserved 00101 = Reserved 00100 = Reserved 00011 = Internally connected to Combo Trigger B 00010 = Internally connected to Combo Trigger A
  - 00001 = Internally connected to the output of PWMPCI<2:0> MUX
  - 00000 = Tied to '0'

### REGISTER 12-20: PGxyPCIH: PWM GENERATOR xy PCI REGISTER HIGH (x = PWM GENERATOR #; y = F, CL, FF OR S)

	(×	- FWW GEN	ERAIOR #, y	- F, CL, FF	UK 3)				
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0		
BPEN	BPSEL2 ⁽¹⁾	BPSEL1 ⁽¹⁾	BPSEL0 ⁽¹⁾	_	ACP2	ACP1	ACP0		
bit 15	•		•				bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
SWPCI	SWPCIM1	SWPCIM0	LATMOD	TQPS	TQSS2	TQSS1	TQSS0		
bit 7							bit (		
Legend:	11.19		1.11						
R = Reada		W = Writable bit		U = Unimplemented bit, read a					
-n = Value	at POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkn	IOWN		
bit 15		Puppo Enable	bit						
011 15		Bypass Enable		l logic is hypa	sed: PWM Ger	nerator will be co	ntrolled by PC		
			Senerator select						
		ction is not byp							
bit 14-12	BPSEL<2:0	BPSEL<2:0>: PCI Bypass Source Selection bits ⁽¹⁾							
	111 = PCI control is sourced from PWM Generator 8 PCI logic when BPEN = 1								
					I logic when BP				
	101 = PCI  control is sourced from PWM Generator 6 PCI logic when BPEN = 1								
	100 = PCI control is sourced from PWM Generator 5 PCI logic when BPEN = 1 011 = PCI control is sourced from PWM Generator 4 PCI logic when BPEN = 1								
	011 = PCI control is sourced from PWM Generator 4 PCI logic when BPEN = 1010 = PCI control is sourced from PWM Generator 3 PCI logic when BPEN = 1								
	010 = PCI control is sourced from PWM Generator 2 PCI logic when BPEN = 1								
					I logic when BP				
bit 11	Unimplemented: Read as '0'								
oit 10-8	ACP<2:0>: PCI Acceptance Criteria Selection bits								
	111 = Reserved								
	110 = Rese								
	101 = Latched any edge 100 = Latched rising edge								
	011 = Latch								
	010 = Any e								
	001 = Rising edge								
	000 = Level	-sensitive							
bit 7	SWPCI: Software PCI Control bit								
	<ul> <li>1 = Drives a '1' to PCI logic assigned to by the SWPCIM&lt;1:0&gt; control bits</li> <li>0 = Drives a '0' to PCI logic assigned to by the SWPCIM&lt;1:0&gt; control bits</li> </ul>								
bit 6-5		-	PCI Control Mod	-					
	11 = Reserv	/ed							
	10 = SWPCI bit is assigned to termination qualifier logic								
		01 = SWPCI bit is assigned to acceptance qualifier logic							
		-	d to PCI accept	ance logic					
bit 4		CI SR Latch N							
			inant in Latcheo						
	0 = SR latcl	n is Set-domina	ant in Latched A	Acceptance mo	des				
			Concreter is not						

**Note 1:** Selects '0' if selected PWM Generator is not present.

### REGISTER 12-20: PGxyPCIH: PWM GENERATOR xy PCI REGISTER HIGH (x = PWM GENERATOR #; y = F, CL, FF OR S) (CONTINUED)

- bit 3 **TQPS:** Termination Qualifier Polarity Select bit
  - 1 = Inverted
  - 0 = Not inverted
- bit 2-0 **TQSS<2:0>:** Termination Qualifier Source Selection bits
  - 111 = SWPCI control bit only (qualifier forced to '0')
  - 110 = Selects PCI Source #9
  - 101 = Selects PCI Source #8
  - 100 = Selects PCI Source #1 (PWM Generator output selected by the PWMPCI<2:0> bits)
  - 011 = PWM Generator is triggered
  - 010 = LEB is active
  - 001 = Duty cycle is active (base PWM Generator signal)
  - 000 = No termination qualifier used (qualifier forced to '1')
- Note 1: Selects '0' if selected PWM Generator is not present.

### REGISTER 12-21: PGxLEBL: PWM GENERATOR x LEADING-EDGE BLANKING REGISTER LOW

R/W-0         R/W-0         R/W-0         R/W-0         R/W-0           LEB<15:8>         bit 15	R/W-0 bit 8	
bit 15	bit 8	
	bit 8	
$R_{AW-0}$ $R_{AW-0}$ $R_{AW-0}$ $R_{AW-0}$ $R_{AW-0}$ $R_{C_{A}}^{(1)}$ $R_{C_{C}}^{(1)}$		
$R_{W-0}$ $R_{W-0}$ $R_{W-0}$ $R_{W-0}$ $R_{W-0}$ $R_{W-0}$ $R_{W-0}$ $R_{W-0}$ $R_{W-0}$	(4)	
	R-0 ⁽¹⁾	
LEB<7:0>		
bit 7	bit 0	
Legend:		
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'		
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown	x = Bit is unknown	

bit 15-0 LEB<15:0>: Leading-Edge Blanking Period bits Leading-Edge Blanking period. The three LSbs of the blanking time are not used, providing a blanking resolution of eight PGx_clks. The minimum blanking period is eight PGx_clks which occurs when LEB<15:3> = 0.

**Note 1:** Bits<2:0> are read-only and always remain as '0'.

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
_	—	—	—	_	PWMPCI2 ⁽¹⁾	PWMPCI1 ⁽¹⁾	PWMPCI0 ⁽¹⁾		
bit 15							bit		
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	_	_	_	PHR	PHF	PLR	PLF		
bit 7					•	•	bit		
Legend:									
R = Reada	able bit	W = Writable	e bit	U = Unimplemented bit, read as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unknown			
bit 15-11	Unimpleme	nted: Read a	<b>s</b> '0'						
bit 10-8	PWMPCI<2	:0>: PWM So	urce for PCI S	election bits ⁽¹	1)				
	111 = PWM Generator #8 output is made available to PCI logic								
	110 = PWM Generator #7 output is made available to PCI logic								
	101 = PWM	101 = PWM Generator #6 output is made available to PCI logic							
	100 = PWM Generator #5 output is made available to PCI logic								
	011 = PWM Generator #4 output is made available to PCI logic								
		Generator #3							
	001 = PWM Generator #2 output is made available to PCI logic 000 = PWM Generator #1 output is made available to PCI logic								
bit 7-4	Unimplemented: Read as '0'								
bit 3	PHR: PWMxH Rising Edge Trigger Enable bit								
bit o	1 = Rising edge of PWMxH will trigger the LEB duration counter								
	<ul> <li>Rising edge of PWMXH will trigger the LEB duration counter</li> <li>LEB ignores the rising edge of PWMXH</li> </ul>								
bit 2	PHF: PWMxH Falling Edge Trigger Enable bit								
	1 = Falling edge of PWMxH will trigger the LEB duration counter								
	0 = LEB ignores the falling edge of PWMxH								
bit 1	PLR: PWMxL Rising Edge Trigger Enable bit								
	<ul> <li>1 = Rising edge of PWMxL will trigger the LEB duration counter</li> <li>0 = LEB ignores the rising edge of PWMxL</li> </ul>								
bit 0	PLF: PWMxL Falling Edge Trigger Enable bit								
	<ul> <li>1 = Falling edge of PWMxL will trigger the LEB duration counter</li> <li>0 = LEB ignores the falling edge of PWMxL</li> </ul>								
Note 1:		input, PCI qua	alifier, PCI terr	minator or PC	I terminator quali	his source can be fier (see the deso			

Register 12-19 and Register 12-20 for more information).

# REGISTER 12-22: PGxLEBH: PWM GENERATOR x LEADING-EDGE BLANKING REGISTER HIGH

#### REGISTER 12-23: PGxPHASE: PWM GENERATOR x PHASE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxPF	IASE<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxPl	HASE<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		it	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x		x = Bit is unkn	own				

bit 15-0 PGxPHASE<15:0>: PWM Generator x Phase Register bits

#### REGISTER 12-24: PGxDC: PWM GENERATOR x DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxD	C<15:8> ⁽¹⁾			
bit 15							bit 8
			5444.0		5444.6		<b>D</b> # 44 A
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxE	)C<7:0> ⁽¹⁾			
bit 7							bit 0
r							
Legend:							
R = Readable bit W = Writable bit		it	U = Unimplemented bit, read as '0'				
-n = Value at	at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkn		own				

bit 15-0 **PGxDC<15:0>:** PWM Generator x Duty Cycle Register bits⁽¹⁾

Note 1: Duty cycle values less than '0x0008' should not be used ('0x0020' in High-Resolution mode).

'1' = Bit is set

#### REGISTER 12-25: PGxDCA: PWM GENERATOR x DUTY CYCLE ADJUSTMENT REGISTER

Legend: R = Readabl	a hit	W = Writable bit			nented bit, read		
bit 7							bit 0
			PGxD	CA<7:0>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
	—	—	_	-	—	—	—
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0

#### bit 15-8 Unimplemented: Read as '0'

-n = Value at POR

bit 7-0 **PGxDCA<7:0>:** PWM Generator x Duty Cycle Adjustment Value bits Depending on the state of the selected PCI source, the PGxDCA value will be added to the value in the PGxDC register to create the effective duty cycle. When the PCI source is active, PGxDCA is added.

'0' = Bit is cleared

#### REGISTER 12-26: PGxPER: PWM GENERATOR x PERIOD REGISTER

		PGxPE	ER<15:8> ⁽¹⁾			
						bit 8
/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		PGxP	ER<7:0> ⁽¹⁾			
						bit 0
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'			
	'1' = Bit is set		'0' = Bit is cleared x = Bit is unk		x = Bit is unkno	wn
		W = Writable bit	PGxP W = Writable bit	PGxPER<7:0> ⁽¹⁾ W = Writable bit U = Unimplem	PGxPER<7:0> ⁽¹⁾ W = Writable bit U = Unimplemented bit, rea	PGxPER<7:0> ⁽¹⁾ W = Writable bit U = Unimplemented bit, read as '0'

#### bit 15-0 PGxPER<15:0>: PWM Generator x Period Register bits⁽¹⁾

**Note 1:** Period values less than '0x0010' should not be used ('0x0080' in High-Resolution mode).

x = Bit is unknown

#### REGISTER 12-27: PGxTRIGA: PWM GENERATOR x TRIGGER A REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxTF	RIGA<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxT	RIGA<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		it	U = Unimplemented bit, read as '0'				
-n = Value at	-n = Value at POR '1' = Bit is set			'0' = Bit is cleared		x = Bit is unknown	

bit 15-0 **PGxTRIGA<15:0>:** PWM Generator x Trigger A Register bits

#### REGISTER 12-28: PGxTRIGB: PWM GENERATOR x TRIGGER B REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxTF	RIGB<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxT	RIGB<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplen	nented bit, rea	ad as '0'		
-n = Value at	-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unkn			own

bit 15-0 PGxTRIGB<15:0>: PWM Generator x Trigger B Register bits

#### REGISTER 12-29: PGxTRIGC: PWM GENERATOR x TRIGGER C REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxTF	RIGC<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxTI	RIGC<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		it	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set		'1' = Bit is set		'0' = Bit is cleared x = Bit is unk			own

bit 15-0 PGxTRIGC<15:0>: PWM Generator x Trigger C Register bits

#### REGISTER 12-30: PGxDTL: PWM GENERATOR x DEAD-TIME REGISTER LOW

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_			DTL<13:	:8> ⁽¹⁾		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DT	L<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			it	U = Unimplemented bit, read as '0'			
-n = Value at	POR	(1' = Bit is set (0' = Bit is cleared x = Bit is unknown)		own			

bit 15-14 **Unimplemented:** Read as '0'

bit 13-0 DTL<13:0>: PWMxL Dead-Time Delay bits⁽¹⁾

**Note 1:** DTL<13:11> bits are not available when HREN (PGxCONL<7>) = 0.

#### REGISTER 12-31: PGxDTH: PWM GENERATOR x DEAD-TIME REGISTER HIGH

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	—		DTH<13:8> ⁽¹⁾							
bit 15	•						bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			DTH	1<7:0>						
bit 7							bit 0			
Legend:										

Legend.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-0 DTH<13:0>: PWMxH Dead-Time Delay bits⁽¹⁾

**Note 1:** DTH<13:11> bits are not available when HREN (PGxCONL<7>) = 0.

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
			PGxCA	AP<15:8>				
bit 15							bit 8	
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
			PGxCA	P<7:0> ⁽¹⁾				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown			

## REGISTER 12-32: PGxCAP: PWM GENERATOR x CAPTURE REGISTER

bit 15-0 **PGxCAP<15:0>:** PGx Time Base Capture bits⁽¹⁾

**Note 1:** PGxCAP<1:0> will read as '0' in Standard Resolution mode. PGxCAP<4:0> will read as '0' in High-Resolution mode.

NOTES:

# 13.0 HIGH-SPEED, 12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "12-Bit High-Speed, Multiple SARs A/D Converter (ADC)" (www.microchip.com/DS70005213) in the "dsPIC33/PIC24 Family Reference Manual".
  - Some registers and associated bits described in this section may not be available on all devices due to the number of implemented ADC channels. Refer to Table 1 and Table 2 for ADC channel availability on package variants.

The dsPIC33CK256MP508 devices have a high-speed, 12-bit Analog-to-Digital Converter (ADC) that features a low conversion latency, high resolution and oversampling capabilities to improve performance in AC/DC, DC/DC power converters. The devices implement the ADC with three SAR cores, two dedicated and one shared.

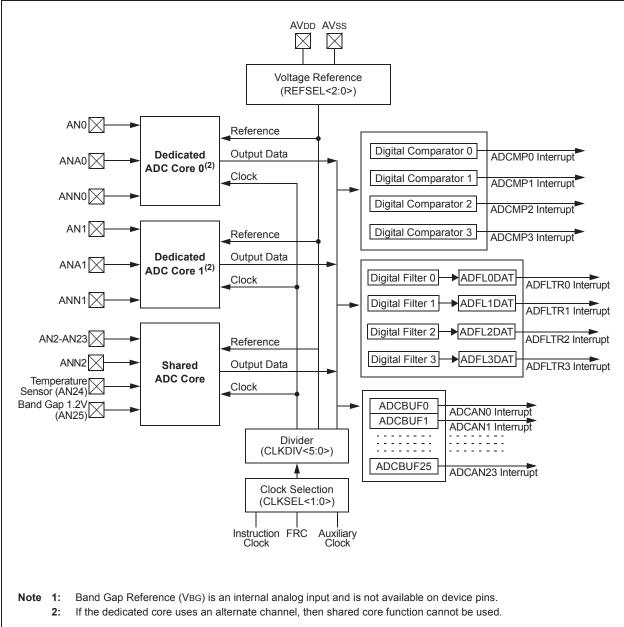
### 13.1 ADC Features Overview

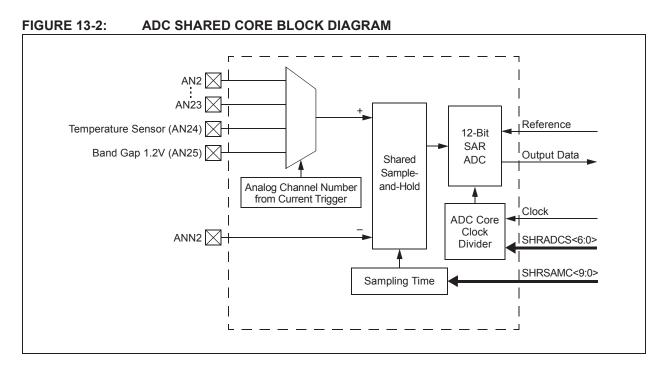
The High-Speed, 12-Bit Multiple SARs Analog-to-Digital Converter (ADC) includes the following features:

- Three ADC Cores: Two Dedicated Cores and One Shared (common) Core
- User-Configurable Resolution of up to 12 Bits for each Core
- Up to 3.5 Msps Conversion Rate per Channel at 12-Bit Resolution
- Low-Latency Conversion
- Up to 24 Analog Input Channels, with a Separate 16-Bit Conversion Result Register for each Input
- Conversion Result can be Formatted as Unsigned or Signed Data, on a per Channel Basis, for All Channels

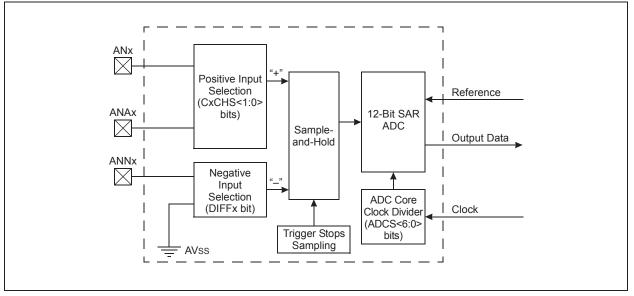
- Simultaneous Sampling of up to Three Analog
   Inputs
- · Channel Scan Capability
- Multiple Conversion Trigger Options for each Core, including:
  - PWM triggers from CPU cores
  - MCCP/SCCP modules triggers
  - CLC modules triggers
  - External pin trigger event (ADTRG31)
  - Software trigger
- Four Integrated Digital Comparators with Dedicated Interrupts:
  - Multiple comparison options
  - Assignable to specific analog inputs
- Four Oversampling Filters with Dedicated Interrupts:
  - Provide increased resolution
  - Assignable to a specific analog input

The module consists of three independent SAR ADC cores. Simplified block diagrams of the Multiple SARs 12-Bit ADC are shown in Figure 13-1 and Figure 13-2.


The analog inputs (channels) are connected through multiplexers and switches to the Sample-and-Hold (S&H) circuit of each ADC core. The core uses the channel information (the output format, the Measurement mode and the input number) to process the analog sample. When conversion is complete, the result is stored in the result buffer for the specific analog input, and passed to the digital filter and digital comparator if they were configured to use data from this particular channel.


The ADC module can sample up to three inputs at a time (two inputs from the dedicated SAR cores and one from the shared SAR core). If multiple ADC inputs request conversion on the shared core, the module will convert them in a sequential manner, starting with the lowest order input.

The ADC provides each analog input the ability to specify its own trigger source. This capability allows the ADC to sample and convert analog inputs that are associated with PWM generators operating on independent time bases.


# dsPIC33CK256MP508 FAMILY











### 13.2 Analog-to-Digital Converter Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page contains the latest updates and additional information.

#### 13.2.1 KEY RESOURCES

- "12-Bit High-Speed, Multiple SARs A/D Converter (ADC)" (DS70005213) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

### 13.3 Control Registers

#### REGISTER 13-1: ADCON1L: ADC CONTROL REGISTER 1 LOW

R/W-0	U-0	R/W-0	U-0	r-0	U-0	U-0	U-0
ADON ⁽¹⁾		ADSIDL	—	—	_	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		—	—	—	—	—	—
bit 7							bit 0

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	ADON: ADC Enable bit ⁽¹⁾ 1 = ADC module is enabled 0 = ADC module is off
bit 14	Unimplemented: Read as '0'
bit 13	ADSIDL: ADC Stop in Idle Mode bit
	<ul> <li>1 = Discontinues module operation when device enters Idle mode</li> <li>0 = Continues module operation in Idle mode</li> </ul>
bit 12	Unimplemented: Read as '0'

- bit 11 Reserved: Maintain as '0'
- bit 10-0 Unimplemented: Read as '0'
- **Note 1:** Set the ADON bit only after the ADC module has been configured. Changing ADC Configuration bits when ADON = 1 will result in unpredictable behavior.

REGISTER 13-2: ADCON1H: ADC CONTROL REGISTER 1 HIGH
-----------------------------------------------------

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15	·		•	•	•	•	bit 8
R/W-0	R/W-1	R/W-1	U-0	U-0	U-0	U-0	U-0

FORM	SHRRES1	SHRRES0	_	—	_	—	—
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	ritable bit U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8	Unimplemented: Read as '0'
bit 7	FORM: Fractional Data Output Format bit
	1 = Fractional 0 = Integer
bit 6-5	SHRRES<1:0>: Shared ADC Core Resolution Selection bits
	<pre>11 = 12-bit resolution 10 = 10-bit resolution 01 = 8-bit resolution</pre>

00 = 6-bit resolution

bit 4-0 Unimplemented: Read as '0'

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
REFCIE	REFERCIE	—	EIEN	PTGEN	SHREISEL2 ⁽¹⁾	SHREISEL1(1)	SHREISEL0(1)			
bit 15		I	I				bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	SHRADCS6	SHRADCS5	SHRADCS4	SHRADCS3	SHRADCS2	SHRADCS1	SHRADCS0			
bit 7							bit (			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	wn			
bit 15		-			nmon Interrupt E					
			e generated wated wated wated wated a second to a second the second second second second second second second s		gap will become	e ready				
bit 14		-		• ·	nmon Interrupt E	nable bit				
		•		•	ap or reference		detected			
					reference voltag					
bit 13	Unimplement	ted: Read as	ʻ0'							
bit 12	EIEN: Early Ir	nterrupts Enab	ole bit							
					hannel interrupts					
L:1 4 4					rsion is done (w	nen the ANXRD	Y flag is set)			
bit 11			on Request Int		n of an ADC inp	+				
bit 10-8	•		Core Early Inte			ul.				
DIL TU-0				•	TADCORE clocks	prior to when th	ne data is readu			
	110 = Early interrupt is set and interrupt is generated 7 TADCORE clocks prior to when the data is ready 101 = Early interrupt is set and interrupt is generated 6 TADCORE clocks prior to when the data is ready									
	100 = Early interrupt is set and interrupt is generated 5 TADCORE clocks prior to when the data is ready									
	011 = Early interrupt is set and interrupt is generated 4 TADCORE clocks prior to when the data is ready 010 = Early interrupt is set and interrupt is generated 3 TADCORE clocks prior to when the data is ready									
	•	•	•	•	TADCORE clocks	•	•			
					TADCORE clock					
bit 7	Unimplemen	ted: Read as	ʻ0'							
bit 6-0			DC Core Inpu							
			umber of TCOR	RESRC (Source	Clock Periods)	for one shared	TADCORE (Cor			
	Clock Period). 1111111 = 254 Source Clock Periods									
	••••									
		Source Clock								
	0000010 = 4 0000001 = 2	Source Clock								
		Source Clock								

#### REGISTER 13-3: ADCON2L: ADC CONTROL REGISTER 2 LOW

#### REGISTER 13-4: ADCON2H: ADC CONTROL REGISTER 2 HIGH

HSC/R-0	HSC/R-0	U-0	r-0	r-0	r-0	R/W-0	R/W-0
REFRDY	REFERR	—	—	—	—	SHRSAMC9	SHRSAMC8
bit 15							bit 8

| R/W-0    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SHRSAMC7 | SHRSAMC6 | SHRSAMC5 | SHRSAMC4 | SHRSAMC3 | SHRSAMC2 | SHRSAMC1 | SHRSAMC0 |
| bit 7    | •        |          |          |          |          |          | bit 0    |

Legend:	r = Reserved bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'			
R = Readable bit	W = Writable bit	HSC = Hardware Settat	HSC = Hardware Settable/Clearable bit			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

 bit 15
 **REFRDY:** Band Gap and Reference Voltage Ready Flag bit

 1 = Band gap is ready
 0 = Band gap is not ready

 bit 14
 **REFERR:** Band Gap or Reference Voltage Error Flag bit

 1 = Band gap was removed after the ADC module was enabled (ADON = 1)

 0 = No band gap error was detected

- bit 13 Unimplemented: Read as '0'
- bit 12-10 Reserved: Maintain as '0'

bit 9-0 SHRSAMC<9:0>: Shared ADC Core Sample Time Selection bits These bits specify the number of shared ADC Core Clock Periods (TADCORE) for the shared ADC core sample time. 111111111 = 1025 TADCORE

• • •

0000000001 = 3 TADCORE 0000000000 = 2 TADCORE

#### R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 HSC/R-0 R/W-0 HSC/R-0 REFSEL1 SHRSAMP REFSEL2 **REFSEL0** SUSPEND SUSPCIE SUSPRDY **CNVRTCH** bit 15 bit 8 R/W-0 HSC/R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 SWLCTRG CNVCHSEL5 CNVCHSEL4 CNVCHSEL3 CNVCHSEL2 CNVCHSEL1 CNVCHSEL0 SWCTRG bit 7 bit 0 Legend: U = Unimplemented bit, read as '0' R = Readable bit W = Writable bit HSC = Hardware Settable/Clearable bit -n = Value at POR x = Bit is unknown '1' = Bit is set '0' = Bit is cleared bit 15-13 REFSEL<2:0>: ADC Reference Voltage Selection bits Value VREFH VREFL 000 AVDD **AVss** 001-111 = Unimplemented: Do not use bit 12 SUSPEND: All ADC Core Triggers Disable bit 1 = All new trigger events for all ADC cores are disabled 0 = All ADC cores can be triggered bit 11 SUSPCIE: Suspend All ADC Cores Common Interrupt Enable bit 1 = Common interrupt will be generated when ADC core triggers are suspended (SUSPEND bit = 1) and all previous conversions are finished (SUSPRDY bit becomes set) 0 = Common interrupt is not generated for suspend ADC cores event bit 10 SUSPRDY: All ADC Cores Suspended Flag bit 1 = All ADC cores are suspended (SUSPEND bit = 1) and have no conversions in progress 0 = ADC cores have previous conversions in progress bit 9 SHRSAMP: Shared ADC Core Sampling Direct Control bit This bit should be used with the individual channel conversion trigger controlled by the CNVRTCH bit. It connects an analog input, specified by the CNVCHSEL<5:0> bits, to the shared ADC core and allows extending the sampling time. This bit is not controlled by hardware and must be cleared before the conversion starts (setting CNVRTCH to '1'). 1 = Shared ADC core samples an analog input specified by the CNVCHSEL<5:0> bits 0 = Sampling is controlled by the shared ADC core hardware bit 8 **CNVRTCH:** Software Individual Channel Conversion Trigger bit 1 = Single trigger is generated for an analog input specified by the CNVCHSEL<5:0> bits; when the bit is set, it is automatically cleared by hardware on the next instruction cycle 0 = Next individual channel conversion trigger can be generated bit 7 SWLCTRG: Software Level-Sensitive Common Trigger bit 1 = Triggers are continuously generated for all channels with the software, level-sensitive common trigger selected as a source in the ADTRIGxL and ADTRIGxH registers 0 = No software, level-sensitive common triggers are generated SWCTRG: Software Common Trigger bit bit 6 1 = Single trigger is generated for all channels with the software; common trigger selected as a source in the ADTRIGnL and ADTRIGxH registers; when the bit is set, it is automatically cleared by hardware on the next instruction cycle 0 = Ready to generate the next software common trigger bit 5-0 CNVCHSEL <5:0>: Channel Number Selection for Software Individual Channel Conversion Trigger bits These bits define a channel to be converted when the CNVRTCH bit is set.

#### REGISTER 13-5: ADCON3L: ADC CONTROL REGISTER 3 LOW

CLKSEL0 ⁽¹⁾	CLKDIV5 ⁽²⁾	CLKDIV4 ⁽²⁾	CLKDIV3 ⁽²⁾	CLKDIV2 ⁽²⁾	CLKDIV1 ⁽²⁾	CLKDIV0 ⁽²⁾				
U-0					OLIGITI	OLIVDIVO				
U-0						bit 8				
U-0										
	U-0	U-0	U-0	U-0	R/W-0	R/W-0				
—	—	—	—	—	C1EN	C0EN				
						bit (				
hit.		- it		control bit road						
		JIL	-			0.000				
OR	I – DILIS SEL			areu	X – DILISUIKI	IOWIT				
CLKSEL <1.0		Clock Source	Selection hite(	1)						
	· ABO Module									
	V									
01 = Fosc										
· · ·										
CLKDIV<5:0>	·: ADC Module	Clock Source	Divider bits ⁽²⁾							
The divider forms a TCORESRC clock used by all ADC cores (shared and dedicated) from the TSRC ADC										
module clock source selected by the CLKSEL<1:0> bits. Then, each ADC core individually divides the										
					6:0> bits in the	e ADCOREX				
•			ADCONZL regis	ster.						
000011 = 4 Source Clock Periods										
000010 = 3 Source Clock Periods										
000001 = 2 Source Clock Periods										
•										
COEN: Dedica	ated ADC Core	0 Enable bits								
1 = Dedicated	ADC Core 0 is	s enabled								
0 = Dedicated	ADC Core 0 is	s disabled								
	11 = Fvco/4 10 = AFvcodi 01 = Fosc 00 = FP (Perip <b>CLKDIV&lt;5:0&gt;</b> The divider for module clock TCORESRC clo register or the 111111 = 64  000011 = 4 S 000010 = 3 S 000010 = 3 S 000000 = 1 S <b>SHREN:</b> Shar 1 = Shared Al 0 = Shared Al 0 = Shared Al 0 = Shared Al 1 = Dedicated 0 = Dedicated 1 = Dedicated 1 = Dedicated	CLKSEL<1:0>: ADC Module 11 = Fvco/4 10 = AFvcoDiv 01 = Fosc 00 = FP (Peripheral Clock) CLKDIV<5:0>: ADC Module The divider forms a TCORESR module clock source selecter TCORESRC clock to get a cor register or the SHRADCS<63 111111 = 64 Source Clock Pe 000011 = 4 Source Clock Pe 000011 = 4 Source Clock Pe 000010 = 3 Source Clock Pe 000001 = 2 Source Clock Pe 000000 = 1 Source Cl	CLKSEL<1:0>: ADC Module Clock Source 11 = Fvco/4 10 = AFvcoDIV 01 = Fosc 00 = FP (Peripheral Clock) CLKDIV<5:0>: ADC Module Clock Source The divider forms a TCORESRC clock used by module clock source selected by the CLKSI TCORESRC clock to get a core-specific TAD register or the SHRADCS<6:0> bits in the A 111111 = 64 Source Clock Periods  000011 = 4 Source Clock Periods 000010 = 3 Source Clock Periods	POR       '1' = Bit is set       '0' = Bit is cleat         CLKSEL<1:0>: ADC Module Clock Source Selection bits ⁽¹⁾ 11 = Fvco/4         10 = AFvcoDiv         01 = Fosc         00 = FP (Peripheral Clock)         CLKDIV<5:0>: ADC Module Clock Source Divider bits ⁽²⁾ The divider forms a TCORESRC clock used by all ADC cores         module clock source selected by the CLKSEL<1:0> bits. T         TCORESRC clock to get a core-specific TADCORE clock usi         register or the SHRADCS<6:0> bits in the ADCON2L regist         11111 = 64 Source Clock Periods         000011 = 4 Source Clock Periods         000010 = 3 Source Clock Periods         000001 = 2 Source Clock Periods         000001 = 2 Source Clock Periods         000000 = 1 Source Clock Periods         000000 = 1 Source Clock Periods         000001 = 2 Source Clock Periods         000000 = 1 Source Clock Periods         000000 = 2 Source Clock Periods         000000 = 1 Source Clock Periods         0 = Dedicated ADC Core 1 Enable bits <td>POR       '1' = Bit is set       '0' = Bit is cleared         CLKSEL&lt;1:0&gt;: ADC Module Clock Source Selection bits⁽¹⁾         11 = Fvco/4         10 = AFvcoDiv         01 = Fosc         00 = FP (Peripheral Clock)         CLKDIV&lt;5:0&gt;: ADC Module Clock Source Divider bits⁽²⁾         The divider forms a TCORESRC clock used by all ADC cores (shared and d module clock source selected by the CLKSEL&lt;1:0&gt; bits. Then, each ADC TCORESRC clock to get a core-specific TADCORE clock using the ADCS         register or the SHRADCS&lt;6:0&gt; bits in the ADCON2L register.         111111 = 64 Source Clock Periods            000011 = 4 Source Clock Periods         000001 = 3 Source Clock Periods         000001 = 2 Source Clock Periods         000000 = 1 Source Clock Periods         Unimplemented: Read as '0'         C1EN: Dedicated ADC Core 1 Enable bits         1 = Dedicated ADC Core 1 is enabled         0 = Dedicated ADC Core 1 is disabled         COEN: Dedicated ADC Core 0 Enable bits         1 = Dedicated ADC Core 0 is enabled</td> <td>POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         CLKSEL&lt;1:0&gt;: ADC Module Clock Source Selection bits⁽¹⁾         11 = Fvco/4         10 = AFvcoDIV         11 = Fosc         00 = FP (Peripheral Clock)         CLKDIV&lt;5:0&gt;: ADC Module Clock Source Divider bits⁽²⁾         The divider forms a TCORESRC clock used by all ADC cores (shared and dedicated) from module clock source selected by the CLKSEL&lt;1:0&gt; bits. Then, each ADC core individua TCORESRC clock to get a core-specific TADCORE clock using the ADCS&lt;6:0&gt; bits in the register or the SHRADCS&lt;6:0&gt; bits in the ADCON2L register.         11111 = 64 Source Clock Periods         000011 = 4 Source Clock Periods         000001 = 3 Source Clock Periods         000000 = 1 Source Clock Periods         000001 = 2 Source Clock Periods         000000 = 1 Source Clock Periods         01 = Shared ADC Core is enabled         0 = Shared ADC Core 1 Enable bits         1 = Dedicated ADC Core 1 is enabled         0 = Dedicated ADC Core</td>	POR       '1' = Bit is set       '0' = Bit is cleared         CLKSEL<1:0>: ADC Module Clock Source Selection bits ⁽¹⁾ 11 = Fvco/4         10 = AFvcoDiv         01 = Fosc         00 = FP (Peripheral Clock)         CLKDIV<5:0>: ADC Module Clock Source Divider bits ⁽²⁾ The divider forms a TCORESRC clock used by all ADC cores (shared and d module clock source selected by the CLKSEL<1:0> bits. Then, each ADC TCORESRC clock to get a core-specific TADCORE clock using the ADCS         register or the SHRADCS<6:0> bits in the ADCON2L register.         111111 = 64 Source Clock Periods            000011 = 4 Source Clock Periods         000001 = 3 Source Clock Periods         000001 = 2 Source Clock Periods         000000 = 1 Source Clock Periods         Unimplemented: Read as '0'         C1EN: Dedicated ADC Core 1 Enable bits         1 = Dedicated ADC Core 1 is enabled         0 = Dedicated ADC Core 1 is disabled         COEN: Dedicated ADC Core 0 Enable bits         1 = Dedicated ADC Core 0 is enabled	POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         CLKSEL<1:0>: ADC Module Clock Source Selection bits ⁽¹⁾ 11 = Fvco/4         10 = AFvcoDIV         11 = Fosc         00 = FP (Peripheral Clock)         CLKDIV<5:0>: ADC Module Clock Source Divider bits ⁽²⁾ The divider forms a TCORESRC clock used by all ADC cores (shared and dedicated) from module clock source selected by the CLKSEL<1:0> bits. Then, each ADC core individua TCORESRC clock to get a core-specific TADCORE clock using the ADCS<6:0> bits in the register or the SHRADCS<6:0> bits in the ADCON2L register.         11111 = 64 Source Clock Periods         000011 = 4 Source Clock Periods         000001 = 3 Source Clock Periods         000000 = 1 Source Clock Periods         000001 = 2 Source Clock Periods         000000 = 1 Source Clock Periods         01 = Shared ADC Core is enabled         0 = Shared ADC Core 1 Enable bits         1 = Dedicated ADC Core 1 is enabled         0 = Dedicated ADC Core				

#### REGISTER 13-6: ADCON3H: ADC CONTROL REGISTER 3 HIGH

- The ADC input clock frequency, selected by the CLKSEL<1:0> bits, must not exceed 560 MHz. Note 1:
  - 2: The ADC clock frequency, after the divider selected by the CLKDIV<5:0> bits, must not exceed 280 MHz.

### REGISTER 13-7: ADCON4L: ADC CONTROL REGISTER 4 LOW

U-0	U-0	U-0	U-0	U-0	U-0	r-0	r-0			
_	_	_	_	_	_	_	_			
bit 15	1						bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0			
	—	—	—	—	—	SAMC1EN	SAMC0EN			
bit 7	bit 7 bit									
Legend: r = Reserved bit										
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'						
-n = Value at POR (1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkr	iown			
bit 15-10 bit 9-8	Unimplemented: Read as '0' Reserved: Must be written as '0'									
bit 7-2	Unimplement	ted: Read as '	)'							
bit 1	SAMC1EN: D	edicated ADC	Core 1 Conver	rsion Delay Ena	able bit					
	<ul> <li>1 = After trigger, the conversion will be delayed and the ADC core will continue sampling during the time specified by the SAMC&lt;9:0&gt; bits in the ADCORE1L register</li> <li>0 = After trigger, the sampling will be stopped immediately and the conversion will be started on the next core clock cycle</li> </ul>									
bit 0	SAMCOEN: D	edicated ADC	Core 0 Conver	rsion Delay Ena	able bit					
	<ul> <li>SAMCOEN: Dedicated ADC Core 0 Conversion Delay Enable bit</li> <li>1 = After trigger, the conversion will be delayed and the ADC core will continue sampling during the time specified by the SAMC&lt;9:0&gt; bits in the ADCOREOL register</li> <li>0 = After trigger, the sampling will be stopped immediately and the conversion will be started on the next core clock cycle</li> </ul>									

#### REGISTER 13-8: ADCON4H: ADC CONTROL REGISTER 4 HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 15	·	· ·					bit 8	
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—		C1CHS1	C1CHS0	C0CHS1	C0CHS0	
bit 7							bit C	
Legend:								
R = Readable	e bit	W = Writable b	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unknown			

ihi

bit 3-2 C1CHS<1:0>: Dedicated ADC Core 1 Input Channel Selection bits

- 11 = Reserved
- 10 = Reserved
- 01 = ANA1
- 00 = AN1

#### bit 1-0 C0CHS<1:0>: Dedicated ADC Core 0 Input Channel Selection bits

- 11 = Reserved
- 10 = Reserved
- 01 = ANA0
- 00 = AN0

HSC/R-0	U-0	U-0	U-0	U-0	U-0	HSC/R-0	HSC/R-0			
SHRRDY	_	_	_	_	_	C1RDY	CORDY			
oit 15							bit 8			
						<b>D</b> # 44 A				
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0			
SHRPWR	—	—	—	—	_	C1PWR	COPWR			
bit 7							bit			
Legend:		U = Unimplem	ented bit, rea	d as 'O'						
R = Readabl	le bit	W = Writable I	oit	HSC = Hardw	are Settable/0	Clearable bit				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15		ared ADC Core								
		e is powered and		eration						
bit 14-10		0 = ADC core is not ready for operation Unimplemented: Read as '0'								
bit 9	•			a hit						
DIL 9	<b>C1RDY:</b> Dedicated ADC Core 1 Ready Flag bit 1 = ADC Core 1 is powered and ready for operation									
	0 = ADC Core 1 is not ready for operation									
bit 8	CORDY: Dedicated ADC Core 0 Ready Flag bit									
	1 = ADC Core 0 is powered and ready for operation									
		e 0 is not ready	•							
bit 7		hared ADC Cor	e Power Enab	le bit						
	1 = ADC core is powered 0 = ADC core is off									
	Unimplemented: Read as '0'									
bit 6-2		ited: Read as '0	)'							
bit 6-2 bit 1	Unimplemen	ited: Read as 'd licated ADC Co		nable bit						
	Unimplemen C1PWR: Dec 1 = ADC Core	licated ADC Co e 1 is powered		nable bit						
bit 1	<b>Unimplemen</b> <b>C1PWR:</b> Dec 1 = ADC Core 0 = ADC Core	licated ADC Co e 1 is powered e 1 is off	re 1 Power Er							
	Unimplemen C1PWR: Dec 1 = ADC Cord 0 = ADC Cord C0PWR: Dec	licated ADC Co e 1 is powered	re 1 Power Er							

### REGISTER 13-9: ADCON5L: ADC CONTROL REGISTER 5 LOW

REGISTER 13-10: ADCON5H: ADC CONTROL REGISTER 5 HIGH
------------------------------------------------------

	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
	—	—	_	WARMTIME3	WARMTIME2	WARMTIME1	WARMTIMEC				
bit 15							bit 8				
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0				
SHRCIE	—	—	—	—	—	C1CIE	COCIE				
bit 7							bit C				
Legend:											
R = Readabl		W = Writable k	bit		ented bit, read						
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkn	own				
bit 15-12	-	nted: Read as '									
bit 11-8	WARMTIME<3:0>: ADC Dedicated Core x Power-up Delay bits These bits determine the power-up delay in the number of the Core Source Clock Periods (TCORESRC)										
			wer-up delay i	n the number o	f the Core Sour	ce Clock Perio	ds (TCORESRC				
	for all ADC co		D. I. I.								
	1111 = 32768 Source Clock Periods 1110 = 16384 Source Clock Periods										
	1110 = 10384 Source Clock Periods 1101 = 8192 Source Clock Periods										
	1100 = 4096 Source Clock Periods										
		1011 = 2048 Source Clock Periods									
	1011 = 1024 Source Clock Periods										
	1001 = 512 Source Clock Periods										
	1001 = 512 \$	Source Clock Pe									
		Source Clock Pe Source Clock Pe	eriods								
	1000 = 256 \$		eriods eriods								
	1000 <b>= 256 \$</b> 0111 <b>= 128 \$</b>	Source Clock Pe	eriods eriods eriods								
	1000 = 256 \$ 0111 = 128 \$ 0110 = 64 \$ 0101 = 32 \$	Source Clock Pe Source Clock Pe ource Clock Pe ource Clock Pe	eriods eriods eriods riods riods								
	1000 = 256 S 0111 = 128 S 0110 = 64 S 0101 = 32 S 0100 = 16 S	Source Clock Pe Source Clock Pe ource Clock Pe ource Clock Pe ource Clock Pe	eriods eriods eriods riods riods riods								
	1000 = 256 § 0111 = 128 § 0110 = 64 § 0101 = 32 § 0100 = 16 § 00xx = 16 §	Source Clock Pe Source Clock Pe ource Clock Pe ource Clock Pe ource Clock Pe ource Clock Pe ource Clock Pe	eriods eriods eriods riods riods riods riods								
bit 7	1000 = 256 S 0111 = 128 S 0110 = 64 S 0101 = 32 S 0100 = 16 S 00xx = 16 S SHRCIE: Sha	Source Clock Pe Source Clock Pe ource Clock Per ource Clock Per ource Clock Per ource Clock Per ource Clock Per ource Clock Per	eriods eriods eriods riods riods riods riods Ready Comn								
bit 7	1000 = 256 S 0111 = 128 S 0110 = 64 S 0101 = 32 S 0100 = 16 S 00xx = 16 S SHRCIE: Sha 1 = Common	Source Clock Pe Source Clock Pe ource Clock Per ource Clock Per ource Clock Per ource Clock Per ource Clock Per ared ADC Core interrupt will be	eriods eriods eriods riods riods riods Ready Comn e generated w	hen ADC core i	s powered and	ready for opera	ation				
	1000 = 256 S 0111 = 128 S 0110 = 64 S 0101 = 32 S 0100 = 16 S 00xx = 16 S SHRCIE: Sha 1 = Common 0 = Common	Source Clock Pe Source Clock Pe ource Clock Per ource Clock Per ource Clock Per ource Clock Per ource Clock Per ared ADC Core interrupt will be interrupt is disa	eriods eriods eriods riods riods riods riods Ready Comn e generated w abled for an A	hen ADC core i	s powered and	ready for opera	ation				
bit 6-2	1000 = 256 § 0111 = 128 § 0110 = 64 § 0101 = 32 § 0100 = 16 § 00xx = 16 § SHRCIE: Sha 1 = Common 0 = Common	Source Clock Pe Source Clock Pe ource Clock Per ource Clock Per ource Clock Per ource Clock Per ource Clock Per ared ADC Core interrupt will be interrupt is disa nted: Read as '(	eriods eriods eriods riods riods riods Ready Comn e generated w abled for an A	hen ADC core i DC core ready	s powered and event	ready for opera	ation				
	1000 = 256 § 0111 = 128 § 0110 = 64 § 0101 = 32 § 0100 = 16 § 00xx = 16 § SHRCIE: Sha 1 = Common 0 = Common	Source Clock Pe Source Clock Pe ource Clock Per ource Clock Per ource Clock Per ource Clock Per ource Clock Per ared ADC Core interrupt will be interrupt is disa	eriods eriods eriods riods riods riods Ready Comn e generated w abled for an A	hen ADC core i DC core ready	s powered and event	ready for opera	ation				
bit 6-2	1000 = 256 S 0111 = 128 S 0110 = 64 S 0101 = 32 S 0100 = 16 S 00xx = 16 S SHRCIE: Sha 1 = Common 0 = Common Unimplemen C1CIE: Dedie 1 = Common	Source Clock Pe Source Clock Pe ource Clock Per ource Clock Per ource Clock Per ource Clock Per ource Clock Per ared ADC Core interrupt will be interrupt is disa <b>nted:</b> Read as '0 cated ADC Core interrupt will be	eriods eriods eriods riods riods riods riods Ready Comn e generated w abled for an A o' e 1 Ready Co e generated w	then ADC core in DC core ready mmon Interrupt then ADC Core	s powered and event Enable bit 1 is powered a						
bit 6-2 bit 1	1000 = 256 S 0111 = 128 S 0110 = 64 S 0101 = 32 S 0100 = 16 S 00xx = 16 S SHRCIE: Sha 1 = Common 0 = Common Unimplemen C1CIE: Dedia 1 = Common 0 = Common	Source Clock Per Source Clock Per ource Clock Per ource Clock Per ource Clock Per ource Clock Per ource Clock Per ared ADC Core interrupt will be interrupt is disa	eriods eriods eriods riods riods riods riods de generated w abled for an A o' e 1 Ready Co e generated w abled for an A	hen ADC core i DC core ready mmon Interrupt hen ADC Core DC Core 1 read	s powered and event Enable bit 1 is powered a dy event						
bit 6-2	1000 = 256 § 0111 = 128 § 0110 = 64 § 0101 = 32 § 0100 = 16 § 00xx = 16 § SHRCIE: Sha 1 = Common 0 = Common Unimplemen C1CIE: Dedia 1 = Common 0 = Common 0 = Common	Source Clock Pe Source Clock Pe ource Clock Per ource Clock Per ource Clock Per ource Clock Per ource Clock Per ared ADC Core interrupt will be interrupt is disa <b>nted:</b> Read as '0 cated ADC Core interrupt will be	eriods eriods eriods riods riods riods rods Ready Comn e generated w abled for an A o' e 1 Ready Co e generated w abled for an A e 0 Ready Co	hen ADC core i DC core ready mmon Interrupt hen ADC Core DC Core 1 read mmon Interrupt	s powered and event Enable bit 1 is powered a dy event Enable bit	nd ready for op	eration				

#### **REGISTER 13-11:** ADCOREXL: DEDICATED ADC CORE x CONTROL REGISTER LOW (x = 0 TO 1)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	SAMO	)<9:8>
bit 15	·	·					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SAM	/IC<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as						as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					own		

bit 15-10 Unimplemented: Read as '0'

bit 9-0 **SAMC<9:0>:** Dedicated ADC Core x Conversion Delay Selection bits These bits determine the time between the trigger event and the start of conversion in the number of the Core Clock Periods (TADCORE). During this time, the ADC Core x still continues sampling. This feature is enabled by the SAMCxEN bits in the ADCON4L register. 111111111 = 1025 TADCORE

> ... 0000000001 = 3 TADCORE 0000000000 = 2 TADCORE

#### REGISTER 13-12: ADCORExH: DEDICATED ADC CORE x CONTROL REGISTER HIGH (x = 0 TO 1)

-n = Value	at POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'				
Legend:								
bit 7							bit 0	
—	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
bit 15							bit 8	
		—	EISEL2	EISEL1	EISEL0	RES1	RES2	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	

#### bit 15-13 Unimplemented: Read as '0'

- bit 12-10 EISEL<2:0>: ADC Core x Early Interrupt Time Selection bits 111 = Early interrupt is set and an interrupt is generated 8 TADCORE clocks prior to when the data is ready 110 = Early interrupt is set and an interrupt is generated 7 TADCORE clocks prior to when the data is ready 101 = Early interrupt is set and an interrupt is generated 6 TADCORE clocks prior to when the data is ready 100 = Early interrupt is set and an interrupt is generated 5 TADCORE clocks prior to when the data is ready 011 = Early interrupt is set and an interrupt is generated 4 TADCORE clocks prior to when the data is ready 010 = Early interrupt is set and an interrupt is generated 3 TADCORE clocks prior to when the data is ready 001 = Early interrupt is set and an interrupt is generated 2 TADCORE clocks prior to when the data is ready 000 = Early interrupt is set and an interrupt is generated 1 TADCORE clock prior to when the data is ready RES<1:0>: ADC Core x Resolution Selection bits bit 9-8 11 = 12-bit resolution 10 = 10-bit resolution 01 = 8-bit resolution⁽¹⁾ 00 = 6-bit resolution⁽¹⁾ bit 7 Unimplemented: Read as '0' bit 6-0 ADCS<6:0>: ADC Core x Input Clock Divider bits These bits determine the number of Source Clock Periods (TCORESRC) for one Core Clock Period (TADCORE). 11111111 = 254 Source Clock Periods 0000011 = 6 Source Clock Periods 0000010 = 4 Source Clock Periods 0000001 = 2 Source Clock Periods 0000000 = 2 Source Clock Periods **Note 1:** For the 6-bit ADC core resolution (RES<1:0> = 00), the EISEL<2:0> bits settings, from '100' to '111', are
- Note 1: For the 6-bit ADC core resolution (RES<1:0> = 00), the EISEL<2:0> bits settings, from '100' to '111', are not valid and should not be used. For the 8-bit ADC core resolution (RES<1:0> = 01), the EISEL<2:0> bits settings, '110' and '111', are not valid and should not be used.

#### REGISTER 13-13: ADLVLTRGL: ADC LEVEL-SENSITIVE TRIGGER CONTROL REGISTER LOW⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			LVLE	N<15:8>			
bit 15							bit 8
DAVA	R/W-0		R/W-0	R/W-0		DAMO	DAMO
R/W-0	R/W-0	R/W-0			R/W-0	R/W-0	R/W-0
			LVLE	EN<7:0>			
bit 7	bit 7						bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknow			nown	

bit 15-0 LVLEN<15:0>: Level Trigger for Corresponding Analog Input Enable bits

- 1 = Input trigger is level-sensitive
- 0 = Input trigger is edge-sensitive
- **Note 1:** Bit availability is dependent on the number of supported ADC channels. Refer to Table 1 and Table 2 for ADC channel availability on package variants.

#### REGISTER 13-14: ADLVLTRGH: ADC LEVEL-SENSITIVE TRIGGER CONTROL REGISTER HIGH⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—		_	—	LVLEN	<25:24>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			LVLEN	<23:16>			
bit 7							bit 0
Legend:							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 LVLEN<25:16>: Level Trigger for Corresponding Analog Input Enable bits

1 = Input trigger is level-sensitive

0 = Input trigger is edge-sensitive

x = Bit is unknown

#### REGISTER 13-15: ADEIEL: ADC EARLY INTERRUPT ENABLE REGISTER LOW⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EIEN	l<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EIEI	N<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							

'0' = Bit is cleared

bit 15-0 EIEN<15:0>: Early Interrupt Enable for Corresponding Analog Inputs bits

1 = Early interrupt is enabled for the channel

'1' = Bit is set

0 = Early interrupt is disabled for the channel

**Note 1:** Bit availability is dependent on the number of supported ADC channels. Refer to Table 1 and Table 2 for ADC channel availability on package variants.

#### REGISTER 13-16: ADEIEH: ADC EARLY INTERRUPT ENABLE REGISTER HIGH⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	EIEN<	25:24>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EIEN<	23:16>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

-n = Value at POR

bit 9-0 EIEN<25:16>: Early Interrupt Enable for Corresponding Analog Inputs bits

1 = Early interrupt is enabled for the channel

0 = Early interrupt is disabled for the channel

#### REGISTER 13-17: ADEISTATL: ADC EARLY INTERRUPT STATUS REGISTER LOW⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EISTA	T<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EIST	AT<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 EISTAT<15:0>: Early Interrupt Status for Corresponding Analog Inputs bits

1 = Early interrupt was generated

0 = Early interrupt was not generated since the last ADCBUFx read

**Note 1:** Bit availability is dependent on the number of supported ADC channels. Refer to Table 1 and Table 2 for ADC channel availability on package variants.

#### **REGISTER 13-18:** ADEISTATH: ADC EARLY INTERRUPT STATUS REGISTER HIGH⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
				—	—	EISTAT	<25:24>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EISTAT	<23:16>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 EISTAT<25:16>: Early Interrupt Status for Corresponding Analog Inputs bits

1 = Early interrupt was generated

0 = Early interrupt was not generated since the last ADCBUFx read

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DIFF7	SIGN7	DIFF6	SIGN6	DIFF5	SIGN5	DIFF4	SIGN4
bit 15	·				•		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DIFF3	SIGN3	DIFF2	SIGN2	DIFF1	SIGN1	DIFF0	SIGN0
bit 7	·				•		bit 0
Legend:							

#### REGISTER 13-19: ADMOD0L: ADC INPUT MODE CONTROL REGISTER 0 LOW

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 through DIFF<1:0>: Differential-Mode for Corresponding Analog Inputs bits

- bit 1 (odd) 1 = Channel is differential
  - 0 = Channel is single-ended

bit 14 through **SIGN<1:0>:** Output Data Sign for Corresponding Analog Inputs bits

- bit 0 (even) 1 = Channel output data is signed
  - 0 = Channel output data is unsigned

#### REGISTER 13-20: ADMOD0H: ADC INPUT MODE CONTROL REGISTER 0 HIGH⁽¹⁾

DIFF15         SIGN15         DIFF14         SIGN14         DIFF13         SIGN13         DIFF12         SI           bit 15	/W-0
bit 15	GN12
	bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DIFF11	SIGN11	DIFF10	SIGN10	DIFF9	SIGN9	DIFF8	SIGN8
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 through DIFF<15:8>: Differential-Mode for Corresponding Analog Inputs bits

- 1 = Channel is differential
  - 0 = Channel is single-ended
- bit 14 through SIGN<15:8>: Output Data Sign for Corresponding Analog Inputs bits
- bit 0 (even) 1 = Channel output data is signed
  - 0 = Channel output data is unsigned
- **Note 1:** Bit availability is dependent on the number of supported ADC channels. Refer to Table 1 and Table 2 for ADC channel availability on package variants.

bit 1 (odd)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DIFF23	SIGN23	DIFF22	SIGN22	DIFF21	SIGN21	DIFF20	SIGN20
bit 15	•	•		•	•		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DIFF19	SIGN19	DIFF18	SIGN18	DIFF17	SIGN17	DIFF16	SIGN16
bit 7	•	•		•	•		bit 0
Legend:							
	L. 14		- :4	LL Lluissenless		1 (0)	

#### REGISTER 13-21: ADMOD1L: ADC INPUT MODE CONTROL REGISTER 1 LOW⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 through DIFF<23:16>: Differential-Mode for Corresponding Analog Inputs bits

bit 1 (odd)	1 = Channel is differential
	Ohennel is simple ande

0 = Channel is single-ended

bit 14 through SIGN<23:16>: Output Data Sign for Corresponding Analog Inputs bits

bit 0 (even) 1 = Channel output data is signed

0 = Channel output data is unsigned

**Note 1:** Bit availability is dependent on the number of supported ADC channels. Refer to Table 1 and Table 2 for ADC channel availability on package variants.

### REGISTER 13-22: ADMOD1H: ADC INPUT MODE CONTROL REGISTER 1 HIGH⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15					•	•	bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	—	DIFF25	SIGN25	DIFF24	SIGN24
bit 7					•		bit 0
Legend:							

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 3 through bit 1 (odd)	<b>DIFF&lt;25:24&gt;:</b> Differential-Mode for Corresponding Analog Inputs bits 1 = Channel is differential 0 = Channel is single-ended
bit 2 through bit 0 (even)	SIGN<25:24>: Output Data Sign for Corresponding Analog Inputs bits 1 = Channel output data is signed 0 = Channel output data is unsigned

#### REGISTER 13-23: ADIEL: ADC INTERRUPT ENABLE REGISTER LOW⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			١E٠	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			IE	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit	t	U = Unimplem	ented bit, rea	ad as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown

bit 15-0 IE<15:0>: Common Interrupt Enable bits

1 = Common and individual interrupts are enabled for the corresponding channel

0 = Common and individual interrupts are disabled for the corresponding channel

**Note 1:** Bit availability is dependent on the number of supported ADC channels. Refer to Table 1 and Table 2 for ADC channel availability on package variants.

### REGISTER 13-24: ADIEH: ADC INTERRUPT ENABLE REGISTER HIGH⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	—	—	—	—	—	IE<2	5:24>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			_	3:16>			
bit 7							bit (

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0

IE<25:16>: Common Interrupt Enable bits

1 = Common and individual interrupts are enabled for the corresponding channel

0 = Common and individual interrupts are disabled for the corresponding channel

#### REGISTER 13-25: ADSTATL: ADC DATA READY STATUS REGISTER LOW⁽¹⁾

HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	
			AN<15	:8>RDY				
bit 15	bit 15 bit 8							
HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	
			AN<7:	0>RDY				
bit 7							bit 0	
Legend:	Legend: U = Unimplemented bit, read as '0'							
R = Readable	bit	W = Writable	bit	HSC = Hardw	/are Settable/C	learable bit		

'0' = Bit is cleared

bit 15-0 **AN<15:0>RDY:** Common Interrupt Enable for Corresponding Analog Inputs bits

1 = Channel conversion result is ready in the corresponding ADCBUFx register

0 = Channel conversion result is not ready

'1' = Bit is set

**Note 1:** Bit availability is dependent on the number of supported ADC channels. Refer to Table 1 and Table 2 for ADC channel availability on package variants.

#### REGISTER 13-26: ADSTATH: ADC DATA READY STATUS REGISTER HIGH⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	HSC/R-0	HSC/R-0
—	—	—	—	—	—		
bit 15							bit 8

| HSC/R-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
|         |         |         | AN<23:  | 16>RDY  |         |         |         |
| bit 7   |         |         |         |         |         |         | bit 0   |

Legend:	U = Unimplemented bit, read as '0'					
R = Readable bit	W = Writable bit	HSC = Hardware Settable/Clearable bit				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-10 Unimplemented: Read as '0'

bit 9-0 AN<25:16>RDY: Common Interrupt Enable for Corresponding Analog Inputs bits

1 = Channel conversion result is ready in the corresponding ADCBUFx register

0 = Channel conversion result is not ready

**Note 1:** Bit availability is dependent on the number of supported ADC channels. Refer to Table 1 and Table 2 for ADC channel availability on package variants.

-n = Value at POR

x = Bit is unknown

# REGISTER 13-27: ADTRIGnL/ADTRIGnH: ADC CHANNEL TRIGGER n(x) SELECTION REGISTERS LOW AND HIGH (x = 0 TO 25; n = 0 TO 6)⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	TRGSRC(x+1)4	TRGSRC(x+1)3	TRGSRC(x+1)2	TRGSRC(x+1)1	TRGSRC(x+1)0
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	TRGSRCx4	TRGSRCx3	TRGSRCx2	TRGSRCx1	TRGSRCx0
bit 7							bit 0

#### Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	s '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

#### bit 15-13 Unimplemented: Read as '0'

bit 12-8	<b>TRGSRC(x+1)&lt;4:0&gt;:</b> Trigger Source Selection for Corresponding Analog Inputs bits (TRGSRC1 to TRGSRC25 – Odd)
	11111 = ADTRG31 (PPS input)
	11110 <b>= PTG</b>
	11101 <b>= CLC2</b>
	11100 = CLC1
	11011 <b>= MCCP9</b>
	11010 <b>= SCCP7</b>
	11001 <b>= SCCP6</b>
	11000 <b>= SCCP5</b>
	10111 <b>= SCCP4</b>
	10110 <b>= SCCP3</b>
	10101 <b>= SCCP2</b>
	10100 <b>= SCCP1</b>
	10011 = PWM8 Trigger 2
	10010 = PWM8 Trigger 1
	10001 <b>= PWM7 Trigger 2</b>
	10000 = PWM7 Trigger 1
	01111 = PWM6 Trigger 2
	01110 = PWM6 Trigger 1
	01101 = PWM5 Trigger 2
	01100 = PWM5 Trigger 1
	01011 = PWM4 Trigger 2
	01010 = PWM4 Trigger 1
	01001 = PWM3 Trigger 2
	01000 = PWM3 Trigger 1
	00111 = PWM2 Trigger 2
	00110 = PWM2 Trigger 1
	00101 = PWM1 Trigger 2
	00100 = PWM1 Trigger 1
	00011 = Reserved
	00010 = Level software trigger
	00001 = Common software trigger
	00000 = No trigger is enabled
bit 7-5	Unimplemented: Read as '0'

**Note 1:** The number of implemented registers is dependent on the number of available ADC channels. Refer to Table 1 and Table 2 for ADC channel availability of package variants.

^{© 2017-2018} Microchip Technology Inc.

#### REGISTER 13-27: ADTRIGnL/ADTRIGnH: ADC CHANNEL TRIGGER n(x) SELECTION REGISTERS LOW AND HIGH (x = 0 TO 25; n = 0 TO 6)⁽¹⁾ (CONTINUED)

- bit 4-0 TRGSRCx<4:0>: Common Interrupt Enable for Corresponding Analog Inputs bits (TRGSRC0 to TRGSRC24 – Even) 11111 = ADTRG31 (PPS input) 11110 = PTG 11101 = CLC2 11100 = CLC1 11011 = MCCP9 11010 = SCCP7 11001 = SCCP6 11000 = SCCP5 10111 = SCCP4 10110 = SCCP3 10101 = SCCP2 10100 = SCCP1 10011 = PWM8 Trigger 2 10010 = PWM8 Trigger 1 10001 = PWM7 Trigger 2 10000 = PWM7 Trigger 1 01111 = PWM6 Trigger 2 01110 = PWM6 Trigger 1 01101 = PWM5 Trigger 2 01100 = PWM5 Trigger 1 01011 = PWM4 Trigger 2 01010 = PWM4 Trigger 1 01001 = PWM3 Trigger 2 01000 = PWM3 Trigger 1 00111 = PWM2 Trigger 2 00110 = PWM2 Trigger 1 00101 = PWM1 Trigger 2 00100 = PWM1 Trigger 1 00011 = Reserved 00010 = Level software trigger 00001 = Common software trigger
  - 00000 = No trigger is enabled
  - **Note 1:** The number of implemented registers is dependent on the number of available ADC channels. Refer to Table 1 and Table 2 for ADC channel availability of package variants.

### REGISTER 13-28: ADCMPxCON: ADC DIGITAL COMPARATOR x CONTROL REGISTER (x = 0, 1, 2, 3)

U-0	U-0	U-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0
—	—	—	CHNL4	CHNL3	CHNL2	CHNL1	CHNL0
bit 15							bit 8

R/W-0	R/W-0	HS/HC/R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CMPEN	IE	STAT	BTWN	HIHI	HILO	LOHI	LOLO
bit 7 bit 0							

Legend:         HC = Hardware Clearable bit         U = Unimplemented bit, read as '0'		as '0'	
R = Readable bit	W = Writable bit	HSC = Hardware Settable/Clearable bit	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	HS = Hardware Settable bit

IX – IXCauar						
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	HS = Hardware Settable bit		
bit 15-13		nented: Read as '0'				
bit 12-8		>: Input Channel Number I		number is written to these hits		
	111111 = F		ent for a channel, this channel	number is written to these bits.		
	11010 = F	Reserved Band gap, 1.2V (AN25)				
		emperature sensor (AN24)				
	10111 <b>=</b> A	N23				
	 00011 = A	N3				
	00011 = /					
	00001 = 4					
1	00000 = A					
bit 7		Comparator Enable bit arator is enabled				
		arator is disabled and the S	TAT status bit is cleared			
bit 6	-	arator Common ADC Interru				
			nerated if the comparator dete			
	0 <b>= Comm</b>	on ADC interrupt will not be	e generated for the comparator			
bit 5		nparator Event Status bit				
			the channel number is read fro ected since the last read of the			
			detected since the last read o			
bit 4	BTWN: Be	etween Low/High Comparat	or Event bit			
			nen ADCMPxLO ≤ ADCBUFx <			
1.11.0		• • •	arator event when ADCMPxLC	S ADCBUFX < ADCMPXHI		
bit 3	•	/High Comparator Event bit				
			vent when ADCBUFx ≥ ADCMI arator event when ADCBUFx ≥			
bit 2	HILO: Hig	h/Low Comparator Event bi	t			
			vent when ADCBUFx < ADCMI			
		• • •	arator event when ADCBUFx <	ADCMPxHI		
bit 1		v/High Comparator Event bi				
			/ent when ADCBUFx ≥ ADCMI arator event when ADCBUFx ≥			
bit 0		w/Low Comparator Event b				
		•	vent when ADCBUFx < ADCMI	PxLO		
			arator event when ADCBUFx <			

© 2017-2018 Microchip Technology Inc.

# **REGISTER 13-29:** ADCMPXENL: ADC DIGITAL COMPARATOR x CHANNEL ENABLE REGISTER LOW (x = 0, 1, 2, 3)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			l<15:8>	CMPEN			
bit 8							bit 15
<b>D</b> () () ()	<b>D</b> 444 0	<b>DMM O</b>	<b>D</b> 444 0	DAMA	<b>DMM</b>	<b>DMUO</b>	DAAVO
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W/0
			N<7:0>	CMPEI			
bit (							bit 7
	R/W-0	R/W-0	R/W-0 N<7:0>	R/W-0 CMPEI	R/W-0	R/W-0	R/W/0

# Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **CMPEN<15:0>:** Comparator Enable for Corresponding Input Channels bits 1 = Conversion result for corresponding channel is used by the comparator

0 = Conversion result for corresponding channel is not used by the comparator

**Note 1:** Bit availability is dependent on the number of supported ADC channels. Refer to Table 1 and Table 2 for ADC channel availability on package variants.

# **REGISTER 13-30:** ADCMPxENH: ADC DIGITAL COMPARATOR x CHANNEL ENABLE REGISTER HIGH (x = 0, 1, 2, 3)⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
—	—	—	_	—	CMPEN	<25:24>	
	·	·		•	•	bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CMPEN<23:16>							
						bit 0	
	_					CMPEN	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 CMPEN<25:16>: Comparator Enable for Corresponding Input Channels bits

1 = Conversion result for corresponding channel is used by the comparator

0 = Conversion result for corresponding channel is not used by the comparator

## REGISTER 13-31: ADFLxCON: ADC DIGITAL FILTER x CONTROL REGISTER

(x = 0, 1, 2, 3)R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 HSC/R-0 FLEN MODE1 MODE0 OVRSAM2 OVRSAM1 OVRSAM0 IΕ RDY bit 15 bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	FLCHSEL4	FLCHSEL3	FLCHSEL2	FLCHSEL1	FLCHSEL0
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'				
R = Readable bit	W = Writable bit	HSC = Hardware Settable/Clearable bit			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	FLEN: Filter Enable bit
	1 = Filter is enabled
	0 = Filter is disabled and the RDY bit is cleared
bit 14-13	MODE<1:0>: Filter Mode bits
	11 = Averaging mode
	10 = Reserved
	01 = Reserved
	00 = Oversampling mode
bit 12-10	OVRSAM<2:0>: Filter Averaging/Oversampling Ratio bits
	If MODE<1:0> = 00:
	111 = 128x (16-bit result in the ADFLxDAT register is in 12.4 format)
	110 = 32x (15-bit result in the ADFLxDAT register is in 12.3 format)
	101 = 8x (14-bit result in the ADFLxDAT register is in 12.2 format)
	100 = 2x (13-bit result in the ADFLxDAT register is in 12.1 format) 011 = 256x (16-bit result in the ADFLxDAT register is in 12.4 format)
	011 = 2300 (10-bit result in the ADFLxDAT register is in 12.4 format) 010 = 64x (15-bit result in the ADFLxDAT register is in 12.3 format)
	001 = 16x (14-bit result in the ADFLxDAT register is in 12.2 format)
	000 = 4x (13-bit result in the ADFLxDAT register is in 12.1 format)
	If MODE<1:0> = 11 (12-bit result in the ADFLxDAT register in all instances):
	111 <b>= 256x</b>
	110 <b>= 128x</b>
	101 <b>= 64</b> x
	100 = 32x
	011 = 16x
	110 = 8x 001 = 4x
	000 = 2x
bit 9	IE: Filter Common ADC Interrupt Enable bit
	1 = Common ADC interrupt will be generated when the filter result will be ready
	0 = Common ADC interrupt will not be generated for the filter
bit 8	RDY: Oversampling Filter Data Ready Flag bit
	This bit is cleared by hardware when the result is read from the ADFLxDAT register.
	<ul> <li>1 = Data in the ADFLxDAT register is ready</li> <li>0 = The ADFLxDAT register has been read and new data in the ADFLxDAT register is not ready</li> </ul>
bit 7-5	Unimplemented: Read as '0'

#### REGISTER 13-31: ADFLxCON: ADC DIGITAL FILTER x CONTROL REGISTER (x = 0, 1, 2, 3) (CONTINUED)

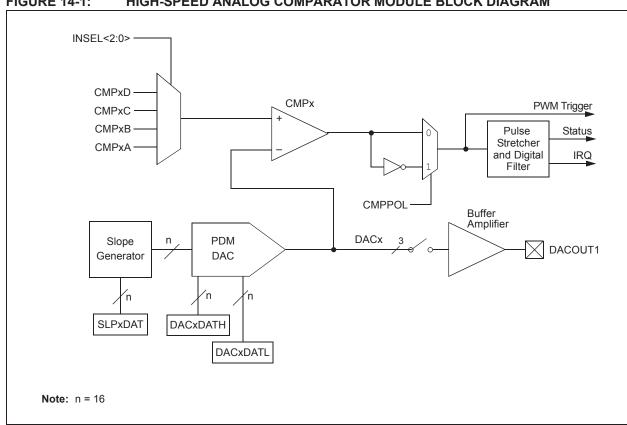
bit 4-0 FLCHSEL<4:0>: Oversampling Filter Input Channel Selection bits

11111 = Reserved ... 11010 = Reserved 11001 = Band gap, 1.2V (AN25) 11000 = Temperature sensor (AN24) 10111 = AN23 ... 00011 = AN3 00010 = AN2 00001 = AN1 00000 = AN0

# 14.0 HIGH-SPEED ANALOG COMPARATOR WITH SLOPE COMPENSATION DAC

Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed Analog Comparator Module" (www.microchip.com/ DS70005280) in the "dsPIC33/PIC24 Family Reference Manual".

The high-speed analog comparator module provides a method to monitor voltage, current and other critical signals in a power conversion application that may be too fast for the CPU and ADC to capture. There are a total of 3 comparator modules. The analog comparator module can be used to implement Peak Current mode control, Critical Conduction mode (variable frequency) and Hysteretic Control mode.


### 14.1 Overview

The high-speed analog comparator module is comprised of a high-speed comparator, Pulse Density Modulation (PDM) DAC and a slope compensation unit. The slope compensation unit provides a user-defined slope which can be used to alter the DAC output. This feature is useful in applications, such as Peak Current mode control, where slope compensation is required to maintain the stability of the power supply. The user simply specifies the direction and rate of change for the slope compensation and the output of the DAC is modified accordingly. The DAC consists of a PDM unit, followed by a digitally controlled multiphase RC filter. The PDM unit uses a phase accumulator circuit to generate an output stream of pulses. The density of the pulse stream is proportional to the input data value, relative to the maximum value supported by the bit width of the accumulator. The output pulse density is representative of the desired output voltage. The pulse stream is filtered with an RC filter to yield an analog voltage. The output of the DAC is connected to the negative input of the comparator. The positive input of the comparator can be selected using a MUX from either of the input pins. The comparator provides a high-speed operation with a typical delay of 15 ns.

The output of the comparator is processed by the pulse stretcher and the digital filter blocks, which prevent comparator response to unintended fast transients in the inputs. Figure 14-1 shows a block diagram of the high-speed analog comparator module. The DAC module can be operated in one of three modes: Slope Generation mode, Hysteretic mode and Triangle Wave mode. Each of these modes can be used in a variety of power supply applications.

Note: The DACOUT1 pin can only be associated with a single DAC output at any given time. If more than one DACOEN bit is set, the DACOUT1 pin will be a combination of the signals.

# dsPIC33CK256MP508 FAMILY



#### FIGURE 14-1: HIGH-SPEED ANALOG COMPARATOR MODULE BLOCK DIAGRAM

#### 14.2 Features Overview

- Three Rail-to-Rail Analog Comparators
- Up to Four Selectable Input Sources per Comparator
- Programmable Comparator Hysteresis
- Programmable Output Polarity
- Interrupt Generation Capability
- Dedicated Pulse Density Modulation DAC for each Analog Comparator:
  - PDM unit followed by a digitally controlled multimode multipole RC filter
- Multimode Multipole RC Output Filter:
  - Transition mode: Provides the fastest response
  - Fast mode: For tracking DAC slopes
  - Steady-State mode: Provides 12-bit resolution
- Slope Compensation along with each DAC:
  - Slope Generation mode
  - Hysteretic Control mode
  - Triangle Wave mode
- Functional Support for the High-Speed PWM module which Includes:
  - PWM duty cycle control
  - PWM period control
  - PWM Fault detect

## 14.3 Control Registers

The DACCTRL1L and DACCTRL2H/L registers are common configuration registers for DAC modules.

The DACxCON, DACxDAT, SLPxCON and SLPxDAT registers specify the operation of individual modules.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
DACON	—	DACSIDL	—	_	—	—	—
bit 15	1			•			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
CLKSEL1 ^{(1,3}	³⁾ CLKSEL0 ^(1,3)	CLKDIV1 ^(1,3)	CLKDIV0 ^(1,3)	—	FCLKDIV2 ⁽²⁾	FCLKDIV1 ⁽²⁾	FCLKDIV0 ⁽²
bit 7							bit (
Legend:							
R = Readabl	le bit	W = Writable b	it	U = Unimp	lemented bit, rea	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is o			
bit 15	DACON: Com	nmon DAC Mod	ule Enable bit				
	1 = Enables [						
					to reduce powe	r consumption;	; any pending
bit 11	-	de and/or unde		are cleared			
bit 14	•	ted: Read as '0'					
bit 13		AC Stop in Idle N Jes module oper		ioo ontoro la	lla mada		
		module operati			lie mode		
bit 12-8		ted: Read as '0'					
bit 7-6	CLKSEL<1:0	>: DAC Clock S	ource Select bit	s ^(1,3)			
	11 <b>= F</b> PLLO						
	10 = AFPLLO						
	01 = Fvco/2 00 = AFvco/2						
		•: DAC Clock Di	vider hite(1.3)				
bit 5-4	11 = Divide-b		vider bits				
		y- <del>4</del> y-3 (non-uniform	uduty cycle)				
	01 = Divide-b		rully cycle)				
	00 = 1x	5					
bit 3	Unimplement	ted: Read as '0'					
bit 2-0	FCLKDIV<2:0	>: Comparator	Filter Clock Divi	der bits ⁽²⁾			
	111 = Divide-	by-8					
	110 = Divide-						
	101 = Divide- 100 = Divide-						
	011 = Divide-						
	010 = Divide-						
	001 = Divide-						
	000 = 1x						
Note 1: T	hese bits should	only be change	d when DACON	l = 0 to avoi	d unpredictable b	ehavior.	
<b>2:</b> T	he input clock to	this divider is th	e selected cloc	k input, CLK	SEL<1:0>, and t	hen divided by	two.

#### REGISTER 14-1: DACCTRL1L: DAC CONTROL 1 LOW REGISTER

- 2: The input clock to this divider is the selected clock input, CLKSEL<1:0>, and then divided by two.
- 3: Clock source and dividers should yield an effective DAC clock input of 500 MHz.

#### REGISTER 14-2: DACCTRL2H: DAC CONTROL 2 HIGH REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	_	_	SSTIME	<9:8> ⁽¹⁾
bit 15							bit 8
R/W-1	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1	R/W-0
			SSTIME	<7:0> ⁽¹⁾			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	

bit 15-10 Unimplemented: Read as '0'

bit 9-0 SSTIME<9:0>: Time from Start of Transition Mode until Steady-State Filter is Enabled bits⁽¹⁾

**Note 1:** The value for SSTIME<9:0> should be greater than the TMODTIME<9:0> value.

#### REGISTER 14-3: DACCTRL2L: DAC CONTROL 2 LOW REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
—	—	—	—	—	—	TMODTIME<9:8> ⁽¹⁾		
bit 15							bit 8	

R/W-0	R/W-1	R/W-0	R/W-1	R/W-0	R/W-1	R/W-0	R/W-1	
	TMODTIME<7:0> ⁽¹⁾							
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 15-10 **Unimplemented:** Read as '0'

bit 9-0 **TMODTIME<9:0>:** Transition Mode Duration bits⁽¹⁾

Note 1: The value for TMODTIME<9:0> should be less than the SSTIME<9:0> value.

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	-	—	—	—	—	TMCE	3<9:8>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TMC	3<7:0>			
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable bit	t	U = Unimplen	nented bit, read	d as '0'	

bit 15-10 **Unimplemented:** Read as '0'

-n = Value at POR

bit 9-0 **TMCB<9:0>:** DACx Leading-Edge Blanking bits These register bits specify the blanking period for the comparator, following changes to the DAC output during Change-of-State (COS), for the input signal selected by the HCFSEL<3:0> bits in Register 14-9.

'0' = Bit is cleared

#### REGISTER 14-5: DACxCONL: DACx CONTROL LOW REGISTER

'1' = Bit is set

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
DACEN	IRQM1 ^(1,2)	IRQM0 ^(1,2)	—	—	CBE	DACOEN	FLTREN
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CMPSTAT	CMPPOL	INSEL2	INSEL1	INSEL0	HYSPOL	HYSSEL1	HYSSEL0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 15 DACEN: Individual DACx Module Enable bit

- 1 = Enables DACx module
- 0 = Disables DACx module to reduce power consumption; any pending Slope mode and/or underflow conditions are cleared
- bit 14-13 IRQM<1:0>: Interrupt Mode select bits^(1,2)
  - 11 = Generates an interrupt on either a rising or falling edge detect
  - 10 = Generates an interrupt on a falling edge detect
  - 01 = Generates an interrupt on a rising edge detect
  - 00 = Interrupts are disabled
- bit 12-11 Unimplemented: Read as '0'

#### **Note 1:** Changing these bits during operation may generate a spurious interrupt.

2: The edge selection is a post-polarity selection via the CMPPOL bit.

#### REGISTER 14-5: DACxCONL: DACx CONTROL LOW REGISTER (CONTINUED)

bit 10	<ul> <li>CBE: Comparator Blank Enable bit</li> <li>1 = Enables the analog comparator output to be blanked (gated off) during the recovery transition following the completion of a slope operation</li> <li>0 = Disables the blanking signal to the analog comparator; therefore, the analog comparator output is always active</li> </ul>
bit 9	DACOEN: DACx Output Buffer Enable bit
	<ul> <li>1 = DACx analog voltage is connected to the DACOUT1 pin</li> <li>0 = DACx analog voltage is not connected to the DACOUT1 pin</li> </ul>
bit 8	FLTREN: Comparator Digital Filter Enable bit
	<ul> <li>1 = Digital filter is enabled</li> <li>0 = Digital filter is disabled</li> </ul>
bit 7	CMPSTAT: Comparator Status bits
	The current state of the comparator output including the CMPPOL selection.
bit 6	CMPPOL: Comparator Output Polarity Control bit
	1 = Output is inverted
	0 = Output is non-inverted
bit 5-3	INSEL<2:0>: Comparator Input Source Select bits 111 = Reserved 110 = Reserved 101 = Reserved 100 = Reserved 011 = CMPxD input pin 010 = CMPxC input pin 001 = CMPxB input pin 001 = CMPxA input pin
bit 2	HYSPOL: Comparator Hysteresis Polarity Select bit
	<ul> <li>1 = Hysteresis is applied to the falling edge of the comparator output</li> <li>0 = Hysteresis is applied to the rising edge of the comparator output</li> </ul>
bit 1-0	HYSSEL<1:0>: Comparator Hysteresis Select bits
	<ul> <li>11 = 45 mv hysteresis</li> <li>10 = 30 mv hysteresis</li> <li>01 = 15 mv hysteresis</li> <li>00 = No hysteresis is selected</li> </ul>
Note 1:	Changing these bits during operation may generate a spurious interrupt.
2:	The edge selection is a post-polarity selection via the CMPPOL bit.

#### REGISTER 14-6: DACxDATH: DACx DATA HIGH REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	—			DACDA	T<11:8>	
bit 15	·	· · ·		-			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DACD	AT<7:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable bit		U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared		

bit 15-12 Unimplemented: Read as '0'

bit 11-0 DACDAT<11:0>: DACx Data bits

This register specifies the high DACx data value. Valid values are from 205 to 3890.

#### REGISTER 14-7: DACxDATL: DACx DATA LOW REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—	—		DACLO	W<11:8>	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DACLOW<7:0>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 15-12 Unimplemented: Read as '0'

bit 11-0 DACLOW<11:0>: DACx Low Data bits

In Hysteretic mode, Slope Generator mode and Triangle mode, this register specifies the low data value and/or limit for the DACx module. Valid values are from 205 to 3890.

U-0       U-0       U-0       U-0       U-0       U-0       U-0       U-0								
bit 15 bit U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 bit 7 bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared bit 15 SLOPEN: Slope Function Enable/On bit 1 = Enables slope function; slope accumulator is disabled to reduce power consumption bit 14-12 Unimplemented: Read as '0' bit 11 HME: Hysteretic Mode Enable bit ⁽¹⁾ 1 = Enables Hysteretic mode for DACx 0 = Disables Slope function of or DACx 0 = Disables Triangle Wave Mode Enable bit ⁽²⁾ 1 = Enables Triangle Wave mode for DACx 0 = Disables Triangle Wave Mode Enable bit 1 = Slope mode is negative (decreasing) 0 = Slope mode is negative (decreasing) 0 = Slope mode is negative (decreas	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0
U-0       U-0       U-0       U-0       U-0       U-0       U-0       U-0	SLOPEN	—	—	_	HME ⁽¹⁾	TWME ⁽²⁾	PSE	_
-       -       -       -       -       -       -       -       -       -       bit         bit 7       bit 7       bit 7       bit       bit       -       -       -       -       -       -       -       -       -       -       -       bit 7       bit         Legend:       R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <	bit 15	·			·			bit 8
-       -       -       -       -       -       -       -       -       -       bit         bit 7       bit 7       bit 7       bit       bit       -       -       -       -       -       -       -       -       -       -       -       bit 7       bit         Legend:       R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <								
Legend:         R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         -n = Value at POR       '1' = Bit is set       '0' = Bit is cleared         bit 15       SLOPEN: Slope Function Enable/On bit         1 = Enables slope function       0' = Bit is cleared         bit 15       SLOPEN: Slope Function Enable/On bit         1 = Enables slope function; slope accumulator is disabled to reduce power consumption         bit 14-12       Unimplemented: Read as '0'         bit 14 HME: Hysteretic Mode Enable bit ⁽¹⁾ 1 = Enables Hysteretic mode for DACx         0 = Disables Hysteretic mode for DACx         0 = Disables Triangle Wave mode for DACx         0 = Disables not the provide the pro	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
Legend:         R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         -n = Value at POR       '1' = Bit is set       '0' = Bit is cleared         bit 15       SLOPEN: Slope Function Enable/On bit         1 = Enables slope function       0' = Bit is cleared         bit 15       SLOPEN: Slope Function Enable/On bit         1 = Enables slope function; slope accumulator is disabled to reduce power consumption         bit 14-12       Unimplemented: Read as '0'         bit 14 HME: Hysteretic Mode Enable bit ⁽¹⁾ 1 = Enables Hysteretic mode for DACx         0 = Disables Hysteretic mode for DACx         0 = Disables Triangle Wave mode for DACx         0 = Disables not the provide the pro	_	—	—	_	—	—	—	_
R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         -n = Value at POR       '1' = Bit is set       '0' = Bit is cleared         bit 15       SLOPEN: Slope Function Enable/On bit       1 = Enables slope function; slope accumulator is disabled to reduce power consumption         bit 14-12       Unimplemented: Read as '0'       bit 11         bit 11       HME: Hysteretic Mode Enable bit ⁽¹⁾ 1 = Enables Hysteretic mode for DACx         0 = Disables Hysteretic mode for DACx       0 = Disables Triangle Wave Mode Enable bit ⁽²⁾ 1 = Enables Triangle Wave mode for DACx       0 = Disables Triangle Wave mode for DACx         bit 9       PSE: Positive Slope Mode Enable bit         1 = Slope mode is positive (increasing)       0 = Slope mode is negative (decreasing)         0 = Slope mode is negative (decreasing)       0 = Slope mode is negative (decreasing)	bit 7	•						bit 0
R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         -n = Value at POR       '1' = Bit is set       '0' = Bit is cleared         bit 15       SLOPEN: Slope Function Enable/On bit       1 = Enables slope function; slope accumulator is disabled to reduce power consumption         bit 14-12       Unimplemented: Read as '0'       bit 11         bit 11       HME: Hysteretic Mode Enable bit ⁽¹⁾ 1 = Enables Hysteretic mode for DACx         0 = Disables Hysteretic mode for DACx       0 = Disables Triangle Wave Mode Enable bit ⁽²⁾ 1 = Enables Triangle Wave mode for DACx       0 = Disables Triangle Wave mode for DACx         bit 9       PSE: Positive Slope Mode Enable bit         1 = Slope mode is positive (increasing)       0 = Slope mode is negative (decreasing)         0 = Slope mode is negative (decreasing)       0 = Slope mode is negative (decreasing)								
-n = Value at POR       '1' = Bit is set       '0' = Bit is cleared         bit 15       SLOPEN: Slope Function Enable/On bit       1 = Enables slope function         0 = Disables slope function       0 = Disables slope function; slope accumulator is disabled to reduce power consumption         bit 14-12       Unimplemented: Read as '0'         bit 11       HME: Hysteretic Mode Enable bit ⁽¹⁾ 1 = Enables Hysteretic mode for DACx       0 = Disables Hysteretic mode for DACx         0 = Disables Triangle Wave Mode Enable bit ⁽²⁾ 1 = Enables Triangle Wave mode for DACx         0 = Disables Triangle Wave mode for DACx       0 = Disables Triangle Wave mode for DACx         bit 9       PSE: Positive Slope Mode Enable bit         1 = Slope mode is positive (increasing)       0 = Slope mode is negative (decreasing)         0 = Slope mode is negative (decreasing)       0 = Slope mode is negative (decreasing)	Legend:							
bit 15 <b>SLOPEN:</b> Slope Function Enable/On bit 1 = Enables slope function 0 = Disables slope function; slope accumulator is disabled to reduce power consumption bit 14-12 <b>Unimplemented:</b> Read as '0' HME: Hysteretic Mode Enable bit ⁽¹⁾ 1 = Enables Hysteretic mode for DACx 0 = Disables Hysteretic mode for DACx bit 10 <b>TWME:</b> Triangle Wave Mode Enable bit ⁽²⁾ 1 = Enables Triangle Wave mode for DACx 0 = Disables Triangle Wave mode for DACx	R = Readab	le bit	W = Writable bit	t	U = Unimpler	mented bit, read	l as '0'	
<ul> <li>1 = Enables slope function</li> <li>0 = Disables slope function; slope accumulator is disabled to reduce power consumption</li> <li>bit 14-12</li> <li>Unimplemented: Read as '0'</li> <li>bit 11</li> <li>HME: Hysteretic Mode Enable bit⁽¹⁾</li> <li>1 = Enables Hysteretic mode for DACx</li> <li>0 = Disables Hysteretic mode for DACx</li> <li>0 = Disables Hysteretic mode for DACx</li> <li>0 = Disables Triangle Wave Mode Enable bit⁽²⁾</li> <li>1 = Enables Triangle Wave mode for DACx</li> <li>0 = Disables Triangle Wave mode for DACx</li> <li>0 = Disables Triangle Wave mode for DACx</li> <li>0 = Disables Triangle Wave mode for DACx</li> <li>0 = Slope mode is positive (increasing)</li> <li>0 = Slope mode is negative (decreasing)</li> <li>bit 8-0</li> </ul>	-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared		
<ul> <li>1 = Enables slope function</li> <li>0 = Disables slope function; slope accumulator is disabled to reduce power consumption</li> <li>bit 14-12</li> <li>Unimplemented: Read as '0'</li> <li>bit 11</li> <li>HME: Hysteretic Mode Enable bit⁽¹⁾</li> <li>1 = Enables Hysteretic mode for DACx</li> <li>0 = Disables Hysteretic mode for DACx</li> <li>0 = Disables Hysteretic mode for DACx</li> <li>0 = Disables Triangle Wave Mode Enable bit⁽²⁾</li> <li>1 = Enables Triangle Wave mode for DACx</li> <li>0 = Disables Triangle Wave mode for DACx</li> <li>0 = Disables Triangle Wave mode for DACx</li> <li>0 = Disables Triangle Wave mode for DACx</li> <li>0 = Slope mode is positive (increasing)</li> <li>0 = Slope mode is negative (decreasing)</li> <li>bit 8-0</li> </ul>								
<ul> <li>0 = Disables slope function; slope accumulator is disabled to reduce power consumption</li> <li>bit 14-12 Unimplemented: Read as '0'</li> <li>bit 11 HME: Hysteretic Mode Enable bit⁽¹⁾ <ol> <li>1 = Enables Hysteretic mode for DACx</li> <li>0 = Disables Hysteretic mode for DACx</li> <li>0 = Disables Hysteretic mode for DACx</li> <li>0 = Disables Triangle Wave Mode Enable bit⁽²⁾</li> <li>1 = Enables Triangle Wave mode for DACx</li> <li>0 = Disables Triangle Wave mode for DACx</li> <li>0 = Slope mode is positive (increasing)</li> <li>0 = Slope mode is negative (decreasing)</li> <li>0 = Slope mode is negative (decreasing)</li> <li>bit 8-0</li> <li>Unimplemented: Read as '0'</li> </ol></li></ul>	bit 15	SLOPEN: SI	ope Function Ena	able/On bit				
bit 14-12       Unimplemented: Read as '0'         bit 11       HME: Hysteretic Mode Enable bit ⁽¹⁾ 1 = Enables Hysteretic mode for DACx         0 = Disables Hysteretic mode for DACx         bit 10       TWME: Triangle Wave Mode Enable bit ⁽²⁾ 1 = Enables Triangle Wave mode for DACx         0 = Disables Triangle Wave mode for DACx         0 = Slope mode is positive (increasing)         0 = Slope mode is negative (decreasing)         bit 8-0       Unimplemented: Read as '0'		1 = Enables	slope function					
bit 11       HME: Hysteretic Mode Enable bit ⁽¹⁾ 1 = Enables Hysteretic mode for DACx         0 = Disables Hysteretic mode for DACx         bit 10       TWME: Triangle Wave Mode Enable bit ⁽²⁾ 1 = Enables Triangle Wave mode for DACx         0 = Disables Triangle Wave mode for DACx         0 = Slope mode is positive (increasing)         0 = Slope mode is negative (decreasing)         bit 8-0       Unimplemented: Read as '0'		0 = Disables	slope function; s	lope accumul	ator is disabled	to reduce powe	er consumption	
1 = Enables Hysteretic mode for DACx         0 = Disables Hysteretic mode for DACx         bit 10       TWME: Triangle Wave Mode Enable bit ⁽²⁾ 1 = Enables Triangle Wave mode for DACx         0 = Disables Triangle Wave mode for DACx         bit 9       PSE: Positive Slope Mode Enable bit         1 = Slope mode is positive (increasing)         0 = Slope mode is negative (decreasing)         bit 8-0       Unimplemented: Read as '0'	bit 14-12	Unimplemer	nted: Read as '0'					
0 = Disables Hysteretic mode for DACx         bit 10       TWME: Triangle Wave Mode Enable bit ⁽²⁾ 1 = Enables Triangle Wave mode for DACx         0 = Disables Triangle Wave mode for DACx         0 = Disables Triangle Wave mode for DACx         bit 9       PSE: Positive Slope Mode Enable bit         1 = Slope mode is positive (increasing)         0 = Slope mode is negative (decreasing)         bit 8-0       Unimplemented: Read as '0'	bit 11	HME: Hyster	etic Mode Enable	e bit ⁽¹⁾				
bit 10       TWME: Triangle Wave Mode Enable bit ⁽²⁾ 1 = Enables Triangle Wave mode for DACx         0 = Disables Triangle Wave mode for DACx         bit 9       PSE: Positive Slope Mode Enable bit         1 = Slope mode is positive (increasing)         0 = Slope mode is negative (decreasing)         bit 8-0       Unimplemented: Read as '0'		1 = Enables	Hysteretic mode	for DACx				
1 = Enables Triangle Wave mode for DACx         0 = Disables Triangle Wave mode for DACx         bit 9 <b>PSE:</b> Positive Slope Mode Enable bit         1 = Slope mode is positive (increasing)         0 = Slope mode is negative (decreasing)         bit 8-0 <b>Unimplemented:</b> Read as '0'		0 = Disables	Hysteretic mode	for DACx				
0 = Disables Triangle Wave mode for DACx         bit 9 <b>PSE:</b> Positive Slope Mode Enable bit         1 = Slope mode is positive (increasing)         0 = Slope mode is negative (decreasing)         bit 8-0 <b>Unimplemented:</b> Read as '0'	bit 10	TWME: Triar	ngle Wave Mode	Enable bit ⁽²⁾				
bit 9 <b>PSE:</b> Positive Slope Mode Enable bit 1 = Slope mode is positive (increasing) 0 = Slope mode is negative (decreasing) bit 8-0 <b>Unimplemented:</b> Read as '0'		1 = Enables Triangle Wave mode for DACx						
1 = Slope mode is positive (increasing)         0 = Slope mode is negative (decreasing)         bit 8-0         Unimplemented: Read as '0'		0 = Disables Triangle Wave mode for DACx						
0 = Slope mode is negative (decreasing)bit 8-0Unimplemented: Read as '0'	bit 9	PSE: Positive Slope Mode Enable bit						
bit 8-0 Unimplemented: Read as '0'								
<b>Note 1:</b> HME mode requires the user to disable the slope function (SLOPEN = 0).	bit 8-0 Unimplemented: Read as '0'							
	Note 1: H	IME mode reau	ires the user to d	isable the slo	pe function (SL	OPEN = 0).		

#### REGISTER 14-8: SLPxCONH: DACx SLOPE CONTROL HIGH REGISTER

- **lote 1:** HME mode requires the user to disable the slope function (SLOPEN = 0).
  - 2: TWME mode requires the user to enable the slope function (SLOPEN = 1).

## REGISTER 14-9: SLPxCONL: DACx SLOPE CONTROL LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
HCFSEL3	HCFSEL2	HCFSEL1	HCFSEL0	SLPSTOPA3	SLPSTOPA2	SLPSTOPA1	SLPSTOPA0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SLPSTOPB3	SLPSTOPB2	SLPSTOPB1	SLPSTOPB0	SLPSTRT3	SLPSTRT2	SLPSTRT1	SLPSTRT0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set0	'0' = Bit is cleared	

#### bit 15-12 HCFSEL<3:0>: Hysteretic Comparator Function Input Select bits

The selected input signal controls the switching between the DACx high limit (DACxDATH) and the DACx low limit (DACxDATL) as the data source for the PDM DAC. It modifies the polarity of the comparator, and the rising and falling edges initiate the start of the LEB counter (TMCB<9:0> bits in Register 14-4).

Input Selection	Source
1111	1
1100	0
1011	0
1010	0
1001	0
1000	PWM8H
0111	PWM7H
0110	PWM6H
0101	PWM5H
0100	PWM4H
0011	PWM3H
0010	PWM2H
0001	PWM1H
0000	0

#### REGISTER 14-9: SLPxCONL: DACx SLOPE CONTROL LOW REGISTER (CONTINUED)

The selected Slope Stop A signal is logically OR'd with the selected Slope Stop B signal to terminate the slope function.

Slope Stop A Signal Selection	Master
1101-1111	1
1000	PWM8 Trigger 2
0111	PWM7 Trigger 2
0110	PWM6 Trigger 2
0101	PWM5 Trigger 2
0100	PWM4 Trigger 2
0011	PWM3 Trigger 2
0010	PWM2 Trigger 2
0001	PWM1 Trigger 2
0000	0

#### bit 7-4 SLPSTOPB<3:0>: Slope Stop B Signal Select bits

The selected Slope Stop B signal is logically OR'd with the selected Slope Stop A signal to terminate the slope function.

Slope Start B Signal Selection	Master
0100-1111	1
0011	CMP3 Out
0010	CMP2 Out
0001	CMP1 Out
0000	0

#### bit 3-0

SLPSTRT<3:0>: Slope Start Signal Select bits

Slope Start Signal Selection	Master
1101-1111	1
1000	PWM8 Trigger 1
0111	PWM7 Trigger 1
0110	PWM6 Trigger 1
0101	PWM5 Trigger 1
0100	PWM4 Trigger 1
0011	PWM3 Trigger 1
0010	PWM2 Trigger 1
0001	PWM1 Trigger 1
0000	0

bit 11-8 SLPSTOPA<3:0>: Slope Stop A Signal Select bits

# REGISTER 14-10: SLPxDAT: DACx SLOPE DATA REGISTER⁽¹⁾

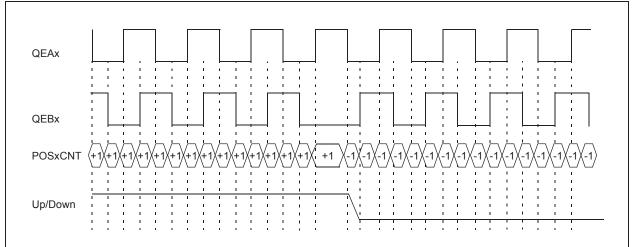
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			SLPD	AT<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			SLPD	AT<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable bit		U = Unimplen	nented bit, read	d as '0'		
-n = Value at	-n = Value at POR '1' = Bit is set '0' = Bit is cleared							
R = Readable				-		d as '0'		

bit 15-0 **SLPDAT<15:0>:** Slope Ramp Rate Value bits The SLPDATx value is in 12.4 format.

Note 1: Register data is left justified.

# 15.0 QUADRATURE ENCODER INTERFACE (QEI)

Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive resource. For more information, refer to "Quadrature Encoder Interface (QEI)" (www.microchip.com/ DS70000601) in the "dsPIC33/PIC24 Family Reference Manual".


The Quadrature Encoder Interface (QEI) module provides the interface to incremental encoders for obtaining mechanical position data. The dsPIC33CK256MP508 family implements two instances of the QEI. Quadrature Encoders, also known as incremental encoders or optical encoders, detect position and speed of rotating motion systems. Quadrature Encoders enable closed-loop control of motor control applications, such as Switched Reluctance (SR) and AC Induction Motors (ACIM).

A typical Quadrature Encoder includes a slotted wheel attached to the shaft of the motor and an emitter/ detector module that senses the slots in the wheel. Typically, three output channels, Phase A (QEAx), Phase B (QEBx) and Index (INDXx), provide information on the movement of the motor shaft, including distance and direction.

The two channels, Phase A (QEAx) and Phase B (QEBx), are typically 90 degrees out of phase with respect to each other. The Phase A and Phase B channels have a unique relationship. If Phase A leads Phase B, the direction of the motor is deemed positive or forward. If Phase A lags Phase B, the direction of the motor is deemed negative or reverse. The Index pulse occurs once per mechanical revolution and is used as a reference to indicate an absolute position. Figure 15-1 illustrates the Quadrature Encoder Interface signals.

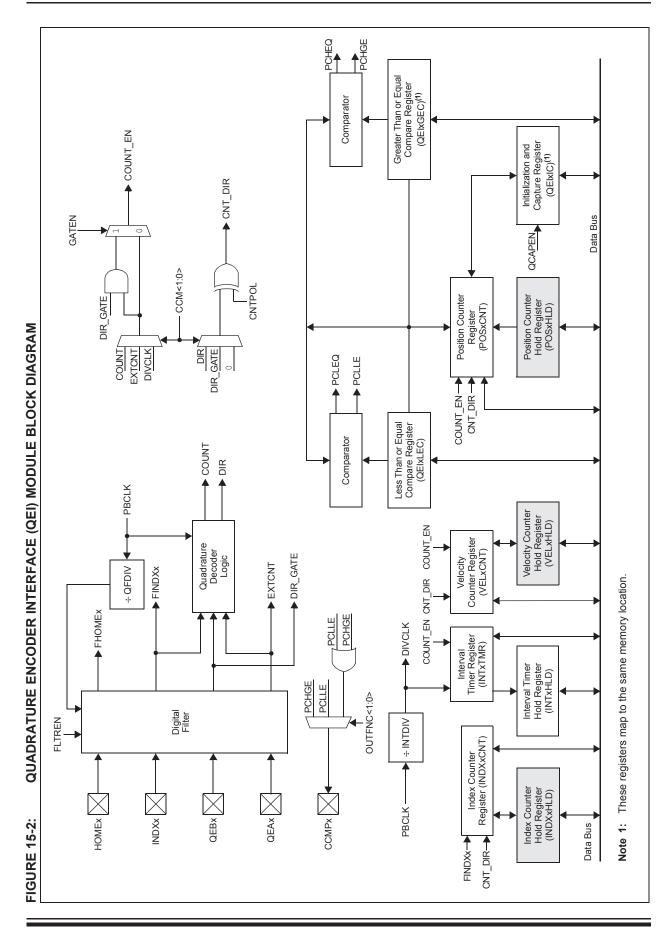
The Quadrature signals from the encoder can have four unique states ('01', '00', '10' and '11') that reflect the relationship between QEAx and QEBx. Figure 15-1 illustrates these states for one count cycle. The order of the states get reversed when the direction of travel changes.

The Quadrature Decoder increments or decrements the 32-bit up/down Position x Counter (POSxCNTH/L) registers for each Change-of-State (COS). The counter increments when QEAx leads QEBx and decrements when QEBx leads QEAx.



## FIGURE 15-1: QUADRATURE ENCODER INTERFACE SIGNALS

 Table 15-1 shows the truth table that describes how


 the Quadrature signals are decoded.

# TABLE 15-1:TRUTH TABLE FOR<br/>QUADRATURE ENCODER

Quad	rent rature ate	Quad	rious rature ate	Action				
QEA	QEB	QEA	QEB					
1	1	1	1	No count or direction change				
1	1	1	0	Count up				
1	1	0	1	Count down				
1	1	0	0	Invalid state change; ignore				
1	0	1	1	Count down				
1	0	1	0	No count or direction change				
1	0	0	1	Invalid state change; ignore				
1	0	0	0	Count up				
0	1	1	1	Count up				
0	1	1	0	Invalid state change; ignore				
0	1	0	1	No count or direction change				
0	1	0	0	Count down				
0	0	1	1	Invalid state change; ignore				
0	0	1	0	Count down				
0	0	0	1	Count up				
0	0	0	0	No count or direction change				

Figure 15-2 illustrates the simplified block diagram of the QEI module. The QEI module consists of decoder logic to interpret the Phase A (QEAx) and Phase B (QEBx) signals, and an up/down counter to accumulate the count. The counter pulses are generated when the Quadrature state changes. The count direction information must be maintained in a register until a direction change is detected. The module also includes digital noise filters, which condition the input signal. The QEI module consists of the following major features:

- Four Input Pins: Two Phase Signals, an Index Pulse and a Home Pulse
- Programmable Digital Noise Filters on Inputs
- Quadrature Decoder providing Counter Pulses and Count Direction
- Count Direction Status
- 4x Count Resolution
- Index (INDXx) Pulse to Reset the Position Counter
- General Purpose 32-Bit Timer/Counter mode
- · Interrupts generated by QEI or Counter Events
- 32-Bit Velocity Counter
- 32-Bit Position Counter
- 32-Bit Index Pulse Counter
- 32-Bit Interval Timer
- 32-Bit Position Initialization/Capture Register
- 32-Bit Compare Less Than and Greater Than Registers
- External Up/Down Count mode
- · External Gated Count mode
- External Gated Timer mode
- Interval Timer mode



# dsPIC33CK256MP508 FAMILY

© 2017-2018 Microchip Technology Inc.

## 15.1 QEI Control and Status Registers

#### REGISTER 15-1: QEIXCON: QEIX CONTROL REGISTER

R/W-0	) U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
QEIEN	ı —	QEISIDL	PIMOD2 ^(1,5)	PIMOD1 ^(1,5)	PIMOD0 ^(1,5)	IMV1 ⁽²⁾	IMV0 ⁽²⁾	
bit 15				•			bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	INTDIV2 ⁽³⁾	INTDIV1 ⁽³⁾	INTDIV0 ⁽³⁾	CNTPOL	GATEN	CCM1	CCM0	
bit 7							bit 0	
Logondy								
Legend: R = Read	ahle hit	W = Writable	hit	II = I Inimplen	nented bit, read	l as 'N'		
-n = Value		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	NOWD	
					arco		IOWIT	
bit 15	QEIEN: Quad	drature Encode	r Interface Mod	lule Enable bit				
	1 = Module c	ounters are ena	abled					
	0 = Module c	ounters are dis	abled, but SFR	s can be read	or written			
bit 14	Unimplemen	ted: Read as '	0'					
bit 13		I Stop in Idle M						
			eration when d		le mode			
h:+ 40 40		•	ation in Idle mod		h :+- (1.5)			
bit 12-10			nter Initialization				(4)	
			for position cou for position cou		index event re	sets the positio	on counter "	
			ounter when the		iter equals the	QEIxGEC regis	ster	
			fter Home ever					
			r Home event i					
			nt initializes the			s of QEIxIC reg	jister	
			ent resets the p es not affect the					
bit 9-8		dex Match Valu			.01			
			nen QEBx = 1 a	and QEAx = $1$				
	10 = Index m	atch occurs wh	nen QEBx = 1 a	ind QEAx = 0				
	01 = Index m	atch occurs wh	nen QEBx = 0 a	Ind QEAx = 1				
	00 = Index m	atch occurs wh	nen QEBx = 0 a	ind QEAx = 0				
bit 7	Unimplemen	ted: Read as '	0'					
Note 1:	When CCMx = 10 ignored.	0 or CCMx = 1	1, all of the QE	l counters oper	ate as timers a	nd the PIMOD	<2:0> bits are	
2:	When CCMx = 00 POSxCNTL regis		nd QEBx values	s match the Ind	lex Match Value	e (IMV), the PC	SxCNTH and	
3:	The selected cloc	ck rate should b	e at least twice	the expected	maximum quad	Irature count ra	ate.	
4.	Not all devices as	t all devises support this mode						

- **4:** Not all devices support this mode.
- **5:** The QCAPEN and HCAPEN bits must be cleared during PIMODx Modes 2 through 7 to ensure proper functionality. Not all devices support HCAPEN.

#### REGISTER 15-1: QEIXCON: QEIX CONTROL REGISTER (CONTINUED)

bit 6-4	INTDIV<2:0>: Timer Input Clock Prescale Select bits ⁽³⁾ (interval timer, main timer (position counter), velocity counter and Index counter internal clock divider select) 111 = 1:256 prescale value 110 = 1:64 prescale value 101 = 1:32 prescale value 100 = 1:16 prescale value 011 = 1:8 prescale value 010 = 1:4 prescale value 011 = 1:2 prescale value 001 = 1:1 prescale value
bit 3	CNTPOL: Position and Index Counter/Timer Direction Select bit
	<ul> <li>1 = Counter direction is negative unless modified by external up/down signal</li> <li>0 = Counter direction is positive unless modified by external up/down signal</li> </ul>
bit 2	GATEN: External Count Gate Enable bit
	<ul> <li>1 = External gate signal controls position counter operation</li> <li>0 = External gate signal does not affect position counter operation</li> </ul>
bit 1-0	CCM<1:0>: Counter Control Mode Selection bits
	<ul> <li>11 = Internal Timer mode</li> <li>10 = External Clock Count with External Gate mode</li> <li>01 = External Clock Count with External Up/Down mode</li> <li>00 = Quadrature Encoder mode</li> </ul>
Note 1:	When CCMx = 10 or CCMx = 11, all of the QEI counters operate as timers and the PIMOD<2:0> bits are ignored.
2:	When CCMx = 00, and QEAx and QEBx values match the Index Match Value (IMV), the POSxCNTH and POSxCNTL registers are reset.
3:	The selected clock rate should be at least twice the expected maximum quadrature count rate.

- **4:** Not all devices support this mode.
- **5:** The QCAPEN and HCAPEN bits must be cleared during PIMODx Modes 2 through 7 to ensure proper functionality. Not all devices support HCAPEN.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QCAPEN	FLTREN	QFDIV2	QFDIV1	QFDIV0	OUTFNC1	OUTFNC0	SWPAB
bit 15	•						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R-x	R-x	R-x	R-x
HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA
bit 7				TIOME	INDEX	QLD	bit C
Legend:							
R = Readable	e bit	W = Writable	oit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	QCAPEN: QE	Elx Position Co	unter Input Ca	pture Enable b	it		
		• •		• •	capture event position captur	(HCAPEN must	be cleared)
bit 14		Ax/QEBx/INDX	•		•	e event	
	1 = Input pin o	digital filter is ei digital filter is di	nabled				
bit 13-11		•		,	Iter Clock Divid	e Select bits	
	111 = 1:256 c 110 = 1:64 cl 101 = 1:32 cl 100 = 1:16 cl 011 = 1:8 clo 010 = 1:4 clo 001 = 1:2 clo	clock divide ock divide ock divide ock divide ck divide ck divide ck divide ck divide		Digital input i			
bit 10-9	000 = 1:1 clo	ck alvide I>: QElx Modul	e Output Func	tion Mode Sele	ect hits		
	11 = The QEI 10 = The QEI	CMPx pin goes CMPx pin goes CMPx pin goes	high when Po high when Po	DSxCNT <u>&lt;</u> QEI DSxCNT <u>&lt;</u> QEI	IxLEC or POSx IxLEC	CNT <u>&gt;</u> QEIxGE	С
bit 8	SWPAB: Swa	ap QEAx and Q	EBx Inputs bit				
	1 = QEAx and	d QEBx are swa d QEBx are not	apped prior to		coder logic		
bit 7	HOMPOL: HO	OMEx Input Pol	arity Select bit	:			
	1 = Input is in 0 = Input is no						
bit 6	•	Xx Input Polari	ty Select bit				
	1 = Input is in 0 = Input is no	verted	,				
bit 5		EBx Input Polar verted	ty Select bit				
bit 4	<b>QEAPOL:</b> QE 1 = Input is in 0 = Input is no		ity Select bit				
bit 3	HOME: Status	s of HOMEx Inp logic '1' if the H	OMPOL bit is	set to '0'; pin is	at logic '0' if th	e HOMPOL bit e HOMPOL bit	

## REGISTER 15-2: QEIxIOC: QEIx I/O CONTROL REGISTER

#### REGISTER 15-2: QEIxIOC: QEIx I/O CONTROL REGISTER (CONTINUED)

bit 2	INDEX: Status of INDXx Input Pin After Polarity Control bit (read-only)
	<ul> <li>1 = Pin is at logic '1' if the IDXPOL bit is set to '0'; pin is at logic '0' if the IDXPOL bit is set to '1'</li> <li>0 = Pin is at logic '0' if the IDXPOL bit is set to '0'; pin is at logic '1' if the IDXPOL bit is set to '1'</li> </ul>
bit 1	QEB: Status of QEBx Input Pin After Polarity Control and SWPAB Pin Swapping bit (read-only)
	<ul> <li>1 = Physical pin, QEBx, is at logic '1' if the QEBPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEBx, is at logic '0' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '0' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '0' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1'</li> <li>0 = Physical pin, QEBx, is at logic '0' if the QEBPOL bit is set to '0' and the SWPAB bit is set to '0';</li> </ul>
	physical pin, QEBx, is at logic 0° if the QEBPOL bit is set to 0° and the SWPAB bit is set to 0°; physical pin, QEAx, is at logic 0° if the QEBPOL bit is set to 0° and the SWPAB bit is set to 0°; physical pin, QEAx, is at logic 0° if the QEBPOL bit is set to 0° and the SWPAB bit is set to 1°; physical pin, QEAx, is at logic 1° if the QEBPOL bit is set to 1° and the SWPAB bit is set to 1°;
bit 0	QEA: Status of QEAx Input Pin After Polarity Control and SWPAB Pin Swapping bit (read-only)
	<ul> <li>1 = Physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '0' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEBx, is at logic '1' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '1'; physical pin, QEBx, is at logic '0' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '1'</li> <li>0 = Physical pin, QEAx, is at logic '0' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '0' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0';</li> </ul>
	physical pin, QEBx, is at logic '0' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '1'; physical pin, QEBx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '1'

#### REGISTER 15-3: QEIXIOCH: QEIX I/O CONTROL HIGH REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15	•	•	•	•		•	bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	—	—	—	—	_	—	HCAPEN

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1 Unimplemented: Read as '0'

bit 7

bit 0 HCAPEN: Position Counter Input Capture by Home Event Enable bit 1 = HOMEx input event (positive edge) triggers a position capture event 0 = HOMEx input event (positive edge) does not trigger a position capture event

**Note 1:** This register is not present on all devices.

bit 0

U-0	U-0	HS/R/C-0	R/W-0	HS/R/C-0	R/W-0	HS/R/C-0	R/W-0
_	—	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN
bit 15							bit 8
HS/R/C-0	R/W-0	HS/R/C-0	R/W-0	HS/R/C-0	R/W-0	HS/R/C-0	R/W-0
PCIIRQ ⁽¹⁾	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN
bit 7							bit 0
Legend:		C = Clearable	bit	HS = Hardwa	re Settable bit		
R = Readable	e bit	W = Writable	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-14	-	ited: Read as '0					
bit 13		Position Counter	er Greater Tha	n Compare Sta	tus bit		
		$T \ge QEIxGEC$ T < QEIxGEC					
bit 12			r Groater The	n Compara Inta	rrunt Enchla h	it	
	1 = Interrupt i	Position Counte	i Greater Mar	r compare mue	mupi ⊏nable b	it.	
	0 = Interrupt i						
bit 11		Position Counte	er Less Than C	ompare Status	bit		
	1 = POSxCN						
	0 = POSxCN	T > QEIxLEC					
bit 10		Position Counte	r Less Than C	ompare Interru	pt Enable bit		
	1 = Interrupt i						
bit 9	0 = Interrupt i		or Overflow Sta	tuc bit			
DIL 9	1 = Overflow	Position Counter	er Overflow Sta	ILUS DIL			
		ow has occurred	b				
bit 8		Position Counte		errupt Enable b	it		
	1 = Interrupt i	is enabled		·			
	0 = Interrupt i						
bit 7		ition Counter (H		ation Process	Complete Statu	us bit ⁽¹⁾	
		T was reinitializ					
bit 6		T was not reinit		ation Process (	Complete Inter	runt Enchla hit	
bit 6		tion Counter (H	oming) mitializ	auon Process (		iupt ⊏nable blt	
	1 = Interrupt i 0 = Interrupt i						
bit 5	-	Velocity Counte	r Overflow Stat	tus bit			
	1 = Overflow	-					
	0 = No overflo	ow has occurre	b				
bit 4		Velocity Counte	r Overflow Inte	rrupt Enable bi	t		
	1 = Interrupt i 0 = Interrupt i						
bit 3	-	atus Flag for Ho	me Event Stati	us bit			
		ent has occurre					
		event has occu					
		anly annliaghle			., .		

## REGISTER 15-4: QEIXSTAT: QEIX STATUS REGISTER

**Note 1:** This status bit is only applicable to PIMOD<2:0> modes, '011' and '100'.

#### REGISTER 15-4: QEIXSTAT: QEIX STATUS REGISTER (CONTINUED)

- bit 2 HOMIEN: Home Input Event Interrupt Enable bit
  - 1 = Interrupt is enabled0 = Interrupt is disabled
- bit 1 IDXIRQ: Status Flag for Index Event Status bit
  - 1 = Index event has occurred
  - 0 = No Index event has occurred
- bit 0 IDXIEN: Index Input Event Interrupt Enable bit
  - 1 = Interrupt is enabled
  - 0 = Interrupt is disabled
- Note 1: This status bit is only applicable to PIMOD<2:0> modes, '011' and '100'.

## REGISTER 15-5: POSxCNTL: POSITION x COUNTER REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSC	NT<15:8>			
bit 15							bit 8
<b></b>							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSC	CNT<7:0>			
bit 7							bit 0
Logondu							
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplem	ented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 POSCNT<15:0>: Low Word Used to Form 32-Bit Position Counter Register (POSxCNT) bits

## REGISTER 15-6: POSxCNTH: POSITION x COUNTER REGISTER HIGH

R/W-0	R/W-0	R/W-0				-
	10.44 0	F(/ V V-U	R/W-0	R/W-0	R/W-0	R/W-0
		POSCI	NT<31:24>			
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		POSCI	NT<23:16>			
						bit 0
	W = Writable bi	it	U = Unimplem	ented bit, rea	d as '0'	
2	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkr	nown
	R/W-0	W = Writable bi	R/W-0 R/W-0 POSCM W = Writable bit	R/W-0 R/W-0 R/W-0 POSCNT<23:16> W = Writable bit U = Unimplem	R/W-0     R/W-0     R/W-0       POSCNT<23:16>       W = Writable bit     U = Unimplemented bit, real	R/W-0       R/W-0       R/W-0       R/W-0         POSCNT<23:16>       W = Writable bit       U = Unimplemented bit, read as '0'

bit 15-0 **POSCNT<31:16>:** High Word Used to Form 32-Bit Position Counter Register (POSxCNT) bits

## REGISTER 15-7: POSxHLD: POSITION x COUNTER HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSH	ILD<15:8>			
bit 15							bit 8
r							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POS	HLD<7:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	it	U = Unimplem	ented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							

bit 15-0 POSHLD<15:0>: Hold Register for Reading/Writing Position x Counter High Word Register (POSxCNTH) bits

## REGISTER 15-8: VELxCNT: VELOCITY x COUNTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				NT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELC	NT<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown

bit 15-0 VELCNT<15:0>: Velocity Counter bits

## REGISTER 15-9: VELxCNTH: VELOCITY x COUNTER REGISTER HIGH⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELC	NT<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELC	NT<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
•							

bit 15-0 VELCNT<31:16>: Velocity Counter bits

Note 1: This register is not present on all devices.

x = Bit is unknown

## REGISTER 15-10: VELxHLD: VELOCITY x COUNTER HOLD REGISTER⁽¹⁾

Legend:							
bit 7							bit 0
			VELHL	_D<7:0>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
			VELHL	D<15:8>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

'0' = Bit is cleared

bit 15-0 VELHLD<15:0>: Hold for Reading/Writing Velocity Counter Register (VELxCNT) bits

**Note 1:** This register is not present on all devices.

'1' = Bit is set

-n = Value at POR

## REGISTER 15-11: INTxTMRL: INTERVAL x TIMER REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTN	/IR<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTT	MR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 INTTMR<15:0>: Low Word Used to Form 32-Bit Interval Timer Register (INTxTMR) bits

#### REGISTER 15-12: INTxTMRH: INTERVAL x TIMER REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		INTTM	IR<31:24>			
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		INTTM	IR<23:16>			
						bit 0
bit	W = Writable	bit	U = Unimplem	nented bit, rea	ıd as '0'	
OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
	R/W-0	R/W-0 R/W-0 bit W = Writable	INTTN R/W-0 R/W-0 R/W-0 INTTN bit W = Writable bit	INTTMR<31:24>           R/W-0         R/W-0           INTTMR<23:16>           bit         W = Writable bit         U = Unimplem	INTTMR<31:24>           R/W-0         R/W-0         R/W-0           INTTMR<23:16>         INTTMR<23:16>	INTTMR<31:24>           R/W-0         R/W-0         R/W-0         R/W-0           INTTMR<23:16>         INTTMR<23:16>

bit 15-0 INTTMR<31:16>: High Word Used to Form 32-Bit Interval Timer Register (INTxTMR) bits

#### REGISTER 15-13: INTXxHLDL: INTERVAL x TIMER HOLD REGISTER LOW

-n = Value at F	POR	'1' = Bit is set	-	'0' = Bit is clea		x = Bit is unkr	nown
R = Readable	bit	W = Writable bi	t	U = Unimplem	ented bit. rea	d as '0'	
Legend:							
bit 7							bit 0
			INTH	LD<7:0>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
h:+ 45				_D <10.0 ²			h:t 0
			INTHI	_D<15:8>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-0 INTHLD<15:0>: Low Word Used to Form 32-Bit Interval Timer Hold Register (INTxHLD) bits

#### REGISTER 15-14: INTXxHLDH: INTERVAL x TIMER HOLD REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTHL	D<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTHL	D<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 INTHLD<31:16>: High Word Used to Form 32-Bit Interval Timer Hold Register (INTxHLD) bits

## REGISTER 15-15: INDXxCNTL: INDEX x COUNTER REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXC	NT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDX	CNT<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
-							

bit 15-0 INDXCNT<15:0>: Low Word Used to Form 32-Bit Index x Counter Register (INDXxCNT) bits

## REGISTER 15-16: INDXxCNTH: INDEX x COUNTER REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		INDXC	NT<31:24>			
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		INDXC	NT<23:16>			
						bit 0
pit	W = Writable I	bit	U = Unimplem	ented bit, rea	id as '0'	
OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	R/W-0	R/W-0 R/W-0	INDXC R/W-0 R/W-0 INDXC Dit W = Writable bit	INDXCNT<31:24>           R/W-0         R/W-0           INDXCNT<23:16>           Dit         W = Writable bit           U = Unimplem	INDXCNT<31:24>           R/W-0         R/W-0         R/W-0           INDXCNT<23:16>           bit         W = Writable bit         U = Unimplemented bit, real	INDXCNT<31:24>           R/W-0         R/W-0         R/W-0         R/W-0           INDXCNT<23:16>         INDXCNT<23:16>

bit 15-0 INDXCNT<31:16>: High Word Used to Form 32-Bit Index x Counter Register (INDXxCNT) bits

#### REGISTER 15-17: INDXxHLD: INDEX x COUNTER HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXH	ILD<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXI	HLD<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	it	U = Unimplem	nented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown

bit 15-0 INDXHLD<15:0>: Hold Register for Reading/Writing Index x Counter High Word Register (INDXxCNTH) bits

#### REGISTER 15-18: QEIxICL: QEIx INITIALIZATION/CAPTURE REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEII	C<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEI	IC<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplem	ented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 **QEIIC<15:0>:** Low Word Used to Form 32-Bit Initialization/Capture Register (QEIxIC) bits

#### REGISTER 15-19: QEIxICH: QEIx INITIALIZATION/CAPTURE REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEII	C<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEII	C<23:16>			
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, rea	id as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 QEIIC<31:16>: High Word Used to Form 32-Bit Initialization/Capture Register (QEIxIC) bits

## REGISTER 15-20: QEIxLECL: QEIx LESS THAN OR EQUAL COMPARE REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEILE	EC<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIL	EC<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-0 **QEILEC<15:0>:** Low Word Used to Form 32-Bit Less Than or Equal Compare Register (QEIxLEC) bits

#### REGISTER 15-21: QEIxLECH: QEIx LESS THAN OR EQUAL COMPARE REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEILE	C<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEILE	C<23:16>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		it	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-0 **QEILEC<31:16>:** High Word Used to Form 32-Bit Less Than or Equal Compare Register (QEIxLEC) bits

## REGISTER 15-22: QEIXGECL: QEIX GREATER THAN OR EQUAL COMPARE REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIG	EC<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIG	EC<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable		bit	U = Unimplemented bit, rea		ad as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-0 **QEIGEC<15:0>:** Low Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEIxGEC) bits

#### REGISTER 15-23: QEIXGECH: QEIX GREATER THAN OR EQUAL COMPARE REGISTER HIGH

R/W-0						
FV/VV-U	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		QEIGE	EC<31:24>			
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		QEIGE	EC<23:16>			
						bit 0
R = Readable bit W = Writable bit		:	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is s			'0' = Bit is cleared		x = Bit is unknown	
		W = Writable bit	R/W-0 R/W-0 QEIGE W = Writable bit	QEIGEC<23:16> W = Writable bit U = Unimpleme	R/W-0       R/W-0       R/W-0         QEIGEC<23:16>         W = Writable bit       U = Unimplemented bit, real	R/W-0       R/W-0       R/W-0       R/W-0         QEIGEC<23:16>       W = Writable bit       U = Unimplemented bit, read as '0'

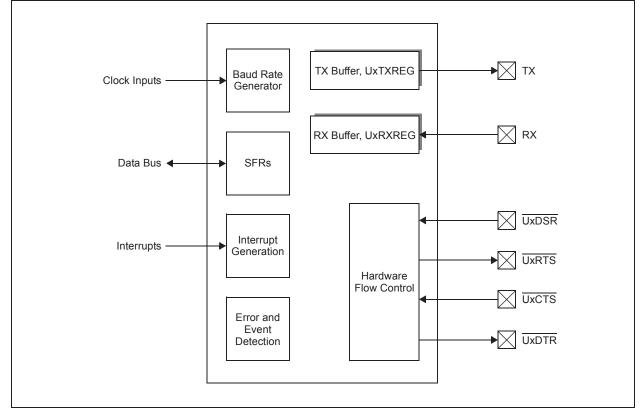
bit 15-0 QEIGEC<31:16>: High Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEIxGEC) bits

## 16.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Multiprotocol Universal Asynchronous Receiver Transmitter (UART) Module" (www.microchip.com/DS70005288) in the "dsPIC33/PIC24 Family Reference Manual".

The Universal Asynchronous Receiver Transmitter (UART) is a flexible serial communication peripheral used to interface dsPIC[®] microcontrollers with other equipment, including computers and peripherals. The UART is a full-duplex, asynchronous communication channel that can be used to implement protocols, such as RS-232 and RS-485. The UART also supports the following hardware extensions:

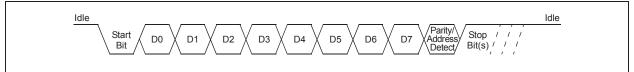
- LIN/J2602
- IrDA[®]
- Direct Matrix Architecture (DMX)
- Smart Card


The primary features of the UART are:

- Full or Half-Duplex Operation
- Up to 8-Deep TX and RX First In, First Out (FIFO) Buffers
- 8-Bit or 9-Bit Data Width
- · Configurable Stop Bit Length
- Flow Control
- Auto-Baud Calibration
- Parity, Framing and Buffer Overrun Error Detection
- Address Detect
- Break Transmission
- Transmit and Receive Polarity Control
- Manchester Encoder/Decoder
- · Operation in Sleep mode
- Wake from Sleep on Sync Break Received
   Interrupt

## 16.1 Architectural Overview

The UART transfers bytes of data, to and from device pins, using First-In First-Out (FIFO) buffers up to eight bytes deep. The status of the buffers and data is made available to user software through Special Function Registers (SFRs). The UART implements multiple interrupt channels for handling transmit, receive and error events. A simplified block diagram of the UART is shown in Figure 16-1.






#### 16.2 Character Frame

A typical UART character frame is shown in Figure 16-2. The Idle state is high with a 'Start' condition indicated by a falling edge. The Start bit is followed by the number of data, parity/address detect and Stop bits defined by the MOD<3:0> (UxMODE<3:0>) bits selected.





#### 16.3 Data Buffers

Both transmit and receive functions use buffers to store data shifted to/from the pins. These buffers are FIFOs and are accessed by reading the SFRs, UxTXREG and UxRXREG, respectively. Each data buffer has multiple flags associated with its operation to allow software to read the status. Interrupts can also be configured based on the space available in the buffers. The transmit and receive buffers can be cleared and their pointers reset using the associated TX/RX Buffer Empty Status bits, UTXBE (UxSTAH<5>) and URXBE (UxSTAH<1>).

#### 16.4 Protocol Extensions

The UART provides hardware support for LIN/J2602, IrDA[®], DMX and smart card protocol extensions to reduce software overhead. A protocol extension is enabled by writing a value to the MOD<3:0> (UxMODE<3:0>) selection bits and further configured using the UARTx Timing Parameter registers, UxP1 (Register 16-9), UxP2 (Register 16-10), UxP3 (Register 16-11) and UxP3H (Register 16-12). Details regarding operation and usage are discussed in their respective chapters. Not all protocols are available on all devices. Please refer to the specific device data sheet for availability.

# 16.5 UART Control Registers

#### REGISTER 16-1: UxMODE: UARTx CONFIGURATION REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	HC/R/W-0 ⁽¹⁾				
UARTEN	_	USIDL	WAKE	RXBIMD	—	BRKOVR	UTXBRK				
bit 15			L	•			bit 8				
R/W-0	HC/R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
BRGH	ABAUD	UTXEN	URXEN	MOD3	MOD2	MOD1	MOD0				
bit 7							bit C				
Legend:		HC = Hardwar	e Clearable bit	HS = Hardwar							
R = Readable	bit	W = Writable I	oit	U = Unimplen	nented bit, rea	d as '0'					
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown				
bit 15	UARTEN: UART Enable bit										
		eady to transm		rs and counters	are reset: regi	sters are reada	ble and writable				
bit 14		ted: Read as '(									
bit 13	USIDL: UART Stop in Idle Mode bit										
	1 = Discontinues module operation when device enters Idle mode										
	0 = Continues module operation in Idle mode										
bit 12	WAKE: Wake-up Enable bit										
	1 = Module will continue to sample the RX pin – interrupt generated on falling edge, bit cleared in hard- ware on following rising edge: if ABALID is set Auto-Baud Detection (ABD) will begin immediately										
	ware on following rising edge; if ABAUD is set, Auto-Baud Detection (ABD) will begin immediately 0 = RX pin is not monitored nor rising edge detected										
bit 11	<b>RXBIMD:</b> Receive Break Interrupt Mode bit										
	1 = RXBKIF flag when a minimum of 23 (DMX)/11 (asynchronous or LIN/J2602) low bit periods are										
	detected										
	<ul> <li>RXBKIF flag when the Break makes a low-to-high transition after being low for at least 23/11 bit periods</li> </ul>										
bit 10	•	ted: Read as 'd	)'								
bit 9	-			bit							
bit o	BRKOVR: Send Break Software Override bit Overrides the TX Data Line:										
	1 = Makes the TX line active (Output 0 when UTXINV = 0, Output 1 when UTXINV = 1)										
		driven by the s									
bit 8	UTXBRK: UART Transmit Break bit ⁽¹⁾										
	1 = Sends Sync Break on next transmission; cleared by hardware upon completion										
bit 7	0 = Sync Break transmission is disabled or has completed										
	BRGH: High Baud Rate Select bit 1 = High Speed: Baud rate is baudclk/4										
	•	ed: Baud rate is									
bit 6	ABAUD: Auto	-Baud Detect I	Enable bit (read	d-only when MC	)D<3:0> = 1xx	xx)					
	1 = Enables	baud rate meas	surement on th	e next characte		-	ync field (55h)				
		n hardware upo	•	haa aamalata -							
	U = ваиd rate	e measurement	is disabled or	nas completed							

Note 1: R/HS/HC in DMX and LIN mode.

#### REGISTER 16-1: UxMODE: UARTx CONFIGURATION REGISTER (CONTINUED)

- bit 5 UTXEN: UART Transmit Enable bit
  - 1 = Transmit enabled except during Auto-Baud Detection
  - Transmit disabled all transmit counters, pointers and state machines are reset; TX buffer is not flushed, status bits are not reset

#### bit 4 URXEN: UART Receive Enable bit

- 1 = Receive enabled except during Auto-Baud Detection
- Receive disabled all receive counters, pointers and state machines are reset; RX buffer is not flushed, status bits are not reset

#### bit 3-0 MOD<3:0>: UART Mode bits

- Other = Reserved
- 1111 = Smart card
- 1110 = IrDA®
- 1101 = Reserved
- 1100 = LIN Master/Slave
- 1011 = LIN Slave only
- 1010 **= DMX**
- 1001 = Reserved
- 1000 = Reserved
- 0111 = Reserved
- 0110 = Reserved
- 0101 = Reserved
- 0100 = Asynchronous 9-bit UART with address detect, ninth bit = 1 signals address
- 0011 = Asynchronous 8-bit UART without address detect, ninth bit is used as an even parity bit
- 0010 = Asynchronous 8-bit UART without address detect, ninth bit is used as an odd parity bit
- 0001 = Asynchronous 7-bit UART
- 0000 = Asynchronous 8-bit UART

Note 1: R/HS/HC in DMX and LIN mode.

R/W-0	R-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
SLPEN	ACTIVE			BCLKMOD	BCLKSEL1	BCLKSEL0	HALFDPLX			
bit 15					•		bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
RUNOVF	URXINV	STSEL1	STSEL0	C0EN	UTXINV	FLO1	FLO0			
bit 7							bit (			
Legend:										
R = Readable		W = Writable		•	nented bit, read					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown			
L:4 / F			nabla bit							
bit 15		During Sleep E G clock runs dı								
		G clock is turne		leep						
bit 14			0							
	ACTIVE: UART Running Status bit 1 = UART clock request is active (user can not update the UxMODE/UxMODEH registers)									
	0 = UART clock request is not active (user can update the UxMODE/UxMODEH registers)									
bit 13-12	Unimplement	ted: Read as 'C	3							
bit 11	BCLKMOD: Baud Clock Generation Mode Select bit									
		ional Baud Rat cy divide-by-x c		d clock generat	ion (x = 4 or 16	depending on	the BRGH bit)			
bit 10-9	BCLKSEL<1:0>: Baud Clock Source Selection bits									
	11 = AFvco/3									
	10 = Fosc 01 = Reserved									
	00 = Fosc/2 (									
bit 8	HALFDPLX: UART Half-Duplex Selection Mode bit									
	1 = Half-Duplex mode: UxTX is driven as an output when transmitting and tri-stated when TX is Idle									
	0 = Full-Duple	x mode: UxTX	is driven as an	output at all tim	es when both l	JARTEN and L	JTXEN are set			
bit 7		n During Overfl								
	1 = When an Overflow Error (OERR) condition is detected, the RX shifter continues to run so as to									
	remain synchronized with incoming RX data; data is not transferred to UxRXREG when it is fu (i.e., no UxRXREG data is overwritten)									
	0 = When an Overflow Error (OERR) condition is detected, the RX shifter stops accepting new data									
	(Legacy r	node)								
bit 6	URXINV: UART Receive Polarity bit									
		( polarity; Idle s								
bit 5-4	<ul> <li>Input is not inverted; Idle state is high</li> <li>STSEL&lt;1:0&gt;: Number of Stop Bits Selection bits</li> </ul>									
	11 = 2 Stop bits sent, 1 checked at receive									
	10 = 2 Stop bits sent, 2 checked at receive									
		bits sent, 1.5 c		eive						
bit 3	-	t sent, 1 check		amit and Date	ive hit					
011.5	COEN: Enable Legacy Checksum (C0) Transmit and Receive bit									
Site				ksum in LIN mo		RX words in all	other modes			

#### REGISTER 16-2: UXMODEH: UARTX CONFIGURATION REGISTER HIGH

#### REGISTER 16-2: UxMODEH: UARTx CONFIGURATION REGISTER HIGH (CONTINUED)

- bit 2 UTXINV: UART Transmit Polarity bit
  - 1 = Inverts TX polarity; TX is low in Idle state
  - 0 = Output data is not inverted; TX output is high in Idle state
- bit 1-0 **FLO<1:0>:** Flow Control Enable bits (only valid when MOD<3:0> = 0xxx)
  - 11 = Reserved
  - 10 = RTS-DSR (for TX side)/CTS-DTR (for RX side) hardware flow control
  - 01 = XON/XOFF software flow control
  - 00 = Flow control off

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TXMTIE	PERIE	ABDOVE	CERIE	FERIE	RXBKIE	OERIE	TXCIE
bit 15					• •		bit 8
R-1	R-0	HS/R/W-0	HS/R/W-0	R-0	HS/R/W-0	HS/R/W-0	HS/R/W-0
TRMT	PERR	ABDOVF	CERIF	FERR	RXBKIF	OERR	TXCIF
bit 7							bit (
Legend:		HS = Hardwar	e Settable bit				
R = Readabl	le hit	W = Writable		U = Unimpler	mented bit, read	l as '0'	
-n = Value at		'1' = Bit is set	5 TC	'0' = Bit is cle		x = Bit is unki	าดพท
		I - Dit 15 Set			area		IOWIT
bit 15	TXMTIE: Tran	smit Shifter En	npty Interrupt E	Enable bit			
	1 = Interrupt is	s enabled					
	0 = Interrupt is						
bit 14		Error Interrupt	Enable bit				
	1 = Interrupt is						
bit 13	0 = Interrupt is		aquisition Into	rrunt Enchla hi	4		
DIL 15	1 = Interrupt is	to-Baud Rate A		irupt Eriable bi	L		
	0 = Interrupt is						
bit 12	CERIE: Check	ksum Error Inte	rrupt Enable b	it			
	1 = Interrupt is						
	0 = Interrupt is						
bit 11		ng Error Interru	pt Enable bit				
	1 = Interrupt is 0 = Interrupt is						
bit 10	•	eive Break Inte	rrupt Enable b	it			
	1 = Interrupt is						
	0 = Interrupt is	s disabled					
bit 9		ive Buffer Over	flow Interrupt E	Enable bit			
	1 = Interrupt is 0 = Interrupt is						
bit 8		mit Collision In	errunt Enable	bit			
DIL O	1 = Interrupt is			bit			
	0 = Interrupt is						
bit 7	TRMT: Transn	nit Shifter Emp	y Interrupt Flag	g bit (read-only	/)		
			TSR) is empty	(end of last Sto	p bit when STP	MD = 1  or mide	dle of first Stop
		STPMD = 0) Shift Register i	s not empty				
bit 6		Error/Address		ard Frame Inte	errupt Flag bit		
	LIN and Parity				sindprindg sit		
	1 = Parity erro	or detected					
	0 = No parity e						
	Address Mode						
	0 = No addres						
	All Other Mod	<u>es:</u>					
	Not used.						

#### REGISTER 16-3: UxSTA: UARTx STATUS REGISTER

# REGISTER 16-3: UxSTA: UARTx STATUS REGISTER (CONTINUED)

bit 5	<ul> <li>ABDOVF: Auto-Baud Rate Acquisition Interrupt Flag bit (must be cleared by software)</li> <li>1 = BRG rolled over during the auto-baud rate acquisition sequence (must be cleared in software)</li> <li>0 = BRG has not rolled over during the auto-baud rate acquisition sequence</li> </ul>
bit 4	CERIF: Checksum Error Interrupt Flag bit (must be cleared by software) 1 = Checksum error 0 = No checksum error
bit 3	<ul> <li>FERR: Framing Error Interrupt Flag bit</li> <li>1 = Framing Error: Inverted level of the Stop bit corresponding to the topmost character in the buffer; propagates through the buffer with the received character</li> <li>0 = No framing error</li> </ul>
bit 2	<b>RXBKIF:</b> Receive Break Interrupt Flag bit (must be cleared by software) 1 = A Break was received 0 = No Break was detected
bit 1	<b>OERR:</b> Receive Buffer Overflow Interrupt Flag bit (must be cleared by software) 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed
bit 0	<ul> <li>TXCIF: Transmit Collision Interrupt Flag bit (must be cleared by software)</li> <li>1 = Transmitted word is not equal to the received word</li> <li>0 = Transmitted word is equal to the received word</li> </ul>

	UTXISEL2						
14 A F	OTAIOLEE	UTXISEL1	UTXISEL0	—	URXISEL2 ⁽¹⁾	URXISEL1 ⁽¹⁾	URXISEL0 ⁽¹
bit 15							bit 8
HS/R/W-0	R/W-0	R/S-1	R-0	R-1	R-1	R/S-1	R-0
TXWRE	STPMD	UTXBE	UTXBF	RIDLE	XON	URXBE	URXBF
bit 7							bit
Legend:		HS = Hardwar	e Settable bit	S = Settable	e bit		
R = Readable	e bit	W = Writable	bit	U = Unimple	emented bit, read	l as '0'	
n = Value at	POR	'1' = Bit is set		ʻ0' = Bit is cl		x = Bit is unki	nown
bit 15	Unimploment	ad: Dood on fr	,3				
bit 15				alaat hita			
bit 14-12			when there is		ot left in the buffe	er	
					lots or more in th		
					y slots or more in slots in the buffe		empty
bit 11	Unimplement	ed: Read as '0	)'				
bit 10-8	URXISEL<2:0	>: UART Rece	eive Interrupt Se	elect bits ⁽¹⁾			
	111 = Triggers	s receive interr	upt when there	are eight wo	rds in the buffer;	RX buffer is fu	II
					ls or more in the		
ait 7			upt when there Error Status bit	is one word	or more in the bu	Imer	
bit 7	LIN and Parity						
			hen the buffer	was full or wh	en P2<8:0> = 0 (	must be cleare	d by software
	Address Detec	t Mode:					
	by softwar		vhen the buffer	was full or to	P1<8:0> when F	P1x was full (m	ust be cleare
	0 = No error						
	<u>Other Modes:</u> 1 = A new byt 0 = No error	e was written v	when the buffer	was full (mu	st be cleared by	software)	
bit 6	STPMD: Stop	Bit Detection N	/lode bit				
	1 = Triggers R	XIF at the end	of the last Stop		pending on the S	STSEL<1:0> se	ettina) Stop b
bit 5	UTXBE: UAR		-	,			0/ 1
	1 = Transmit b 0 = Transmit b		•	n UTXEN = 0	will reset the TX	FIFO Pointers	and counter
bit 4	UTXBF: UART						
	1 = Transmit b 0 = Transmit b	uffer is full					
bit 3	RIDLE: Receiv						
	1 = UART RX 0 = UART RX	line is in the Id					

#### REGISTER 16-4: UxSTAH: UARTx STATUS REGISTER HIGH

Note 1: The receive watermark interrupt is not set if PERR or FERR is set and the corresponding IE bit is set.

#### REGISTER 16-4: UxSTAH: UARTx STATUS REGISTER HIGH (CONTINUED)

- bit 2 XON: UART in XON Mode bit Only valid when FLO<1:0> control bits are set to XON/XOFF mode. 1 = UART has received XON
  - $\perp$  = UART has received XON
  - 0 = UART has not received XON or XOFF was received
- bit 1 URXBE: UART RX Buffer Empty Status bit
  - 1 = Receive buffer is empty; writing '1' when URXEN = 0 will reset the RX FIFO Pointers and counters
     0 = Receive buffer is not empty
- bit 0 URXBF: UART RX Buffer Full Status bit
  - 1 = Receive buffer is full
  - 0 = Receive buffer is not full
- Note 1: The receive watermark interrupt is not set if PERR or FERR is set and the corresponding IE bit is set.

#### REGISTER 16-5: UxBRG: UARTx BAUD RATE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			BRG	6<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			BRO	G<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		t	U = Unimplem	ented bit, rea	id as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkı	nown	

bit 15 BRG<15:0>: Baud Rate Divisor bits

#### REGISTER 16-6: UxBRGH: UARTx BAUD RATE REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	—	—	BRG<19:16>			
bit 7	÷	•	·				bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4 Unimplemented: Read as '0'

bit 3-0 BRG<19:16>: Baud Rate Divisor bits

## REGISTER 16-7: UXRXREG: UARTX RECEIVE BUFFER REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	_	_		—	—
bit 15							bit 8
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			RXREC	G<7:0>			
bit 7							bit 0
bit 7							51

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **RXREG<7:0>:** Received Character Data bits 7-0

#### REGISTER 16-8: UXTXREG: UARTX TRANSMIT BUFFER REGISTER

W-x	U-0						
LAST	—	—	—	—	—	—	—
bit 15							bit 8

| W-x    |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TXREG7 | TXREG6 | TXREG5 | TXREG4 | TXREG3 | TXREG2 | TXREG1 | TXREG0 |
| bit 7  |        |        |        |        |        |        | bit 0  |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	LAST: Last Byte Indicator for Smart Card Support bit

bit 14-8 Unimplemented: Read as '0'

bit 7-0 TXREG<7:0>: Transmitted Character Data bits 7-0

If the buffer is full, further writes to the buffer are ignored.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0		
_	—	—	—	—	—	_	P1<8>		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			P1<	7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U				U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	nown				
bit 15-9	Unimplemen	ted: Read as '0	,						
bit 8-0	P1<8:0>: Par	ameter 1 bits							
	DMX TX:								
	•	tes to Transmit	<ul> <li>– 1 (not includ</li> </ul>	ling Start code)					
	LIN Master T								
	PID to transm								
	•	s TX with Addre		control into hit	0 (hita $< 7.0 >$ )				
	Smart Card N	ansmit. A '1' is a Iodo:	iutomatically if	Iserted into bit	9 (DIIS < 7.0 >).				
		Counter bits. Thi	s counter is on	erated on the h	it clock whose	neriod is alway	s equal to one		
	ETU (bits<8:0					period to diway			
	Other Modes:	-							
	Not used.								

#### REGISTER 16-9: UxP1: UARTx TIMING PARAMETER 1 REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0		
_	_	—	—	—	—	—	P2<8>		
bit 15		•					bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			P2<	<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unki	nown		
bit 15-9	Unimplemer	nted: Read as '0	3						
bit 8-0	<b>P2&lt;8:0&gt;:</b> Pa	rameter 2 bits							
	DMX RX:								
		number to rece	ive – 1, not in	cluding Start co	de (bits<8:0>).				
	LIN Slave TX		bite < 7.0						
		/tes to transmit (							
		s RX with Addre art matching (bit							
	Smart Card N	÷ .	(3 · 1 · 0 · ).						
		Counter bits. Thi	is counter is o	operated on the	bit clock who	se period is al	ways equal to		
	one ETU (bit					·	5		
	Other Modes	<u>.</u>							
	Not used.								

# REGISTER 16-10: UxP2: UARTx TIMING PARAMETER 2 REGISTER

			-		-				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			P3<	15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			P3•	<7:0>					
bit 7							bit 0		
Legend:									
R = Readab	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-0	P3<15:0>: F	Parameter 3 bits							
	DMX RX:								
		e number to rece	ive – 1, not in	cluding Start cod	le (bits<8:0>).				
	LIN Slave R			-	. ,				
	Number of b	ytes to receive (I	bits<7:0>).						

#### REGISTER 16-11: UxP3: UARTx TIMING PARAMETER 3 REGISTER

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Number of bytes to receive (bits<7:0>). Asynchronous RX: Used to mask the UxP2 address bits; 1 = P2 address bit is used, 0 = P2 address bit is masked off (bits<7:0>). Smart Card Mode: Waiting Time Counter bits (bits<15:0>). Other Modes: Not used.

### REGISTER 16-12: UxP3H: UARTx TIMING PARAMETER 3 REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	_	—	—	—
bit 15		•			•	•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	P3<23:16>						
bit 7							bit 0
Legend:							
R = Readal	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-8	Unimplement	ed: Read as '0	3				
bit 7-0	<b>P3&lt;23:16&gt;:</b> P	arameter 3 Hig	h bits				
	Smart Card M						
	Waiting Time Counter bits (bits<23:16>).						
	Other Modes:						
	Not used.						

## REGISTER 16-13: UxTXCHK: UARTx TRANSMIT CHECKSUM REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—	—	—	—	_	_			
bit 15	·						bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			TXCH	K<7:0>						
bit 7							bit 0			
Legend:										
R = Readab	ole bit	W = Writable	bit	U = Unimplem	U = Unimplemented bit, read as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-8	Unimplemen	ted: Read as '0	)'							
bit 7-0	TXCHK<7:0>	: Transmit Che	cksum bits (ca	Iculated from TX	(words)					
	LIN Modes:									
	C0EN = 1: S	um of all transm	itted data + ad	dition carries, in	cluding PID.					
				dition carries, ex	-					
	LIN Slave:									
	Cleared when	- Brook is dotor	tod							

Cleared when Break is detected.

LIN Master/Slave:

Cleared when Break is detected.

Other Modes:

C0EN = 1: Sum of every byte transmitted + addition carries.

C0EN = 0: Value remains unchanged.

# REGISTER 16-14: UXRXCHK: UARTX RECEIVE CHECKSUM REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—		—	—		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			RXCH	K<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, rea									
-n = Value at POR (1' = Bit is set (0				'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15-8	-	ted: Read as '0							
bit 7-0	RXCHK<7:0>	Receive Che	cksum bits (cal	Iculated from RX	X words)				
	LIN Modes:								
				ion carries, inclu					
	C0EN = 0: Su	im of all receive	ed data + addit	ion carries, excl	luding PID.				
	LIN Slave:								
	Cleared when	Break is deteo	ted.						
	LIN Master/Slave:								
	Cleared when	Break is deteo	ted.						
	Other Modes:								
		im of every byte		ddition carries.					
	COEN = 0: Value remains unchanged								

C0EN = 0: Value remains unchanged.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—	—	—	—	_				
bit 15							bit 8			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0			
		TXRPT1	TXRPT0	CONV	T0PD	PRTCL				
bit 7	7						bit C			
Legend:	ala hit	W = Writable	hit		contod bit roo	d aa '0'				
n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown										
bit 15-6	Unimploment	ad. Pead as '	)'							
bit 5-4	•	Unimplemented: Read as '0' TXRPT<1:0>: Transmit Repeat Selection bits								
DIL 3-4		nit the error by		115						
		nit the error by								
		nit the error by								
		nit the error by								
bit 3	CONV: Logic	Convention Se	lection bit							
	-	gic convention								
	0 = Direct logi	c convention								
bit 2	TOPD: Pull-Do	own Duration fo	or T = 0 Error ⊢	landling bit						
	1 = Two ETU									
	0 = One ETU									
bit 1	PRTCL: Smar	PRTCL: Smart Card Protocol Selection bit								
	1 <b>= T =</b> 1									
	0 = T = 0									
bit 0	Unimplement	ted: Read as '0	)'							

## REGISTER 16-15: UxSCCON: UARTx SMART CARD CONFIGURATION REGISTER

U-0	U-0	HS/R/W-0	HS/R/W-0	U-0	HS/R/W-0	HS/R/W-0	HS/R/W-0		
_	—	RXRPTIF	TXRPTIF	—	BTCIF	WTCIF	GTCIF		
bit 15		- -					bit 8		
U-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0		
0-0	0-0	RXRPTIE	-	0-0	BTCIE	WTCIE	GTCIE		
 bit 7	_	RARPTIE	TXRPTIE	_	BICIE	WICE	bit C		
							DILC		
Legend:		HS = Hardwa	re Settable bit						
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 1E 14	Unimpleme	ated: Dood oo 'o	3						
bit 15-14	-	nted: Read as '0							
bit 13		eceive Repeat In			a haan raaaiyad	five times (for	r rotronomito)		
	0 = Flag is c	ror has persisted leared	alter the same	e character na	s been received	live times (lou	ir retransmits)		
bit 12	-	ansmit Repeat I	nterrupt Flag bi	t					
		r has been dete			per TXRPT<1:0	>			
	0 = Flag is c								
bit 11	Unimpleme	Jnimplemented: Read as '0'							
bit 10	BTCIF: Bloc	BTCIF: Block Time Counter Interrupt Flag bit							
		ne Counter has							
bit 9		ne Counter has ting Time Counte		ı bit					
bit 5		Time Counter ha		jon					
		Fime Counter ha		)					
bit 8	GTCIF: Gua	rd Time Counter	Interrupt Flag	oit					
		me Counter has me Counter has							
bit 7-6	Unimpleme	nted: Read as '0	3						
bit 5	RXRPTIE: R	eceive Repeat I	nterrupt Enable	bit					
		rupt is invoked		error has pe	rsisted after the	e same charac	ter has been		
		I five times (four	retransmits)						
bit 4		ransmit Repeat I	nterrunt Enable	hit					
Dit 4		rupt is invoked w	-		fter the last retra	ansmit per TXF	RPT<1:0> has		
	been co								
	0 = Interrup	t is disabled							
bit 3	Unimpleme	nted: Read as '0	3						
bit 2		k Time Counter		e bit					
		ne Counter inter	•						
bit 1		ne Counter inter ting Time Counter	-						
		Time Counter int	-						
		Fime Counter Int							
bit 0	-	rd Time Counter	-						
		me Counter inte	-						
			rrupt is disabled						

# REGISTER 16-16: UxSCINT: UARTx SMART CARD INTERRUPT REGISTER

# REGISTER 16-17: UXINT: UARTX INTERRUPT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

HS/R/W-0	HS/R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0
WUIF	ABDIF	—	—	—	ABDIE	—	—
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	WUIF: Wake-up Interrupt Flag bit
	1 = Sets when WAKE = 1 and RX makes a '1'-to-'0' transition; triggers event interrupt (must be cleared by software)
	0 = WAKE is not enabled or WAKE is enabled, but no wake-up event has occurred
bit 6	ABDIF: Auto-Baud Completed Interrupt Flag bit
	1 = Sets when ABD sequence makes the final '1'-to-'0' transition; triggers event interrupt (must be cleared by software)
	0 = ABAUD is not enabled or ABAUD is enabled but auto-baud has not completed
bit 5-3	Unimplemented: Read as '0'
bit 2	ABDIE: Auto-Baud Completed Interrupt Enable Flag bit
	1 = Allows ABDIF to set an event interrupt
	0 = ABDIF does not set an event interrupt
bit 1-0	Unimplemented: Read as '0'

NOTES:

# 17.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI) with Audio Codec Support" (www.microchip.com/DS70005136) in the "dsPIC33/PIC24 Family Reference Manual".

The Serial Peripheral Interface (SPI) module is a synchronous serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with the Motorola[®] SPI and SIOP interfaces. All devices in the dsPIC33CK256MP508 family include three SPI modules. On 48, 64 and 80-pin devices, SPI instance SPI2 can work up to 50 MHz speed when selected as a non-PPS pin. The selection is done using the SPI2PIN bit (FDEVOPT<13>). If the bit for SPI2PIN is '1', the PPS pin will be used. When SPI2PIN is '0', the SPI signals are routed to dedicated pins.

The module supports operation in two Buffer modes. In Standard mode, data is shifted through a single serial buffer. In Enhanced Buffer mode, data is shifted through a FIFO buffer. The FIFO level depends on the configured mode.

**Note:** FIFO depth for this device is four (in 8-Bit Data mode).

Variable length data can be transmitted and received, from 2 to 32 bits.

Note: Do not perform Read-Modify-Write operations (such as bit-oriented instructions) on the SPIxBUF register in either Standard or Enhanced Buffer mode.

The module also supports a basic framed SPI protocol while operating in either Master or Slave mode. A total of four framed SPI configurations are supported.

The module also supports Audio modes. Four different Audio modes are available.

- I²S mode
- · Left Justified mode
- Right Justified mode
- PCM/DSP mode

In each of these modes, the serial clock is free-running and audio data is always transferred.

If an audio protocol data transfer takes place between two devices, then usually one device is the Master and the other is the Slave. However, audio data can be transferred between two Slaves. Because the audio protocols require free-running clocks, the Master can be a third-party controller. In either case, the Master generates two free-running clocks: SCKx and LRC (Left, Right Channel Clock/SSx/FSYNC).

The SPI serial interface consists of four pins:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- · SCKx: Shift Clock Input or Output
- SSx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPI module can be configured to operate using two, three or four pins. In the 3-pin mode,  $\overline{SSx}$  is not used. In the 2-pin mode, both SDOx and  $\overline{SSx}$  are not used.

The SPI module has the ability to generate three interrupts reflecting the events that occur during the data communication. The following types of interrupts can be generated:

- 1. Receive interrupts are signalled by SPIxRXIF. This event occurs when:
  - RX watermark interrupt
  - SPIROV = 1
  - SPIRBF = 1
  - SPIRBE = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

- 2. Transmit interrupts are signalled by SPIxTXIF. This event occurs when:
  - TX watermark interrupt
  - SPITUR = 1
  - SPITBF = 1
  - SPITBE = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

- 3. General interrupts are signalled by SPIxGIF. This event occurs when:
  - FRMERR = 1
  - SPIBUSY = 1
  - SRMT = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

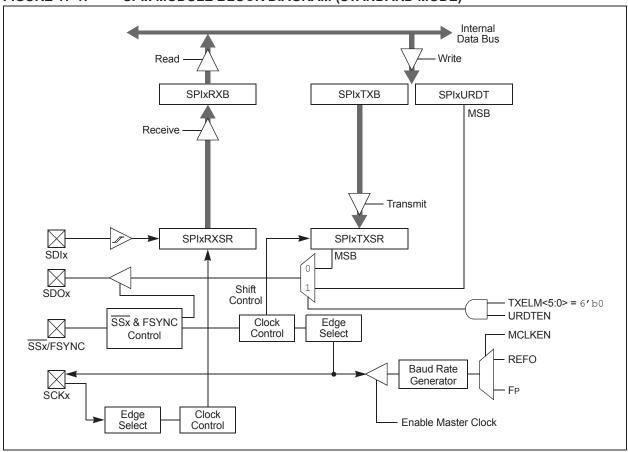
Block diagrams of the module in Standard and Enhanced modes are shown in Figure 17-1 and Figure 17-2.

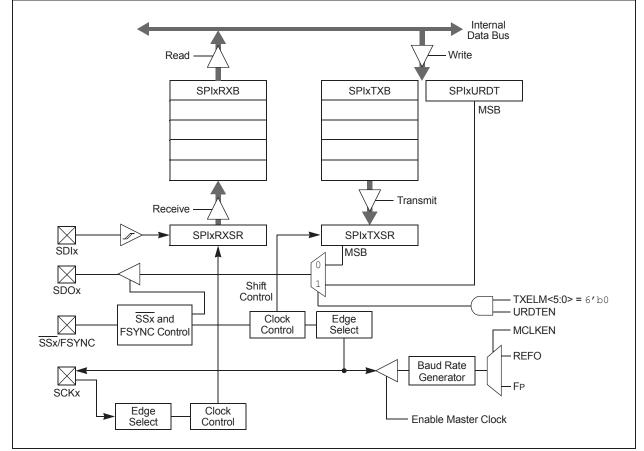
Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1, SPI2 or SPI3. Special Function Registers will follow a similar notation. For example, SPIxCON1 and SPIxCON2 refer to the control registers for any of the three SPI modules. To set up the SPIx module for the Standard Master mode of operation:

- 1. If using interrupts:
  - a) Clear the interrupt flag bits in the respective IFSx register.
  - b) Set the interrupt enable bits in the respective IECx register.
  - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L and SPIxCON1H registers with the MSTEN bit (SPIxCON1L<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTATL<6>).
- 4. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).
- 5. Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers.

To set up the SPIx module for the Standard Slave mode of operation:

- 1. Clear the SPIxBUF registers.
- 2. If using interrupts:
  - a) Clear the SPIxBUFL and SPIxBUFH registers.
  - b) Set the interrupt enable bits in the respective IECx register.
  - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with the MSTEN bit (SPIxCON1L<5>) = 0.
- 4. Clear the SMP bit.
- If the CKE bit (SPIxCON1L<8>) is set, then the SSEN bit (SPIxCON1L<7>) must be set to enable the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTATL<6>).
- Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).





FIGURE 17-1: SPIX MODULE BLOCK DIAGRAM (STANDARD MODE)

To set up the SPIx module for the Enhanced Buffer Master mode of operation:

- 1. If using interrupts:
  - a) Clear the interrupt flag bits in the respective IFSx register.
  - b) Set the interrupt enable bits in the respective IECx register.
  - c) Write the SPIxIP bits in the respective IPCx register.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with MSTEN (SPIxCON1L<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTATL<6>).
- 4. Select Enhanced Buffer mode by setting the ENHBUF bit (SPIxCON1L<0>).
- 5. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).
- Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers.

To set up the SPIx module for the Enhanced Buffer Slave mode of operation:

- 1. Clear the SPIxBUFL and SPIxBUFH registers.
- 2. If using interrupts:
  - a) Clear the interrupt flag bits in the respective IFSx register.
  - b) Set the interrupt enable bits in the respective IECx register.
  - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with the MSTEN bit (SPIxCON1L<5>) = 0.
- 4. Clear the SMP bit.
- 5. If the CKE bit is set, then the SSEN bit must be set, thus enabling the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTATL<6>).
- 7. Select Enhanced Buffer mode by setting the ENHBUF bit (SPIxCON1L<0>).
- Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).



# FIGURE 17-2: SPIx MODULE BLOCK DIAGRAM (ENHANCED MODE)

To set up the SPIx module for Audio mode:

- 1. Clear the SPIxBUFL and SPIxBUFH registers.
- 2. If using interrupts:
  - a) Clear the interrupt flag bits in the respective IFSx register.
  - b) Set the interrupt enable bits in the respective IECx register.
  - a) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with AUDEN (SPIxCON1H<15>) = 1.
- 4. Clear the SPIROV bit (SPIxSTATL<6>).
- 5. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).
- 6. Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers.

## 17.1 Control Registers

#### REGISTER 17-1: SPIx CON1L: SPIx CONTROL REGISTER 1 LOW

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SPIEN	—	SPISIDL	DISSDO	MODE32 ^(1,4)	MODE16 ^(1,4)	SMP	CKE ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽²⁾	CKP	MSTEN	DISSDI	DISSCK	MCLKEN ⁽³⁾	SPIFE	ENHBUF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 SPIEN: SPIx On bit

1 = Enables module

- 0 = Turns off and resets module, disables clocks, disables interrupt event generation, allows SFR modifications
- bit 14 Unimplemented: Read as '0'
- bit 13 SPISIDL: SPIx Stop in Idle Mode bit
  - 1 = Halts in CPU Idle mode
  - 0 = Continues to operate in CPU Idle mode

#### bit 12 **DISSDO:** Disable SDOx Output Port bit

- 1 = SDOx pin is not used by the module; pin is controlled by port function
- 0 = SDOx pin is controlled by the module

#### bit 11-10 MODE32 and MODE16: Serial Word Length Select bits^(1,4)

MODE32	MODE16	AUDEN	Communication
1	X		32-Bit
0	1	0	16-Bit
0	0		8-Bit
1	1		24-Bit Data, 32-Bit FIFO, 32-Bit Channel/64-Bit Frame
1	0	1	32-Bit Data, 32-Bit FIFO, 32-Bit Channel/64-Bit Frame
0	1		16-Bit Data, 16-Bit FIFO, 32-Bit Channel/64-Bit Frame
0	0		16-Bit FIFO, 16-Bit Channel/32-Bit Frame

```
bit 9 SMP: SPIx Data Input Sample Phase bit
```

Master Mode:

1 = Input data is sampled at the end of data output time

0 = Input data is sampled at the middle of data output time

Slave Mode:

Input data is always sampled at the middle of data output time, regardless of the SMP setting.

bit 8 CKE: SPIx Clock Edge Select bit⁽¹⁾

1 = Transmit happens on transition from active clock state to Idle clock state

0 = Transmit happens on transition from Idle clock state to active clock state

#### **Note 1:** When AUDEN (SPIxCON1H<15>) = 1, this module functions as if CKE = 0, regardless of its actual value.

- **2:** When FRMEN = 1, SSEN is not used.
- **3:** MCLKEN can only be written when the SPIEN bit = 0.
- 4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.

#### REGISTER 17-1: SPIx CONTROL REGISTER 1 LOW (CONTINUED)

bit 7		SSEN: Slave Select Enable bit (Slave mode) ⁽²⁾
		1 = $\overline{SSx}$ pin is used by the macro in Slave mode; $\overline{SSx}$ pin is used as the Slave select input 0 = $\overline{SSx}$ pin is not used by the macro ( $\overline{SSx}$ pin will be controlled by the port I/O)
bit 6		CKP: Clock Polarity Select bit
		<ul> <li>1 = Idle state for clock is a high level; active state is a low level</li> <li>0 = Idle state for clock is a low level; active state is a high level</li> </ul>
bit 5		MSTEN: Master Mode Enable bit
		1 = Master mode 0 = Slave mode
bit 4		DISSDI: Disable SDIx Input Port bit
		<ul> <li>1 = SDIx pin is not used by the module; pin is controlled by port function</li> <li>0 = SDIx pin is controlled by the module</li> </ul>
bit 3		DISSCK: Disable SCKx Output Port bit
		<ul> <li>1 = SCKx pin is not used by the module; pin is controlled by port function</li> <li>0 = SCKx pin is controlled by the module</li> </ul>
bit 2		MCLKEN: Master Clock Enable bit ⁽³⁾
		1 = REFO is used by the BRG 0 = FP is used by the BRG
bit 1		SPIFE: Frame Sync Pulse Edge Select bit
		<ul> <li>1 = Frame Sync pulse (Idle-to-active edge) coincides with the first bit clock</li> <li>0 = Frame Sync pulse (Idle-to-active edge) precedes the first bit clock</li> </ul>
bit 0		ENHBUF: Enhanced Buffer Enable bit
		<ul> <li>1 = Enhanced Buffer mode is enabled</li> <li>0 = Enhanced Buffer mode is disabled</li> </ul>
Note	1:	When AUDEN (SPIxCON1H<15>) = 1, this module functions as if CKE = 0, regardless of its actual value.
	2:	When FRMEN = 1, SSEN is not used.

- MCLKEN can only be written when the SPIEN bit = 0.
- 4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
AUDEN ⁽¹	) SPISGNEXT	IGNROV	IGNTUR	AUDMONO ⁽²⁾	URDTEN ⁽³⁾	AUDMOD1 ⁽⁴⁾	AUDMOD0 ⁽⁴⁾			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FRMCNT2	FRMCNT1	FRMCNT0			
bit 7							bit 0			
Legend:										
R = Reada	ıble bit	W = Writable b	bit	U = Unimpleme	ented bit, read	as '0'				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unkr	nown			
bit 15		o Codec Suppo								
				ntrols the directio		•				
		s of their actua		, FRMSYNC = M	SIEN, FRIVIC	N1 < 2:0 > = 0.01	and SIMP = $0$ ,			
		tocol is disable								
bit 14	SPISGNEXT:	SPIx Sign-Exte	end RX FIFO	Read Data Enabl	e bit					
	1 = Data from	1 = Data from RX FIFO is sign-extended								
	0 = Data from	RX FIFO is no	t sign-extende	ed						
bit 13	•	IGNROV: Ignore Receive Overflow bit								
		1 = A Receive Overflow (ROV) is NOT a critical error; during ROV, data in the FIFO is not overwritten								
		by the receive data 0 = A ROV is a critical error that stops SPI operation								
bit 12		ore Transmit Ur		roperation						
	-			critical error and	t data indicate	d by URDTEN	is transmitted			
		1 = A Transmit Underrun (TUR) is NOT a critical error and data indicated by URDTEN is transmitted until the SPIxTXB is not empty								
	0 = A TUR is	a critical error	hat stops SP	l operation						
bit 11	AUDMONO: A	Audio Data For	mat Transmit	bit ⁽²⁾						
			each data wo	rd is transmitted	on both left ar	nd right channel	s)			
	0 = Audio data			(2)						
bit 10		nsmit Underru								
			•	ter during Transn g Transmit Under						
bit 9-8		D>: Audio Proto		<b>,</b>						
bit 9-0	11 = PCM/DS									
			nis module fu	nctions as if SPIF	E = 1, regard	less of its actua	l value			
	01 = Left Just	10 = Right Justified mode: This module functions as if SPIFE = 1, regardless of its actual value 01 = Left Justified mode: This module functions as if SPIFE = 1, regardless of its actual value								
				f SPIFE = 0, rega	ardless of its a	ctual value				
bit 7	<b>FRMEN:</b> Framed SPIx Support bit 1 = Framed SPIx support is enabled (SSx pin is used as the FSYNC input/output)									
		Plx support is e Plx support is o		pin is used as the	e FSYNC inpu	it/output)				
		FIX SUPPOILIS (	IISADIEU							
	AUDEN can only									
	AUDMONO can o	•		EN bit = 0 and is	only valid for	AUDEN = 1.				
	URDTEN is only				alta y de mo					
4:	AUDMOD<1:0> c	can only be writ	ten when the	SPIEN bit = 0 an	ia is only valid	when AUDEN	= 1. when			

#### REGISTER 17-2: SPIxCON1H: SPIx CONTROL REGISTER 1 HIGH

#### REGISTER 17-2: SPIxCON1H: SPIx CONTROL REGISTER 1 HIGH (CONTINUED)

bit 6	FRMSYNC: Frame Sync Pulse Direction Control bit
bit 0	1 = Frame Sync pulse input (Slave)
	0 = Frame Sync pulse output (Master)
bit 5	FRMPOL: Frame Sync/Slave Select Polarity bit
DIL D	
	1 = Frame Sync pulse/Slave select is active-high
	0 = Frame Sync pulse/Slave select is active-low
bit 4	MSSEN: Master Mode Slave Select Enable bit
	<ul> <li>SPIx Slave select support is enabled with polarity determined by FRMPOL (SSx pin is automatically driven during transmission in Master mode)</li> </ul>
	0 = Slave select SPIx support is disabled (SSx pin will be controlled by port I/O)
bit 3	FRMSYPW: Frame Sync Pulse-Width bit
	<ul> <li>1 = Frame Sync pulse is one serial word length wide (as defined by MODE&lt;32,16&gt;/WLENGTH&lt;4:0&gt;)</li> <li>0 = Frame Sync pulse is one clock (SCKx) wide</li> </ul>
bit 2-0	FRMCNT<2:0>: Frame Sync Pulse Counter bits
	Controls the number of serial words transmitted per Sync pulse.
	111 = Reserved
	110 = Reserved
	101 = Generates a Frame Sync pulse on every 32 serial words
	100 = Generates a Frame Sync pulse on every 16 serial words
	011 = Generates a Frame Sync pulse on every 8 serial words
	010 = Generates a Frame Sync pulse on every 4 serial words
	001 = Generates a Frame Sync pulse on every 2 serial words (value used by audio protocols)
	000 = Generates a Frame Sync pulse on each serial word

- **Note 1:** AUDEN can only be written when the SPIEN bit = 0.
  - **2:** AUDMONO can only be written when the SPIEN bit = 0 and is only valid for AUDEN = 1.
  - **3:** URDTEN is only valid when IGNTUR = 1.
  - **4:** AUDMOD<1:0> can only be written when the SPIEN bit = 0 and is only valid when AUDEN = 1. When NOT in PCM/DSP mode, this module functions as if FRMSYPW = 1, regardless of its actual value.

#### REGISTER 17-3: SPIxCON2L: SPIx CONTROL REGISTER 2 LOW

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	_	—	_	—	_
bit 15			1			ı	bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			W	LENGTH<4:0>	1,2)	
bit 7							bit C
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'	
-n = Value a		'1' = Bit is se		'0' = Bit is clea		x = Bit is unkn	own
			-				-
bit 15-5	Unimpleme	ented: Read as	. <b>'</b> ∩'				
bit 4-0		<4:0>: Variable		nite(1,2)			
DIL <del>4</del> -0	11111 = 32		Word Lengtin	5113. 7			
	11111 - 32 11110 = 31						
	11101 = 30						
	11100 = 29						
11011 <b>= 28-bit data</b>							
	11010 <b>= 27</b>	-bit data					
	11001 <b>= 26</b>	-bit data					
	11000 <b>= 25</b>						
	10111 = 24						
	10110 = 23						
	10101 = 22						
	10100 <b>= 21</b> 10011 <b>= 20</b>						
	10011 - 20						
	10001 = 18						
	10000 = 17						
	01111 = 16						
	01110 <b>= 15</b>	-bit data					
	01101 = 14	-bit data					
	01100 <b>= 13</b>						
	01011 = 12						
	01010 = 11						
	01001 = 10						
	01000 = 9-1 00111 = 8-1						
	00110 = 7-1						
	00101 = 6-1						
	00100 <b>= 5-</b>						
	00011 = 4-1						
	00010 = <b>3</b> -I	nit data					
	00010 0.	Jii uala					
	00001 <b>= 2-</b>	oit data		CON1L<11:10>			

- **Note 1:** These bits are effective when AUDEN = 0 only.
  - 2: Varying the length by changing these bits does not affect the depth of the TX/RX FIFO.

U-0	U-0	U-0	HS/R/C-0	HSC/R-0	U-0	U-0	HSC/R-0	
_	—	—	FRMERR	SPIBUSY	—	—	SPITUR ⁽¹⁾	
bit 15							bit 8	
HSC/R-0	HS/R/C-0	HSC/R-1	U-0	HSC/R-1	U-0	HSC/R-0	HSC/R-0	
SRMT	SPIROV	SPIRBE	_	SPITBE	—	SPITBF	SPIRBF	
bit 7							bit 0	
Legend:		C = Clearable bit		U = Unimplemented, read as '0'				
R = Readable bit		W = Writable bit		HSC = Hardware Settable/Clearable bit				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		HS = Hardware Settable bit		
bit 15-13	Unimplemen	ted: Read as '0	)'					
bit 12	FRMERR: SF	Plx Frame Error	Status bit					
		ror is detected						
	0 = No frame error is detected							
bit 11	SPIBUSY: SPIx Activity Status bit							
		currently busy ng transactions						
bit 10-9	Unimplemented: Read as '0'							
hit 8	SPITIR: SPIX Transmit Inderrun Status hit ⁽¹⁾							

#### REGISTER 17-4: SPIx STATL: SPIx STATUS REGISTER LOW

bit 15-13	Unimplemented: Read as '0'
bit 12	FRMERR: SPIx Frame Error Status bit
	1 = Frame error is detected
	0 = No frame error is detected
bit 11	SPIBUSY: SPIx Activity Status bit
	<ul><li>1 = Module is currently busy with some transactions</li><li>0 = No ongoing transactions (at time of read)</li></ul>
bit 10-9	Unimplemented: Read as '0'
bit 8	SPITUR: SPIx Transmit Underrun Status bit ⁽¹⁾
	<ul> <li>1 = Transmit buffer has encountered a Transmit Underrun condition</li> <li>0 = Transmit buffer does not have a Transmit Underrun condition</li> </ul>
bit 7	SRMT: Shift Register Empty Status bit
	<ul><li>1 = No current or pending transactions (i.e., neither SPIxTXB or SPIxTXSR contains data to transmit)</li><li>0 = Current or pending transactions</li></ul>
bit 6	SPIROV: SPIx Receive Overflow Status bit
	<ul> <li>1 = A new byte/half-word/word has been completely received when the SPIxRXB was full</li> <li>0 = No overflow</li> </ul>
bit 5	SPIRBE: SPIx RX Buffer Empty Status bit
	1 = RX buffer is empty 0 = RX buffer is not empty
	Standard Buffer Mode: Automatically set in hardware when SPIxBUF is read from, reading SPIxRXB. Automatically cleared in
	hardware when SPIx transfers data from SPIxRXSR to SPIxRXB.
	Enhanced Buffer Mode: Indicates RXELM<5:0> = 000000.
bit 4	Unimplemented: Read as '0'

**Note 1:** SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the Transmit Underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

#### REGISTER 17-4: SPIx STATL: SPIx STATUS REGISTER LOW (CONTINUED)

- bit 3 SPITBE: SPIx Transmit Buffer Empty Status bit 1 = SPIxTXB is empty 0 = SPIxTXB is not empty Standard Buffer Mode: Automatically set in hardware when SPIx transfers data from SPIxTXB to SPIxTXSR. Automatically cleared in hardware when SPIxBUF is written, loading SPIxTXB. Enhanced Buffer Mode: Indicates TXELM<5:0> = 000000. bit 2 Unimplemented: Read as '0' bit 1 SPITBF: SPIx Transmit Buffer Full Status bit 1 = SPIxTXB is full 0 = SPIxTXB not full Standard Buffer Mode: Automatically set in hardware when SPIxBUF is written, loading SPIxTXB. Automatically cleared in hardware when SPIx transfers data from SPIxTXB to SPIxTXSR. Enhanced Buffer Mode: Indicates TXELM<5:0> = 111111. SPIRBF: SPIx Receive Buffer Full Status bit bit 0 1 = SPIxRXB is full 0 = SPIxRXB is not full Standard Buffer Mode: Automatically set in hardware when SPIx transfers data from SPIxRXSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB. Enhanced Buffer Mode: Indicates RXELM<5:0> = 111111.
- **Note 1:** SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the Transmit Underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

REGISTER 17-5: SPIXSTATH: SPIX STATUS REGISTER HIGH	REGISTER 17-5:	SPIxSTATH: SPIx STATUS REGISTER HIGH
-----------------------------------------------------	----------------	--------------------------------------

U-0	U-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0
_	—	RXELM5 ⁽³⁾	RXELM4 ⁽²⁾	RXELM3 ⁽¹⁾	RXELM2	RXELM1	RXELM0
bit 15							bit 8

U-0	U-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0
—	—	TXELM5 ⁽³⁾	TXELM4 ⁽²⁾	TXELM3 ⁽¹⁾	TXELM2	TXELM1	TXELM0
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RXELM<5:0>:** Receive Buffer Element Count bits (valid in Enhanced Buffer mode)^(1,2,3)

bit 7-6 Unimplemented: Read as '0'

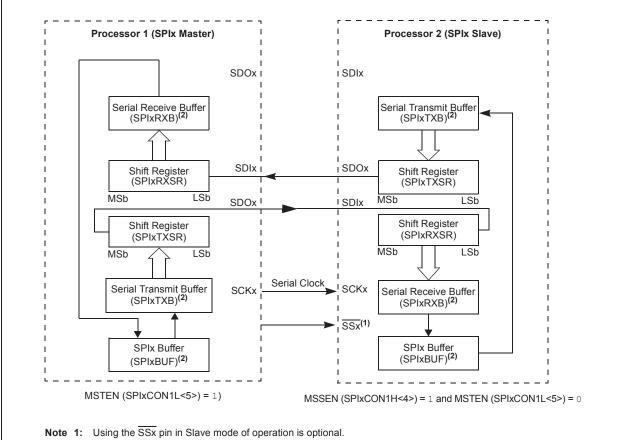
bit 5-0 **TXELM<5:0>:** Transmit Buffer Element Count bits (valid in Enhanced Buffer mode)^(1,2,3)

**Note 1:** RXELM3 and TXELM3 bits are only present when FIFODEPTH = 8 or higher.

2: RXELM4 and TXELM4 bits are only present when FIFODEPTH = 16 or higher.

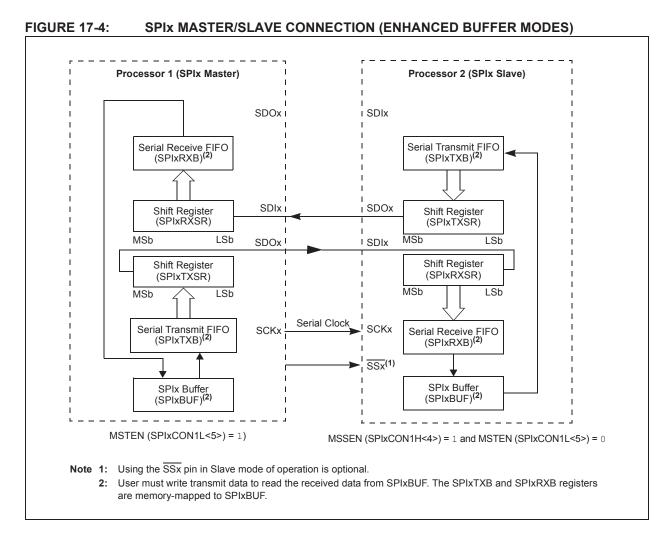
3: RXELM5 and TXELM5 bits are only present when FIFODEPTH = 32.

U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0			
_	_	_	FRMERREN	BUSYEN	_	_	SPITUREN			
bit 15						•	bit 8			
R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0			
SRMTEN	SPIROVEN	SPIRBEN	—	SPITBEN	—	SPITBFEN	SPIRBFEN			
bit 7							bit C			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'				
-n = Value at		'1' = Bit is set		U = Unimplemented bit, read as '0' '0' = Bit is cleared x = Bit is unknown			nown			
bit 15-13	Unimplement	ted: Read as '	0'							
bit 12	FRMERREN:	Enable Interru	pt Events via F	RMERR bit						
	1 = Frame error generates an interrupt event									
		•	nerate an interr	•						
bit 11	<b>BUSYEN:</b> Enable Interrupt Events via SPIBUSY bit 1 = SPIBUSY generates an interrupt event									
			erate an interrup	ot event						
bit 10-9	Unimplement									
bit 8	SPITUREN: Enable Interrupt Events via SPITUR bit									
			R) generates an not generate a							
bit 7	SRMTEN: Enable Interrupt Events via SRMT bit									
	<ul> <li>1 = Shift Register Empty (SRMT) generates interrupt events</li> <li>0 = Shift Register Empty does not generate interrupt events</li> </ul>									
bit 6	SPIROVEN: Enable Interrupt Events via SPIROV bit									
	<ul> <li>1 = SPIx Receive Overflow (ROV) generates an interrupt event</li> <li>0 = SPIx Receive Overflow does not generate an interrupt event</li> </ul>									
bit 5	SPIRBEN: Enable Interrupt Events via SPIRBE bit									
	<ul> <li>1 = SPIx RX buffer empty generates an interrupt event</li> <li>0 = SPIx RX buffer empty does not generate an interrupt event</li> </ul>									
bit 4	Unimplement	ted: Read as '	0'							
bit 3	SPITBEN: Enable Interrupt Events via SPITBE bit									
			oty generates an oty does not ger							
bit 2	Unimplemented: Read as '0'									
bit 1	SPITBFEN: Enable Interrupt Events via SPITBF bit									
	<ul> <li>1 = SPIx transmit buffer full generates an interrupt event</li> <li>0 = SPIx transmit buffer full does not generate an interrupt event</li> </ul>									
bit 0	SPIRBFEN: Enable Interrupt Events via SPIRBF bit									
	<ul> <li>1 = SPIx receive buffer full generates an interrupt event</li> <li>0 = SPIx receive buffer full does not generate an interrupt event</li> </ul>									
	0 = SPIx rece	ive buffer full d	loes not genera	te an interrupt	event					

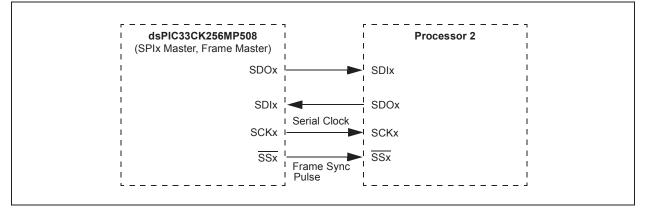

# REGISTER 17-6: SPIxIMSKL: SPIx INTERRUPT MASK REGISTER LOW

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
RXWIE	N —	RXMSK5 ⁽¹⁾	RXMSK4 ^(1,4)	RXMSK3 ^(1,3)	RXMSK2 ^(1,2)	RXMSK1 ⁽¹⁾	RXMSK0 ⁽¹⁾		
bit 15				•			bit 8		
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
TXWIEN	<u> </u>	TXMSK5 ⁽¹⁾	TXMSK4 ^(1,4)	TXMSK3 ^(1,3)	TXMSK2 ^(1,2)	TXMSK1 ⁽¹⁾	TXMSK0 ⁽¹⁾		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
bit 11	0 = Disables	1 = Triggers receive buffer element watermark interrupt when RXMSK<5:0> ≤ RXELM<5:0> 0 = Disables receive buffer element watermark interrupt							
bit 14	•	Unimplemented: Read as '0'							
bit 13-8	<b>RXMSK&lt;5:0&gt;:</b> RX Buffer Mask bits ^(1,2,3,4) RX mask bits; used in conjunction with the RXWIEN bit.								
bit 7		TXWIEN: Transmit Watermark Interrupt Enable bit							
	1 = Triggers	1 = Triggers transmit buffer element watermark interrupt when TXMSK<5:0> = TXELM<5:0> 0 = Disables transmit buffer element watermark interrupt							
bit 6	Unimpleme	Unimplemented: Read as '0'							
bit 5-0	TXMSK<5:0	<b>TXMSK&lt;5:0&gt;:</b> TX Buffer Mask bits ^(1,2,3,4)							
	TX mask bits	; used in conjur	iction with the T	TXWIEN bit.					
Note 1:	Mask values hig this case.	her than FIFOD	EPTH are not	valid. The mod	ule will not trig	ger a match fo	r any value in		

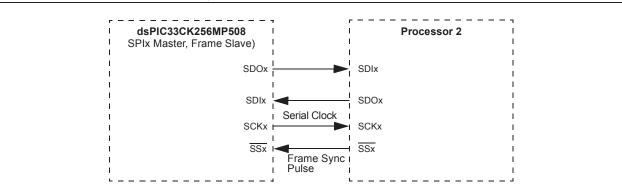
# REGISTER 17-7: SPIxIMSKH: SPIx INTERRUPT MASK REGISTER HIGH


- **2**: RXMSK2 and TXMSK2 bits are only present when FIFODEPTH = 8 or higher.
- 3: RXMSK3 and TXMSK3 bits are only present when FIFODEPTH = 16 or higher.
- 4: RXMSK4 and TXMSK4 bits are only present when FIFODEPTH = 32.

# dsPIC33CK256MP508 FAMILY

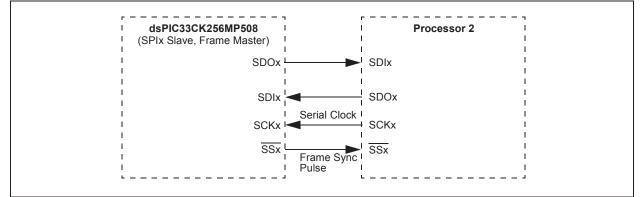



#### FIGURE 17-3: SPIx MASTER/SLAVE CONNECTION (STANDARD MODE)

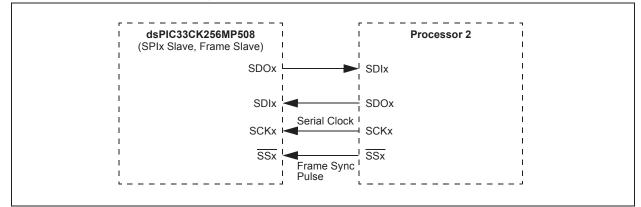

2: User must write transmit data to read the received data from SPIxBUF. The SPIxTXB and SPIxRXB registers are memory-mapped to SPIxBUF.



#### FIGURE 17-5: SPIX MASTER, FRAME MASTER CONNECTION DIAGRAM




# dsPIC33CK256MP508 FAMILY




# FIGURE 17-6: SPIx MASTER, FRAME SLAVE CONNECTION DIAGRAM

#### FIGURE 17-7: SPIx SLAVE, FRAME MASTER CONNECTION DIAGRAM



#### FIGURE 17-8: SPIx SLAVE, FRAME SLAVE CONNECTION DIAGRAM



#### EQUATION 17-1: RELATIONSHIP BETWEEN DEVICE AND SPIX CLOCK SPEED

$$Baud Rate = \frac{FPB}{(2 * (SPIxBRG + 1))}$$

Where:

FPB is the Peripheral Bus Clock Frequency.

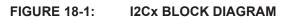
# 18.0 INTER-INTEGRATED CIRCUIT (I²C)

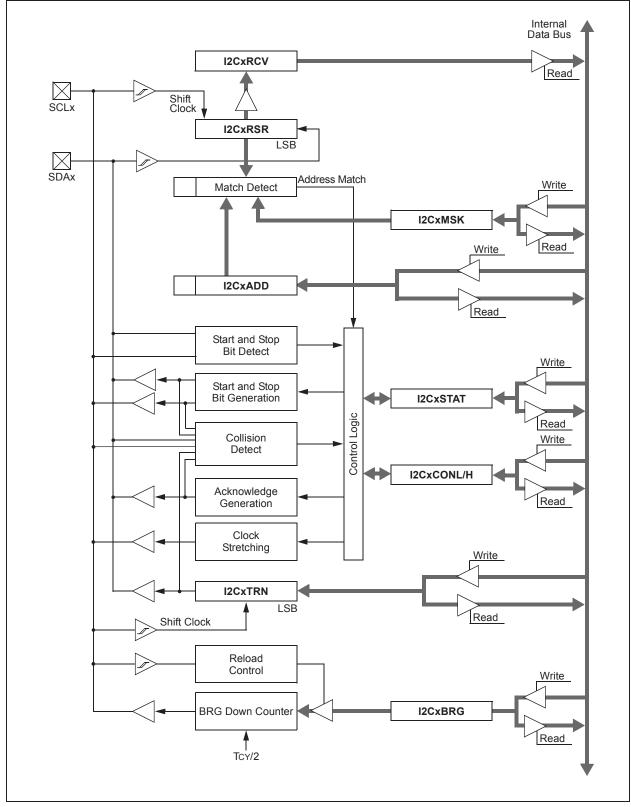
Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. For more information, refer to "Inter-Integrated Circuit (I²C)" (www.microchip.com/DS70000195) in the "dsPIC33/PIC24 Family Reference Manual".

The Inter-Integrated Circuit  $(l^2C)$  module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, display drivers, A/D Converters, etc.

The I²C module supports these features:

- Independent Master and Slave Logic
- · 7-Bit and 10-Bit Device Addresses
- General Call Address as Defined in the  $\ensuremath{\mathsf{I}}^2\ensuremath{\mathsf{C}}$  Protocol
- Clock Stretching to Provide Delays for the Processor to Respond to a Slave Data Request
- Both 100 kHz and 400 kHz Bus Specifications
- Configurable Address Masking
- Multi-Master modes to Prevent Loss of Messages
   in Arbitration
- Bus Repeater mode, Allowing the Acceptance of All Messages as a Slave, regardless of the Address
- Automatic SCL
- · SMBus Compatible Voltage Thresholds


A block diagram of the module is shown in Figure 18-1.


## 18.1 Communicating as a Master in a Single Master Environment

The details of sending a message in Master mode depends on the communication protocol for the device being communicated with. Typically, the sequence of events is as follows:

- 1. Assert a Start condition on SDAx and SCLx.
- 2. Send the I²C device address byte to the Slave with a write indication.
- 3. Wait for and verify an Acknowledge from the Slave.
- 4. Send the first data byte (sometimes known as the command) to the Slave.
- 5. Wait for and verify an Acknowledge from the Slave.
- 6. Send the serial memory address low byte to the Slave.
- 7. Repeat Steps 4 and 5 until all data bytes are sent.
- 8. Assert a Repeated Start condition on SDAx and SCLx.
- 9. Send the device address byte to the Slave with a read indication.
- 10. Wait for and verify an Acknowledge from the Slave.
- 11. Enable Master reception to receive serial memory data.
- 12. Generate an ACK or NACK condition at the end of a received byte of data.
- 13. Generate a Stop condition on SDAx and SCLx.

# dsPIC33CK256MP508 FAMILY





### 18.2 Setting Baud Rate When Operating as a Bus Master

To compute the Baud Rate Generator reload value, use Equation 18-1.

#### EQUATION 18-1: COMPUTING BAUD RATE RELOAD VALUE^(1,2,3,4)

 $I2CxBRG = ((1/FSCL - Delay) \cdot FCY/2) - 2$ 

- **Note 1:** Based on FCY = FOSC/2; Doze mode and PLL are disabled.
  - 2: These clock rate values are for guidance only. The actual clock rate can be affected by various system-level parameters. The actual clock rate should be measured in its intended application.
  - **3:** Typical value of delay varies from 110 ns to 150 ns.
  - 4: I2CxBRG values of 0 to 3 are expressly forbidden. The user should never program the I2CxBRG with a value of 0x0, 0x1, 0x2 or 0x3 as indeterminate results may occur.

### 18.3 Slave Address Masking

The I2CxMSK register (Register 18-4) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2CxMSK register causes the Slave module to respond, whether the corresponding address bit value is a '0' or a '1'. For example, when I2CxMSK is set to '0010000000', the Slave module will detect both addresses, '000000000' and '001000000'.

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the STRICT bit (I2CxCONL<11>).

**Note:** As a result of changes in the I²C protocol, the addresses in Table 18-2 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

Fair	Fact	l2CxB	RG Value
FCY	FSCL	Decimal	Hexadecimal
100 MHz	1 MHz	41	29
100 MHz	400 kHz	116	74
100 MHz	100 kHz	491	1EB
80 MHz	1 MHz	32	20
80 MHz	400 kHz	92	5C
80 MHz	100 kHz	392	188
60 MHz	1 MHz	24	18
60 MHz	400 kHz	69	45
60 MHz	100 kHz	294	126
40 MHz	1 MHz	15	0F
40 MHz	400 kHz	45	2D
40 MHz	100 kHz	195	C3
20 MHz	1 MHz	7	7
20 MHz	400 kHz	22	16
20 MHz	100 kHz	97	61

### TABLE 18-1: I2Cx CLOCK RATES^(1,2)

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

**2:** These clock rate values are for guidance only. The actual clock rate can be affected by various system-level parameters. The actual clock rate should be measured in its intended application.

Slave Address	R/W Bit	Description			
0000 000	0	General Call Address ⁽²⁾			
0000 0000	1	Start Byte			
0000 001	Х	Cbus Address			
0000 01x	Х	Reserved			
0000 1xx	х	HS Mode Master Code			
1111 Oxx	х	0-Bit Slave Upper Byte ⁽³⁾			
1111 1xx	х	Reserved			

### TABLE 18-2: I2Cx RESERVED ADDRESSES⁽¹⁾

Note 1: The address bits listed here will never cause an address match independent of address mask settings.

- 2: This address will be Acknowledged only if GCEN = 1.
- 3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

### 18.4 SMBus Support

The dsPIC33CK256MP508 family devices have support for SMBus through options in the input voltage thresholds. There are two control bits to select one of three options: SMEN (I2CxCONL<8>) and Configuration bit, SMBEN (FDEVOPT<10>). Table 18-3 details the setting of these control bits.

### TABLE 18-3: I²C PIN VOLTAGE THRESHOLD

	SMEN SFR Bit (I2CxCONL<8>)	SMBEN Configuration Bit (FDEVOPT<10>)
I ² C (default)	0	Х
SMBus 2.0	1	0
SMBus 3.0	1	1

### 18.5 Control Registers

### REGISTER 18-1: I2CxCONL: I2Cx CONTROL REGISTER LOW

R/W-0	U-0	HC/R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0		
I2CEN		I2CSIDL	SCLREL ⁽¹⁾	STRICT	A10M	DISSLW	SMEN		
bit 15			•	•	•		bit 8		
R/W-0	R/W-0	R/W-0	HC/R/W-0	HC/R/W-0	HC/R/W-0	HC/R/W-0	HC/R/W-0		
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN		
bit 7							bit		
Legend:	le bit	HC = Hardwar			antad bit yaar				
R = Readab		W = Writable I	DIT		nented bit, read				
n = Value a	IT POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN		
oit 15	12CEN: 12Cx	Enable bit (writa	able from softwa	are only)					
		the I2Cx module		• •	d SCLx pins as	serial port pin	S		
		the I2Cx modul							
pit 14	Unimplemer	nted: Read as 'd	)'						
oit 13	12CSIDL: 120	Cx Stop in Idle M	lode bit						
		ues module ope s module opera			e mode				
oit 12	SCLREL: SCLx Release Control bit (I ² C Slave mode only) ⁽¹⁾ 1 = Releases the SCLx clock								
		0 = Holds the SCLx clock low (clock stretch)							
	If STREN = 1								
		e may write '0' to ning of every SI							
		reception. Harc							
	If STREN =	-			-				
		e may only write							
	-	nsmission. Hard			y Slave addres	s byte receptio	n.		
pit 11		x Strict Reserve							
		served addressir Mode) – The d					sees falling i		
		gory are NACK					sses raining		
	(In Mast	er Mode) – The	device is allowe		addresses with	reserved addr	ess space.		
		d addressing wo		0					
		e Mode) – The ( ere is a match v							
		er Mode) – Rese					an Aor.		
oit 10	•	t Slave Address							
		) is a 10-bit Slav	-						
	0 = I2CxADE	) is a 7-bit Slave	address						
oit 9	DISSLW: Sle	w Rate Control	Disable bit						
		e control is disat			•	disabled for 1	MHz mode)		
	0 = Slew rate	e control is enab	led for High-Spo	eed mode (400	kHz)				
Note 1: A	utomatically cle	ared to '0' at the	e beginning of S	Slave transmiss	ion; automatica	ally cleared to '	0' at the end		
	f Slave receptio					-			

**2:** Automatically cleared to '0' at the beginning of Slave transmission.

### REGISTER 18-1: I2CxCONL: I2Cx CONTROL REGISTER LOW (CONTINUED)

bit 8	SMEN: SMBus Input Levels Enable bit
	<ul> <li>1 = Enables input logic so thresholds are compliant with the SMBus specification</li> <li>0 = Disables SMBus-specific inputs</li> </ul>
bit 7	GCEN: General Call Enable bit (I ² C Slave mode only)
	<ul> <li>1 = Enables interrupt when a general call address is received in I2CxRSR; module is enabled for reception</li> <li>0 = General call address is disabled.</li> </ul>
bit 6	STREN: SCLx Clock Stretch Enable bit
	In I ² C Slave mode only; used in conjunction with the SCLREL bit. 1 = Enables clock stretching 0 = Disables clock stretching
bit 5	ACKDT: Acknowledge Data bit
	In $I^2C$ Master mode during Master Receive mode. The value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.
	In I ² C Slave mode when AHEN = 1 or DHEN = 1. The value that the Slave will transmit when it initiates an Acknowledge sequence at the end of an address or data reception. 1 = NACK is sent 0 = ACK is sent
bit 4	ACKEN: Acknowledge Sequence Enable bit
	In I ² C Master mode only; applicable during Master Receive mode. 1 = Initiates Acknowledge sequence on SDAx and SCLx pins, and transmits ACKDT data bit 0 = Acknowledge sequence is Idle
bit 3	RCEN: Receive Enable bit (I ² C Master mode only)
	<ul> <li>1 = Enables Receive mode for I²C; automatically cleared by hardware at end of 8-bit receive data byte</li> <li>0 = Receive sequence is not in progress</li> </ul>
bit 2	<b>PEN:</b> Stop Condition Enable bit (I ² C Master mode only)
	<ul><li>1 = Initiates Stop condition on SDAx and SCLx pins</li><li>0 = Stop condition is Idle</li></ul>
bit 1	<b>RSEN:</b> Restart Condition Enable bit (I ² C Master mode only)
	<ul> <li>1 = Initiates Restart condition on SDAx and SCLx pins</li> <li>0 = Restart condition is Idle</li> </ul>
bit 0	SEN: Start Condition Enable bit (I ² C Master mode only)
	<ul> <li>1 = Initiates Start condition on SDAx and SCLx pins</li> <li>0 = Start condition is Idle</li> </ul>
Note 1:	Automatically cleared to '0' at the beginning of Slave transmission; automatically cleared to '0' at the end of Slave reception.

2: Automatically cleared to '0' at the beginning of Slave transmission.

REGISTE	R 18-2: I2Cx	CONH: I2Cx (	CONTROL R	EGISTER HIC	GH					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—	—	—	—	—			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN			
bit 7							bit 0			
Legend:										
R = Reada	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown			
bit 15-7	Unimplemer	nted: Read as '	) <b>'</b>							
bit 6	PCIE: Stop C	Condition Interru	pt Enable bit (	I ² C Slave mode	e only).					
		interrupt on det		condition						
		ection interrupts		0						
bit 5		Condition Interru			• ·					
	<ul> <li>1 = Enables interrupt on detection of Start or Restart conditions</li> <li>0 = Start detection interrupts are disabled</li> </ul>									
L:1 4		ection interrupts er Overwrite Ena								
bit 4		V is updated an		• •		o/data buta jan	oring the state			
		COV bit only if I				s/uala byle, igii	Uning the state			
		V is only update		/ is clear						
bit 3	SDAHT: SDA	Ax Hold Time Se	election bit							
		n of 300 ns hold								
		of 100 ns hold		-	-					
bit 2		ve Mode Bus C		•		• ·				
		ng edge of SCI		•			•			
	sequences.	BCL bit is set and the bus goes Idle. This Detection mode is only valid during data and ACK transmit								
		Slave bus collis	ion interrupts							
		s collision interr		led						
bit 1	AHEN: Addr	ess Hold Enable	e bit (I ² C Slave	e mode only)						
		g the 8th fallir				address byte	; SCLREL bit			
		NL<12>) will be		he SCLx will be	e held low					
hit 0		holding is disal								
bit 0		Hold Enable bit	•		ata huto: Slova	hardwara alaar				
		g the 8th falling CONL<12>) an			ala byle, Slave	naruware clear	S UNE SOLKEL			
	,	lding is disabled								

0 = Data holding is disabled

### REGISTER 18-3: I2CxSTAT: I2Cx STATUS REGISTER

HSC/R-0	HSC/R-0	U-0	U-0	HSC/R/C-0	HSC/R-0	HSC/R-0
TRSTAT	ACKTIM	—	—	BCL	GCSTAT	ADD10
						bit 8
HS/R/C-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0
I2COV	D/A	Р	S	R/W	RBF	TBF
						bit 0
	C = Clearable	bit	HSC = Hardw	are Settable/C	learable bit	
e bit	W = Writable I	oit	U = Unimplen	nented bit, read	l as '0'	
POR	'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwar	e Settable bit
ACKSTAT: Ac	cknowledge Sta	tus bit (update	ed in all Master	and Slave mod	les)	
	•					
		• •	•	er; applicable to	o Master transr	nit operation)
			ACK)			
		-	lid in I ² C Slave	mode only)		
	•			• /	edge of SCI x cl	ock
0 = Not an Ac	knowledge seq	uence, cleared	d on 9th rising e	edge of SCLx o	lock	
Unimplement	ted: Read as '	)'				
BCL: Bus Col	llision Detect bi	t (Master/Slav	e mode; cleare	d when I ² C mo	dule is disabled	I, I2CEN = ○)
			ng a Master or S	Slave transmit o	operation	
		•	after Stop detec	tion)		
ADD10: 10-B	it Address Statu	us bit (cleared	after Stop dete	ction)		
		IZCX I RIN regi	Ister falled beca	iuse the I-C mo	aule is busy; m	ust be cleared
12COV: 12Cx 1	Receive Overflo	ow Flag bit				
1 = A byte was received while the I2CxRCV register is still holding the previous byte; I2COV is a "don't						
care" in Transmit mode, must be cleared in software						
0 = No overflow						
	-	• •	-			
	•			s an address		
	-					
•		r Stop is deter	ted: cleared wi	nen the I ² C mo	dule is disabled	. I2CEN = 0.
1 = Indicates	that a Stop bit I	nas been deteo				, <b>_</b> 0.
0 = Stop bit w	as not detected	l last				
	HS/R/C-0 I2COV I2COV ACKSTAT: AC 1 = Acknowle 0 = Acknowle TRSTAT: Tran 1 = Master tra 0 = No tra 0 = No tra 0 = No tra 0 = General c 0 = 10-bit adc 0 = 10-bit adc 0 = 10-bit adc 0 = 10-bit adc 0 = No collisi 12COV: 12Cx 1 = A byte wa care" in T 0 = No overfil D/A: Data/Add 1 = Indicates 0 = Indicates P: I2Cx Stop I Updated when 1 = Indicates	TRSTAT       ACKTIM         HS/R/C-0       HSC/R-0         I2COV       D/Ā         C = Clearable         bit       W = Writable b         POR       '1' = Bit is set         ACKSTAT: Acknowledge Stat         1 = Acknowledge was not read         0 = Acknowledge was receive         TRSTAT: Transmit Status bit         1 = Master transmit is in progo         0 = Master transmit is not in progo         0 = Not an Acknowledge Time         1 = Indicates I ² C bus is in and         0 = No tan Acknowledge seq         Unimplemented: Read as 'C         BCL: Bus Collision Detect bit         1 = A bus collision has been         0 = No bus collision has been         0 = Ino-bit address was matcl         0 = Ino-bit	TRSTAT       ACKTIM       —         HS/R/C-0       HSC/R-0       HSC/R-0         I2COV       D/Ā       P         C = Clearable bit         bit       W = Writable bit         POR       '1' = Bit is set         ACKSTAT: Acknowledge Status bit (update         1 = Acknowledge was not received from SI         0 = Acknowledge was not received from SI         0 = Acknowledge was received from SIave         TRSTAT: Transmit Status bit (when operati         1 = Master transmit is in progress (8 bits +         0 = Master transmit is not in progress         ACKTIM: Acknowledge Time Status bit (va         1 = Indicates I ² C bus is in an Acknowledge         0 = Not an Acknowledge sequence, cleared         Unimplemented: Read as '0'         BCL: Bus Collision Detect bit (Master/Slave         1 = General call address was not received         ADD10: 10-Bit Address Status bit (cleared a         1 = General call address was not received         ADD10: 10-Bit Address Status bit (cleared a         I = Colsision         I2CV: I2CX Write Collision Detect bit         I = A attempt to write to the I2CxTRN reg in software         I	TRSTAT       ACKTIM       —       —         HS/R/C-0       HSC/R-0       HSC/R-0       HSC/R-0         I2COV       D/Ā       P       S         Bit       W = Writable bit       U = Unimplem         POR       '1' = Bit is set       '0' = Bit is clear         ACKSTAT:       Acknowledge Status bit (updated in all Master         1 = Acknowledge was not received from Slave         0 = Acknowledge was not received from Slave         TRSTAT:       Transmit Status bit (when operating as I ² C Mast         1 = Master transmit is in progress (8 bits + ACK)       0 = Master transmit is not in progress         ACKTIN:       Acknowledge Time Status bit (valid in I ² C Slave         1 = Indicates I ² C bus is in an Acknowledge sequence, set       0 = Not an Acknowledge sequence, cleared on 9th rising of         Unimplemented:       Read as '0'       BCL: Bus Collision Detect bit (Master/Slave mode; cleared         1 = General call address was not received       0 = No bus collision has been detected       GCSTAT: General Call Status bit (cleared after Stop detect         1 = General call address was not received       ADD10: 10-Bit Address Status bit (cleared after Stop detect       1 = 10-bit address was not matched         IWCOL: I2Cx Write Collision Detect bit       1 = An attempt to write to the I2CxTRN register failed becat in software       0 = No collision      <	TRSTAT       ACKTIM       —       —       BCL         HS/R/C-0       HSC/R-0       HSC/R-0       HSC/R-0       HSC/R-0         I2COV       D/Ā       P       S       R/W         C       = Clearable bit       HSC = Hardware Settable/Cl         bit       W = Writable bit       U = Unimplemented bit, read         POR       '1' = Bit is set       '0' = Bit is cleared         ACKSTAT: Acknowledge Status bit (updated in all Master and Slave mode)       1 = Acknowledge was not received from Slave         0 = Acknowledge was not received from Slave       0 = Acknowledge was received from Slave         0 = Acknowledge was received from Slave       TRSTAT: Transmit Status bit (when operating as I ² C Master; applicable to 1 = Master transmit is no progress         ACKTIM: Acknowledge Time Status bit (valid in I ² C Slave mode only)       1 = Indicates I ² C bus is in an Acknowledge sequence, set on 8th falling et 0 = Not an Acknowledge sequence, cleared on 9th rising edge of SCLx or Unimplemented: Read as '0'         BCL: Bus Collision Datect bit (Master/Slave mode; cleared when I ² C mo       1 = Abus collision has been detected         GCSTAT: General Call Status bit (cleared after Stop detection)       1 = 10-bit address was not received         ADD10: 10-Bit Address Status bit (cleared after Stop detection)       1 = 10-bit address was not matched         IWCOL: 12Cx Write Collision Detect bit       1 = An attempt to write to	TRSTAT       ACKTIM       —       —       BCL       GCSTAT         HS/R/C-0       HSC/R-0       HSC/R-0       HSC/R-0       HSC/R-0       HSC/R-0         IZCOV       D/Ā       P       S       R/W       RBF         C = Clearable bit       HSC = Hardware Settable/Clearable bit         U       = Unimplemented bit, read as '0'       POR       '1' = Bit is set       '0' = Bit is cleared       HS = Hardware         ACKSTAT: Acknowledge Status bit (updated in all Master and Slave modes)         1 = Acknowledge was not received from Slave       TRSTAT: Transmit Status bit (when operating as I ² C Master; applicable to Master transmit 1 = Master transmit is in progress (8 bits + ACK)       0 = Master transmit is not in progress         ACKTIM: Acknowledge Time Status bit (valid in I ² C Slave mode only)       1 = Indicates I ² C bus is in an Acknowledge sequence, set on 8th failing edge of SCLx clock         Unimplemented: Read as '0'         BCL: Bus Collision Detect bit (Master/Slave mode; cleared when I ² C module is disabled         1 = Abus collision has been detected       GCSTAT: General Call Address was not received         ADD10: 10-Bit Address was not received       ADD10: 10-Bit Address was not received         ADD10: 10-Bit Address was not matched       UNCL: I2CX Write Collision Detect bit         1 = An attempt to write to the I2CXTRN register failed because the I ² C mo

### REGISTER 18-3: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	<ul> <li>S: I2Cx Start bit</li> <li>Updated when Start, Reset or Stop is detected; cleared when the I²C module is disabled, I2CEN = 0.</li> <li>1 = Indicates that a Start (or Repeated Start) bit has been detected last</li> <li>0 = Start bit was not detected last</li> </ul>
bit 2	<b>R/W</b> : Read/Write Information bit (when operating as I ² C Slave)
	<ul> <li>1 = Read: Indicates the data transfer is output from the Slave</li> <li>0 = Write: Indicates the data transfer is input to the Slave</li> </ul>
bit 1	RBF: Receive Buffer Full Status bit
	<ul> <li>1 = Receive is complete, I2CxRCV is full</li> <li>0 = Receive is not complete, I2CxRCV is empty</li> </ul>
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit is in progress, I2CxTRN is full (8-bits of data)
	0 = Transmit is complete, I2CxTRN is empty

### REGISTER 18-4: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	MSK	<9:8>
bit 15							bit 8

	R/W-0							
				MSK	<7:0>			
bit 7 bit							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

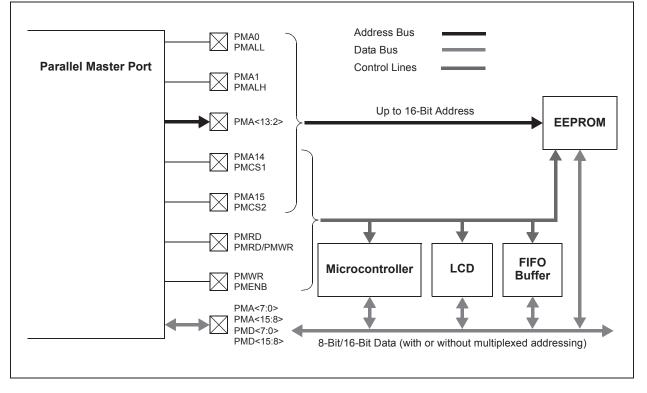
bit 15-10 Unimplemented: Read as '0'

bit 9-0 MSK<9:0>: I2Cx Mask for Address Bit x Select bits

1 = Enables masking for bit x of the incoming message address; bit match is not required in this position

0 = Disables masking for bit x; bit match is required in this position

NOTES:


### 19.0 PARALLEL MASTER PORT (PMP)

- Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Parallel Master Port (PMP)" (www.microchip.com/DS70005344) in the "dsPIC33/PIC24 Family Reference Manual".
  - 2: Not all device variants include the PMP. Refer to Table 1 and Table 2 for availability.

The Parallel Master Port (PMP) is a parallel 8-bit/16-bit I/O module specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory devices and microcontrollers. Because the interfaces to parallel peripherals vary significantly, the PMP module is highly configurable. The key features of the PMP module include:

- · Master and Slave Operating modes
- Up to 16 Programmable Address Lines
- · Up to Two Chip Select Lines
- Programmable Strobe Options:
- Individual read and write strobes or read/write strobe with enable strobe
- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- Programmable Polarity on Control Signals
- · Legacy Parallel Slave Port Support
- Enhanced Parallel Slave Support:
  - Address support
  - 4 bytes deep, auto-incrementing buffer
- Schmitt Trigger or TTL Input Buffers
- Programmable Wait States
- Dual Buffer Mode with Separate Read and Write Registers
- Read Initiate Control





### 19.1 Parallel Master Port Control Registers

### REGISTER 19-1: PMCON: PARALLEL MASTER PORT CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ON	_	SIDL	ADRMUX1	ADRMUX0	PMPTTL	PTWREN	PTRDEN
bit 15		1	1				bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
CSF1 ⁽¹⁾	CSF0 ⁽¹⁾	ALP ⁽¹⁾	CS2P ⁽¹⁾	CS1P ⁽¹⁾		WRSP	RDSP
bit 7							bit 0
Legend:							
R = Readable		W = Writable			nented bit, read		
-n = Value at I	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkn	IOWN
bit 15	<b>ON:</b> Parallel M 1 = PMP is er 0 = PMP is di	nabled	able bit chip access pe	erformed			
bit 14	Unimplemen	ted: Read as	0'				
bit 13	SIDL: PMP S	top in Idle Mod	de bit				
				device enters lo	dle mode		
h:+ 40 44		-	ation in Idle mo		_		
bit 12-11		ts of address a	•	g Selection bits with the 16 bits		4<15:0>/PMPD	<15:0>) using
	10 = All 16 bi PMPD<	ts of address 7:0>) using thr	ee phases			a (PMPA<15:8>	
			s are multiplex ear on separat		3 bits of data (F	MPA<7:0>/PMI	PD<7:0>)
bit 10	PMPTTL: PM	P Module TTL	. Input Buffer S	Select bit			
	1 = PMP mod 0 = PMP mod		input buffers nitt Trigger inp	ut buffers			
bit 9	PTWREN: PN	/IP Write Enab	le Strobe Port	Enable bit			
	1 = PMWR/PI 0 = PMWR/PI						
bit 8	PTRDEN: PM	IP Read/Write	Strobe Port Er	nable bit			
	1 = PMRD/PM 0 = PMRD/PM						
bit 7-6	<b>CSF&lt;1:0&gt;:</b> C	hip Select Fun	ction bits ⁽¹⁾				
	01 = PMCS2	and PMCS1 fr functions as C	unction as Chip Chip Select, PM unction as add	ICS1 functions	as address bit		
bit 5	ALP: Address	Latch Polarit	y bit ⁽¹⁾				
	1 = Active-hig 0 = Active-low						
bit 4	CS2P: Chip S	elect 2 Polarit	y bit ⁽¹⁾				
	1 = Active-hig						

Note 1: These bits have no effect when their corresponding pins are used as address lines.

#### REGISTER 19-1: PMCON: PARALLEL MASTER PORT CONTROL REGISTER (CONTINUED)

- bit 3 CS1P: Chip Select 1 Polarity bit⁽¹⁾ 1 = Active-high 0 = Active-low bit 2 Unimplemented: Read as '0' bit 1 WRSP: Write Strobe Polarity bit For Slave Modes and Master Mode 2 (MODE<1:0> (PMMODE<9:8>) = 00, 01, 10): 1 = Write strobe is active-high (PMWR) 0 = Write strobe is active-low (PMWR) For Master Mode 1 (MODE<1:0> (PMMODE<9:8>) = 11): 1 = Enables strobe active-high (PMENB) 0 = Enables strobe active-low (PMENB) bit 0 RDSP: Read Strobe Polarity bit For Slave Modes and Master Mode 2 (MODE<1:0> (PMMODE<9:8>) = 00, 01, 10): 1 = Read strobe is active-high (PMRD) 0 = Read strobe is active-low (PMRD)For Master Mode 1 (MODE<1:0> (PMMODE<9:8>) = 11): 1 = Read/write strobe is active-high (PMRD/PMWR) 0 = Read/write strobe is active-low (PMRD/PMWR)
- **Note 1:** These bits have no effect when their corresponding pins are used as address lines.

### REGISTER 19-2: PMCONH: PARALLEL MASTER PORT CONTROL HIGH REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	—	—	—	—	_	
bit 15							bit 8	
R/W/HC-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	
RDSTART ⁽¹	)	<u> </u>		—	_	DUALBUF	—	
bit 7							bit 0	
Legend:	HC = Hardware Clearable bit							
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'				as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown	
bit 15-8	Unimplemen	ted: Read as '0	3					
bit 7	RDSTART: St	art a Read on P	MP Bus bit ⁽¹⁾					
		<ul><li>1 = Starts a read cycle on the PMP bus</li><li>0 = No effect</li></ul>						
bit 6-2	Unimplemen	ted: Read as '0	3					
bit 1	DUALBUF: P	DUALBUF: PMP Dual Read/Write Buffers Enable bit (valid in Master mode only)						
		s separate regis s legacy registe			RADDR, PMDIN	Ix, PMWADDR,	PMDOUTx)	
bit 0	Unimplemen	ted: Read as '0	,					

Note 1: This bit is cleared by HW at the end of the read cycle when BUSY (PMMODE<15>) = 0.

R/HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUSY	IRQM1	IRQM0	INCM1	INCM0	MODE16	MODE1	MODE0
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAITB1 ⁽¹⁾	WAITB0 ⁽¹⁾	WAITM3 ⁽¹⁾	WAITM2 ⁽¹⁾	WAITM1 ⁽¹⁾	WAITM0 ⁽¹⁾	WAITE1 ⁽¹⁾	WAITE0 ⁽¹⁾
bit 7							bit
Legend:		HC = Hardware	e Clearable bit	HS = Hardwa	re Settable bit		
R = Readab	le bit	W = Writable b	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15	BUSY BUSY	bit (Master mod	te only)				
	1 = Port is bi		ie only)				
	0 = Port is no						
bit 14-13	IRQM<1:0>:	Interrupt Reque	est Mode bits				
		ed, do not use					
		ot generated wh					
		read or write op ot generated at f				Slave mode on	iy)
		rrupt generated					
bit 12-11	INCM<1:0>:	Increment Mod	e bits				
	11 = Slave n	node read and v	vrite buffers aut	to-increment (N	10DE<1:0> (PI	MMODE<9:8>)	= 00 only)
		nents ADDR<15					
		ents ADDR<15: ement or decre			(=,=)		
bit 10		16-Bit Mode bit		5			
		ode: A read or v	vrite to the Data	a register invok	es a single 16-l	bit transfer	
		de: A read or wi					
bit 9-8	MODE<1:0>	: PMP Mode Se	elect bits				
		Mode 1 (PMCS					
		Mode 2 (PMCS					
		ced Slave mode Parallel Slave I					
bit 7-6		Data Setup to			(1)		/
		ait of 4 TP; mult					
		ait of 3 TP; mult					
		ait of 2 TP; mult					
	00 = Data W	ait of 1 TP; mult	iplexed addres	s phase of 1 IF	o (default)		
		:0> = 0000, the					
		write operation		-	-	-	
	ddress bits, A1 nd CS1.	5 and A14, are i	not subject to a	uto-increment/c	lecrement if co	nfigured as Chi	p Select, CS
<b>3</b> : T	hese pins are a	active when MO	DE16 = 1 (16-b	it mode).			
<i>1</i> . ⊤		nister is always	incremented/d	acromented by	1 regardless o	of the transfer d	ata width

### REGISTER 19-3: PMMODE: PARALLEL MASTER PORT MODE REGISTER

4: The PMADDR register is always incremented/decremented by 1 regardless of the transfer data width.

### REGISTER 19-3: PMMODE: PARALLEL MASTER PORT MODE REGISTER (CONTINUED)

- WAITM<3:0>: Data Read/Write Strobe Wait States bits⁽¹⁾ bit 5-2 1111 = Wait of 16 TP 0001 = Wait of 2 TP 0000 = Wait of 1 TP (default) WAITE<1:0>: Data Hold After Read/Write Strobe Wait States bits⁽¹⁾ bit 1-0 11 = Wait of 4 TP 10 = Wait of 3 TP 01 = Wait of 2 TP 00 = Wait of 1 TP (default) For Read Operations: 11 = Wait of 3 TP 10 = Wait of 2 TP 01 = Wait of 1 TP 00 = Wait of 0 TP (default)
- **Note 1:** When WAITM<3:0> = 0000, the WAITBx and WAITEx bits are ignored and forced to 1 TP (peripheral clock) cycle for a write operation; WAITBx = 1 TP cycle, WAITEx = 0 TP cycles for a read operation.
  - 2: Address bits, A15 and A14, are not subject to auto-increment/decrement if configured as Chip Select, CS2 and CS1.
  - **3:** These pins are active when MODE16 = 1 (16-bit mode).
  - 4: The PMADDR register is always incremented/decremented by 1 regardless of the transfer data width.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CS2 ⁽¹⁾	CS1 ⁽¹⁾				₹<13:8>		
ADDR15 ⁽¹⁾	ADDR14 ⁽¹⁾	_		ADDF	<13.02		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADDF	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bit	·	U = Unimpler	nented bit, read	l as '0'	

#### **REGISTER 19-4:** PMADDR: PARALLEL MASTER PORT ADDRESS REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	CS2: Chip Select 2 bit ⁽¹⁾
--------	---------------------------------------

- 1 = Chip Select 2 is active
  - 0 = Chip Select 2 is inactive (ADDR15 function is selected)
- ADDR15: Target Address bit 15⁽¹⁾ bit 15
- CS1: Chip Select 1 bit⁽¹⁾ bit 14
  - 1 = Chip Select 1 is active
    - 0 = Chip Select 1 is inactive (ADDR14 function is selected)
- ADDR14: Target Address bit 14⁽¹⁾ bit 14
- bit 13-0 ADDR<13:0>: Target Address bits

Note 1: The use of these pins as PMA15/PMA14 or CS2/CS1 is selected by the CSF<1:0> bits (PMCON<7:6>).

### REGISTER 19-5: PMDOUT1: PARALLEL MASTER PORT DATA OUTPUT LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DATA	OUT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DATA	OUT<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow				iown			

#### bit 15-0 DATAOUT<15:0>: Output Data Port bits

These bits are for 8-bit read operations in Slave mode and write operations for Dual Buffer Master mode.

### REGISTER 19-6: PMDOUT2: PARALLEL MASTER PORT DATA OUTPUT HIGH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		DATAOL	JT<31:24>			
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		DATAOL	JT<23:16>			
						bit 0
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'			
OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is un		x = Bit is unkr	nown
	R/W-0	R/W-0 R/W-0	R/W-0     R/W-0       DATAOL       DATAOL       bit     W = Writable bit	DATAOUT<31:24>           R/W-0         R/W-0         R/W-0           DATAOUT<23:16>         DATAOUT<23:16>           bit         W = Writable bit         U = Unimplen	DATAOUT<31:24>       R/W-0     R/W-0       R/W-0     R/W-0       DATAOUT<23:16>	DATAOUT<31:24>       R/W-0     R/W-0       R/W-0     R/W-0       DATAOUT<23:16>

bit 15-0 DATAOUT<31:16>: Output Data Port bits

These bits are for 8-bit write operations in Slave mode.

#### REGISTER 19-7: PMDIN1: PARALLEL MASTER PORT DATA INPUT/OUTPUT LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DATA	IN<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DATA	AIN<7:0>			
bit 7					bit 0		
Legend:							
R = Readable	bit	W = Writable b	Writable bit U = Unimplemented bit, read as '0'				
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is un		x = Bit is unki	nown

bit 15-0 **DATAIN<15:0>:** Input/Output Data Port bits These bits are for 8-bit or 16-bit read/write operations in Master mode and are the input data port for 8-bit write operations in Slave mode.

#### REGISTER 19-8: PMDIN2: PARALLEL MASTER PORT DATA INPUT/OUTPUT HIGH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DATAI	N<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DATAI	N<23:16>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is		x = Bit is unkr	nown

bit 15-0 DATAIN<31:16>: Input/Output Data Port bits

These bits are for 8-bit write operations in Slave mode.

	REGISTER 19-9:	PMAEN: PARALLEL MASTER PORT PIN ENABLE REGISTER
--	----------------	-------------------------------------------------

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTE	N<15:14>			PTEN	l<13:8>		
bit 15		4>     PTEN<13:8>       R/W-0     R/W-0       PTEN<7:2>       W = Writable bit				bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
							<1:0>
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit,				nented bit, read	l as '0'		
-n = Value a	t POR	'1' = Bit is set	'1' = Bit is set '0' = Bit is cleared x = Bit is unknown				nown
bit 15-14	PTEN<15:1	4>: PMCSx Stro	be Enable bit	S			
	1 = PMA15	and PMA14 fun	ction as eithe	r PMA<15:14>	or PMCS2 and	PMCS1 ⁽¹⁾	
	0 = PMA15	and PMA14 fun	ction as port I	/Os			
bit 13-2	PTEN<13:2	>: PMP Address	Port Enable	bits			
		3:2> function as		lines			
	0 = PMA<13	3:2> function as	port I/Os				
bit 1-0	PTEN<1:0>	: PMALH/PMAL	L Strobe Enab	ole bits			
	±	and PMA0 functi			MALH and PMA	ALL ⁽²⁾	
	0 = PMA1 a	and PMA0 pads	function as po	ort I/Os			
Note 1: T	he use of these	pins as address	or Chip Sele	ct lines is selec	ted by the CSF	<1:0> bits (PM	CON<7:6>).

2: The use of these pins as PMA1/PMA0 or PMALH/PMALL depends on the Address/Data Multiplex mode selected by the ADRMUX<1:0> bits in the PMCON register.

### REGISTER 19-10: PMSTAT: PARALLEL MASTER PORT STATUS REGISTER (SLAVE MODES ONLY)

R-0	R/W-0	U-0	U-0	R-0	R-0	R-0	R-0				
IBF	IBOV	_	—	IB3F	IB2F	IB1F	IB0F				
bit 15	I.						bit 8				
R-1	R/W-0	U-0	U-0	R-1	R-1	R-1	R-1				
OBE	OBUF	—	—	OB3E	OB2E	OB1E	OB0E				
bit 7							bit 0				
Lonondi											
Legend:	- 1-:4		_ <b>:</b> .			l = = (0)					
R = Readable		W = Writable	DIT	•	mented bit, read						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown				
bit 15	IPE: Input Du	ffer Full Status	hit								
DIL 15				Full							
	<ol> <li>All writable Input Buffer registers are full</li> <li>Some or all of the writable Input Buffer registers are empty</li> </ol>										
bit 14	IBOV: Input Buffer Overflow Status bit										
	1 = A write at	1 = A write attempt to a full input byte buffer occurred (must be cleared in software)									
	<ul> <li>0 = No overflow occurred</li> <li>This bit is set (= 1) in hardware; it can only be cleared (= 0) in software.</li> </ul>										
				y be cleared (=	0) in software.						
bit 13-12	-	ted: Read as '									
bit 11-8	IB<3:0>F: Input Buffer x Status Full bits										
	<ol> <li>I = Input buffer contains data that has not been read (reading buffer will clear this bit)</li> <li>Input buffer does not contain any unread data</li> </ol>										
bit 7		Buffer Empty S	-								
	1 = All readable Output Buffer registers are empty										
	0 = Some or all of the readable Output Buffer registers are full										
bit 6	OBUF: Output	it Buffer Underf	low Status bit	:							
	1 = A read occurred from an empty output byte buffer (must be cleared in software)										
			0 = No underflow occurred This bit is set (= 1) in hardware; it can only be cleared (= 0) in software.								
	· ····		vro: it oon only	(bo ploared (-							
bit 5.4	This bit is set	(= 1) in hardwa		y be cleared (=	0) in software.						
bit 5-4	This bit is set Unimplemen	(= 1) in hardwa ted: Read as '(	)'	·	0) in software.						
bit 5-4 bit 3-0	This bit is set Unimplemen OB<3:0>E: O	(= 1) in hardwa	)' Status Empty	bits							

# REGISTER 19-11: PMWADDR: PARALLEL MASTER PORT WRITE ADDRESS REGISTER⁽²⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
WCS2 ⁽¹⁾	WCS1 ⁽¹⁾				)R<13:8>				
WADDR15 ⁽¹⁾	) WADDR14 ⁽¹⁾			VVADL	JK<13.02				
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			WADD	R<7:0>					
bit 7							bit (		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplen	nented bit, read	l as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own		
bit 15	WCS2: Chip Select 2 bit ⁽¹⁾								
	1 = Chip Sele				. N				
				unction is sele	cted)				
bit 15	WADDR15: Ta	arget Write Ado	dress bit 15 ⁽¹⁾						
bit 14	WCS1: Chip S	Select 1 bit ⁽¹⁾							
	1 = Chip Sele	ect 1 is active							
	0 = Chip Sele	ct 1 is inactive	(WADDR14 f	unction is sele	cted)				
bit 14	WADDR14: Ta	arget Write Ado	dress bit 14 ⁽¹⁾						
bit 13-0	WADDR<13:0	>: Target Write	e Address bits						
Note 1: The	e use of these pi	ins as PMA15/	PMA14 or WC	CS2/WCS1 is s	elected by the	CSF<1:0> bits			

- Note 1: The use of these pins as PMA15/PMA14 or WCS2/WCS1 is selected by the CSF<1:0> bits (PMCON<7:6>).
  - 2: This register is only used when the DUALBUF bit (PMCONH<1>) is set to '1'.

### REGISTER 19-12: PMRADDR: PARALLEL MASTER PORT READ ADDRESS REGISTER⁽²⁾

R/W-0 RCS1 ⁽¹⁾ RADDR14 ⁽¹⁾	R/W-0	R/W-0	R/W-0 RADDI	R/W-0	R/W-0	R/W-0
			RADD	D-12.8		
RADDR14 ⁽¹⁾				N 13.0/		
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		RADE	)R<7:0>			
						bit C
bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
RCS2: Chip S	Select 2 bit ⁽¹⁾					
1 = Chip Sele	ect 2 is active					
0 = Chip Sele	ect 2 is inactive	(RADDR15	function is seled	cted)		
RADDR15: Ta	arget Read Add	dress bit 15 ⁽¹⁾	)			
RCS1: Chip S	Select 1 bit ⁽¹⁾					
1 = Chip Sele	ect 1 is active					
		(RADDR14	function is seled	cted)		
RADDR14: Ta	arget Read Add	dress bit 14 ⁽¹⁾	)			
RADDR<13:0	>: Target Read	d Address bits	S			
	bit OR 1 = Chip Sele 0 = Chip Sele RADDR15: Ta RCS1: Chip Sele 0 = Chip Sele 0 = Chip Sele RADDR14: Ta	bit W = Writable 'OR '1' = Bit is set <b>RCS2:</b> Chip Select 2 bit ⁽¹⁾ 1 = Chip Select 2 is active 0 = Chip Select 2 is inactive <b>RADDR15:</b> Target Read Add <b>RCS1:</b> Chip Select 1 bit ⁽¹⁾ 1 = Chip Select 1 is active 0 = Chip Select 1 is inactive <b>RADDR14:</b> Target Read Add	RADEbitW = Writable bit $OR$ '1' = Bit is set <b>RCS2:</b> Chip Select 2 bit ⁽¹⁾ 1 = Chip Select 2 is active0 = Chip Select 2 is inactive (RADDR15) <b>RADDR15:</b> Target Read Address bit 15 ⁽¹⁾ <b>RCS1:</b> Chip Select 1 bit ⁽¹⁾ 1 = Chip Select 1 is active0 = Chip Select 1 is inactive (RADDR14) <b>RADDR14:</b> Target Read Address bit 14 ⁽¹⁾	Bit       W = Writable bit       U = Unimplen         OR       '1' = Bit is set       '0' = Bit is clear         RCS2: Chip Select 2 bit ⁽¹⁾ 1 = Chip Select 2 is active         0 = Chip Select 2 is inactive (RADDR15 function is select         RADDR15: Target Read Address bit 15 ⁽¹⁾ RCS1: Chip Select 1 bit ⁽¹⁾ 1 = Chip Select 1 bit ⁽¹⁾	RADDR<7:0>         bit       W = Writable bit       U = Unimplemented bit, read         OR       '1' = Bit is set       '0' = Bit is cleared         RCS2: Chip Select 2 bit ⁽¹⁾ 1 = Chip Select 2 is active         0 = Chip Select 2 is inactive (RADDR15 function is selected)         RADDR15: Target Read Address bit 15 ⁽¹⁾ RCS1: Chip Select 1 bit ⁽¹⁾ 1 = Chip Select 1 is inactive         0 = Chip Select 1 is inactive         0 = Chip Select 1 is inactive (RADDR14 function is selected)         RADDR14: Target Read Address bit 14 ⁽¹⁾	RADDR<7:0>         bit       W = Writable bit       U = Unimplemented bit, read as '0'         'OR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unkr <b>RCS2:</b> Chip Select 2 bit ⁽¹⁾ 1       Chip Select 2 is active       x = Bit is unkr         0 = Chip Select 2 is inactive (RADDR15 function is selected)       RADDR15: Target Read Address bit 15 ⁽¹⁾ RCS1: Chip Select 1 bit ⁽¹⁾ 1 = Chip Select 1 is active       0 = Chip Select 1 is inactive (RADDR14 function is selected)       RADDR14: Target Read Address bit 14 ⁽¹⁾

2: This register is only used when the DUALBUF bit (PMCONH<1>) is set to '1'.

# REGISTER 19-13: PMRDIN: PARALLEL MASTER PORT READ INPUT DATA REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			RDATAI	N<15:8> ⁽²⁾				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			RDATA	IN<7:0> ⁽²⁾				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown		

bit 15-0 RDATAIN<15:0>: Port Read Input Data bits⁽²⁾

- **Note 1:** This register is only used when the DUALBUF bit (PMCONH<1>) is set to '1' and exclusively for reads. If the DUALBUF bit is '0', the PMDIN1 register (Register 19-7) is used for reads instead of PMRDIN.
  - **2:** Only used when MODE16 = 1.

### 20.0 SINGLE-EDGE NIBBLE TRANSMISSION (SENT)

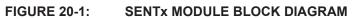
Note 1: This data sheet summarizes the features of this group of dsPIC33CK256MP508 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Single-Edge Nibble Transmission (SENT) Module" (www.microchip.com/DS70005145) in the "dsPIC33/PIC24 Family Reference Manual".

The Single-Edge Nibble Transmission (SENT) module is based on the SAE J2716, "SENT – Single-Edge Nibble Transmission for Automotive Applications". The SENT protocol is a one-way, single wire time modulated serial communication, based on successive falling edges. It is intended for use in applications where high-resolution sensor data needs to be communicated from a sensor to an Engine Control Unit (ECU).

The SENTx module has the following major features:

- · Selectable Transmit or Receive mode
- Synchronous or Asynchronous Transmit modes
- Automatic Data Rate Synchronization
- Optional Automatic Detection of CRC Errors in Receive mode
- Optional Hardware Calculation of CRC in Transmit mode
- Support for Optional Pause Pulse Period
- · Data Buffering for One Message Frame
- Selectable Data Length for Transmit/Receive from Three to Six Nibbles
- Automatic Detection of Framing Errors

SENT protocol timing is based on a predetermined time unit, TTICK. Both the transmitter and receiver must be preconfigured for TTICK, which can vary from 3 to 90  $\mu$ s. A SENT message frame starts with a Sync pulse. The purpose of the Sync pulse is to allow the receiver to calculate the data rate of the message encoded by the transmitter. The SENT specification allows messages to be validated with up to a 20% variation in TTICK. This allows for the transmitter and receiver to run from different clocks that may be inaccurate, and drift with time and temperature. The data nibbles are 4 bits in length and are encoded as the data value + 12 ticks. This yields a 0 value of 12 ticks and the maximum value, 0xF, of 27 ticks.


A SENT message consists of the following:

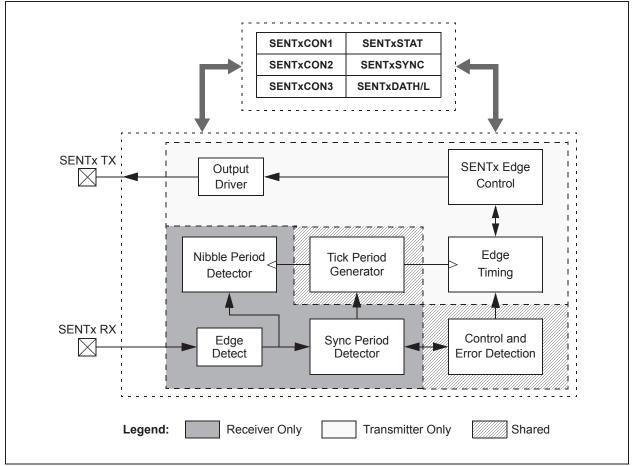

- A synchronization/calibration period of 56 tick times
- A status nibble of 12-27 tick times
- · Up to six data nibbles of 12-27 tick times
- A CRC nibble of 12-27 tick times
- An optional pause pulse period of 12-768 tick times

Figure 20-1 shows a block diagram of the SENTx module.

Figure 20-2 shows the construction of a typical 6-nibble data frame, with the numbers representing the minimum or maximum number of tick times for each section.

# dsPIC33CK256MP508 FAMILY





### FIGURE 20-2: SENTX PROTOCOL DATA FRAMES

Sync Period	Status	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	CRC	Pause (optional)	Ļ
56	12-27	12-27	12-27	12-27	12-27	12-27	12-27	12-27	12-768	Ĭ

### 20.1 Transmit Mode

By default, the SENTx module is configured for transmit operation. The module can be configured for continuous asynchronous message frame transmission, or alternatively, for Synchronous mode triggered by software. When enabled, the transmitter will send a Sync, followed by the appropriate number of data nibbles, an optional CRC and optional pause pulse. The tick period used by the SENTx transmitter is set by writing a value to the TICKTIME<15:0> (SENTxCON2<15:0>) bits. The tick period calculations are shown in Equation 20-1.

### EQUATION 20-1: TICK PERIOD CALCULATION

 $TICKTIME < 15:0 > = \frac{TTICK}{TCLK} - 1$ 

An optional pause pulse can be used in Asynchronous mode to provide a fixed message frame time period. The frame period used by the SENTx transmitter is set by writing a value to the FRAMETIME<15:0> (SENTxCON3<15:0>) bits. The formulas used to calculate the value of frame time are shown in Equation 20-2.

### EQUATION 20-2: FRAME TIME CALCULATIONS

FRAMETIME<15:0> = TTICK/TFRAME

 $FRAMETIME < 15:0 > \geq 122 + 27N$ 

 $FRAMETIME < 15:0 \ge 848 + 12N$ 

Where:

 $T_{FRAME}$  = Total time of the message from ms N = The number of data nibbles in message, 1-6

Note: The module will not produce a pause period with less than 12 ticks, regardless of the FRAMETIME<15:0> value. FRAMETIME<15:0> values beyond 2047 will have no effect on the length of a data frame.

### 20.1.1 TRANSMIT MODE CONFIGURATION

### 20.1.1.1 Initializing the SENTx Module

Perform the following steps to initialize the module:

- 1. Write RCVEN (SENTxCON1<11>) = 0 for Transmit mode.
- Write TXM (SENTxCON1<10>) = 0 for Asynchronous Transmit mode or TXM = 1 for Synchronous mode.
- 3. Write NIBCNT<2:0> (SENTxCON1<2:0>) for the desired data frame length.
- 4. Write CRCEN (SENTxCON1<8>) for hardware or software CRC calculation.
- 5. Write PPP (SENTxCON1<7>) for optional pause pulse.
- 6. If PPP = 1, write TFRAME to SENTxCON3.
- 7. Write SENTxCON2 with the appropriate value for the desired tick period.
- 8. Enable interrupts and set interrupt priority.
- 9. Write initial status and data values to SENTxDATH/L.
- 10. If CRCEN = 0, calculate CRC and write the value to CRC<3:0> (SENTxDATL<3:0>).
- 11. Set the SNTEN (SENTxCON1<15>) bit to enable the module.

User software updates to SENTxDATH/L must be performed after the completion of the CRC and before the next message frame's status nibble. The recommended method is to use the message frame completion interrupt to trigger data writes.

### 20.2 Receive Mode

The module can be configured for receive operation by setting the RCVEN (SENTxCON1<11>) bit. The time between each falling edge is compared to SYNCMIN<15:0> (SENTxCON3<15:0>) and SYNCMAX<15:0> (SENTxCON2<15:0>), and if the measured time lies between the minimum and maximum limits, the module begins to receive data. The validated Sync time is captured in the SENTxSYNC register and the tick time is calculated. Subsequent falling edges are verified to be within the valid data width and the data is stored in the SENTxDATL/H registers. An interrupt event is generated at the completion of the message and the user software should read the SENTx Data registers before the reception of the next nibble. The equation for SYNCMIN<15:0> and SYNCMAX<15:0> is shown in Equation 20-3.

#### EQUATION 20-3: SYNCMIN<15:0> AND SYNCMAX<15:0> CALCULATIONS

 $TTICK = TCLK \bullet (TICKTIME < 15:0 > + 1)$ 

FRAMETIME < 15:0 > = TTICK/TFRAME

*SyncCount* = 8 x *FRCV* x *TTICK* 

SYNCMIN<15:0> = 0.8 x SyncCount

SYNCMAX < 15:0 > = 1.2 x SyncCount

 $FRAMETIME < 15:0 \ge 122 + 27N$ 

 $FRAMETIME < 15:0 \ge 848 + 12N$ 

#### Where:

 $T_{FRAME}$  = Total time of the message from ms N = The number of data nibbles in message, 1-6  $F_{RCV}$  = FCY x Prescaler  $T_{CLK}$  = FCY/Prescaler

For TTICK =  $3.0 \ \mu s$  and FCLK =  $4 \ MHz$ , SYNCMIN<15:0 > = 76.

Note:	To ensure a Sync period can be identified,							
	the value written to SYNCMIN<15:0>							
	must be less than the value written to							
	SYNCMAX<15:0>.							

### 20.2.1 RECEIVE MODE CONFIGURATION

#### 20.2.1.1 Initializing the SENTx Module

Perform the following steps to initialize the module:

- 1. Write RCVEN (SENTxCON1<11>) = 1 for Receive mode.
- 2. Write NIBCNT<2:0> (SENTxCON1<2:0>) for the desired data frame length.
- 3. Write CRCEN (SENTxCON1<8>) for hardware or software CRC validation.
- 4. Write PPP (SENTxCON1<7>) = 1 if pause pulse is present.
- 5. Write SENTxCON2 with the value of SYNCMAXx (Nominal Sync Period + 20%).
- 6. Write SENTxCON3 with the value of SYNCMINx (Nominal Sync Period 20%).
- 7. Enable interrupts and set interrupt priority.
- 8. Set the SNTEN (SENTxCON1<15>) bit to enable the module.

The data should be read from the SENTxDATL/H registers after the completion of the CRC and before the next message frame's status nibble. The recommended method is to use the message frame completion interrupt trigger.

### 20.3 Control Registers

#### R/W-0 R/W-0 U-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 TXM⁽¹⁾ SNTEN SNTSIDL RCVEN TXPOL⁽¹⁾ CRCEN ____ ____ bit 15 bit 8 R/W-0 R/W-0 U-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 SPCEN⁽²⁾ PPP PS NIBCNT2 NIBCNT1 NIBCNT0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 SNTEN: SENTx Enable bit 1 = SENTx is enabled 0 = SENTx is disabled bit 14 Unimplemented: Read as '0' bit 13 SNTSIDL: SENTx Stop in Idle Mode bit 1 = Discontinues module operation when the device enters Idle mode 0 = Continues module operation in Idle mode bit 12 Unimplemented: Read as '0' bit 11 RCVEN: SENTx Receive Enable bit 1 = SENTx operates as a receiver 0 = SENTx operates as a transmitter (sensor) TXM: SENTx Transmit Mode bit⁽¹⁾ bit 10 1 = SENTx transmits data frame only when triggered using the SYNCTXEN status bit 0 = SENTx transmits data frames continuously while SNTEN = 1 bit 9 **TXPOL:** SENTx Transmit Polarity bit⁽¹⁾ 1 = SENTx data output pin is low in the Idle state 0 = SENTx data output pin is high in the Idle state bit 8 **CRCEN:** CRC Enable bit Module in Receive Mode (RCVEN = 1): 1 = SENTx performs CRC verification on received data using the preferred J2716 method 0 = SENTx does not perform CRC verification on received data Module in Transmit Mode (RCVEN = 1): 1 = SENTx automatically calculates CRC using the preferred J2716 method 0 = SENTx does not calculate CRC bit 7 PPP: Pause Pulse Present bit 1 = SENTx is configured to transmit/receive SENT messages with pause pulse 0 = SENTx is configured to transmit/receive SENT messages without pause pulse SPCEN: Short PWM Code Enable bit⁽²⁾ bit 6 1 = SPC control from external source is enabled 0 = SPC control from external source is disabled bit 5 Unimplemented: Read as '0' Note 1: This bit has no function in Receive mode (RCVEN = 1).

#### REGISTER 20-1: SENTxCON1: SENTx CONTROL REGISTER 1

2: This bit has no function in Transmit mode (RCVEN = 0).

### REGISTER 20-1: SENTx CONTROL REGISTER 1 (CONTINUED)

- bit 4 **PS:** SENTx Module Clock Prescaler (divider) bits
  - 1 = Divide-by-4 0 = Divide-by-1
- bit 3 Unimplemented: Read as '0'
- bit 2-0 NIBCNT<2:0>: Nibble Count Control bits
  - 111 = Reserved; do not use
  - 110 = Module transmits/receives six data nibbles in a SENT data pocket
  - 101 = Module transmits/receives five data nibbles in a SENT data pocket
  - 100 = Module transmits/receives four data nibbles in a SENT data pocket
  - 011 = Module transmits/receives three data nibbles in a SENT data pocket
  - 010 = Module transmits/receives two data nibbles in a SENT data pocket
  - ${\tt 001}$  = Module transmits/receives one data nibble in a SENT data pocket
  - 000 = Reserved; do not use
- **Note 1:** This bit has no function in Receive mode (RCVEN = 1).
  - 2: This bit has no function in Transmit mode (RCVEN = 0).

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	_	—	—	_	—				
bit 15							bit 8			
R-0	R-0	R-0	R-0	R/C-0	R/C-0	R-0	HC/R/W-0			
PAUSE	NIB2	NIB1	NIB0	CRCERR	FRMERR	RXIDLE	SYNCTXEN ⁽¹⁾			
bit 7							bit 0			
Legend:		C = Clearable			are Clearable b					
R = Readable		W = Writable		•	mented bit, rea					
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	IOWN			
bit 15-8	-	ted: Read as '								
bit 7	PAUSE: Paus									
		The module is transmitting/receiving a pause period The module is not transmitting/receiving a pause period								
bit 6-4	NIB<2:0>: Nibble Status bits									
	Module in Transmit Mode (RCVEN = 0):									
	111 = Module is transmitting a CRC nibble									
	110 = Module is transmitting Data Nibble 6									
	101 = Module is transmitting Data Nibble 5									
	100 = Module is transmitting Data Nibble 4 011 = Module is transmitting Data Nibble 3									
			g Data Nibble 2							
			g Data Nibble							
			-		eriod, or is not t	ransmitting				
		ceive Mode (R								
	111 = Module is receiving a CRC nibble or was receiving this nibble when an error occurred									
	110 = Module is receiving Data Nibble 6 or was receiving this nibble when an error occurred									
	101 = Module is receiving Data Nibble 5 or was receiving this nibble when an error occurred 100 = Module is receiving Data Nibble 4 or was receiving this nibble when an error occurred									
	011 = Module is receiving Data Nibble 3 or was receiving this nibble when an error occurred									
	010 = Module is receiving Data Nibble 2 or was receiving this nibble when an error occurred									
	001 = Module is receiving Data Nibble 1 or was receiving this nibble when an error occurred									
		-	status nibble	-	Sync					
bit 3			Receive mode							
		rror has occurr rror has not oc		uata niddies in	I SENTxDATL/I	7				
bit 2	FRMERR: Fra	aming Error St	atus bit (Recei	ve mode only)	)					
	1 = A data nit	oble was receiv	ved with less th		riods or greater	than 27 tick pe	eriods			
	•	error has not o								
bit 1			dle Status bit (		•					
				igh) for a perio	od of SYNCMA	X<15:0> or gre	ater			
	0 = 1  ne SEN	Tx data bus is	not lale							

### REGISTER 20-2: SENTxSTAT: SENTx STATUS REGISTER

**Note 1:** In Receive mode (RCVEN = 1), the SYNCTXEN bit is read-only.

### REGISTER 20-2: SENTxSTAT: SENTx STATUS REGISTER (CONTINUED)

bit 0 SYNCTXEN: SENTx Synchronization Period Status/Transmit Enable bit⁽¹⁾ Module in Receive Mode (RCVEN = 1):

1 = A valid synchronization period was detected; the module is receiving nibble data

0 = No synchronization period has been detected; the module is not receiving nibble data

Module in Asynchronous Transmit Mode (RCVEN = 0, TXM = 0):

The bit always reads as '1' when the module is enabled, indicating the module transmits SENTx data frames continuously. The bit reads '0' when the module is disabled.

Module in Synchronous Transmit Mode (RCVEN = 0, TXM = 1):

1 = The module is transmitting a SENTx data frame

- 0 = The module is not transmitting a data frame, user software may set SYNCTXEN to start another data frame transmission
- Note 1: In Receive mode (RCVEN = 1), the SYNCTXEN bit is read-only.

### REGISTER 20-3: SENTxDATL: SENTx RECEIVE DATA REGISTER LOW⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	DATA4	<3:0>		DATA5<3:0>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	

10/00-0	10/00-0	10/00-0	10/00-0	10/00-0	10/00-0	10/00-0	10/00-0
	DATA6	6<3:0>			CRC<	<3:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	DATA4<3:0>: Data Nibble 4 Data bits
bit 11-8	DATA5<3:0>: Data Nibble 5 Data bits
bit 7-4	DATA6<3:0>: Data Nibble 6 Data bits
bit 3-0	CRC<3:0>: CRC Nibble Data bits

**Note 1:** Register bits are read-only in Receive mode (RCVEN = 1). In Transmit mode, the CRC<3:0> bits are read-only when automatic CRC calculation is enabled (RCVEN = 0, CRCEN = 1).

### REGISTER 20-4: SENTxDATH: SENTx RECEIVE DATA REGISTER HIGH⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	STAT	<3:0>		DATA1<3:0>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	DATA	2<3:0>		DATA3<3:0>					
bit 7				·			bit (		
Lanandı									
Legend:	h:t	$\lambda = \lambda / ritable$	hit						
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown							

bit 15-12 STAT<3:0>: Status Nibble Data bits

bit 11-8 DATA1<3:0>: Data Nibble 1 Data bits

bit 7-4 DATA2<3:0>: Data Nibble 2 Data bits

bit 3-0 DATA3<3:0>: Data Nibble 3 Data bits

**Note 1:** Register bits are read-only in Receive mode (RCVEN = 1). In Transmit mode, the CRC<3:0> bits are read-only when automatic CRC calculation is enabled (RCVEN = 0, CRCEN = 1).

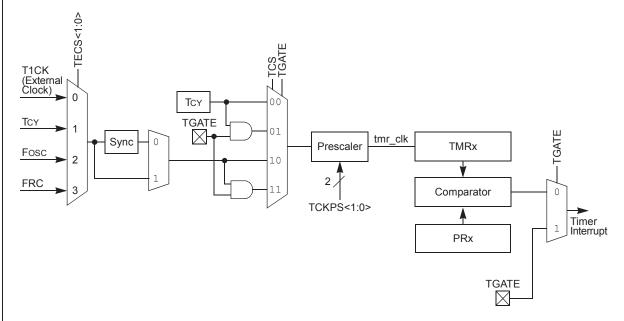
NOTES:

### 21.0 TIMER1

Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (www.microchip.com/DS70362) in the "dsPIC33/PIC24 Family Reference Manual".

The Timer1 module is a 16-bit timer that can operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:


- · Can be Operated in Asynchronous Counter mode
- · Asynchronous Timer
- Operational during CPU Sleep mode
- Software Selectable Prescalers 1:1, 1:8, 1:64 and 1:256
- · External Clock Selection Control
- The Timer1 External Clock Input (T1CK) can Optionally be Synchronized to the Internal Device Clock and the Clock Synchronization is Performed after the Prescaler

If Timer1 is used for SCCP, the timer should be running in Synchronous mode.

The Timer1 module can operate in one of the following modes:

- Timer mode
- · Gated Timer mode
- Synchronous Counter mode
- Asynchronous Counter mode
- A block diagram of Timer1 is shown in Figure 21-1.





### 21.1 Timer1 Control Register

	U-0	R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0
TON ⁽¹⁾		SIDL	TMWDIS	TMWIP	PRWIP	TECS1	TECS0
bit 15		•				•	bit
R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
TGATE	_	TCKPS1	TCKPS0	_	TSYNC ⁽¹⁾	TCS ⁽¹⁾	_
bit 7		1	1				bit
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at POR		'1' = Bit is set				x = Bit is unknown	
bit 15	TON: Timer1	On bit ⁽¹⁾					
	1 = Starts 16-bit Timer1						
	0 = Stops 16-bit Timer1						
bit 14	Unimplemented: Read as '0'						
bit 13	SIDL: Timer1 Stop in Idle Mode bit						
	<ul> <li>1 = Discontinues module operation when device enters Idle mode</li> <li>0 = Continues module operation in Idle mode</li> </ul>						
bit 12	TMWDIS: Asynchronous Timer1 Write Disable bit						
	1 = Timer writes are ignored while a posted write to TMR1 or PR1 is synchronized to the asynchronou						
	<ul> <li>clock domain</li> <li>0 = Back-to-back writes are enabled in Asynchronous mode</li> </ul>						
				-	node		
bit 11	TMWIP: Asyr	nchronous Time	er1 Write in Pr	ogress bit	node		
bit 11	TMWIP: Asyr 1 = Write to th	nchronous Time ne timer in Asyı	er1 Write in Pr	ogress bit de is pending			
	<b>TMWIP:</b> Asyr 1 = Write to th 0 = Write to th	nchronous Time ne timer in Asyr ne timer in Asyr	er1 Write in Pro nchronous mo nchronous mo	ogress bit de is pending de is complete			
	<b>TMWIP:</b> Asyr 1 = Write to th 0 = Write to th <b>PRWIP:</b> Asyn	nchronous Time ne timer in Asyı	er1 Write in Pro nchronous mo nchronous mo od Write in Pro	ogress bit de is pending de is complete ogress bit	9		
	TMWIP: Asyr 1 = Write to th 0 = Write to th PRWIP: Asyn 1 = Write to th	nchronous Time ne timer in Asyn ne timer in Asyn nchronous Perio	er1 Write in Pre- nchronous mo nchronous mo od Write in Pro- ter in Asynchr	ogress bit de is pending de is complete ogress bit onous mode is	e s pending		
bit 11 bit 10 bit 9-8	<b>TMWIP:</b> Asyn 1 = Write to th 0 = Write to th <b>PRWIP:</b> Asyn 1 = Write to th 0 = Write to th <b>TECS&lt;1:0&gt;:</b>	nchronous Time ne timer in Asyn ne timer in Asyn nchronous Perio ne Period regis ne Period regis Timer1 Extende	er1 Write in Pre- nchronous mo nchronous mo od Write in Pro- ter in Asynchri- ter in Asynchri-	ogress bit de is pending de is complete ogress bit onous mode is onous mode is	e s pending		
bit 10	<b>TMWIP:</b> Asyn 1 = Write to th 0 = Write to th <b>PRWIP:</b> Asyn 1 = Write to th 0 = Write to th <b>TECS&lt;1:0</b> : 11 = FRC clo	nchronous Time ne timer in Asyn ne timer in Asyn nchronous Perio ne Period regis ne Period regis Timer1 Extende	er1 Write in Pre- nchronous mo nchronous mo od Write in Pro- ter in Asynchri- ter in Asynchri-	ogress bit de is pending de is complete ogress bit onous mode is onous mode is	e s pending		
bit 10	<b>TMWIP:</b> Asyn 1 = Write to th 0 = Write to th <b>PRWIP:</b> Asyn 1 = Write to th 0 = Write to th <b>TECS&lt;1:0&gt;:</b> 11 = FRC clo 10 = Fosc	nchronous Time ne timer in Asyn ne timer in Asyn nchronous Perio ne Period regis ne Period regis Timer1 Extende	er1 Write in Pre- nchronous mo nchronous mo od Write in Pro- ter in Asynchri- ter in Asynchri-	ogress bit de is pending de is complete ogress bit onous mode is onous mode is	e s pending		
bit 10	<b>TMWIP:</b> Asyn 1 = Write to th 0 = Write to th <b>PRWIP:</b> Asyn 1 = Write to th 0 = Write to th <b>TECS&lt;1:0&gt;:</b> 11 = FRC clo 10 = Fosc 01 = Tcy	nchronous Time ne timer in Asyn ne timer in Asyn nchronous Perio ne Period regis ne Period regis Timer1 Extende	er1 Write in Pro- nchronous mo nchronous mo od Write in Pro- ter in Asynchri- ter in Asynchri- ed Clock Selec	ogress bit de is pending de is complete ogress bit onous mode is onous mode is ct bits	e s pending		
bit 10 bit 9-8	TMWIP: Asyn 1 = Write to th 0 = Write to th PRWIP: Asyn 1 = Write to th 0 = Write to th TECS<1:0>: 11 = FRC clo 10 = Fosc 01 = Tcy 00 = External	nchronous Time ne timer in Asyn ne timer in Asyn nchronous Perio ne Period regis ne Period regis Timer1 Extende ck	er1 Write in Pro- nchronous mo od Write in Pro- ter in Asynchri- ter in Asynchri- ter Olock Select from the T1CK	ogress bit de is pending de is complete ogress bit onous mode is onous mode is ct bits	e s pending		
bit 10 bit 9-8	TMWIP: Asyn 1 = Write to th 0 = Write to th PRWIP: Asyn 1 = Write to th 0 = Write to th TECS<1:0>: 11 = FRC clo 10 = Fosc 01 = Tcy 00 = External	hchronous Time ne timer in Asyn ne timer in Asyn hchronous Perio ne Period regis ne Period regis Timer1 Extende ck Clock comes f er1 Gated Time <u>1:</u>	er1 Write in Pro- nchronous mo od Write in Pro- ter in Asynchri- ter in Asynchri- ter Olock Select from the T1CK	ogress bit de is pending de is complete ogress bit onous mode is onous mode is ct bits	e s pending		
bit 10 bit 9-8	TMWIP: Asyn 1 = Write to th 0 = Write to th PRWIP: Asyn 1 = Write to th 0 = Write to th TECS<1:0: 11 = FRC clo 10 = FOSC 01 = TCY 00 = External TGATE: Time When TCS = This bit is igno	achronous Time ne timer in Asyn ne timer in Asyn achronous Perio ne Period regis ne Period regis Timer1 Extende ck Clock comes f er1 Gated Time <u>1:</u> pred. 0:	er1 Write in Pro- nchronous mo od Write in Pro- ter in Asynchri- ter in Asynchri- ed Clock Select from the T1CK Accumulation	ogress bit de is pending de is complete ogress bit onous mode is onous mode is ct bits	e s pending		
bit 10	TMWIP: Asyn 1 = Write to th 0 = Write to th PRWIP: Asyn 1 = Write to th 0 = Write to th TECS<1:0>: 11 = FRC clo 10 = FOSC 01 = TCY 00 = External TGATE: Time When TCS = 1 = Gated time	achronous Time ne timer in Asyn ne timer in Asyn achronous Perio ne Period regis ne Period regis Timer1 Extende ck Clock comes f er1 Gated Time <u>1:</u> ored. 0: ue accumulation	er1 Write in Pro- nchronous mo od Write in Pro- ter in Asynchri- ter in Asynchri- ter in Asynchri- ed Clock Select from the T1CK Accumulation	ogress bit de is pending de is complete ogress bit onous mode is onous mode is ct bits	e s pending		
bit 10 bit 9-8	TMWIP: Asyn 1 = Write to th 0 = Write to th PRWIP: Asyn 1 = Write to th 0 = Write to th TECS<1:0>: 11 = FRC clo 10 = FOSC 01 = TCY 00 = External TGATE: Time When TCS = 1 = Gated tim 0 = Gated tim	achronous Time ne timer in Asyn ne timer in Asyn achronous Perio ne Period regis ne Period regis Timer1 Extende ck Clock comes f er1 Gated Time <u>1:</u> pred. 0:	er1 Write in Pre- nchronous mo nchronous mo od Write in Pro- ter in Asynchri- ter in Asynchri- ted Clock Select from the T1CK Accumulation	ogress bit de is pending de is complete ogress bit onous mode is onous mode is ct bits	e s pending		

### REGISTER 21-1: T1CON: TIMER1 CONTROL REGISTER

**Note 1:** When Timer1 is enabled in External Synchronous Counter mode (TCS = 1, TSYNC = 1, TON = 1), any attempts by user software to write to the TMR1 register are ignored.

### REGISTER 21-1: T1CON: TIMER1 CONTROL REGISTER (CONTINUED)

- bit 5-4 TCKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1 bit 3 Unimplemented: Read as '0' bit 2 TSYNC: Timer1 External Clock Input Synchronization Select bit⁽¹⁾ When TCS = 1: 1 = Synchronizes the External Clock input 0 = Does not synchronize the External Clock input When TCS = 0: This bit is ignored. TCS: Timer1 Clock Source Select bit⁽¹⁾ bit 1 1 = External Clock source selected by TECS<1:0> 0 = Internal peripheral clock (FP) Unimplemented: Read as '0' bit 0
- **Note 1:** When Timer1 is enabled in External Synchronous Counter mode (TCS = 1, TSYNC = 1, TON = 1), any attempts by user software to write to the TMR1 register are ignored.

NOTES:

## 22.0 CAPTURE/COMPARE/PWM/ TIMER MODULES (SCCP/MCCP)

Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. For more information on the MCCP/SCCP modules, refer to "Capture/Compare/ PWM/Timer (MCCP and SCCP)" (www.microchip.com/DS33035) in the "dsPIC33/PIC24 Family Reference Manual".

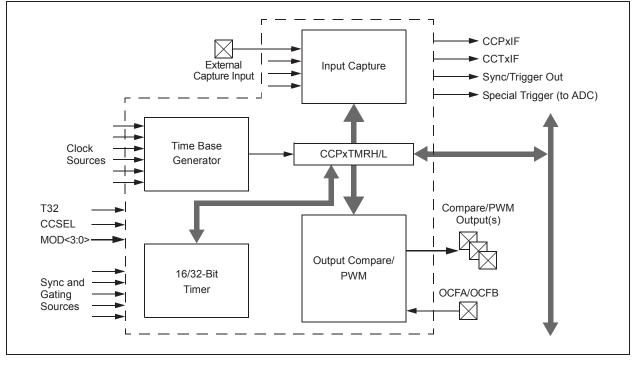
dsPIC33CK256MP508 family devices include eight SCCP and one MCCP Capture/Compare/PWM/Timer base modules, which provide the functionality of three different peripherals from earlier PIC24F devices. The module can operate in one of three major modes:

- · General Purpose Timer
- Input Capture
- Output Compare/PWM

The module is provided in two different forms, distinguished by the number of PWM outputs that the module can generate. Single Capture/Compare/PWM (SCCP) output modules provide only one PWM output.

Multiple Capture/Compare/PWM (MCCP) output modules can provide up to six outputs and an extended range of power control features, depending on the pin count of the particular device. All other features of the modules are identical. The SCCPx and MCCPx modules can be operated in only one of the three major modes at any time. The other modes are not available unless the module is reconfigured for the new mode.

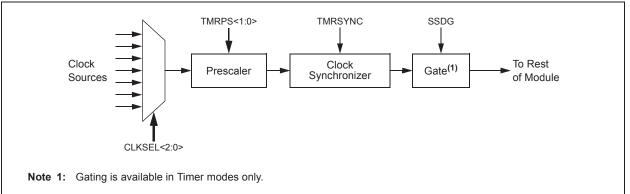
A conceptual block diagram for the module is shown in Figure 22-1. All three modes share a time base generator and a common Timer register pair (CCPxTMRH/L); other shared hardware components are added as a particular mode requires.


Each module has a total of six control and status registers:

- CCPxCON1L (Register 22-1)
- CCPxCON1H (Register 22-2)
- CCPxCON2L (Register 22-3)
- CCPxCON2H (Register 22-4)
- CCPxCON3H (Register 22-6)
- CCPxSTATL (Register 22-7)

Each module also includes eight buffer/counter registers that serve as Timer Value registers or data holding buffers:

- CCPxTMRH/CCPxTMRL (CCPx Timer High/Low Counters)
- CCPxPRH/CCPxPRL (CCPx Timer Period High/Low)
- CCPxRA (CCPx Primary Output Compare Data Buffer)
- CCPxRB (CCPx Secondary Output Compare Data Buffer)
- CCPxBUFH/CCPxBUFL (CCPx Input Capture High/Low Buffers)


#### FIGURE 22-1: SCCPx CONCEPTUAL BLOCK DIAGRAM



## 22.1 Time Base Generator

The Timer Clock Generator (TCG) generates a clock for the module's internal time base, using one of the clock signals already available on the microcontroller. This is used as the time reference for the module in its three major modes. The internal time base is shown in Figure 22-2.

#### FIGURE 22-2: TIMER CLOCK GENERATOR



## 22.2 General Purpose Timer

Timer mode is selected when CCSEL = 0 and MOD<3:0> = 0000. The timer can function as a 32-bit timer or a dual 16-bit timer, depending on the setting of the T32 bit (Table 22-1).

<b>TABLE 22-1</b> :	TIMER OPERATION MODE
---------------------	----------------------

T32 (CCPxCON1L<5>)	Operating Mode
0	Dual Timer Mode (16-bit)
1	Timer Mode (32-bit)

Dual 16-Bit Timer mode provides a simple timer function with two independent 16-bit timer/counters. The primary timer uses CCPxTMRL and CCPxPRL. Only the primary timer can interact with other modules on the device. It generates the SCCPx sync out signals for use by other SCCP modules. It can also use the SYNC<4:0> bits signal generated by other modules.

The secondary timer uses CCPxTMRH and CCPxPRH. It is intended to be used only as a periodic interrupt source for scheduling CPU events. It does not generate an output sync/trigger signal like the primary time base. In Dual Timer mode, the CCPx Secondary Timer Period register, CCPxPRH, generates the SCCP compare event (CCPxIF) used by many other modules on the device.

The 32-Bit Timer mode uses the CCPxTMRL and CCPxTMRH registers, together, as a single 32-bit timer. When CCPxTMRL overflows, CCPxTMRH increments by one. This mode provides a simple timer function when it is important to track long time periods. Note that

the T32 bit (CCPxCON1L<5>) should be set before the CCPxTMRL or CCPxPRH registers are written to initialize the 32-bit timer.

There are eight inputs available to the clock generator,

which are selected using the CLKSEL<2:0> bits

(CCPxCON1L<10:8>). Available sources include the

FRC and LPRC, the Secondary Oscillator and the TCLKI

External Clock inputs. The system clock is the default

source (CLKSEL<2:0> = 000).

#### 22.2.1 SYNC AND TRIGGER OPERATION

In both 16-bit and 32-bit modes, the timer can also function in either synchronization ("sync") or trigger operation. Both use the SYNC<4:0> bits (CCPxCON1H<4:0>) to determine the input signal source. The difference is how that signal affects the timer.

In sync operation, the timer Reset or clear occurs when the input selected by SYNC<4:0> is asserted. The timer immediately begins to count again from zero unless it is held for some other reason. Sync operation is used whenever the TRIGEN bit (CCPxCON1H<7>) is cleared. SYNC<4:0> can have any value, except '11111'.

In trigger operation, the timer is held in Reset until the input selected by SYNC<4:0> is asserted; when it occurs, the timer starts counting. Trigger operation is used whenever the TRIGEN bit is set. In Trigger mode, the timer will continue running after a trigger event as long as the CCPTRIG bit (CCPxSTATL<7>) is set. To clear CCPTRIG, the TRCLR bit (CCPxSTATL<5>) must be set to clear the trigger event, reset the timer and hold it at zero until another trigger event occurs. On dsPIC33CK256MP508 family devices, trigger operation can only be used when the system clock is the time base source (CLKSEL<2:0> = 000).

## 22.3 Output Compare Mode

Output Compare mode compares the Timer register value with the value of one or two Compare registers, depending on its mode of operation. The Output Compare x module, on compare match events, has the ability to generate a single output transition or a train of output pulses. Like most PIC[®] MCU peripherals, the Output Compare x module can also generate interrupts on a compare match event.

Table 22-2 shows the various modes available in Output Compare modes.

TABLE 22-2: OU	PUT COMPARE x/PWMx MODES
----------------	--------------------------

MOD<3:0> (CCPxCON1L<3:0>)	T32 (CCPxCON1L<5>)	Operating Mode			
0001	0	Output High on Compare (16-bit)			
0001	1	Output High on Compare (32-bit)			
0010	0	Output Low on Compare (16-bit)	Single Edge Mede		
0010	1	Output Low on Compare (32-bit)	Single Edge Mode		
0011	0	Output Toggle on Compare (16-bit)			
0011	1	Output Toggle on Compare (32-bit)	7		
0100	0	Dual Edge Compare (16-bit)	Dual Edge Mode		
0101	0	Dual Edge Compare (16-bit buffered)	PWM Mode		

## 22.4 Input Capture Mode

Input Capture mode is used to capture a timer value from an independent timer base, upon an event, on an input pin or other internal trigger source. The input capture features are useful in applications requiring frequency (time period) and pulse measurement.

Input Capture mode uses a dedicated 16/32-bit, synchronous, up counting timer for the capture function. The timer value is written to the FIFO when a capture event occurs. The internal value may be read (with a synchronization delay) using the CCPxTMRH/L register.

То	use	Input	Capture	mode,	the	CC	SEL	bit
(CC	PxC	DN1L<4	>) must	be set.	The	T32	and	the
MO	D<3:0	)> bits a	are used to	o select	the p	roper	Cap	ture
mo	de, as	shown	in Table 2	2-3.				

<b>TABLE 22-3</b> :	INPUT CAPTURE x MODES

MOD<3:0> (CCPxCON1L<3:0>)	T32 (CCPxCON1L<5>)	Operating Mode				
0000	0	Edge Detect (16-bit capture)				
0000	1	Edge Detect (32-bit capture)				
0001	0	Every Rising (16-bit capture)				
0001	1	Every Rising (32-bit capture)				
0010	0	Every Falling (16-bit capture)				
0010	1	Every Falling (32-bit capture)				
0011	0	Every Rising/Falling (16-bit capture)				
0011	1	Every Rising/Falling (32-bit capture)				
0100	0	Every 4th Rising (16-bit capture)				
0100	1	Every 4th Rising (32-bit capture)				
0101	0	Every 16th Rising (16-bit capture)				
0101	1	Every 16th Rising (32-bit capture)				

# 22.5 Auxiliary Output

The SCCPx modules have an auxiliary (secondary) output that provides other peripherals access to internal module signals. The auxiliary output is intended to connect to other SCCP modules, or other digital peripherals, to provide these types of functions:

- Time Base Synchronization
- Peripheral Trigger and Clock Inputs
- Signal Gating

## TABLE 22-4: AUXILIARY OUTPUT

The type of output signal is selected using the AUXOUT<1:0> control bits (CCPxCON2H<4:3>). The type of output signal is also dependent on the module operating mode.

AUXOUT<1:0>	CCSEL	MOD<3:0>	Comments	Signal Description
00	Х	XXXX	Auxiliary output disabled	No Output
01	0	0000	Time Base modes	Time Base Period Reset or Rollover
10				Special Event Trigger Output
11				No Output
01	0	0001	Output Compare modes	Time Base Period Reset or Rollover
10		through		Output Compare Event Signal
11		1111		Output Compare Signal
01	1	XXXX	Input Capture modes	Time Base Period Reset or Rollover
10				Reflects the Value of the ICDIS bit
11				Input Capture Event Signal

# 22.6 Control Registers

## REGISTER 22-1: CCPxCON1L: CCPx CONTROL 1 LOW REGISTERS

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CCPON	_	CCPSIDL	CCPSLP	TMRSYNC	CLKSEL2	CLKSEL1	CLKSEL0		
bit 15		•					bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
TMRPS1	TMRPS0	T32	CCSEL	MOD3	MOD2	MOD1	MOD0		
bit 7							bit (		
Legend:									
R = Readable	e bit	W = Writable	oit	U = Unimplem	ented bit, read	1 as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	iown		
bit 15		Px Module Enal							
	1 = Module is 0 = Module is		an operating m	ode specified b	y the MOD<3:	0> control bits			
bit 14		ted: Read as '(	,						
bit 13	•	CPx Stop in Idle							
bit 10				levice enters Id	e mode				
		s module opera							
bit 12	CCPSLP: CC	Px Sleep Mode	e Enable bit						
	1 = Module continues to operate in Sleep modes								
	0 = Module d	oes not operate	e in Sleep mod	les					
bit 11	TMRSYNC: Time Base Clock Synchronization bit								
	<ul> <li>1 = Asynchronous module time base clock is selected and synchronized to the internal system clocks (CLKSEL&lt;2:0&gt; ≠ 000)</li> </ul>								
	· ·	,	ime base clo	ock is selected	and does	not require s	vnchronizatio		
		<2:0> = 000)					,		
bit 10-8	CLKSEL<2:0	>: CCPx Time	Base Clock Se	lect bits					
	111 = PPS T	kCK input							
	110 = CLC4								
	101 = CLC3 100 = CLC2								
	011 = CLC1								
	010 = Fosc								
	001 = Refere 000 = Fosc/2	nce Clock (REF	CLKO)						
	000 - F030/2	. ,	escale Select	bite					
hit 7-6	TMPPS-1.05	TMRPS<1:0>: Time Base Prescale Select bits							
bit 7-6									
bit 7-6	<b>TMRPS&lt;1:0&gt;</b> 11 = 1:64 Pre 10 = 1:16 Pre	scaler							
bit 7-6	11 = 1:64 Pre 10 = 1:16 Pre 01 = 1:4 Pres	escaler escaler caler							
	11 = 1:64 Pre 10 = 1:16 Pre 01 = 1:4 Pres 00 = 1:1 Pres	escaler escaler caler caler							
bit 7-6 bit 5	11 = 1:64 Pre 10 = 1:16 Pre 01 = 1:4 Pres 00 = 1:1 Pres <b>T32:</b> 32-Bit Ti	escaler escaler caler caler me Base Selec	t bit						
	11 = 1:64 Pre 10 = 1:16 Pre 01 = 1:4 Pres 00 = 1:1 Pres <b>T32:</b> 32-Bit Ti 1 = Uses 32-	escaler escaler caler caler me Base Selec bit time base fo	t bit r timer, single	edge output co					
bit 5	11 = 1:64 Pre 10 = 1:16 Pre 01 = 1:4 Pres 00 = 1:1 Pres <b>T32:</b> 32-Bit Ti 1 = Uses 32- 0 = Uses 16-	escaler caler caler me Base Select bit time base for bit time base for	t bit r timer, single r timer, single	edge output cor edge output cor					
	11 = 1:64 Pre 10 = 1:16 Pre 01 = 1:4 Pres 00 = 1:1 Pres <b>T32:</b> 32-Bit Ti 1 = Uses 32- 0 = Uses 16- <b>CCSEL:</b> Capt	escaler escaler caler caler me Base Selec bit time base fo	t bit r timer, single r timer, single 1ode Select bit	edge output cor edge output cor					

#### REGISTER 22-1: CCPxCON1L: CCPx CONTROL 1 LOW REGISTERS (CONTINUED)

#### bit 3-0 MOD<3:0>: CCPx Mode Select bits

#### For CCSEL = 1 (Input Capture modes):

- 1xxx = Reserved
- 011x = Reserved
- 0101 = Capture every 16th rising edge
- 0100 = Capture every 4th rising edge
- 0011 = Capture every rising and falling edge
- 0010 = Capture every falling edge
- 0001 = Capture every rising edge
- 0000 = Capture every rising and falling edge (Edge Detect mode)

#### For CCSEL = 0 (Output Compare/Timer modes):

- 1111 = External Input mode: Pulse generator is disabled, source is selected by ICS<2:0>
- 1110 = Reserved
- 110x = Reserved
- 10xx = Reserved
- 0111 = Reserved
- 0110 = Reserved
- 0101 = Dual Edge Compare mode, buffered
- 0100 = Dual Edge Compare mode
- 0011 = 16-Bit/32-Bit Single Edge mode, toggles output on compare match
- 0010 = 16-Bit/32-Bit Single Edge mode, drives output low on compare match
- 0001 = 16-Bit/32-Bit Single Edge mode, drives output high on compare match
- 0000 = 16-Bit/32-Bit Timer mode, output functions are disabled

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
OPSSRC ⁽¹⁾	RTRGEN ⁽²⁾		_	OPS3 ⁽³⁾	OPS2 ⁽³⁾	OPS1 ⁽³⁾	OPS0 ⁽³⁾		
bit 15				·	•	•	bit		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
TRIGEN	ONESHOT	ALTSYNC	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0		
bit 7						•	bit		
Legend:									
R = Readable		W = Writable I	oit	-	nented bit, read				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
	000000			(1)					
bit 15		tput Postscaler		er output events					
		ostscaler scales			5				
bit 14		trigger Enable		·					
		e can be retrig		RIGEN bit = 1					
	0 = Time base	e may not be re	etriggered whe	en TRIGEN bit =	= 1				
bit 13-12	Unimplement	ted: Read as 'o	)'						
bit 11-8	OPS3<3:0>: CCPx Interrupt Output Postscale Select bits ⁽³⁾								
	1110 <b>= Interru</b>	upt every 16th t upt every 15th t							
	0011 = Interru 0010 = Interru 0001 = Interru	upt every 3rd tin upt every 2nd ti	ne base perio ne base perio me base perio	d match d match or 4th i d match or 3rd od match or 2nd od match or inpo	input capture e l input capture	vent event			
bit 7	TRIGEN: CCF	Px Trigger Enat	ole bit						
	00 1	eration of time							
		eration of time							
bit 6		ne-Shot Trigge							
		t Trigger mode		gger duration is	set by USCNI	<2:0>			
bit 5		CPx Clock Sele							
	1 = An alterna	ate signal is us	ed as the mod	lule synchroniza	ation output sig	nal			
	0 = The mode	ule synchroniza	tion output sig	gnal is the Time	Base Reset/ro	llover event			
bit 4-0		CCPx Synchron 5 for the definit		e Select bits					
Note 1: Th	is control bit ha	s no function in	Innut Cantur	a modes					
	is control bit ha								
<b>4.</b> []]	is control bit lia	S NO RUNCLOIT W		- v.					

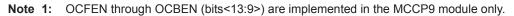
#### REGISTER 22-2: CCPxCON1H: CCPx CONTROL 1 HIGH REGISTERS

SYNC<4:0>	Synchronization Source
00000	None; Timer with Rollover on CCPxPR Match or FFFFh
00001	Module's Own Timer Sync Out
00010	Sync Output SCCP2
00011	Sync Output SCCP3
00100	Sync Output SCCP4
00101	Sync Output SCCP5
00110	Sync Output SCCP6
00111	Sync Output SCCP7
01000	Sync Output SCCP8
01001	INTO
01010	INT1
01011	INT2
01100	UART1 RX Edge Detect
01101	UART1 TX Edge Detect
01110	UART2 RX Edge Detect
01111	UART2 TX Edge Detect
10000	CLC1 Output
10001	CLC2 Output
10010	CLC3 Output
10011	CLC4 Output
10100	UART3 RX Edge Detect
10101	UART3 TX Edge Detect
10110	Sync Output MCCP9
10111	Comparator 1 Output
11000	Comparator 2 Output
11001	Comparator 3 Output
11010-11110	Reserved
11111	None; Timer with Auto-Rollover (FFFFh $\rightarrow$ 0000h)

## TABLE 22-5: SYNCHRONIZATION SOURCES

R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0
PWMRSEN	ASDGM		SSDG	—	—	_	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ASDG7	ASDG6	ASDG5	ASDG4	ASDG3	ASDG2	ASDG1	ASDG0
bit 7							bit 0
Legend: R = Readable	hit	W = Writable	hit		antad hit raa	1 00 '0'	
				'0' = Bit is clea	nented bit, read		
-n = Value at F	OR	'1' = Bit is set		0 = Bit is clea	areo	x = Bit is unkr	IOWN
bit 15 bit 14 bit 13	<ul> <li>1 = ASEVT b has ende</li> <li>0 = ASEVT b</li> <li>ASDGM: CCF</li> <li>1 = Waits unt</li> <li>0 = Shutdown</li> </ul>	ed bit must be clea Px Auto-Shutdo til the next Time n event occurs	atically at the f red in software own Gate Mode Base Reset o immediately	beginning of the to resume PW	/M activity on c	output pins	hutdown input
bit 12	SSDG: CCPx 1 = Manually ASDGM	ted: Read as ' Software Shut forces auto-sl bit still applies) nodule operatic	down/Gate Co nutdown, timer	ntrol bit · clock gate or	input capture	signal gate ev	ent (setting of
bit 11-8	Unimplemen	ted: Read as '	o'				
bit 7-0	1 = ASDGx S		bled (see Table	Source Enable e 22-6 for auto-		ng sources)	

#### REGISTER 22-3: CCPxCON2L: CCPx CONTROL 2 LOW REGISTERS


## TABLE 22-6: AUTO-SHUTDOWN AND GATING SOURCES

ASDG <x></x>				Auto-Shu	tdown/Gati	ng Source			
Bit	SCCP1	SCCP2	SCCP3	SCCP4	SCCP5	SCCP6	SCCP7	SCCP8	МССР9
0		Comparator 1 Output							
1		Comparator 2 Output							
2	OCFC								
3		OCFD							
4	ICM1 ⁽¹⁾	ICM2 ⁽¹⁾	ICM3 ⁽¹⁾	ICM4 ⁽¹⁾	ICM5 ⁽¹⁾	ICM6 ⁽¹⁾	ICM7 ⁽¹⁾	ICM8 ⁽¹⁾	ICM9 ⁽¹⁾
5	CLC1 ⁽¹⁾								
6	OCFA ⁽¹⁾								
7	OCFB ⁽¹⁾								

**Note 1:** Selected by Peripheral Pin Select (PPS).

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
OENSYNC		OCFEN ⁽¹⁾	OCEEN ⁽¹⁾	OCDEN ⁽¹⁾	OCCEN ⁽¹⁾	OCBEN ⁽¹⁾	OCAEN				
bit 15							bit 8				
	DAMA	11.0	DAMO		DAMO		DAMO				
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ICGSM1 bit 7	ICGSM0		AUXOUT1	AUXOUT0	ICS2	ICS1	ICS0				
							bit (				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own				
bit 15	OENSYNC: (	Dutput Enable S	Synchronizatior	n bit							
		1 = Update by output enable bits occurs on the next Time Base Reset or rollover									
	-	y output enable		mediately							
bit 14	Unimplemented: Read as '0'										
bit 13-8		<b>DC<f:a>EN:</f:a></b> Output Enable/Steering Control bits ⁽¹⁾									
	<ul> <li>1 = OCMx pin is controlled by the CCPx module and produces an output compare or PWM signal</li> <li>0 = OCMx pin is not controlled by the CCPx module; the pin is available to the port logic or another</li> </ul>										
	peripheral multiplexed on the pin										
bit 7-6		•	•	Mode Control	bits						
	ICGSM<1:0>: Input Capture Gating Source Mode Control bits 11 = Reserved										
	10 = One-Shot mode: Falling edge from gating source disables future capture events (ICDIS = 1)										
	01 = One-Shot mode: Rising edge from gating source enables future capture events (ICDIS = 0)										
	00 = Level-Sensitive mode: A high level from gating source will enable future capture events; a low level will disable future capture events										
bit 5		ted: Read as '	•	<b>,</b>							
bit 4-3	-			Event Selectio	n hite						
bit <del>4</del> -5	AUXOUT<1:0>: Auxiliary Output Signal on Event Selection bits 11 = Input capture or output compare event; no signal in Timer mode										
	11 = input capture of output compare event; no signal in Timer mode 10 = Signal output is defined by module operating mode (see Table 22-4)										
	01 = Time base rollover event (all modes)										
	00 = Disabled	b									
bit 2-0	ICS<2:0>: Input Capture Source Select bits										
	111 = CLC4 output										
	110 = CLC3 output										
	101 = CLC2 output 100 = CLC1 output										
		arator 3 output									
		arator 2 output									
	<b>^</b>										
		arator 1 output Input Capture :									

#### REGISTER 22-4: CCPxCON2H: CCPx CONTROL 2 HIGH REGISTERS



REGISTER 22-5:	CCPxCON3L: CCPx CONTROL 3 LOW REGISTERS ⁽¹⁾	
----------------	--------------------------------------------------------	--

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—
bit 15				-	·	·	bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—			DT<	:5:0>		
bit 7							bit 0
Legend:							
	h:+		L:4		a sector de la secore	1 (0)	

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 DT<5:0>: CCPx Dead-Time Select bits

111111 = Inserts 63 dead-time delay periods between complementary output signals
111110 = Inserts 62 dead-time delay periods between complementary output signals
000010 = Inserts 2 dead-time delay periods between complementary output signals
000001 = Inserts 1 dead-time delay period between complementary output signals

000000 = Dead-time logic is disabled

Note 1: This register is implemented in the MCCP9 module only.

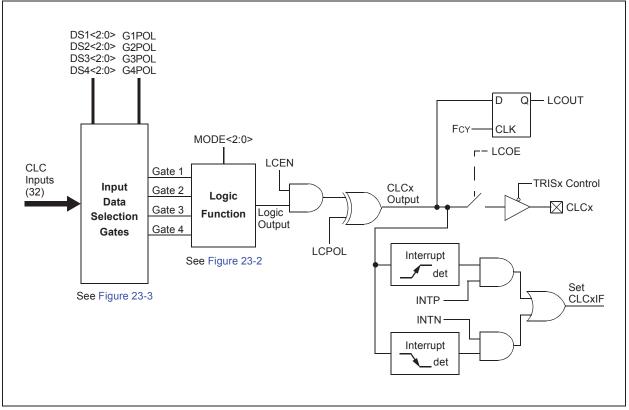
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
OETRIG	OSCNT2	OSCNT1	OSCNT0	_	OUTM2 ⁽¹⁾	OUTM1 ⁽¹⁾	OUTM0 ⁽¹⁾				
bit 15					ļ		bit 8				
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	_	POLACE	POLBDF ⁽¹⁾	PSSACE1	PSSACE0	PSSBDF1 ⁽¹⁾	PSSBDF0 ⁽¹				
bit 7							bit (				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'					
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	NOW/D				
	TOR	1 - Dit 13 3et	,				101011				
bit 15	OETRIG: CC	Px Dead-Time	Select bit								
	1 = For Trigg	ered mode (TF	RIGEN = 1): Mo	dule does not	drive enabled	output pins unti	l triggered				
		utput pin opera					00				
bit 14-12	OSCNT<2:0>	: One-Shot Ev	ent Count bits								
	111 = Extends one-shot event by seven time base periods (eight time base periods total)										
	110 = Extends one-shot event by six time base periods (seven time base periods total)										
	<ul> <li>101 = Extends one-shot event by five time base periods (six time base periods total)</li> <li>100 = Extends one-shot event by four time base periods (five time base periods total)</li> </ul>										
			ent by three time								
			ent by two time								
			ent by one time		vo time base p	eriods total)					
			shot Trigger ev	ent							
bit 11	-	ted: Read as '									
bit 10-8			Mode Control I	bits ⁽¹⁾							
	111 = Reserv										
	110 = Output	DC Output mode	he forward								
		DC Output mo									
	011 = Reserv		<b>,</b>								
		idge Output m									
		Pull Output mod									
h:+ 7 C		ble Single Outp									
bit 7-6	-	ted: Read as '				antrol bit					
bit 5		•	s, OCMxA, OC	IVIXC and OCIVI	xE, Polarity Co	DITED DIE					
	<ol> <li>1 = Output pin polarity is active-low</li> <li>0 = Output pin polarity is active-high</li> </ol>										
bit 4			s, OCMxB, OCI	MxD and OCM	xF Polarity Co	ntrol bit ⁽¹⁾					
		-									
	<ol> <li>1 = Output pin polarity is active-low</li> <li>0 = Output pin polarity is active-high</li> </ol>										
bit 3-2	PSSACE<1:0	>: PWMx Outp	out Pins, OCMx	A, OCMxC and	d OCMxE, Shu	tdown State Co	ontrol bits				
		-	when a shutdow								
			when a shutdo		irs						
	0x = Pins are	tri-stated whe	n a shutdown e	vent occurs							
bit 1-0	PSSBDF<1:0	>: PWMx Outp	out Pins, OCMx	B, OCMxD, an	d OCMxF, Shu	tdown State Co	ontrol bits ⁽¹⁾				
bit 1-0	11 = Pins are	driven active	when a shutdow	vn event occurs	6	tdown State Co	ontrol bits ⁽¹⁾				
bit 1-0	11 = Pins are 10 = Pins are	driven active v driven inactive		vn event occurs own event occu	s Irs	itdown State Co	ontrol bits ⁽¹⁾				

## REGISTER 22-6: CCPxCON3H: CCPx CONTROL 3 HIGH REGISTERS

**Note 1:** These bits are implemented in the MCCP9 module only.

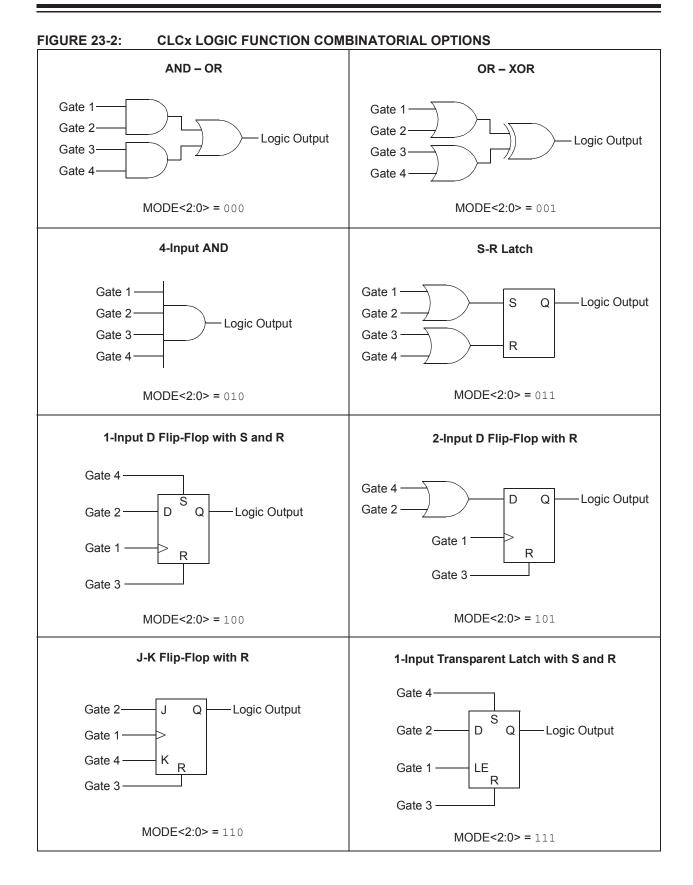
U-0	U-0	U-0	U-0	U-0	W1-0	U-0	U-0			
		_	_	_	ICGARM	_	_			
bit 15							bit 8			
R-0	W1-0	W1-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0			
CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE			
bit 7							bit 0			
L										
Legend:		C = Clearable				(0)				
R = Readabl		W1 = Write '1'	Only bit	-	nented bit, read					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15-11	Unimplomon	ted: Read as 'd	,							
bit 10	-	ut Capture Gat								
	-			input capture o	ating logic for	a one-shot gat	te event when			
		= 01 or 10. Bit			,	J J				
bit 9-8	Unimplemen	ted: Read as 'o	)'							
bit 7	CCPTRIG: CCPx Trigger Status bit									
		s been triggere								
bit 6		s not been trigg		eid in Reset						
DILO		x Trigger Set R	•	r when TRIGE	N = 1 (location a	alwavs reads a	s '∩')			
bit 5		x Trigger Clear				aiwayo icaao a	<b>S</b> 0 <b>)</b> .			
bito				r trigger when	TRIGEN = 1 (lo	cation always i	reads as '0').			
bit 4		x Auto-Shutdov			·	·				
				x outputs are ir	the shutdown	state				
		tputs operate n								
bit 3	-	e Edge Compa								
	<ul> <li>1 = A single edge compare event has occurred</li> <li>0 = A single edge compare event has not occurred</li> </ul>									
bit 2	-	Capture x Disat		occurred						
		•		es not generate	a capture even	nt				
		Input Capture								
bit 1	ICOV: Input Capture x Buffer Overflow Status bit									
		t Capture x FIF								
bit 0	-	t Capture x FIF Capture x Buff								
		oture x buffer ha		ble						
		oture x buffer is								

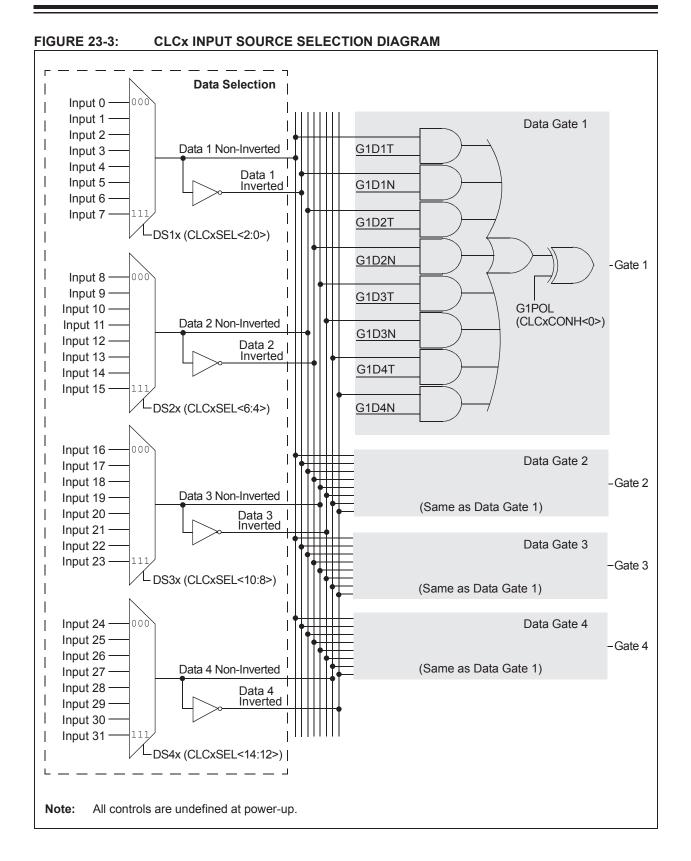
## REGISTER 22-7: CCPxSTATL: CCPx STATUS REGISTER


NOTES:

# 23.0 CONFIGURABLE LOGIC CELL (CLC)

Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. For more information, refer to "Configurable Logic Cell (CLC)" (www.microchip.com/DS70005298) in the "dsPIC33/PIC24 Family Reference Manual". The information in this data sheet supersedes the information in the FRM. The Configurable Logic Cell (CLC) module allows the user to specify combinations of signals as inputs to a logic function and to use the logic output to control other peripherals or I/O pins. This provides greater flexibility and potential in embedded designs, since the CLC module can operate outside the limitations of software execution, and supports a vast amount of output designs.


There are four input gates to the selected logic function. These four input gates select from a pool of up to 32 signals that are selected using four data source selection multiplexers. Figure 23-1 shows an overview of the module.


Figure 23-3 shows the details of the data source multiplexers and Figure 23-2 shows the logic input gate connections.



## FIGURE 23-1: CLCx MODULE

# dsPIC33CK256MP508 FAMILY





## 23.1 Control Registers

The CLCx module is controlled by the following registers:

- CLCxCONL
- CLCxCONH
- CLCxSEL
- CLCxGLSL
- CLCxGLSH

The CLCx Control registers (CLCxCONL and CLCxCONH) are used to enable the module and interrupts, control the output enable bit, select output polarity and select the logic function. The CLCx Control registers also allow the user to control the logic polarity of not only the cell output, but also some intermediate variables. The CLCx Input MUX Select register (CLCxSEL) allows the user to select up to four data input sources using the four data input selection multiplexers. Each multiplexer has a list of eight data sources available.

The CLCx Gate Logic Input Select registers (CLCxGLSL and CLCxGLSH) allow the user to select which outputs from each of the selection MUXes are used as inputs to the input gates of the logic cell. Each data source MUX outputs both a true and a negated version of its output. All of these eight signals are enabled, ORed together by the logic cell input gates. If no gate inputs are selected, the input to the gate will be zero or one, depending on the GxPOL bits.

## REGISTER 23-1: CLCxCONL: CLCx CONTROL REGISTER (LOW)

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0				
LCEN	—	—	_	INTP	INTN	—	—				
bit 15					• •	•	bit 8				
R-0	R-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
LCOE	LCOUT	LCPOL	—	—	MODE2	MODE1	MODE0				
bit 7							bit 0				
Legend:											
R = Readab	le hit	W = Writable	hit	II = I Inimpler	nented bit, read	las 'N'					
-n = Value at		'1' = Bit is set	on	'0' = Bit is cle		x = Bit is unkr	nown				
bit 15	LCEN: CLCx	Enable bit									
	1 = CLCx is e	1 = CLCx is enabled and mixing input signals									
	0 = CLCx is disabled and has logic zero outputs										
bit 14-12	Unimplemen	ted: Read as '	)'								
bit 11		INTP: CLCx Positive Edge Interrupt Enable bit									
	<ul> <li>1 = Interrupt will be generated when a rising edge occurs on LCOUT</li> <li>0 = Interrupt will not be generated</li> </ul>										
bit 10	•	CLCx Negative Edge Interrupt Enable bit									
	1 = Interrupt will be generated when a falling edge occurs on LCOUT										
	0 = Interrupt will not be generated										
bit 9-8	Unimplemen	ted: Read as '	)'								
bit 7	LCOE: CLCx	Port Enable bit	t								
	1 = CLCx port pin output is enabled										
	•	t pin output is c									
bit 6		LCOUT: CLCx Data Output Status bit									
	1 = CLCx output high 0 = CLCx output low										
bit 5		x Output Polari	ty Control bit								
		ut of the modul									
	0 = The outp	ut of the modul	e is not invert	ed							
bit 4-3	Unimplemen	ted: Read as '	)'								

#### REGISTER 23-1: CLCxCONL: CLCx CONTROL REGISTER (LOW) (CONTINUED)

- bit 2-0 MODE<2:0>: CLCx Mode bits
  - 111 = Single input transparent latch with S and R
  - 110 = JK flip-flop with R
  - 101 = Two-input D flip-flop with R
  - 100 = Single input D flip-flop with S and R
  - 011 = SR latch
  - 010 = Four-input AND
  - 001 = Four-input OR-XOR
  - 000 = Four-input AND-OR

#### REGISTER 23-2: CLCxCONH: CLCx CONTROL REGISTER (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	_	_	_	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	G4POL	G3POL	G2POL	G1POL
bit 7							bit 0

#### Legend:

Legenu.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-4	Unimplemented: Read as '0'
bit 3	G4POL: Gate 4 Polarity Control bit
	<ul><li>1 = Channel 4 logic output is inverted when applied to the logic cell</li><li>0 = Channel 4 logic output is not inverted</li></ul>
bit 2	G3POL: Gate 3 Polarity Control bit
	<ul> <li>1 = Channel 3 logic output is inverted when applied to the logic cell</li> <li>0 = Channel 3 logic output is not inverted</li> </ul>
bit 1	G2POL: Gate 2 Polarity Control bit
	<ul> <li>1 = Channel 2 logic output is inverted when applied to the logic cell</li> <li>0 = Channel 2 logic output is not inverted</li> </ul>
bit 0	G1POL: Gate 1 Polarity Control bit
	<ul> <li>1 = Channel 1 logic output is inverted when applied to the logic cell</li> <li>0 = Channel 1 logic output is not inverted</li> </ul>

٦

U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0						
_		DS4<2:0>		—		DS3<2:0>							
bit 15							bit						
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0						
0-0	R/W-U	DS2<2:0>	R/W-U	0-0	K/W-U	DS1<2:0>	R/W-U						
bit 7		002 2.02				001-2.02	bit						
Legend:													
R = Readab	ole bit	W = Writable I	oit	U = Unimpler	mented bit, rea	ad as '0'							
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own						
bit 15	Unimpleme	ented: Read as 'o	۱'										
bit 14-12	-	Data Selection M		Selection bits									
		P3 auxiliary out											
		P1 auxiliary out											
		101 = CLCIND pin											
	100 = Reserved 011 = SPI1 Input (SDIx) ⁽¹⁾												
	011 = SP11 Input (SDIX)." 010 = Comparator 3 output												
	001 = CLC2 output												
	000 <b>= PWM</b>	I Event A											
bit 11	Unimpleme	ented: Read as 'o	)'										
bit 10-8	DS3<2:0>: Data Selection MUX 3 Signal Selection bits												
	111 = SCCP4 Compare Event Flag (CCP4IF)												
	110 = SCCP3 Compare Event Flag (CCP3IF)												
	101 = CLC4 out 100 = UART1 RX output corresponding to CLCx module												
	011 = SPI1 Output (SDOx) corresponding to CLCx module ⁽¹⁾												
	010 = Comparator 2 output												
	001 = CLC1 output												
	000 = CLCI												
bit 7	Unimpleme	ented: Read as '0	)'										
bit 6-4	DS2<2:0>: Data Selection MUX 2 Signal Selection bits												
	111 = SCCP2 OC (CCP2IF) out												
	110 = SCCP1 OC (CCP1IF) out												
	101 = Reserved 100 = Reserved												
		T1 TX input corre	spondina to (	CLCx module									
		parator 1 output	1 0										
	001 <b>= Rese</b>												
1.11.0	000 <b>= CLCI</b>		. 1										
bit 3	Unimpleme	ented: Read as '0	)′										
Note 1: \	/alid only when	SPI is used on F	PS.										

## REGISTER 23-3: CLCxSEL: CLCx INPUT MUX SELECT REGISTER

#### REGISTER 23-3: CLCxSEL: CLCx INPUT MUX SELECT REGISTER (CONTINUED)

- bit 2-0 DS1<2:0>: Data Selection MUX 1 Signal Selection bits
  - 111 = SCCP4 auxiliary out
  - 110 = SCCP2 auxiliary out
  - 101 = Reserved
  - 100 = REFCLKO output
  - 011 = INTRC/LPRC clock source
  - 010 = CLC3 out
  - 001 = System clock (FCY)
  - 000 = CLCINA I/O pin
- Note 1: Valid only when SPI is used on PPS.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N		
bit 15	•	1	1	1			bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N		
bit 7	1	1		1			bit C		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15	C2D4T: Cata	2 Data Source	4 True Enable	hit					
DIL 15			enabled for Ga						
			disabled for Ga						
bit 14	G2D4N: Gate	2 Data Source	e 4 Negated Er	able bit					
			signal is enable signal is disable						
bit 13	<b>G2D3T:</b> Gate 2 Data Source 3 True Enable bit								
			enabled for Ga disabled for Ga						
bit 12	G2D3N: Gate 2 Data Source 3 Negated Enable bit								
			signal is enable signal is disable						
bit 11	<b>G2D2T:</b> Gate 2 Data Source 2 True Enable bit								
			enabled for Ga disabled for Ga						
bit 10	<b>G2D2N:</b> Gate 2 Data Source 2 Negated Enable bit								
			signal is enable signal is disable						
bit 9	G2D1T: Gate	2 Data Source	1 True Enable	bit					
			enabled for Ga disabled for Ga						
bit 8	G2D1N: Gate	2 Data Source	e 1 Negated Er	able bit					
			signal is enable signal is disable						
bit 7	G1D4T: Gate	1 Data Source	4 True Enable	bit					
		0	enabled for Ga disabled for Ga						
bit 6	G1D4N: Gate	1 Data Source	e 4 Negated Er	able bit					
			signal is enable signal is disable						
bit 5			3 True Enable						
			enabled for Ga disabled for Ga						
bit 4		-	e 3 Negated Er						
			signal is enable						

## REGISTER 23-4: CLCxGLSL: CLCx GATE LOGIC INPUT SELECT LOW REGISTER

## REGISTER 23-4: CLCxGLSL: CLCx GATE LOGIC INPUT SELECT LOW REGISTER (CONTINUED)

bit 3	<b>G1D2T:</b> Gate 1 Data Source 2 True Enable bit 1 = Data Source 2 signal is enabled for Gate 1
	0 = Data Source 2 signal is disabled for Gate 1
bit 2	G1D2N: Gate 1 Data Source 2 Negated Enable bit
	1 = Data Source 2 inverted signal is enabled for Gate 1 0 = Data Source 2 inverted signal is disabled for Gate 1
bit 1	G1D1T: Gate 1 Data Source 1 True Enable bit
	<ul><li>1 = Data Source 1 signal is enabled for Gate 1</li><li>0 = Data Source 1 signal is disabled for Gate 1</li></ul>
bit 0	G1D1N: Gate 1 Data Source 1 Negated Enable bit
	<ul><li>1 = Data Source 1 inverted signal is enabled for Gate 1</li><li>0 = Data Source 1 inverted signal is disabled for Gate 1</li></ul>

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N			
bit 15	1	1				1	bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N			
bit 7							bit C			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown			
bit 15	G4D4T: Gate	4 Data Source	4 True Enable	e bit						
	1 = Data Sou	irce 4 signal is o	enabled for Ga	te 4						
	0 = Data Sou	irce 4 signal is o	disabled for Ga	ate 4						
bit 14	G4D4N: Gate	e 4 Data Source	e 4 Negated Er	nable bit						
		rce 4 inverted								
		Irce 4 inverted	•							
bit 13	G4D3T: Gate 4 Data Source 3 True Enable bit									
	<ul> <li>1 = Data Source 3 signal is enabled for Gate 4</li> <li>0 = Data Source 3 signal is disabled for Gate 4</li> </ul>									
pit 12	<b>G4D3N:</b> Gate 4 Data Source 3 Negated Enable bit									
	1 = Data Source 3 inverted signal is enabled for Gate 4									
	0 = Data Source 3 inverted signal is disabled for Gate 4									
bit 11	G4D2T: Gate 4 Data Source 2 True Enable bit									
		rce 2 signal is o rce 2 signal is o								
bit 10	G4D2N: Gate 4 Data Source 2 Negated Enable bit									
		rce 2 inverted s								
bit 9	G4D1T: Gate	4 Data Source	1 True Enable	e bit						
	1 = Data Source 1 signal is enabled for Gate 4									
		irce 1 signal is o								
bit 8		e 4 Data Source	-							
		rce 1 inverted s rce 1 inverted s								
bit 7	G3D4T: Gate	3 Data Source	4 True Enable	e bit						
		rce 4 signal is o rce 4 signal is o								
bit 6	G3D4N: Gate	e 3 Data Source	e 4 Negated Er	nable bit						
		rce 4 inverted s								
bit 5	G3D3T: Gate	3 Data Source	3 True Enable	e bit						
		rce 3 signal is o rce 3 signal is o								
bit 4		e 3 Data Source								
	1 = Data Sou	rce 3 inverted s	signal is enable	ed for Gate 3						

## REGISTER 23-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER

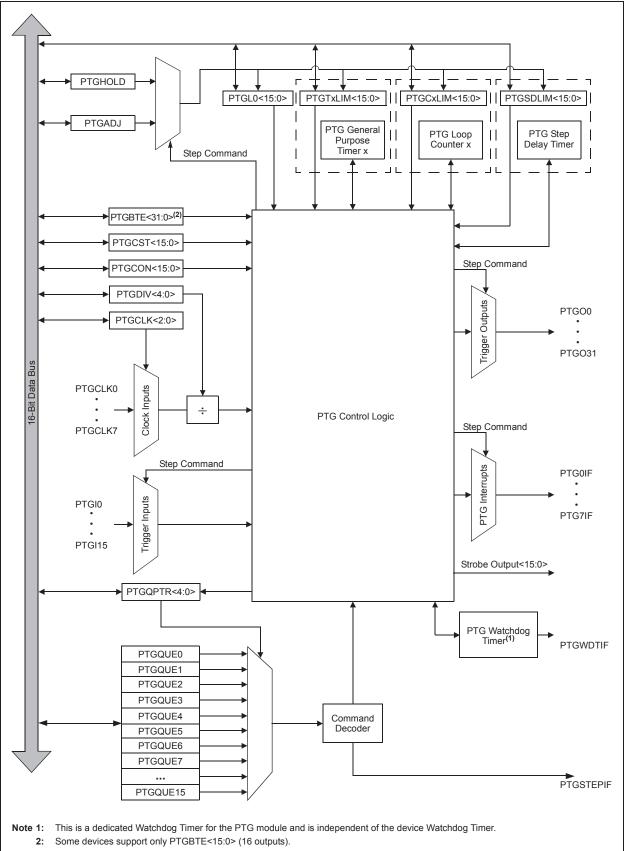
#### REGISTER 23-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER (CONTINUED)

bit 3	<b>G3D2T:</b> Gate 3 Data Source 2 True Enable bit 1 = Data Source 2 signal is enabled for Gate 3 0 = Data Source 2 signal is disabled for Gate 3
bit 2	G3D2N: Gate 3 Data Source 2 Negated Enable bit
	1 = Data Source 2 inverted signal is enabled for Gate 3 0 = Data Source 2 inverted signal is disabled for Gate 3
bit 1	G3D1T: Gate 3 Data Source 1 True Enable bit
	<ul><li>1 = Data Source 1 signal is enabled for Gate 3</li><li>0 = Data Source 1 signal is disabled for Gate 3</li></ul>
bit 0	G3D1N: Gate 3 Data Source 1 Negated Enable bit
	<ul><li>1 = Data Source 1 inverted signal is enabled for Gate 3</li><li>0 = Data Source 1 inverted signal is disabled for Gate 3</li></ul>

NOTES:

# 24.0 PERIPHERAL TRIGGER GENERATOR (PTG)

Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Peripheral Trigger Generator (PTG)" (www.microchip.com/ DS70000669) in the "dsPIC33/PIC24 Family Reference Manual".


The dsPIC33CK256MP508 family Peripheral Trigger Generator (PTG) module is a user-programmable sequencer that is capable of generating complex trigger signal sequences to coordinate the operation of other peripherals. The PTG module is designed to interface with the modules, such as an Analog-to-Digital Converter (ADC), output compare and PWM modules, timers and interrupt controllers.

## 24.1 Features

- Behavior is Step Command Driven:
  - Step commands are eight bits wide
- Commands are Stored in a Step Queue:
  - Queue depth is up to 32 entries
- Programmable Step execution time (Step delay)
- Supports the Command Sequence Loop:
  - Can be nested one-level deep
  - Conditional or unconditional loop
  - Two 16-bit loop counters
- 15 Hardware Input Triggers:
  - Sensitive to either positive or negative edges, or a high or low level
- One Software Input Trigger
- Generates up to 32 Unique Output Trigger Signals
- Generates Two Types of Trigger Outputs:
  - Individual
  - Broadcast
- Strobed Output Port for Literal Data Values:
  - 5-bit literal write (literal part of a command)
  - 16-bit literal write (literal held in the PTGL0 register)
- Generates up to Ten Unique Interrupt Signals
- Two 16-Bit General Purpose Timers
- Flexible Self-Contained Watchdog Timer (WDT) to Set an Upper Limit to Trigger Wait Time
- Single Step Command Capability in Debug mode
- Selectable Clock (System, Pulse-Width Modulator (PWM) or ADC)
- Programmable Clock Divider

# dsPIC33CK256MP508 FAMILY





# 24.2 PTG Registers

#### REGISTER 24-1: PTGCST: PTG CONTROL/STATUS LOW REGISTER

-							
R/W-0	U-0	R/W-0	R/W-0	U-0	HC/R/W-0	R/W-0	R/W-0
PTGEN	_	PTGSIDL	PTGTOGL	_	PTGSWT ⁽²⁾	PTGSSEN ⁽³⁾	PTGIVIS
bit 15							bit 8
HC/R/W-0	HS/R/W-0	HS/HC/R/W-0	U-0	U-0	U-0	R/W-0	R/W-0

110/10/04-0	110/10/00-0	110/110/11/ 10-0	0-0	0-0	0-0		10,00-0		
PTGSTRT	PTGWDTO	PTGBUSY	—	—	—	PTGITM1 ⁽¹⁾	PTGITM0 ⁽¹⁾		
bit 7 bit (									

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 15	PTGEN: PTG Enable bit
	1 = PTG is enabled
	0 = PTG is disabled
bit 14	Unimplemented: Read as '0'
bit 13	PTGSIDL: PTG Freeze in Debug Mode bit
	1 = Halts PTG operation when device is Idle
	0 = PTG operation continues when device is Idle
bit 12	PTGTOGL: PTG Toggle Trigger Output bit
	1 = Toggles state of TRIG output for each execution of PTGTRIG
	0 = Generates a single TRIG pulse for each execution of PTGTRIG
bit 11	Unimplemented: Read as '0'
bit 10	PTGSWT: PTG Software Trigger bit ⁽²⁾
	1 = Toggles state of TRIG output for each execution of PTGTRIG
	0 = Generates a single TRIG pulse for each execution of PTGTRIG
bit 9	PTGSSEN: PTG Single-Step Command bit ⁽³⁾
	1 = Enables single Step when in Debug mode
	0 = Disables single Step
bit 8	PTGIVIS: PTG Counter/Timer Visibility bit
	1 = Reading the PTGSDLIM, PTGCxLIM or PTGTxLIM registers returns the current values of their
	corresponding Counter/Timer registers (PTGSDLIM, PTGCxLIM and PTGTxLIM)
h:+ 7	0 = Reading the PTGSDLIM, PTGCxLIM or PTGTxLIM registers returns the value of these Limit registers
bit 7	PTGSTRT: PTG Start Sequencer bit
	<ul> <li>1 = Starts to sequentially execute the commands (Continuous mode)</li> <li>0 = Stops executing the commands</li> </ul>
bit 6	PTGWDTO: PTG Watchdog Timer Time-out Status bit
DILO	1 = PTG Watchdog Timer has timed out
	0 = PTG Watchdog Timer has not timed out
bit 5	PTGBUSY: PTG State Machine Busy bit
bit o	1 = PTG is running on the selected clock source; no SFR writes are allowed to PTGCLK<2:0> or
	PTGDIV<4:0>
	0 = PTG state machine is not running
Note 1:	These bits apply to the PTGWHI and PTGWLO commands only.
2:	This bit is only used with the PTGCTRL Step command software trigger option.
2.	

3: The PTGSSEN bit may only be written when in Debug mode.

## REGISTER 24-1: PTGCST: PTG CONTROL/STATUS LOW REGISTER (CONTINUED)

- bit 4-2 Unimplemented: Read as '0'
- bit 1-0 **PTGITM<1:0>:** PTG Input Trigger Operation Selection bit⁽¹⁾
  - 11 = Single-level detect with Step delay not executed on exit of command (regardless of the PTGCTRL command) (Mode 3)
  - 10 = Single-level detect with Step delay executed on exit of command (Mode 2)
  - 01 = Continuous edge detect with Step delay not executed on exit of command (regardless of the PTGCTRL command) (Mode 1)
  - 00 = Continuous edge detect with Step delay executed on exit of command (Mode 0)
- Note 1: These bits apply to the PTGWHI and PTGWLO commands only.
  - 2: This bit is only used with the PTGCTRL Step command software trigger option.
  - 3: The PTGSSEN bit may only be written when in Debug mode.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
PTGCLK2	PTGCLK1	PTGCLK0	PTGDIV4	PTGDIV3	PTGDIV2	PTGDIV1	PTGDIV0				
bit 15							bit 8				
DAMA	DAMA	DAMA	DANIO		DAMA	DAMA	DAALO				
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
PTGPWD3	PTGPWD2	PTGPWD1	PTGPWD0	—	PTGWDT2	PTGWDT1	PTGWDTO				
bit 7							bit				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-13	PTGCLK<2:0	0>: PTG Modul	e Clock Sourc	e Selection bit	s						
	111 = CLC1										
	110 = PLL V	CO DIV 4 outpu	ut								
	101 = PTG module clock source will be SCCP7										
	100 = PTG module clock source will be SCCP8										
	011 = Input from Timer1 Clock pin, T1CK										
	010 = PTG module clock source will be ADC clock										
	001 = PTG module clock source will be Fosc 000 = PTG module clock source will be Fosc/2 (FP)										
h # 40 0											
bit 12-8	PTGDIV<4:0>: PTG Module Clock Prescaler (Divider) bits										
	11111 = Divide-by-32 11110 = Divide-by-31										
	· · · ·										
	00001 = Divide-by-2 00000 = Divide-by-1										
bit 7-4	<b>PTGPWD&lt;3:0&gt;:</b> PTG Trigger Output Pulse-Width (in PTG clock cycles) bits										
	1111 = All trigger outputs are 16 PTG clock cycles wide										
	1110 = All trigger outputs are 15 PTG clock cycles wide										
	0001 = All trigger outputs are 2 PTG clock cycles wide										
		gger outputs ar		cycle wide							
bit 3	-	nted: Read as '									
bit 2-0		0>: PTG Watch									
		dog Timer will t									
		dog Timer will t									
		dog Timer will t									
		dog Timer will t									
		dog Timer will t									
		dog Timer will t dog Timer will t									
		dog Timer will t dog Timer is dis		OT TO CIUCKS							
		aby mile is us	Judicu								

# **REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE LOW REGISTER**⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGBT	E<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGBT	E<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unl	known

bit 15-0 **PTGBTE<15:0>:** PTG Broadcast Trigger Enable bits

1 = Generates trigger when the broadcast command is executed

0 = Does not generate trigger when the broadcast command is executed

Note 1: These bits are read-only when the module is executing Step commands.

## REGISTER 24-4: PTGBTEH: PTG BROADCAST TRIGGER ENABLE HIGH REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGB	TE<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGB	TE<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		nown	

bit 15-0 **PTGBTE<31:16>:** PTG Broadcast Trigger Enable bits

1 = Generates trigger when the broadcast command is executed

0 = Does not generate trigger when the broadcast command is executed

Note 1: These bits are read-only when the module is executing Step commands.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGHOL	.D<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGHO	_D<7:0>			
bit 7							bit 0
Legend:							

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGHOLD<15:0>:** PTG General Purpose Hold Register bits This register holds the user-supplied data to be copied to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 register using the PTGCOPY command.

Note 1: These bits are read-only when the module is executing Step commands.

## REGISTER 24-6: PTGT0LIM: PTG TIMER0 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT0LI	M<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT0L	IM<7:0>			
bit 7							bit C

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGT0LIM<15:0>:** PTG Timer0 Limit Register bits General Purpose Timer0 Limit register.

Note 1: These bits are read-only when the module is executing Step commands.

## REGISTER 24-7: PTGT1LIM: PTG TIMER1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT1L	_IM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT1	LIM<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-0 **PTGT1LIM<15:0>:** PTG Timer1 Limit Register bits General Purpose Timer1 Limit register.

**Note 1:** These bits are read-only when the module is executing Step commands.

## REGISTER 24-8: PTGSDLIM: PTG STEP DELAY LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				1000 0	10,00-0	10/00-0
		PTGSD	LIM<15:8>			
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		PTGSD	0LIM<7:0>			
						bit 0
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'			
	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			iown
		W = Writable bit	PTGSD W = Writable bit	PTGSDLIM<7:0> W = Writable bit U = Unimplem	PTGSDLIM<7:0> W = Writable bit U = Unimplemented bit, read	PTGSDLIM<7:0>         W = Writable bit       U = Unimplemented bit, read as '0'

bit 15-0 **PTGSDLIM<15:0>:** PTG Step Delay Limit Register bits

This register holds a PTG Step delay value representing the number of additional PTG clocks between the start of a Step command and the completion of a Step command.

**Note 1:** These bits are read-only when the module is executing Step commands.

## REGISTER 24-9: PTGC0LIM: PTG COUNTER 0 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC0LI	M<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC0L	IM<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplem	nented bit read	as '0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGC0LIM<15:0>:** PTG Counter 0 Limit Register bits This register is used to specify the loop count for the PTGJMPC0 Step command or as a Limit register for the General Purpose Counter 0.

Note 1: These bits are read-only when the module is executing Step commands.

## REGISTER 24-10: PTGC1LIM: PTG COUNTER 1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC1LI	M<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC1L	IM<7:0>			
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGC1LIM<15:0>:** PTG Counter 1 Limit Register bits This register is used to specify the loop count for the PTGJMPC1 Step command or as a Limit register for the General Purpose Counter 1.

**Note 1:** These bits are read-only when the module is executing step commands.

## REGISTER 24-11: PTGADJ: PTG ADJUST REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PTGA	DJ<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
R/W-U	R/W-0	R/W-U			R/W-0	R/W-0	K/W-U	
			PIGA	DJ<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR '1'		'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-0 **PTGADJ<15:0>:** PTG Adjust Register bits This register holds the user-supplied data to be added to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 register using the PTGADD command.

Note 1: These bits are read-only when the module is executing Step commands.

#### REGISTER 24-12: PTGL0: PTG LITERAL 0 REGISTER^(1,2)

-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'			
Legend:							
bit 7							bit 0
			PTGI	_0<7:0>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
			PTGL	0<15:8>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-0 PTGL0<15:0>: PTG Literal 0 Register bits

This register holds the 6-bit value to be written to the CNVCHSEL<5:0> bits (ADCON3L<5:0>) with the PTGCTRL Step command.

- **Note 1:** These bits are read-only when the module is executing Step commands.
  - 2: The PTG strobe output is typically connected to the ADC Channel Select register. This allows the PTG to directly control ADC channel switching. See the specific device data sheet for connections of the PTG output.

#### REGISTER 24-13: PTGQPTR: PTG STEP QUEUE POINTER REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	—	—	—	_	—
bit 15				•	•		bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		—			PTGQPTR<4:0	)>	
bit 7							bit 0
Legend:							
R = Readable bit W = Writable b		bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-5	<b>Unimplemented:</b>	Read a	<b>is</b> '0'
	ompionionitoui	i toud c	

bit 4-0 **PTGQPTR<4:0>:** PTG Step Queue Pointer Register bits This register points to the currently active Step command in the Step queue.

Note 1: These bits are read-only when the module is executing step commands.

#### REGISTER 24-14: PTGQUEn: PTG STEP QUEUE n POINTER REGISTER (n = 0-15)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STEP2n+	-1<7:0> ⁽²⁾			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STEP2r	<7:0> ⁽²⁾			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	STEP2n+1<7:0>: PTG Command 4n+1 bits ⁽²⁾
	A queue location for storage of the STEP2n+1 command byte, where 'n' is from PTGQUEn.
bit	STEP2n<7:0>: PTG Command 4n+2 bits ⁽²⁾
	A queue location for storage of the STEP2n command byte, where 'n' is the odd numbered Step Queue Pointers.

**Note 1:** These bits are read-only when the module is executing Step commands.

2: Refer to Table 24-1 for the Step command encoding.

### TABLE 24-1: PTG STEP COMMAND FORMAT AND DESCRIPTION

01	0	
Ston	Common	~
JUCH	Comman	u

Step Command Byte			
STER	Px<7:0>		
CMD<3:0>	OPTION<3:0>		
bit 7 bit 4	4 bit 3 bit 0		

bit 7-4	Step Command	CMD<3:0>	Command Description
	PTGCTRL	0000	Execute the control command as described by the OPTION<3:0> bits.
	PTGADD	0001	Add contents of the PTGADJ register to the target register as described by the OPTION<3:0> bits.
	PTGCOPY		Copy contents of the PTGHOLD register to the target register as described by the OPTION<3:0> bits.
	PTGSTRB	001x	Copy the values contained in the bits, CMD<0>:OPTION<3:0> to the strobe output bits <4:0>.
	PTGWHI	0100	Wait for a low-to-high edge input from a selected PTG trigger input as described by the OPTION<3:0> bits.
	PTGWLO	0101	Wait for a high-to-low edge input from a selected PTG trigger input as described by the OPTION<3:0> bits.
	—	0110	Reserved; do not use. ⁽¹⁾
	PTGIRQ	0111	Generate individual interrupt request as described by the OPTION<3:0> bits.
	PTGTRIG	100x	Generate individual trigger output as described by the bits, CMD<0>:OPTION<3:0>.
	PTGJMP	101x	Copy the values contained in the bits, CMD<0>:OPTION<3:0> to the PTGQPTR register, and jump to that Step queue.
	PTGJMPC0	110x	PTGC0 = PTGC0LIM: Increment the PTGQPTR register.
			$PTGC0 \neq PTGC0LIM$ : Increment Counter 0 (PTGC0) and copy the values contained in the bits, CMD<0>:OPTION<3:0> to the PTGQPTR register, and jump to that Step queue.
	PTGJMPC1	111x	PTGC1 = PTGC1LIM: Increment the PTGQPTR register.
			PTGC1 $\neq$ PTGC1LIM: Increment Counter 1 (PTGC1) and copy the values contained in the bits, CMD<0>:OPTION<3:0> to the PTGQPTR register, and jump to that Step queue.

Note 1: All reserved commands or options will execute, but they do not have any affect (i.e., execute as a NOP instruction).

Step Command	OPTION<3:0>	Command Description
PTGCTRL(1)	0000	NOP.
	0001	Reserved; do not use.
	0010	Disable Step delay timer (PTGSD).
	0011	Reserved; do not use.
	0100	Reserved; do not use.
	0101	Reserved; do not use.
	0110	Enable Step delay timer (PTGSD).
	0111	Reserved; do not use.
	1000	Start and wait for the PTG Timer0 to match the PTGT0LIM register.
	1001	Start and wait for the PTG Timer1 to match the PTGT1LIM register.
	1010	Wait for the software trigger (level, PTGSWT = 1).
	1011	Wait for the software trigger (positive edge, PTGSWT = 0 to 1).
	1100	Copy the PTGC0LIM register contents to the strobe output.
	1101	Copy the PTGC1LIM register contents to the strobe output.
	1110	Copy the PTGL0 register contents to the strobe output.
	1111	Generate the triggers indicated in the PTGBTE register.
PTGADD ⁽¹⁾	0000	Add the PTGADJ register contents to the PTGC0LIM register.
	0001	Add the PTGADJ register contents to the PTGC1LIM register.
	0010	Add the PTGADJ register contents to the PTGT0LIM register.
	0011	Add the PTGADJ register contents to the PTGT1LIM register.
	0100	Add the PTGADJ register contents to the PTGSDLIM register.
	0101	Add the PTGADJ register contents to the PTGL0 register.
	0110	Reserved; do not use.
	0111	Reserved; do not use.
PTGCOPY ⁽¹⁾	1000	Copy the PTGHOLD register contents to the PTGC0LIM register.
	1001	Copy the PTGHOLD register contents to the PTGC1LIM register.
	1010	Copy the PTGHOLD register contents to the PTGT0LIM register.
	1011	Copy the PTGHOLD register contents to the PTGT1LIM register.
	1100	Copy the PTGHOLD register contents to the PTGSDLIM register.
	1101	Copy the PTGHOLD register contents to the PTGL0 register.
	1110	Reserved; do not use.
	1111	Reserved; do not use.

TABLE 24-2: PTG COMMAND OPTIONS

**Note 1:** All reserved commands or options will execute, but they do not have any affect (i.e., execute as a NOP instruction).

3-0	Step Command	OPTION<3:0>	Option Description
	PTGWHI(1)	0000	PTGI0 (see Table 24-3 for input assignments).
	or (1)	•	•
	PTGWLO ⁽¹⁾	•	•
		•	•
		1111	PTGI15 (see Table 24-3 for input assignments).
	PTGIRQ ⁽¹⁾	0000	Generate PTG Interrupt 0.
		•	•
		•	•
		•	•
		0111	Generate PTG Interrupt 7.
		1000	Reserved; do not use.
		•	•
		•	•
		•	•
		1111	Reserved; do not use.
	PTGTRIG	00000	PTGO0 (see Table 24-4 for output assignments).
		00001	PTGO1 (see Table 24-4 for output assignments).
		•	•
		•	•
		•	•
		11110	PTGO30 (see Table 24-4 for output assignments).
		11111	PTGO31 (see Table 24-4 for output assignments).
	PTGWHI(1)	0000	PTGI0 (see specific device data sheet for input assignments).
	or _{PTGWLO} (1)	•	•
	LIGWEO	•	•
		•	
	(1)	1111	PTGI15 (see specific device data sheet for input assignments).
	PTGIRQ ⁽¹⁾	0000	Generate PTG Interrupt 0 (see specific device data sheet for interrupt assignments).
		•	•
		•	•
		•	•
		0111	Generate PTG Interrupt 7 (see specific device data sheet for interrupt assignments).
		1000	Reserved; do not use.
		•	•
		•	•
		•	•
		1111	Reserved; do not use.
	PTGTRIG	00000	PTGO0 (see specific device data sheet for assignments).
		00001	PTGO1 (see specific device data sheet for assignments).

### TABLE 24-2: PTG COMMAND OPTIONS (CONTINUED)

**Note 1:** All reserved commands or options will execute, but they do not have any affect (i.e., execute as a NOP instruction).

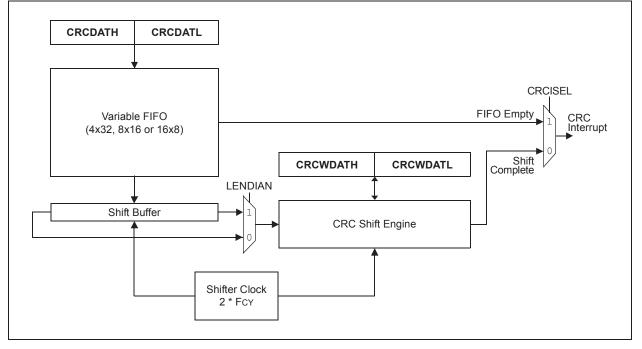
PTG Input Number	PTG Input Description	
PTG Trigger Input 0	Trigger Input from PWM1 ADC Trigger 2	
PTG Trigger Input 1	Trigger Input from PWM2 ADC Trigger 2	
PTG Trigger Input 2	Trigger Input from PWM3 ADC Trigger 2	
PTG Trigger Input 3	Trigger Input from PWM4 ADC Trigger 2	
PTG Trigger Input 4	Trigger Input from PWM5 ADC Trigger 2	
PTG Trigger Input 5	Trigger Input from PWM6 ADC Trigger 2	
PTG Trigger Input 6	Trigger Input from PWM7 ADC Trigger 2	
PTG Trigger Input 7	Trigger Input from SCCP4	
PTG Trigger Input 8	Trigger Input from SCCP5	
PTG Trigger Input 9	Trigger Input from Comparator 1	
PTG Trigger Input 10	Trigger Input from Comparator 2	
PTG Trigger Input 11	Trigger Input from Comparator 3	
PTG Trigger Input 12	Trigger Input from CLC1	
PTG Trigger Input 13	Trigger Input ADC Done Group Interrupt	
PTG Trigger Input 14	Reserved	
PTG Trigger Input 15	Trigger Input from INT2 PPS	

### TABLE 24-3: PTG INPUT DESCRIPTIONS

#### TABLE 24-4: PTG OUTPUT DESCRIPTIONS

PTG Output Number	PTG Output Description
PTGO0 to PTGO11	Reserved
PTGO12	ADC TRGSRC<30>
PTGO13 to PTGO23	Reserved
PTGO24	PPS Output RP46
PTGO25	PPS Output RP47
PTGO26	PPS Input RP6
PTGO27	PPS Input RP7
PTGO28 to PTGO31	Reserved

NOTES:


# 25.0 32-BIT PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. For more information, refer to "32-Bit Programmable Cyclic Redundancy Check (CRC)" (www.microchip.com/DS30009729) in the "dsPIC33/PIC24 Family Reference Manual". The 32-bit programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-Programmable CRC Polynomial Equation, up to 32 Bits
- Programmable Shift Direction (little or big-endian)
- · Independent Data and Polynomial Lengths
- Configurable Interrupt Output
- Data FIFO

A simple version of the CRC shift engine is displayed in Figure 25-1.

#### FIGURE 25-1: CRC MODULE BLOCK DIAGRAM



# 25.1 Control Registers

### REGISTER 25-1: CRCCONL: CRC CONTROL REGISTER LOW

R/W-0	U-0	R/W-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	
CRCEN	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0	
bit 15				1	•		bit 8	
HSC/R-0	HSC/R-1	R/W-0	HC/R/W-0	R/W-0	R/W-0	U-0	U-0	
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	MOD	0-0	0-0	
bit 7	CROIVIET	CRUISEL	CRCGO	LENDIAN	MOD	_	bit (	
Legend:		HC = Hardware	Clearable bit	HSC = Hardw	are Settable/C	learable bit		
R = Readab	ole bit	W = Writable b	it	U = Unimplen	nented bit, read	d as '0'		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15		RC Enable bit						
	1 = Enable 0 = Disable							
bit 14		ented: Read as '	0'					
bit 13	CSIDL: CRC Stop in Idle Mode bit							
	1 = Discontinues module operation when device enters Idle mode							
	0 = Continues module operation in Idle mode							
bit 12-8	3 VWORD<4:0>: Pointer Value bits							
		e number of vali EN<4:0> $\leq$ 7.	d words in the	FIFO. Has a ma	aximum value	of 8 when PLE	N<4:0> ≥ 7 o	
bit 7	CRCFUL: CRC FIFO Full bit							
	0							
	1 = FIFO is 0 = FIFO is							
bit 6	1 = FIFO is 0 = FIFO is							
bit 6	1 = FIFO is 0 = FIFO is	not full CRC FIFO Empty empty						
	1 = FIFO is 0 = FIFO is <b>CRCMPT:</b> ( 1 = FIFO is 0 = FIFO is	not full CRC FIFO Empty empty	r bit					
	1 = FIFO is 0 = FIFO is <b>CRCMPT:</b> (0 1 = FIFO is 0 = FIFO is <b>CRCISEL:</b> (1 1 = Interrup	not full CRC FIFO Empty empty not empty CRC Interrupt Se t on FIFO is emp	bit election bit oty; the final wo		shifting throug	h the CRC		
bit 5	1 = FIFO is 0 = FIFO is <b>CRCMPT:</b> (0 1 = FIFO is 0 = FIFO is <b>CRCISEL:</b> (1 1 = Interrup	not full CRC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is emp t on shift is comp	bit election bit oty; the final wo		shifting throug	h the CRC		
bit 5	1 = FIFO is 0 = FIFO is <b>CRCMPT:</b> (1 1 = FIFO is 0 = FIFO is <b>CRCISEL:</b> (1 1 = Interrup 0 = Interrup <b>CRCGO:</b> CI 1 = Starts C	not full CRC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is emp t on shift is comp RC Start bit CRC serial shifter	bit election bit oty; the final wo lete and results		shifting throug	h the CRC		
bit 5 bit 4	1 = FIFO is 0 = FIFO is <b>CRCMPT:</b> (1 1 = FIFO is 0 = FIFO is <b>CRCISEL:</b> (1 1 = Interrup 0 = Interrup <b>CRCGO:</b> CI 1 = Starts CI 0 = CRC se	not full CRC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is emp t on shift is comp RC Start bit	bit election bit oty; the final wo olete and results ed off		shifting throug	h the CRC		
bit 5 bit 4	1 = FIFO is 0 = FIFO is <b>CRCMPT:</b> (1 1 = FIFO is 0 = FIFO is <b>CRCISEL:</b> (1 1 = Interrup 0 = Interrup <b>CRCGO:</b> Cl 1 = Starts C 0 = CRC se <b>LENDIAN:</b> 1 = Data wo	not full CRC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is emp t on shift is comp RC Start bit CRC serial shifter erial shifter is turn	bit election bit oty; the final wo olete and results ed off on Select bit the FIFO, start	s are ready ing with the LSt	o (little-endian)	h the CRC		
bit 5 bit 4 bit 3	1 = FIFO is 0 = FIFO is <b>CRCMPT:</b> (1 1 = FIFO is 0 = FIFO is <b>CRCISEL:</b> (1 1 = Interrup 0 = Interrup <b>CRCGO:</b> CI 1 = Starts (2) 0 = CRC see <b>LENDIAN:</b> 1 = Data wo 0 = Data wo	not full CRC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is emp t on shift is comp RC Start bit CRC serial shifter erial shifter is turn Data Shift Direction ord is shifted into	election bit oty; the final wo olete and results ed off on Select bit the FIFO, start the FIFO, start	s are ready ing with the LSt	o (little-endian)	h the CRC		
bit 6 bit 5 bit 4 bit 3 bit 2	1 = FIFO is 0 = FIFO is <b>CRCMPT:</b> (1 1 = FIFO is 0 = FIFO is <b>CRCISEL:</b> (1 1 = Interrup 0 = Interrup <b>CRCGO:</b> CI 1 = Starts (2) 0 = CRC see <b>LENDIAN:</b> 1 = Data wo 0 = Data wo	not full CRC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is emp t on shift is comp RC Start bit CRC serial shifter erial shifter is turn Data Shift Direction ord is shifted into Calculation Mod	election bit oty; the final wo olete and results ed off on Select bit the FIFO, start the FIFO, start	s are ready ing with the LSt	o (little-endian)	h the CRC		
bit 5 bit 4 bit 3	1 = FIFO is 0 = FIFO is <b>CRCMPT:</b> (1 1 = FIFO is 0 = FIFO is <b>CRCISEL:</b> (1 1 = Interrup 0 = Interrup <b>CRCGO:</b> CI 1 = Starts C 0 = CRC se <b>LENDIAN:</b> 1 = Data wo 0 = Data wo <b>MOD:</b> CRC 1 = Alternat 0 = Legacy	not full CRC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is emp t on shift is comp RC Start bit CRC serial shifter erial shifter is turn Data Shift Direction ord is shifted into Calculation Mod te mode	bit election bit oty; the final wo olete and results ed off on Select bit the FIFO, start the FIFO, start e bit	s are ready ing with the LSt	o (little-endian)	h the CRC		

U-0	U-0	R/W-0 DWIDTH4	R/W-0 DWIDTH3	R/W-0 DWIDTH2	R/W-0	R/W-0
—	_	DWIDTH4				DIALIDITUA
		2	DWIDTHS		DWIDTH1	DWIDTH0
						bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	PLEN4	PLEN3	PLEN2	PLEN1	PLEN0
						bit 0
	W = Writable b	oit	U = Unimplemented bit, read as '0'			
-n = Value at POR (1' = Bit is set			'0' = Bit is cleared x = Bit is unknown		own	
	U-0 —	W = Writable b	W = Writable bit	—     —     PLEN4     PLEN3       W = Writable bit     U = Unimplem	—     PLEN4     PLEN3     PLEN2       W = Writable bit     U = Unimplemented bit, read	—     PLEN4     PLEN3     PLEN2     PLEN1       W = Writable bit     U = Unimplemented bit, read as '0'

#### REGISTER 25-2: CRCCONH: CRC CONTROL REGISTER HIGH

bit 15-13 Unimplemented: Read as '0'

- bit 12-8 **DWIDTH<4:0>:** Data Word Width Configuration bits
- Configures the width of the data word (Data Word Width 1).
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **PLEN<4:0>:** Polynomial Length Configuration bits Configures the length of the polynomial (Polynomial Length – 1).

#### REGISTER 25-3: CRCXORL: CRC XOR POLYNOMIAL REGISTER, LOW BYTE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Χ<	:15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			X<7:1>				—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplen	nented bit, rea	id as '0'		
-n = Value at POR '1' = Bit is set '0' = Bit is cleared			ared	x = Bit is unkr	nown		

bit 15-1 X<15:1>: XOR of Polynomial Term xⁿ Enable bits

bit 0 Unimplemented: Read as '0'

#### REGISTER 25-4: CRCXORH: CRC XOR POLYNOMIAL REGISTER, HIGH BYTE

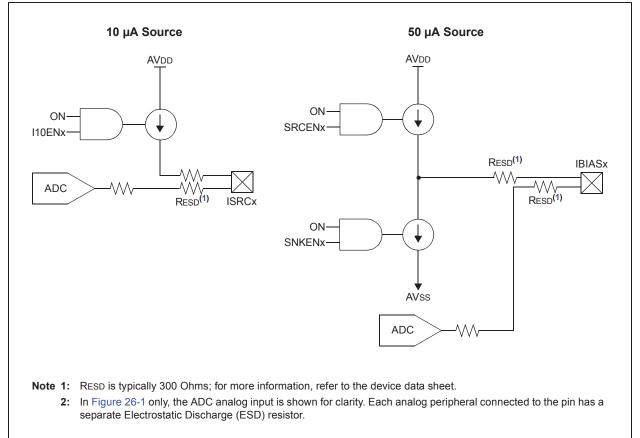
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Χ<	31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Χ<	23:16>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0			'0' = Bit is clea	ared	x = Bit is unkr	nown	

bit 15-0 X<31:16>: XOR of Polynomial Term xⁿ Enable bits

# 26.0 CURRENT BIAS GENERATOR (CBG)

- Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Current Bias Generator (CBG)" (www.microchip.com/DS70005253) in the "dsPIC33/PIC24 Family Reference Manual".
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Table 26-1 for CBG channel availability on package variants.

The Current Bias Generator (CBG) consists of two classes of current sources: 10  $\mu$ A and 50  $\mu$ A sources. The major features of each current source are:


- 10 µA Current Sources:
  - Current sourcing only
  - Up to four independent sources
- 50 µA Current Sources:
  - Selectable current sourcing or sinking
  - Selectable current mirroring for sourcing and sinking

A simplified block diagram of the CBG module is shown in Figure 26-1.

	TABLE 26-1:	<b>CBG CHANNEL</b>	AVAILABILITY
--	-------------	--------------------	--------------

Package Type	ISRCx	IBIASx
28-pin	—	0,3
36-pin	0,1	0,2,3
48-pin	0,1,2,3	0,1,2,3
64-pin	0,1,2,3	0,1,2,3
80-pin	0,1,2,3	0,1,2,3

#### FIGURE 26-1: CONSTANT-CURRENT SOURCE MODULE BLOCK DIAGRAM⁽²⁾



# 26.1 Current Bias Generator Control Registers

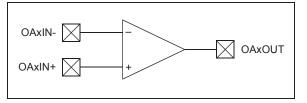
#### REGISTER 26-1: BIASCON: CURRENT BIAS GENERATOR CONTROL REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
ON	_	—	—	—	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	—		I10EN3	110EN2	110EN1	110EN0		
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable k	bit	U = Unimpler	nented bit, rea	d as '0'			
-n = Value at	n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	bit 15 <b>ON:</b> Current Bias Module Enable bit 1 = Module is enabled								
	0 = Module is	disabled							
bit 14-4	Unimplement	ted: Read as 'C	)'						
bit 3	<b>Ι10ΕΝ3:</b> 10 μ/	A Enable for Ou	utput 3 bit						
	1 = 10 µA out								
		put is disabled							
bit 2		A Enable for Ou	utput 2 bit						
	1 = 10 µA out								
		$0 = 10 \ \mu A \text{ output is disabled}$							
bit 1	-	<b>I10EN1:</b> 10 μA Enable for Output 1 bit							
		1 = 10 μA output is enabled 0 = 10 μA output is disabled							
<b>h</b> it 0			the state of the state						
bit 0		A Enable for Ou	πραί Ο βιί						
	$1 = 10 \mu A out$	put is enabled							

# REGISTER 26-2: IBIASCONH: CURRENT BIAS GENERATOR 50 µA CURRENT SOURCE CONTROL HIGH REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	-	SHRSRCEN3	SHRSNKEN3	GENSRCEN3	GENSNKEN3	SRCEN3	SNKEN3	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	SHRSRCEN2	SHRSNKEN2	GENSRCEN2	GENSNKEN2	SRCEN2	SNKEN2	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable b	t	U = Unimpleme	ented bit, read a	s '0'		
-n = Value at		'1' = Bit is set	•	'0' = Bit is clear		x = Bit is unkr	nown	
bit 15-14	Unimpleme	nted: Read as '0	3					
bit 13	SHRSRCEN	13: Share Source	Enable for Ou	ıtput #3 bit				
		g Current Mirror r g Current Mirror r			ce from another	source)		
bit 12		3: Share Sink E						
51112		Current Mirror m			e from another s	ource)		
	0 = Sinking	Current Mirror m	ode is disabled	l		·		
bit 11		GENSRCEN3: Generated Source Enable for Output #3 bit						
		generates the cu does not generat			erence			
bit 10		<ul><li>I3: Generated Si</li></ul>						
	1 = Source g	generates the cu	rrent sink mirro	r reference				
	0 = Source of	does not generat	e the current s	ink mirror refere	nce			
bit 9		ource Enable for	•					
		source is enable source is disable						
bit 8	SNKEN3: S	ink Enable for Ou	utput #3 bit					
		sink is enabled						
		sink is disabled						
bit 7-6	-	nted: Read as '0						
bit 5		I2: Share Source Current Mirror r		-	ce from another	source)		
		g Current Mirror				source)		
bit 4	SHRSNKEN	12: Share Sink E	nable for Outpu	ut #2 bit				
		Current Mirror m Current Mirror m			e from another s	ource)		
bit 3		12: Generated So						
		generates the cu does not generat			erence			
bit 2		12: Generated Si						
		generates the cu does not generat			nce			
bit 1		ource Enable for						
	1 = Current	source is enable	d					
<b>h</b> :+ 0		source is disable						
bit 0		ink Enable for Oເ sink is enabled	ııput #∠ DIt					
		sink is disabled						

# REGISTER 26-3: IBIASCONL: CURRENT BIAS GENERATOR 50 µA CURRENT SOURCE CONTROL LOW REGISTER


U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	_	-	SHRSNKEN1	-	GENSNKEN1	SRCEN1	SNKEN1	
bit 15		onitortoEtti		OLHOROLINI	OLIVOITILIT	ONOLINI	bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—	SHRSRCEN0	SHRSNKEN	GENSRCEN0	GENSNKEN0	SRCEN0	SNKEN0	
bit 7							bit 0	
Legend:								
R = Readabl	e hit	W = Writable bi	t	LI = Unimplem	ented bit, read a	s 'O'		
-n = Value at		'1' = Bit is set	L	'0' = Bit is clea		x = Bit is unkr	nown	
iii valao at		1 Bit io cot		e Bitle clou				
bit 15-14	Unimpleme	ented: Read as '0	,					
bit 13	SHRSRCE	N1: Share Source	Enable for O	utput #1 bit				
		g Current Mirror r			ce from another	source)		
bit 12		g Current Mirror r N1: Share Sink Er						
		Current Mirror mo			e from another s	ource)		
		Current Mirror mo				/		
bit 11		N1: Generated So		•				
		<ul> <li>1 = Source generates the current source mirror reference</li> <li>0 = Source does not generate the current source mirror reference</li> </ul>						
bit 10	GENSNKE	N1: Generated Si	nk Enable for	Output #1 bit				
		<ul> <li>1 = Source generates the current sink mirror reference</li> <li>0 = Source does not generate the current sink mirror reference</li> </ul>						
bit 9	SRCEN1: S	Source Enable for	Output #1 bit					
		source is enabled source is disable						
bit 8	SNKEN1: S	Sink Enable for Ou	ıtput #1 bit					
		sink is enabled sink is disabled						
bit 7-6	Unimpleme	ented: Read as '0	,					
bit 5		N0: Share Source						
		g Current Mirror r g Current Mirror r			ce from another	source)		
bit 4		N0: Share Sink Er	-		_			
		Current Mirror mo Current Mirror mo			e from another s	ource)		
bit 3		N0: Generated So		•				
		generates the cur does not generate			erence			
bit 2		N0: Generated Si						
		generates the cur does not generate			ence			
bit 1		Source Enable for						
		source is enabled						
bit 0		Sink Enable for Ou						
2110	1 = Current	sink is enabled sink is disabled						

# 27.0 OPERATIONAL AMPLIFIER

Note:	Some	device	variants	support	only
	two op	wo op amp insta		efer to Ta	able 1
	and Tal	ole 2 for a	availability.		

The dsPIC33CK256MP508 family implements three instances of operational amplifiers (op amps). The op amps can be used for a wide variety of purposes, including signal conditioning and filtering. The three op amps are functionally identical. The block diagram for a single amplifier is shown in Figure 27-1.





The op amps are controlled by two SFR registers: AMPCON1L and AMPCON1H. They remain in a lowpower state until the AMPON bit is set. Each op amp can then be enabled independently by setting the corresponding AMPENx bit (x = 1, 2, 3).

The NCHDISx bit provides some flexibility regarding input range verses Integral Nonlinearity (INL). When NCHDISx = 0 (default), the op amps have a wider input voltage range (see Table 33-41 in Section 33.0 "Electrical Characteristics"). When NCHDISx = 1, the wider input range is traded for improved INL performance (lower INL).

# 27.1 Operational Amplifier Control Registers

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
AMPON		—	_	_		_	
bit 15		·		·	•	·	bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	_	—	—	AMPEN3	AMPEN2	AMPEN1
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15	AMPON: Op	Amp Enable/O	n bit				
				ective AMPEN	lx bits are also a	asserted	
		all op amp mo					
bit 14-3	Unimplemen	ted: Read as '	0'				
bit 2	AMPEN3: Op	o Amp #3 Enab	le bit				
		Op Amp #3 if t	he AMPON bi	it is also assert	ed		
	0 = Disables	Op Amp #3					
bit 1 AMPEN2: Op Amp #2 Enable bit							
		Op Amp #2 if t	he AMPON bi	it is also assert	ed		
	0 = Disables						
bit 0		Amp #1 Enab					
		Op Amp #1 if t	he AMPON bi	it is also assert	ed		
	0 = Disables	Op Amp #1					

# REGISTER 27-1: AMPCON1L: OP AMP CONTROL REGISTER LOW

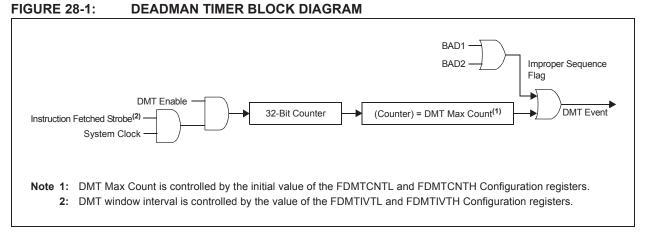
REGISTER 27-2:	AMPCON1H: OP	AMP CONTROL	<b>REGISTER HIGH</b>

		••••••							
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
_	—	—	—	—	NCHDIS3	NCHDIS2	NCHDIS1		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow			Iown		
bit 15-3	Unimplemen	ted: Read as '	0'						
bit 2	NCHDIS3: Op	o Amp #3 N Ch	annel Disable	bit					
		Op Amp #3 N ut range for Op		t stage; reduce	ed INL, but lowe	red input volta	ge range		
bit 1	NCHDIS2: Op	Amp #2 N Ch	annel Disable	bit					
		Op Amp #2 N ut range for Op		t stage; reduce	ed INL, but lowe	red input volta	ge range		
bit 0	NCHDIS1: Op	o Amp #1 N Ch	annel Disable	bit					

- 1 = Disables Op Amp #1 N channels input stage; reduced INL, but lowered input voltage range
- 0 = Wide input range for Op Amp #1

NOTES:

# 28.0 DEADMAN TIMER (DMT)


Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Deadman Timer (DMT)" (www.microchip.com/DS70005155) in the "dsPIC33/PIC24 Family Reference Manual".

The primary function of the Deadman Timer (DMT) is to interrupt the processor in the event of a software malfunction. The DMT, which works on the system clock, is a free-running instruction fetch timer, which is clocked whenever an instruction fetch occurs, until a count match occurs. Instructions are not fetched when the processor is in Sleep mode.

DMT can be enabled in the Configuration fuse or by software in the DMTCON register by setting the ON bit. The DMT consists of a 32-bit counter with a time-out count match value, as specified by the two 16-bit Configuration Fuse registers: FDMTCNTL and FDMTCNTH.

A DMT is typically used in mission-critical and safetycritical applications, where any single failure of the software functionality and sequencing must be detected.

Figure 28-1 shows a block diagram of the Deadman Timer module.



# 28.1 Deadman Timer Control Registers

R/W-0	U-0						
ON ⁽¹⁾	—	—	—	_	—	—	—
bit 15	÷		•				bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	—	—	—	—	—
bit 7							bit 0

#### REGISTER 28-1: DMTCON: DEADMAN TIMER CONTROL REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	ON: DMT Module Enable bit ⁽¹⁾
	1 = Deadman Timer module is enabled
	0 = Deadman Timer module is not enabled

bit 14-0 Unimplemented: Read as '0'

**Note 1:** This bit has control only when DMTDIS = 0 in the FDMT register.

#### REGISTER 28-2: DMTPRECLR: DEADMAN TIMER PRECLEAR REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			STEP	21<7:0>					
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	_	—	—	_	_	—		
bit 7							bit C		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-8	01000000 All Other	s = Sets the I STEP1<7:	e Deadman T BAD1 flag; th	o cleared if the	leared when a	a DMT Reset e its are loaded w			
bit 7-0	Unimpleme	n <b>ted:</b> Read as	-						

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	—	—	—		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			STEP	2<7:0>					
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	<b>as</b> '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-8	Unimplemen	ted: Read as '	0'						
bit 7-0	STEP2<7:0>	: DMT Clear Ti	mer bits						
	00001000	loading of th	e STEP1<7:0>	bits in the cor	ne Deadman Tim rect sequence. T ster and observin	he write to the	se bits may be		
	verified by reading the DMTCNTL/H register and observing the counter being reset. All Other Write Patterns = Sets the BAD2 bit; the value of STEP1<7:0> will remain unchanged and the new value being written to STEP2<7:0> will be captured. These bits are cleared when a DMT Reset event occurs.								

			_				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
			—		—	—	
bit 15							bit 8
HC/R-0	HC/R-0	HC/R-0	U-0	U-0	U-0	U-0	R-0
BAD1	BAD2	DMTEVENT	—		—	—	WINOPN
bit 7							bit 0
Legend:		HC = Hardwar	e Clearable bit				
R = Readable	bit	W = Writable b	bit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
bit 15-8	Unimpleme	nted: Read as '0	)'				
bit 7	BAD1: Dead	lman Timer Bad	STEP1<7:0> V	alue Detect bit	t		
		STEP1<7:0> va STEP1<7:0> va					
bit 6	BAD2: Dead	lman Timer Bad	STEP2<7:0> Va	alue Detect bit	t		
		STEP2<7:0> va STEP2<7:0> va					
bit 5	DMTEVENT	Deadman Time	r Event bit				
	was ente	an Timer event w ered prior to cou an Timer event w	nter increment)	•	or bad STEP1	<7:0> or STE	P2<7:0> value
bit 4-1	Unimpleme	nted: Read as '0	)'				
bit 0	WINOPN: De	eadman Timer C	lear Window bi	t			
	1 = Deadma	n Timer clear wir	ndow is open				
	0 = Deadma	n Timer clear wir	ndow is not ope	n			

#### REGISTER 28-5: DMTCNTL: DEADMAN TIMER COUNT REGISTER LOW

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
			COUNT	TER<15:8>				
bit 15							bit 8	
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
			COUN	TER<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'								
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

bit 15-0 COUNTER<15:0>: Read Current Contents of Lower DMT Counter bits

#### REGISTER 28-6: DMTCNTH: DEADMAN TIMER COUNT REGISTER HIGH

				x = Bit is unknowr	ı		
R = Readable bit $W$ = Writable bit $U$ = Unimplemented bit, read as '0'							
Legend:							
bit 7							bit 0
			COUNT	ER<23:16>			
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
							DILO
bit 15							bit 8
			COUNT	ER<31:24>			
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0

bit 15-0 COUNTER<31:16>: Read Current Contents of Higher DMT Counter bits

#### REGISTER 28-7: DMTPSCNTL: DMT POST-CONFIGURE COUNT STATUS REGISTER LOW

R-y	R-y	R-y	R-y	R-y	R-y	R-y	R-y		
			PSC	NT<15:8>					
bit 15							bit 8		
Ry	R-y	R-y	R-y	R-y	R-y	R-y	R-y		
			PSC	NT<7:0>					
bit 7							bit 0		
Legend:		y = Value from C	Configurat	on bit on POR					
R = Readable bit		W = Writable bit $U = Unimplemented bit, read as '0'$							

'0' = Bit is cleared

bit 15-0 **PSCNT<15:0>:** Lower DMT Instruction Count Value Configuration Status bits This is always the value of the FDMTCNTL Configuration register.

'1' = Bit is set

#### REGISTER 28-8: DMTPSCNTH: DMT POST-CONFIGURE COUNT STATUS REGISTER HIGH

R-y	R-y	R-y	R-y	R-y	R-y	R-y	R-y	
			PSCN	Γ<31:24>				
bit 15							bit 8	
R-y	R-y	R-y	R-y	R-y	R-y	R-y	R-y	
			PSCN	Г<23:16>				
bit 7							bit 0	
Legend:		y = Value from	Configuratio	n hit on POP				
-		-	-					
R = Readable bi	it	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						iown		

bit 15-0 **PSCNT<31:16>:** Higher DMT Instruction Count Value Configuration Status bits This is always the value of the FDMTCNTH Configuration register.

-n = Value at POR

x = Bit is unknown

x = Bit is unknown

#### REGISTER 28-9: DMTPSINTVL: DMT POST-CONFIGURE INTERVAL STATUS REGISTER LOW

R-y	R-y	R-y	R-y	R-y	R-y	R-y	R-y	
			PSIN	FV<15:8>				
bit 15							bit 8	
R-y	R-y	R-y	R-y	R-y	R-y	R-y	R-y	
			PSIN	TV<7:0>				
bit 7							bit 0	
Legend:	Legend: y = Value from Configuration bit on POR							
R = Readable bit		W = Writable bit	e bit U = Unimplemented bit, read as '0'					

'0' = Bit is cleared

bit 15-0 **PSINTV<15:0>:** Lower DMT Window Interval Configuration Status bits This is always the value of the FDMTIVTL Configuration register.

'1' = Bit is set

#### REGISTER 28-10: DMTPSINTVH: DMT POST-CONFIGURE INTERVAL STATUS REGISTER HIGH

R-y	R-y	R-y	R-y	R-y	R-y	R-y	R-y	
			PSINT	V<31:24>				
bit 15							bit 8	
Du	<b>D</b>	<b>D</b>		Du	<b>D</b>		Du	
R-y	R-y	R-y	R-y	R-y	R-y	R-y	R-y	
			PSINT	V<23:16>				
bit 7							bit 0	
Legend:		y = Value from	Configuratio	on bit on POR				
R = Readable b	bit	W = Writable b	it	U = Unimplemented bit, read as '0'				
-n = Value at Po	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				

bit 15-0 **PSINTV<31:16>:** Higher DMT Window Interval Configuration Status bits This is always the value of the FDMTIVTH Configuration register.

-n = Value at POR

# REGISTER 28-11: DMTHOLDREG: DMT HOLD REGISTER⁽¹⁾

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			UPR	CNT<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			-	RCNT<7:0>			
bit 7							bit C
1 1							
Legend:							
R = Readable bit W = Writable bit		it	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-0 UPRCNT<15:0>: DMTCNTH Register Value when DMTCNTL and DMTCNTH were Last Read bits

**Note 1:** The DMTHOLDREG register is initialized to '0' on Reset, and is only loaded when the DMTCNTL and DMTCNTH registers are read.

# 29.0 POWER-SAVING FEATURES

Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Watchdog Timer and Power-Saving Modes" (www.microchip.com/ DS70615) in the "dsPIC33/PIC24 Family Reference Manual".

The dsPIC33CK256MP508 family devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of peripherals being clocked constitutes lower consumed power.

dsPIC33CK256MP508 family devices can manage power consumption in four ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software-Controlled Doze mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

#### 29.1 Clock Frequency and Clock Switching

The dsPIC33CK256MP508 family devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSCx bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in Section 9.0 "Oscillator with High-Frequency PLL".

#### 29.2 Instruction-Based Power-Saving Modes

The dsPIC33CK256MP508 family devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 29-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

#### EXAMPLE 29-1: PWRSAV INSTRUCTION SYNTAX IN ASSEMBLY

PWRSAV #SLEEP_MODE ; Put the device into Sleep mode
PWRSAV #IDLE_MODE ; Put the device into Idle mode

#### EXAMPLE 29-2: PWRSAV INSTRUCTION SYNTAX IN C LANGUAGE

Sleep() // Put the device into Sleep mode
Idle () // Put the device into Idle mode

## 29.2.1 SLEEP MODE

The following occurs in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the Input Change Notification on the I/O ports or peripherals that use an External Clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of the these events:

- · Any interrupt source that is individually enabled
- · Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

For optimal power savings, the regulators can be configured to go into standby when Sleep mode is entered by clearing the VREGS (RCON<8>) bit (default configuration).

If the application requires a faster wake-up time, and can accept higher current requirements, the VREGS (RCON<8>) bit can be set to keep the regulators active during Sleep mode. The available Low-Power Sleep modes are shown in Table 29-1. Additional regulator information is available in Section 30.4 "On-Chip Voltage Regulators".

Relative Power	LPWREN	VREGS	MODE	
Highest	0	1	Full power, active	
_	0	0	Full power, standby	
_	1 <b>(1)</b>	1	Low power, active	
Lowest	1 <b>(1)</b>	0	Low power, standby	

#### TABLE 29-1: LOW-POWER SLEEP MODES

**Note 1:** Low-Power modes, when LPWREN = 1, can only be used in the industrial temperature range.

#### 29.2.2 IDLE MODE

The following occurs in Idle mode:

- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 29.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

All peripherals also have the option to discontinue operation when Idle mode is entered to allow for increased power savings. This option is selectable in the control register of each peripheral; for example, the SIDL bit in the Timer1 Control register (T1CON<13>).

#### 29.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

## 29.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

#### 29.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have any effect and read values are invalid. A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note 1: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

# 29.5 Power-Saving Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page contains the latest updates and additional information.

#### 29.5.1 KEY RESOURCES

- **"Watchdog Timer and Power-Saving Modes"** (DS70615) in the *"dsPIC33/PIC24 Family Reference Manual"*
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related "dsPIC33/PIC24 Family Reference Manual" Sections
- · Development Tools

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0		
_	_	—	_	T1MD	QEI1MD	PWMMD	_		
bit 15				·	•		bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0		
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD ⁽¹⁾	ADC1MD		
bit 7							bit (		
Legend:									
R = Readabl		W = Writable		-	nented bit, read				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown		
bit 15-12	Unimplomon	ted: Bood on "	,						
bit 11	-	t <b>ed:</b> Read as ' 1 Module Disat							
		odule is disable							
	0 = Timer1  mod								
bit 10	<b>QEI1MD:</b> QEI1 Module Disable bit								
		lule is disabled							
	0 = QEI1 mod	lule is enabled							
bit 9		/M Module Disa							
		dule is disabled							
bit 8	0 = PWM module is enabled Unimplemented: Read as '0'								
bit 7	I2C1MD: I2C1 Module Disable bit								
	1 = I2C1 module is disabled								
	0 = I2C1 module is enabled								
bit 6	U2MD: UART	2 Module Disa	ble bit						
	-	odule is disable							
6.4. <i>E</i>		odule is enable							
bit 5		1 Module Disa							
	1 = UART1 module is disabled 0 = UART1 module is enabled								
bit 4	SPI2MD: SPI2	2 Module Disal	ole bit						
	1 = SPI2 mod	ule is disabled							
	0 = SPI2 mod	ule is enabled							
bit 3		1 Module Disal	ole bit						
	1 = SPI1 module is disabled 0 = SPI1 module is enabled								
bit 2		ted: Read as '	٦,						
bit 1	-	Module Disab							
~16 1		dule is disable							
		dule is enabled							
bit 0	ADC1MD: AD	C Module Disa	able bit						
		ule is disabled							
	0 = ADC mod	ule is enabled							

#### REGISTER 29-1: PMD1: PERIPHERAL MODULE DISABLE 1 CONTROL REGISTER

Note 1: Availability is dependent on the supported peripherals, refer to Table 1 and Table 2.

#### REGISTER 29-2: PMD2: PERIPHERAL MODULE DISABLE 2 CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0		
				_			CCP9MD		
pit 15		•					bita		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CCP8MD	CCP7MD	CCP6MD	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD		
pit 7	CCF7IVID	CCFOIND	CCF3WD	CCF4IMD	CCF3IVID	CCFZIVID	bit		
L <b>egend:</b> R = Readable	a hit	W = Writable	bit	II – I Inimplem	nented bit, read	1 as 'O'			
n = Value at		'1' = Bit is set	UIL	'0' = Bit is clea		x = Bit is unkr	NOWD		
		1 – Dit 13 30t					101111		
bit 15-9	Unimplemen	ted: Read as '	)'						
bit 8	CCP9MD: MO	CCP9 Module E	isable bit						
		nodule is disabl nodule is enable							
bit 7	CCP8MD: SC	CP8 Module D	isable bit						
		nodule is disable nodule is enable							
oit 6	CCP7MD: SCCP7 Module Disable bit								
		nodule is disable nodule is enable							
bit 5	CCP6MD: SC	CP6MD: SCCP6 Module Disable bit							
		nodule is disable nodule is enable							
bit 4	CCP5MD: SC	CP5 Module D	isable bit						
		odule is disable odule is enable							
bit 3	CCP4MD: SC	CP4 Module D	isable bit						
		nodule is disable nodule is enable							
	CCP3MD: SCCP3 Module Disable bit								
bit 2			1 = SCCP3 module is disabled 0 = SCCP3 module is enabled						
bit 2	1 = SCCP3 m	nodule is disable							
bit 2 bit 1	1 = SCCP3 m 0 = SCCP3 m	nodule is disable	ed						
	1 = SCCP3 m 0 = SCCP3 m CCP2MD: SC 1 = SCCP2 m	nodule is disable nodule is enable	ed visable bit ed						
	1 = SCCP3 m 0 = SCCP3 m <b>CCP2MD:</b> SC 1 = SCCP2 m 0 = SCCP2 m	nodule is disable nodule is enable CCP2 Module D nodule is disable	ed lisable bit ed ed						
bit 1	1 = SCCP3 m 0 = SCCP3 m CCP2MD: SC 1 = SCCP2 m 0 = SCCP2 m CCP1MD: SC	nodule is disable nodule is enable CCP2 Module D nodule is disable nodule is enable	ed visable bit ed ed visable bit						

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0				
—	—	—	—	—	—	—	PMPMD ⁽¹⁾				
bit 15							bit 8				
R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0				
CRCMD	—	I2C2MD	—								
bit 7							bit 0				
Legend:											
R = Readabl		W = Writable b	bit	-	nented bit, read						
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown				
bit 15-9		ted: Read as '0									
bit 8	PMPMD: PMP Module Disable bit ⁽¹⁾ 1 = PMP module is disabled										
		dule is disabled									
bit 7		C Module Disab	le bit								
Sit 1	1 = CRC module is disabled										
		lule is enabled									
bit 6	Unimplemen	ted: Read as '0	3								
bit 5	QEI2MD: QE	I2 Module Disat	ole bit								
	1 = QEI2 module is disabled										
		dule is enabled									
bit 4	-	ted: Read as '0									
bit 3		3 Module Disat									
	1 = UART3 module is disabled 0 = UART3 module is enabled										
bit 2		3 Module Disab									
	1 = I2C3 module is disabled 0 = I2C3 module is enabled										
bit 1	12C2MD: 12C2	2 Module Disab	le bit								
	1 = I2C2 mod	lule is disabled									
	0 = I2C2 mod	lule is enabled									
bit 0	Unimplemen	ted: Read as '0	,								
Note 1: A	vailability is dep	endent on the s	upported per	ipherals, refer to	Table 1 and T	able 2.					

#### REGISTER 29-3: PMD3: PERIPHERAL MODULE DISABLE 3 CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—		
bit 15	•			•		•	bit 8	
U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	
_	_	—	—	REFOMD	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable I	oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared		x = Bit is unknown		
bit 15-4 Unimplemented: Read as '0'								

It 15-4 Unimplemented: Read as 0

- bit 3 REFOMD: Reference Clock Module Disable bit
  - 1 = Reference clock module is disabled
  - 0 = Reference clock module is enabled
- bit 2-0 Unimplemented: Read as '0'

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	—	—	—	DMA3MD	DMA2MD	DMA1MD	DMA0MD			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0			
	—	—		—		—	SPI3MD			
bit 7							bit C			
Legend:										
R = Readab	ole bit	W = Writable b	pit	U = Unimplem	nented bit, read	d as '0'				
-n = Value a	n = Value at POR (1' = Bit is set				ared	x = Bit is unkr	iown			
bit 15-12	Unimplemented: Read as '0'									
bit 11	DMA3MD: DI	MA3 Module Dis	sable bit							
		odule is disabled	-							
	0 = DMA3 mc	odule is enabled								
bit 10	DMA2MD: DM	MA2 Module Dis	sable bit							
	1 = DMA2 module is disabled									
	0 = DMA2 mc	odule is enabled								
bit 9	DMA1MD: DMA1 Module Disable bit									
		dule is disabled	-							
	0 = DMA1 module is enabled									
bit 8		MA0 Module Dis								
	1 = DMA0 module is disabled 0 = DMA0 module is enabled									
L:1 7 4										
bit 7-1	•	ted: Read as 'C								
bit 0		3 Module Disab	le bit							
		lule is disabled								
	0 = 5P13 mod	lule is enabled								

#### REGISTER 29-5: PMD6: PERIPHERAL MODULE DISABLE 6 CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
_	—	—	—	_	CMP3MD	CMP2MD	CMP1MD				
bit 15							bit 8				
U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0				
	—		—	PTGMD		—	—				
bit 7							bit 0				
Legend:											
R = Readab	R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'							
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown					
bit 15-11	Unimplemen	ted: Read as '	)'								
bit 10	CMP3MD: Co	CMP3MD: Comparator 3 Module Disable bit									
	1 = Comparator 3 module is disabled										
		0 = Comparator 3 module is enabled									
bit 9		omparator 2 Mc		bit							
		tor 2 module is									
L:1 0	-	tor 2 module is		:4							
bit 8		omparator 1 Mc		DIC							
	<ol> <li>Comparator 1 module is disabled</li> <li>Comparator 1 module is enabled</li> </ol>										
bit 7-4	•	ted: Read as '									
bit 3	•	Module Disab									
		1 = PTG module is disabled									

#### REGISTER 29-6: PMD7: PERIPHERAL MODULE DISABLE 7 CONTROL REGISTER

bit 2-0 Unimplemented: Read as '0'

0 = PTG module is enabled

U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	
	_	OPAMPMD	SENT2MD	SENT1MD	_	_	DMTMD	
bit 15							bit	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	
_		CLC4MD	CLC3MD	CLC2MD	CLC1MD	BIASMD	—	
bit 7							bit	
Legend:								
R = Readable bit $W = Writable bit$				U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		(0) = Bit is cleared x = Bit is unknown				
bit 15-14	Unimplemented: Read as '0'							
bit 13 bit 12	OPAMPMD: Op Amp Module Disable bit							
	1 = Op amp modules are disabled							
	<ul> <li>0 = Op amp modules are enabled</li> <li>SENT2MD: SENT2 Module Disable bit</li> </ul>							
DIL 12	1 = SENT2 module is disabled							
	0 = SENT2 module is enabled							
bit 11	SENT1MD: SENT1 Module Disable bit							
	<ul><li>1 = SENT1 module is disabled</li><li>0 = SENT1 module is enabled</li></ul>							
bit 10-9	Unimplemented: Read as '0'							
bit 8	DMTMD: Deadman Timer Module Disable bit							
	<ul> <li>1 = DMT module is disabled</li> <li>0 = DMT module is enabled</li> </ul>							
bit 7-6	Unimplemented: Read as '0'							
bit 5	CLC4MD: CLC4 Module Disable bit							
	<ul> <li>1 = CLC4 module is disabled</li> <li>0 = CLC4 module is enabled</li> </ul>							
bit 4	CLC3MD: CLC3 Module Disable bit							
	<ul> <li>1 = CLC3 module is disabled</li> <li>0 = CLC3 module is enabled</li> </ul>							
bit 3	CLC2MD: CLC2 Module Disable bit							
	1 = CLC2 module is disabled 0 = CLC2 module is enabled							
bit 2	CLC1MD: CLC1 Module Disable bit							
	1 = CLC1 module is disabled							
	0 = CLC1 module is enabled							
bit 1	BIASMD: Constant-Current Source Module Disable bit							
	<ul> <li>1 = Constant-current source module is disabled</li> <li>0 = Constant-current source module is enabled</li> </ul>							

# REGISTER 29-7: PMD8: PERIPHERAL MODULE DISABLE 8 CONTROL REGISTER

TABLE 2	9-2: F	MD RE	TABLE 29-2: PMD REGISTERS	6												
Register	Bit 15	Bit14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PMD1			I		T1MD	QEIMD	QEIMD PWMMD		I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD		C1MD	ADC1MD
PMD2	Ι	I		Ι	Ι	Ι	Ι	<b>CCP9MD</b>	CCP9MB   CCP8MB   CCP7MB   CCP6MB   CCP4MB   CCP3MB   CCP2MB   CCP1MB	CCP7MD	<b>CCP6MD</b>	<b>CCP5MD</b>	CCP4MD	<b>CCP3MD</b>	<b>CCP2MD</b>	CCP1MD
PMD3	1			1	1	1	1	PMPMD CRCMD	CRCMD		QEI2MD		U3MD	I2C3MD	I2C2MD	I
PMD4			I	Ι	Ι								REFOMD		1	I
PMD6	Ι	I	Ι	Ι	DMA3MD	DMA3MD DMA2MD DMA1MD DMA0MD	DMA1MD	DMA0MD		I			I	I	I	SPI3MD
PMD7				Ι	Ι	<b>CMP3MD</b>	CMP3MD CMP2MD CMP1MD	CMP1MD	Ι				PTGMD			Ι
PMD8	I	I	OPAMPMD	OPAMPMD SENT2MD SENT1MD	SENT1MD			DMTMD			CLC4MD	<b>CLC3MD</b>	<b>CLC2MD</b>	CLC4MD CLC3MD CLC2MD CLC1MD BIASMD	BIASMD	I

NOTES:

## **30.0 SPECIAL FEATURES**

Note: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com).

The dsPIC33CK256MP508 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation
- Brown-out Reset (BOR)

## **30.1 Configuration Bits**

In dsPIC33CK256MP508 family devices, the Configuration Words are implemented as volatile memory. This means that configuration data will get loaded to volatile memory (from the Flash Configuration Words) each time the device is powered up. Configuration data is stored at the end of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 30-1. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration Shadow registers during device Resets. The BSEQx bits (FBTSEQ<11:0>) determine which panel is the Active Partition at start-up and the Configuration Words from that panel are loaded into the Configuration Shadow registers.

Note:	Configuration data is reloaded on all types
	of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Words for configuration data in their code for the compiler. This is to make certain that program code is not stored in this address when the code is compiled. Program code executing out of configuration space will cause a device Reset.

**Note:** Performing a page erase operation on the last page of program memory clears the Flash Configuration Words.

TABLE 30-1: ds	PIC33CKXXX	MPXUX CONF	IGURATION A	ADDRESSES		
Degister Name	Single I	Partition	Dual Partit	ion, Active	Dual Partiti	on, Inactive
Register Name	256k	128k	256k	128k	256k	128k
FSEC ⁽²⁾	0x02BF00	0x015F00	0x015F00	0x00AF00	0x415F00	0x40AF00
FBSLIM ⁽²⁾	0x02BF10	0x015F10	0x015F10	0x00AF10	0x415F10	0x40AF10
FSIGN ⁽²⁾	0x02BF14	0x015F14	0x015F14	0x00AF14	0x415F14	0x40AF14
FOSCSEL	0x02BF18	0x015F18	0x015F18	0x00AF18	0x415F18	0x40AF18
FOSC	0x02BF1C	0x015F1C	0x015F1C	0x00AF1C	0x415F1C	0x40AF1C
FWDT	0x02BF20	0x015F20	0x015F20	0x00AF20	0x415F20	0x40AF20
FPOR	0x02BF24	0x015F24	0x015F24	0x00AF24	0x415F24	0x40AF24
FICD	0x02BF28	0x015F28	0x015F28	0x00AF28	0x415F28	0x40AF28
FDMTIVTL	0x02BF2C	0x015F2C	0x015F2C	0x00AF2C	0x415F2C	0x40AF2C
FDMTIVTH	0x02BF30	0x015F30	0x015F30	0x00AF30	0x415F30	0x40AF30
FDMTCNTL	0x02BF34	0x015F34	0x015F34	0x00AF34	0x415F34	0x40AF34
FDMTCNTH	0x02BF38	0x015F38	0x015F38	0x00AF38	0x415F38	0x40AF38
FDMT	0x02BF3C	0x015F3C	0x015F3C	0x00AF3C	0x415F3C	0x40AF3C
FDEVOPT	0x02BF40	0x015F40	0x015F40	0x00AF40	0x415F40	0x40AF40
FALTREG	0x02BF44	0x015F44	0x015F44	0x00AF44	0x415F44	0x40AF44
FBTSEQ	0x02BFFC	0x015FFC	0x015FFC	0x00AFFC	0x415FFC	0x40AFFC
FBOOT ⁽¹⁾			0x80	1800		

### TABLE 30-1: dsPIC33CKXXXMPX0X CONFIGURATION ADDRESSES

**Note 1:** FBOOT resides in calibration memory space.

**2:** Changes to the Inactive Partition Configuration Words affect how the Active Partition accesses the Inactive Partition.

De vieter News	Single F	Partition	Dual Partit	ion, Active	Dual Partiti	on, Inactive
Register Name	64k	32k	64k	32k	64k	32k
FSEC ⁽²⁾	0x00AF00	0x005F00	0x005F00	0x002F00	0x405F00	0x402F00
FBSLIM ⁽²⁾	0x00AF10	0x005F10	0x005F10	0x002F10	0x405F10	0x402F10
FSIGN ⁽²⁾	0x00AF14	0x005F14	0x005F14	0x002F14	0x405F14	0x402F14
FOSCSEL	0x00AF18	0x005F18	0x005F18	0x002F18	0x405F18	0x402F18
FOSC	0x00AF1C	0x005F1C	0x005F1C	0x002F1C	0x405F1C	0x402F1C
FWDT	0x00AF20	0x005F20	0x005F20	0x002F20	0x405F20	0x402F20
FPOR	0x00AF24	0x005F24	0x005F24	0x002F24	0x405F24	0x402F24
FICD	0x00AF28	0x005F28	0x005F28	0x002F28	0x405F28	0x402F28
FDMTIVTL	0x00AF2C	0x005F2C	0x005F2C	0x002F2C	0x405F2C	0x402F2C
FDMTIVTH	0x00AF30	0x005F30	0x005F30	0x002F30	0x405F30	0x402F30
FDMTCNTL	0x00AF34	0x005F34	0x005F34	0x002F34	0x405F34	0x402F34
FDMTCNTH	0x00AF38	0x005F38	0x005F38	0x002F38	0x405F38	0x402F38
FDMT	0x00AF3C	0x005F3C	0x005F3C	0x002F3C	0x405F3C	0x402F3C
FDEVOPT	0x00AF40	0x005F40	0x005F40	0x002F40	0x405F40	0x402F40
FALTREG	0x00AF44	0x005F44	0x005F44	0x002F44	0x405F44	0x402F44
FBTSEQ	0x00AFFC	0x005FFC	0x005FFC	0x002FFC	0x405FFC	0x402FFC
FBOOT ⁽¹⁾			0x80	1800	•	

## TABLE 30-2: dsPIC33CKXXMPX0X CONFIGURATION ADDRESSES

**Note 1:** FBOOT resides in calibration memory space.

**2:** Changes to the Inactive Partition Configuration Words affect how the Active Partition accesses the Inactive Partition.

<b>TABLE 30-3:</b>		<b>CONFIGURATION REGISTERS</b>	RATIO	N REGI	STERS	MAP											
Register Name	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FSEC	I	AIVTDIS					CSS<2:0>		CWRP	GSS	GSS<1:0>	GWRP	I	BSEN	BSS<1:0>	1:0>	BWRP
FBSLIM	I	I	Ι								BSLIM<12:0>	<u> </u>					
FSIGN	I	r(2)	I			I	I	I	I	I	I	I	I	I	I	I	I
FOSCSEL	I		1		I	I	I	I	I	IESO	I	I	I	I		FNOSC<2:0>	
FOSC	I	I	Ι		XTBST	XTCF(	XTCFG<1:0>	I	PLLKEN	FCKS	FCKSM<1:0>	Ι	I	I	OSCIOFCN	POSCMD<1:0>	D<1:0>
FWDT	I	FWDTEN			SWDTPS<4:0>	<0:		WLDW	WDTWIN<1:0>	NINDIS	RCLKSI	RCLKSEL<1:0>		Ľ	RWDTPS<4:0>		
FPOR	I	I			I	Ι	لر(1)	I	Ι	I	BISTDIS	لر(1)	r(1)	I	I	I	I
FICD	I	NOBTSWP	I		I	I	I	I	I	ار(1)	I	JTAGEN	I	I	I	ICS<1:0>	1:0>
FDMTIVTL	I								DMTI	DMTIVT<15:0>							
FDMTIVTH	I								VITMO	DMTIVT<31:16>							
FDMTCNTL	I								DMTC	DMTCNT<15:0>							
FDMTCNTH	I								DMTC	DMTCNT<31:16>							
FDMT	I	I	Ι		Ι	Ι	I	I	Ι	I	I	Ι	I	I	I	I	DMTDIS
FDEVOPT	Ι	Ι	Ι	SPI2PIN		Ι	SMBEN	r ⁽²⁾	لر(2)	ل _ا (1)	Ι	ALTI2C3	ALTI2C2	ALTI2C1	r ⁽¹⁾	Ι	I
FALTREG	Ι	Ι		CTXT4<2:0>	~	Ι		CTXT3<2:0>		Ι		CTXT2<2:0>		Ι	)	CTXT1<2:0>	
FBTSEQ	IBSEQ<11:4>		IBSEC	IBSEQ<3:0>							BSEC	BSEQ<11:0>					
FBOOT	I	Ι	Ι	Ι		I	Ι	I	Ι	I	I	Ι	I	I	I	BTMODE<1:0>	E<1:0>
Legend:	— = unimplemented bit, read as '1'; r = reserved bit.	ed bit, read a	as '1'; r = re.	served bit.													
Note 1: Bit	Bit reserved, maintain as '1'.	tain as '1'.															
<b>2:</b> Bit	Bit reserved, maintain as '0'.	tain as '0'.															

## REGISTER 30-1: FSEC CONFIGURATION REGISTER

	U-1	U-1	U-1	U-1	U-1	U-1	U-1			
	—		_	—	—	—	_			
bit 23							bit 16			
R/PO-1	U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1			
AIVTDIS			_	_	CSS<2:0>		CWRP			
bit 15							bit 8			
R/PO-1	R/PO-1	R/PO-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1			
GS	S<1:0>	GWRP	_	BSEN	BSS	<1:0>	BWRP			
bit 7		1					bit 0			
Legend:		PO = Progran	Once bit							
R = Readabl	le bit	W = Writable		U = Unimpler	nented bit, read	l as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown			
bit 23-16	Unimplemen	ted: Read as '1	,							
bit 15	AIVTDIS: Alte	ernate Interrupt	Vector Table [	Disable bit						
	1 = Disables 0 = Enables									
bit 14-12	Unimplemen	ted: Read as 'i	,							
bit 11-9	<b>CSS&lt;2:0&gt;:</b> C	<b>CSS&lt;2:0&gt;:</b> Configuration Segment Code Flash Protection Level bits 111 = No protection (other than CWRP write protection)								
	111 = No pro 110 = Standa 10x = Enhan 0xx = High se	ard security ced security	nan CWRP wri	te protection)						
bit 8	-	guration Segme	ent Write-Prote	ect bit						
	1 = Configura	ation Segment i ation Segment i	s not write-pro	otected						
bit 7-6	-	ation beginent		ed						
		-	-		el bits					
	11 = No prote 10 = Standard	eneral Segmer ection (other that d security	t Code Flash	Protection Leve	el bits					
bit 5	11 = No prote 10 = Standard 0x = High sed	eneral Segmer ection (other that d security curity	t Code Flash In GWRP write	Protection Leve protection)	el bits					
bit 5	11 = No prote 10 = Standard 0x = High sec <b>GWRP:</b> Gene 1 = User pros	eneral Segmer ection (other tha d security curity eral Segment W gram memory is	nt Code Flash In GWRP write rite-Protect bit	Protection Leve protection)	el bits					
	11 = No prote 10 = Standard 0x = High sed <b>GWRP:</b> Gene 1 = User prog 0 = User prog	eeneral Segmer ection (other tha d security curity eral Segment W gram memory is gram memory is	nt Code Flash on GWRP write rite-Protect bit s not write-pro s write-protect	Protection Leve protection)	el bits					
bit 5 bit 4 bit 3	11 = No prote 10 = Standard 0x = High sed <b>GWRP:</b> Gene 1 = User prog 0 = User prog	eneral Segmer ection (other that d security curity eral Segment W gram memory is gram memory is ted: Read as '2	nt Code Flash n GWRP write rite-Protect bit not write-protect write-protect	Protection Leve protection)	el bits					
bit 4	11 = No prote 10 = Standard 0x = High sed <b>GWRP:</b> Gene 1 = User pros 0 = User pros <b>Unimplemen</b> <b>BSEN:</b> Boot S 1 = No Boot	eneral Segmer ection (other that d security curity eral Segment W gram memory is gram memory is ted: Read as '2 Segment Contro Segment	t Code Flash in GWRP write rite-Protect bit s not write-pro s write-protect	Protection Leve e protection) : tected ed	el bits					
bit 4 bit 3	<ul> <li>11 = No prote</li> <li>10 = Standard</li> <li>0x = High sed</li> <li>GWRP: Gene</li> <li>1 = User prog</li> <li>0 = User prog</li> <li>Unimplemen</li> <li>BSEN: Boot \$</li> <li>1 = No Boot \$</li> <li>0 = Boot Seg</li> </ul>	eeneral Segmer ection (other that d security curity eral Segment W gram memory is gram memory is <b>ted:</b> Read as '2 Segment Contro Segment jment size is de	t Code Flash on GWRP write rite-Protect bit on write-protect write-protect ol bit termined by B	Protection Leve protection) tected ed SLIM<12:0>						
bit 4 bit 3	<ul> <li>11 = No prote</li> <li>10 = Standard</li> <li>0x = High sed</li> <li>GWRP: Gene</li> <li>1 = User prog</li> <li>0 = User prog</li> <li>Unimplemen</li> <li>BSEN: Boot Seg</li> <li>BSS&lt;1:0&gt;: B</li> <li>11 = No prote</li> <li>10 = Standard</li> </ul>	eeneral Segmer ection (other that d security curity eral Segment W gram memory is gram memory is ted: Read as '2 Segment Contro Segment jment size is de oot Segment C ection (other that d security	at Code Flash in GWRP write rite-Protect bit s not write-protect s write-protect of bit termined by B ode Flash Pro	Protection Leve e protection) tected ed SLIM<12:0> tection Level b						
bit 4	11 = No prote 10 = Standard 0x = High sed <b>GWRP:</b> Gene 1 = User pros 0 = User pros <b>Unimplemen</b> <b>BSEN:</b> Boot Seg <b>BSS&lt;1:0&gt;:</b> B 11 = No prote 10 = Standard 0x = High sed	eeneral Segmer ection (other that d security curity eral Segment W gram memory is gram memory is ted: Read as '2 Segment Contro Segment jment size is de oot Segment C ection (other that d security	t Code Flash in GWRP write rite-Protect bit s not write-protect s write-protect of bit termined by B ode Flash Pro in BWRP write	Protection Leve e protection) tected ed SLIM<12:0> tection Level b						

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	_	—	—	—	—	_
bit 23			·				bit 16
U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
—	—	_			BSLIM<12:8>		
bit 15							bit 8
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
			BSLI	V<7:0>			
bit 7							bit 0
Legend:		PO = Program	n Once bit				

## **REGISTER 30-2: FBSLIM CONFIGURATION REGISTER**

Legend:	PO = Program Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-13 Unimplemented: Read as '1'

bit 12-0 **BSLIM<12:0>:** Boot Segment Code Flash Page Address Limit bits Contains the page address of the first active General Segment page. The value to be programmed is the inverted page address, such that programming additional '0's can only increase the Boot Segment size.

## **REGISTER 30-3:** FSIGN CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_	—	—	_	—	—	—	—
bit 23		•		•	•	•	bit 16
r-0	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 15							bit 8
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 7							bit 0
Legend:		r = Reserved I	oit	PO = Program	n Once bit		
R = Readabl	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown
bit 23-16	Unimplemen	ted: Read as '1	,				
bit 15	Reserved: Ma	aintain as '0'					
bit 14-0	Unimplemen	ted: Read as '1	,				

## REGISTER 30-4: FOSCSEL CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1		
	_	_		_	_	_	_		
bit 23	•	•	•			•	bit 16		
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1		
—	—	—	—	—	—	—	—		
bit 15							bit 8		
R/PO-1	U-1	U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1		
IESO	—	—	—	—		FNOSC<2:0>			
bit 7							bit 0		
Legend:		PO = Progran	n Once bit						
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 23-8	Unimplemented: Read as '1'								
bit 7	IESO: Interna	al External Swite	chover bit						
				nabled (Two-Sp					
				isabled (Two-S	peed Start-up is	s disabled)			
bit 6-3	Unimplemen	ted: Read as 'i	L'						
bit 2-0	FNOSC<2:0>	: Initial Oscillat	or Source Sele	ection bits					
		I Fast RC (FRC		th Postscaler					
		Fast RC (BFF	RC)						
	101 = LPRC								
	100 = Reserv			HSPLL, ECPL					
		y (XT, HS, EC)		TIOT LL, LOFL	-)				
		I Fast RC Osci		(FRCPLL)					
				· · · · ·/					

000 = Fast RC (FRC) Oscillator

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1		
	_	_	_	_		_	_		
bit 23							bit 16		
U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1	U-1	R/PO-1		
	_	_	XTBST	XTCF	G<1:0>		PLLKEN ⁽¹⁾		
bit 15						L	bit 8		
R/PO-1	R/PO-1	U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1		
FCKSI	M<1:0>	—	—	—	OSCIOFNC	POSCN	/ID<1:0>		
bit 7							bit 0		
Legend:		PO = Program							
R = Readable		W = Writable		-	mented bit, read				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
h:+ 00 40		tada Daadaa (	. ,						
bit 23-13	-	ted: Read as '							
bit 12	1 = Boosts the	lator Kick-Start	Programmabil	ity bit					
	0 = Default ki								
bit 11-10	XTCFG<1:0>: Crystal Oscillator Drive Select bits								
bit 11-10 <b>XTCFG&lt;1:0&gt;:</b> Crystal Oscillator Drive Select bits Current gain programmability for oscillator (output drive). 11 = Gain3 (use for 24-32 MHz crystals)									
		ise for 16-24 M ise for 8-16 MF	• •						
		ise for 4-8 MHz							
bit 9	Unimplemen	ted: Read as '	1'						
bit 8	PLLKEN: PLI	L Lock Status (	Control bit ⁽¹⁾						
					out if lock is lost				
		•		ock output will	not be disabled	if lock is lost			
bit 7-6		Clock Switch	•	o					
		vitching is disal vitching is enat							
		vitching is enat							
bit 5-3	Unimplemen	ted: Read as '	1'						
bit 2	OSCIOFNC:	OSCO Pin Fun	ction bit (excep	ot in XT and H	S modes)				
		the clock outpu							
		the general pu		-					
bit 1-0		0>: Primary Os		Select bits					
		Oscillator is dis tal Oscillator m		32 MHz)					
	-	tal Oscillator m							
		ernal Clock) mo		,					
Note 1: At	ime-out period	will occur whe	n the system c	lock switching	logic requests th	ne PLL clock s	ource and the		

## **REGISTER 30-5: FOSC CONFIGURATION REGISTER**

**Note 1:** A time-out period will occur when the system clock switching logic requests the PLL clock source and the PLL is not already enabled.

## REGISTER 30-6: FWDT CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_			_	_	_		—
bit 23	•						bit 16
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
FWDTEN			SWDTPS<4:0	>		WDTW	-
bit 15							bit 8
R/PO-1	R/P0-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
WINDIS	-	SEL<1:0>			RWDTPS<4:0>	-	
bit 7							bit 0
Legend:		PO = Progra	m Once bit				
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkn	iown
bit 23-16	-	nted: Read as					
bit 15		/atchdog Timer					
		enabled in hard		ONL<15>)			
bit 14-10		0>: Sleep Mod	•		ect bits		
		ide by 2 ^ 31 =	•				
		ide by 2 ^ 30 =	1,073,741,824				
	 00001 = Div	ide by 2 ^ 1, 2					
		ide by 2 ^ 0, 1					
bit 9-8	WDTWIN<1:	0>: Watchdog	Timer Window	Select bits			
		indow is 25% o					
		indow is 37.5% indow is 50% o					
		/indow is 75%					
bit 7	WINDIS: Wa	tchdog Timer V	Vindow Enable	bit			
		g Timer is in N		de			
bit 6-5		g Timer is in W I:0>: Watchdog		Coloct hite			
DIL 0-D	11 = LPRC of			Select Dits			
			DIS = 0, syste	em clock is not	INTOSC/LPRC	and device is	not in Sleep
		se, uses INTO					
		eripheral clock se, uses INTO	•	i clock is not	INTOSC/LPRC	and device is	not in Sleep
	00 = Reserv		00/2110				
bit 4-0	RWDTPS<4:	:0>: Run Mode	Watchdog Tim	er Period Sele	ct bits		
		ide by 2 ^ 31 =					
		ide by 2 ^ 30 =	1,073,741,824				
	00001 = Div	ide by 2 ^ 1, 2					
		ide by 2 ^ 0, 1					
		,, .					

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_	—	—	_	—	—	—	—
bit 23	•	•		•		•	bit 16
U-1	U-1	U-1	U-1	U-1	r-1	U-1	U-1
—	—	—	_	_	—	—	—
bit 15							bit 8
U-1	R/PO-1	r-1	r-1	U-1	U-1	U-1	U-1
	BISTDIS ⁽¹⁾	—	_	—	—	—	—
bit 7							bit 0
Legend:		PO = Program	n Once bit	r = Reserved	bit		
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				
bit 23-11	Unimplemen	ted: Read as '1	,				

## **REGISTER 30-7: FPOR CONFIGURATION REGISTER**

bit 10Reserved: Maintain as '1'bit 9-7Unimplemented: Read as '1'bit 6BISTDIS: Memory BIST Feature Disable bit⁽¹⁾1 = MBIST on Reset feature is disabled

- 0 = MBIST on Reset feature is enabled
- bit 5-4 **Reserved:** Maintain as '0b11'
- bit 3-0 **Unimplemented:** Read as '1'

Note 1: Applies to a Power-on Reset (POR) only.

## **REGISTER 30-8: FICD CONFIGURATION REGISTER**

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_	—	_	_	_	—	—	_
bit 23	·				•		bit 16
R/PO-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
NOBTSWP	—		—	_		—	
bit 15							bit 8
r-1	U-1	R/PO-1	U-1	U-1	U-1	R/PO-1	R/PO-1
	—	JTAGEN	—	_	—	ICS<	:1:0>
bit 7							bit 0
r							
-	Legend: PO = Program Once bit				bit		
R = Readable		W = Writable		•	nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 23-16	-	ted: Read as 'i					
bit 15		BOOTSWP Instru		oit			
		instruction is d instruction is e					
bit 14-8	Unimplemen	ted: Read as '	l'				
bit 7	Reserved: M	aintain as '1'					
bit 6	Unimplemen	ted: Read as ':	l,				
bit 5	JTAGEN: JTA	AG Enable bit					
	1 = JTAG por	t is enabled					
	0 = JTAG por						
bit 4-2	Unimplemen	ted: Read as '	L'				
bit 1-0		D Communicat		elect bits			
		nicates on PGC					
		nicates on PGC nicates on PGC					
		d do not use					

00 = Reserved, do not use

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
	—	—	—	—	—	—	—
bit 23		-	-	-			bit 16
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
			DMTIV	T<15:8>			
bit 15							bit 8

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	
DMTIVT<7:0>								
bit 7							bit 0	

Legend:	PO = Program Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-16Unimplemented: Read as '1'bit 15-0DMTIVT<15:0>: DMT Window Interval Lower 16 bits

## **REGISTER 30-10: FDMTIVTH CONFIGURATION REGISTER**

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_	_	—	—	_	—	_	_
bit 23							bit 16
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
			DMTIVT	<31:24>			
bit 15							bit 8
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
			DMTIVT	<23:16>			
bit 7							bit 0

Legend:	PO = Program Once bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 23-16 Unimplemented: Read as '1'

bit 15-0 DMTIVT<31:16>: DMT Window Interval Higher 16 bits

# REGISTER 30-11: FDMTCNTL CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
	—	_	—	_	_	—	—
bit 23							bit 16
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
			DMTCN	IT<15:8>			
bit 15							bit 8
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
			DMTC	NT<7:0>			
bit 7							bit 0
Legend:		PO = Progran	n Once bit				
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown
L							

bit 23-16 Unimplemented: Read as '1'

bit 15-0 DMTCNT<15:0>: DMT Instruction Count Time-out Value Lower 16 bits

## **REGISTER 30-12: FDMTCNTH CONFIGURATION REGISTER**

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
	_	_	_	_	—	—	
bit 23							bit 16
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
			DMTCN	T<31:24>			
bit 15							bit 8
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
			DMTCN	T<23:16>			
bit 7							bit 0
							,
Legend:		PO = Program	n Once bit				

Legend:	PO = Program Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-16 Unimplemented: Read as '1'

bit 15-0 DMTCNT<31:16>: DMT Instruction Count Time-out Value Upper 16 bits

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_	—	—	—	—	—	_	_
bit 23	•		•				bit 16
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	_	—	—	_	—	_
bit 15							bit 8
U-1	U-1	U-1	U-1	U-1	U-1	U-1	R/PO-1
—	—	_	—	—	_	—	DMTDIS
bit 7							bit 0
Legend:		PO = Progran	n Once bit				
R = Readable	R = Readable bit W = Writable bit		bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknow		nown		

## **REGISTER 30-13: FDMT CONFIGURATION REGISTER**

bit 23-1 Unimplemented: Read as '1'

bit 0 DMTDIS: DMT Disable bit

1 = DMT is disabled

0 = DMT is enabled

## **REGISTER 30-14: FDEVOPT CONFIGURATION REGISTER**

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_	_	_	_	_	—	_	_
bit 23						1	bit 16
U-1	U-1	R/PO-1	U-1	U-1	R/PO-1	r-0	r-0
	—	SPI2PIN ⁽¹⁾		—	SMBEN		—
bit 15							bit 8
r-1	U-1	R/PO-1	R/PO-1	R/PO-1	r-1	U-1	U-1
_		ALTI2C3	ALTI2C2	ALTI2C1		_	
bit 7		/ILTI200	/ LII202	//EII201			bit 0
Legend:		PO = Program	n Once bit	r = Reserved	bit		
R = Readal	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
	<ul> <li>1 = Master SPI2 uses PPS (I/O remap) to make connections with device pins</li> <li>0 = Master SPI2 uses direct connections with specified device pins</li> <li>2-11 Unimplemented: Read as '1'</li> </ul>						
bit 12-11 bit 10	1 = Master S 0 = Master S Unimpleme	SPI2 uses PPS SPI2 uses direc <b>nted:</b> Read as	t connections	make connecti with specified d	levice pins		
	1 = Master S 0 = Master S Unimplement SMBEN: Set 1 = Enables	SPI2 uses PPS SPI2 uses direc nted: Read as lect Input Volta SMBus 3.0 inp	(I/O remap) to t connections '1' ge Threshold f ut threshold vo	make connecti with specified d for I ² C Pads to I	levice pins		
	1 = Master S 0 = Master S <b>Unimplemen</b> <b>SMBEN:</b> Set 1 = Enables 0 = I ² C pad i	SPI2 uses PPS SPI2 uses direc <b>nted:</b> Read as lect Input Voltag	(I/O remap) to t connections '1' ge Threshold f ut threshold vo	make connecti with specified d for I ² C Pads to I	levice pins		
bit 10	1 = Master S 0 = Master S Unimplement SMBEN: Set 1 = Enables 0 = I ² C pad in Reserved: M	SPI2 uses PPS SPI2 uses direc <b>nted:</b> Read as lect Input Voltag SMBus 3.0 inp input buffer ope	(I/O remap) to t connections '1' ge Threshold f ut threshold vo	make connecti with specified d for I ² C Pads to I	levice pins		
bit 10 bit 9-8	1 = Master S 0 = Master S Unimplement SMBEN: Set 1 = Enables 0 = I ² C pad in Reserved: M	SPI2 uses PPS SPI2 uses direc <b>nted:</b> Read as lect Input Volta SMBus 3.0 inp input buffer ope Maintain as '0'	(I/O remap) to t connections '1' ge Threshold f ut threshold ve eration	make connecti with specified d for I ² C Pads to I	levice pins		
bit 10 bit 9-8 bit 7	1 = Master S 0 = Master S Unimplement SMBEN: Sel 1 = Enables 0 = I ² C pad in Reserved: M Reserved: M Unimplement ALTI2C3: All 1 = Default M	SPI2 uses PPS SPI2 uses direc <b>nted:</b> Read as lect Input Voltag SMBus 3.0 inp input buffer ope Maintain as '0' Maintain as '1' <b>nted:</b> Read as ternate I2C3 Pi ocation for SCL	(I/O remap) to t connections '1' ge Threshold fu ut threshold ve ration '1' n Mapping bit .3/SDA3 pins	o make connecti with specified d for I ² C Pads to I oltage	levice pins be SMBus 3.0		
bit 10 bit 9-8 bit 7 bit 6	1 = Master S 0 = Master S Unimplement SMBEN: Set 1 = Enables 0 = I ² C pad in Reserved: M Reserved: M Unimplement ALTI2C3: Alt 1 = Default M 0 = Alternate ALTI2C2: Alt 1 = Default M	SPI2 uses PPS SPI2 uses direc <b>nted:</b> Read as lect Input Voltag SMBus 3.0 inp input buffer ope Maintain as '0' Maintain as '1' <b>nted:</b> Read as ternate I2C3 Pi ocation for SCL bocation for SCL ternate I2C2 Pi ocation for SCL	(I/O remap) to t connections '1' ge Threshold f ut threshold veration '1' n Mapping bit .3/SDA3 pins CL3/SDA3 pins n Mapping bit .2/SDA2 pins	make connecti with specified d for I ² C Pads to l oltage	levice pins be SMBus 3.0 A3)		
bit 10 bit 9-8 bit 7 bit 6 bit 5	1 = Master S 0 = Master S Unimplement SMBEN: Set 1 = Enables 0 = I ² C pad in Reserved: M Reserved: M Unimplement ALTI2C3: All 1 = Default M 0 = Alternate ALTI2C2: All 1 = Default M 0 = Alternate ALTI2C1: All 1 = Default M	SPI2 uses PPS SPI2 uses direc <b>nted:</b> Read as lect Input Voltag SMBus 3.0 inp input buffer ope Maintain as '0' Maintain as '1' <b>nted:</b> Read as ternate I2C3 Pi ocation for SCL e location for SCL	(I/O remap) to t connections '1' ge Threshold f ut threshold ve ration '1' n Mapping bit .3/SDA3 pins CL3/SDA3 pins CL3/SDA3 pins CL3/SDA3 pins CL2/SDA2 pins CL2/SDA2 pins CL2/SDA2 pins CL2/SDA2 pins 1/SDA1 pins	o make connecti with specified d for I ² C Pads to b bltage s (ASCL3/ASD/	levice pins be SMBus 3.0 A3) A2)		
bit 10 bit 9-8 bit 7 bit 6 bit 5 bit 4	1 = Master S 0 = Master S Unimplement SMBEN: Set 1 = Enables 0 = I ² C pad in Reserved: M Reserved: M Unimplement ALTI2C3: Alt 1 = Default M 0 = Alternate ALTI2C2: Alt 1 = Default M 0 = Alternate ALTI2C1: Alt 1 = Default M 0 = Alternate ALTI2C1: Alt 1 = Default M 0 = Alternate	SPI2 uses PPS SPI2 uses direc <b>nted:</b> Read as lect Input Voltag SMBus 3.0 inp input buffer ope Maintain as '0' Maintain as '1' <b>nted:</b> Read as ternate I2C3 Pi ocation for SCL e location for SCL	(I/O remap) to t connections '1' ge Threshold f ut threshold ve ration '1' n Mapping bit .3/SDA3 pins CL3/SDA3 pins CL3/SDA3 pins CL3/SDA3 pins CL2/SDA2 pins CL2/SDA2 pins CL2/SDA2 pins CL2/SDA2 pins 1/SDA1 pins	o make connecti with specified d for I ² C Pads to b bltage s (ASCL3/ASD/	levice pins be SMBus 3.0 A3) A2)		

Note 1: Fixed pin option is only available for higher pin packages (48-pin, 64-pin and 80-pin).

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1			
_	—	—	_	—	_	_				
oit 23							bit 16			
U-1	R/PO-1	R/PO-1	R/PO-1	U-1	R/PO-1	R/PO-1	R/PO-1			
		CTXT4<2:0>		—		CTXT3<2:0>				
bit 15							bit 8			
U-1	R/PO-1	R/PO-1	R/PO-1	U-1	R/PO-1	R/PO-1	R/PO-1			
_		CTXT2<2:0>		_		CTXT1<2:0>				
bit 7							bit (			
Legend:		PO = Program	n Once bit							
R = Readab	ole bit	W = Writable I	oit	U = Unimpler	nented bit, rea	d as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own			
			,							
bit 23-15	•	nted: Read as '1								
oit 14-12		Specifies the A	Alternate Work	ing Register Se	et #4 with Inter	rupt Priority Leve	els (IPL) bits			
	111 <b>= Not a</b> s									
		ate Register Set								
		ate Register Set								
		ate Register Set								
		ate Register Set								
		ate Register Set								
		ate Register Set								
bit 11		ate Register Set	-	a to IPL Level	I					
bit 10-8	-	nted: Read as '1		ing Pogistor S	ot #2 with Intor	rupt Priority Lov	ole (IDL) bite			
DIL IU-0		Specifies the A	Allemale work	ing Register Se	et #3 with miler	rupt Priority Leve	eis (IPL) bils			
	111 = Not as		#3 is assigno	d to IPI I ovol	7					
	110 = Alternate Register Set #3 is assigned to IPL Level 7									
		<ul><li>101 = Alternate Register Set #3 is assigned to IPL Level 6</li><li>100 = Alternate Register Set #3 is assigned to IPL Level 5</li></ul>								
		ate Register Set								
		ate Register Set	•							
		ate Register Set	-							
		ate Register Set								
bit 7	Unimpleme	nted: Read as '1	,							
bit 6-4	CTXT2<2:0>	. Specifies the A	Alternate Work	ing Register Se	et #2 with Inter	rupt Priority Leve	els (IPL) bits			
	111 <b>= Not a</b> s	ssigned								
	110 = Altern	ate Register Set	#2 is assigne	d to IPL Level	7					
		ate Register Set								
		ate Register Set								
		ate Register Set								
		ate Register Set	•							
		ate Register Set								
		ate Register Set	-	d to IPL Level	1					
bit 3	Unimpleme	nted: Read as '1	3							

#### REGISTER 30-15: FALTREG CONFIGURATION REGISTER (CONTINUED)

- bit 2-0 **CTXT1<2:0>:** Specifies the Alternate Working Register Set #1 with Interrupt Priority Levels (IPL) bits 111 = Not assigned
  - 110 = Alternate Register Set #1 is assigned to IPL Level 7
  - 101 = Alternate Register Set #1 is assigned to IPL Level 6
  - 100 = Alternate Register Set #1 is assigned to IPL Level 5
  - 011 = Alternate Register Set #1 is assigned to IPL Level 4
  - 010 = Alternate Register Set #1 is assigned to IPL Level 3
  - 001 = Alternate Register Set #1 is assigned to IPL Level 2
  - 000 = Alternate Register Set #1 is assigned to IPL Level 1

#### **REGISTER 30-16: FBTSEQ CONFIGURATION REGISTER**

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1		
	IBSEQ<11:4>								
bit 23							bit 16		
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1		
	IBSEC	Q<3:0>			BSEQ	<11:8>			
bit 15							bit 8		
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1		
BSEQ<7:0>									
bit 7							bit 0		

Legend:	PO = Program Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '1'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-12 **IBSEQ<11:0>:** Inverse Boot Sequence Number bits (Dual Partition modes only) The one's complement of BSEQ<11:0>; must be calculated by the user and written into device programming.

bit 11-0 **BSEQ<11:0>:** Boot Sequence Number bits (Dual Partition modes only) Relative value defining which partition will be active after a device Reset; the partition containing a lower boot number will be active.

## **REGISTER 30-17: FBOOT CONFIGURATION REGISTER**

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 15							bit 8
U-1	U-1	U-1	U-1	U-1	U-1	R/PO-1	R/PO-1
—	—	—	—	-	—	BTMO	DE<1:0>
bit 7							bit 0
Legend: PO = Pro		PO = Progran	n Once bit				
R = Readable	Readable bit U = Unimplemented bit, read as '1'						

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '1'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2 Unimplemented: Read as '1'

bit 1-0 BTMODE<1:0>: Device Partition Mode Configuration Status bits

11 = Single Partition mode

10 = Dual Partition mode

01 = Protected Dual Partition mode (Partition 1 is write-protected when inactive)

00 = Reserved; do not use

#### 30.2 Device Calibration and Identification

The dsPIC33CK256MP508 devices have two Identification registers, near the end of configuration memory space, that store the Device ID (DEVID) and Device Revision (DEVREV). These registers are used to determine the mask, variant and manufacturing information about the device. These registers are read-only and are shown in Register 30-18 and Register 30-19.

#### REGISTER 30-18: DEVREV: DEVICE REVISION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23	•	•		•			bit 16
r-0	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 15	•	•		·			bit 8
U-1	U-1	U-1	U-1	R	R	R	R
—	—	_	—		DEVRE	V<3:0>	
bit 7							bit 0
Legend: R = R	ead-only bit	r = Reserved	bit	U = Unimple	mented bit		

bit 23-16	<b>Unimplemented:</b> Read as '1'

bit 15 <b>Reserved:</b> Maintain	<b>as</b> '0'	
----------------------------------	---------------	--

bit 14-4 Unimplemented: Read as '1'

bit 3-0 **DEVREV<3:0>:** Device Revision bits

#### **REGISTER 30-19: DEVID: DEVICE ID REGISTERS**

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
	—	_	—	—	—		
bit 23							bit 16
R	R	R	R	R	R	R	R
FAMID<7:0>							
bit 15							bit 8
R	R	R	R	R	R	R	R
DEV<7:0> ⁽¹⁾							
bit 7							bit 0

Legend: R = Read-only bit U = Unimplemented bit

bit 23-16 Unimplemented: Read as '1'

bit 15-8 **FAMID<7:0>:** Device Family Identifier bits

- 0111 1100 = dsPIC33CK256MP508 family
- bit 7-0 **DEV<7:0>:** Individual Device Identifier bits⁽¹⁾

Note 1: See Table 30-4 for the list of Device Identifier bits.

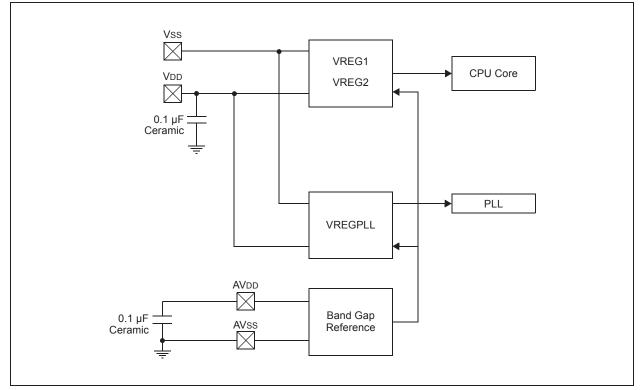
Device	DEVID
Device IDs for dsPIC33CK256MP508 Family with CAN	N FD
dsPIC33CK256MP508	0x7C74
dsPIC33CK256MP506	0x7C73
dsPIC33CK256MP505	0x7C72
dsPIC33CK256MP503	0x7C71
dsPIC33CK256MP502	0x7C70
dsPIC33CK128MP508	0x7C64
dsPIC33CK128MP506	0x7C63
dsPIC33CK128MP505	0x7C62
dsPIC33CK128MP503	0x7C61
dsPIC33CK128MP502	0x7C60
dsPIC33CK64MP508	0x7C54
dsPIC33CK64MP506	0x7C53
dsPIC33CK64MP505	0x7C52
dsPIC33CK64MP503	0x7C51
dsPIC33CK64MP502	0x7C50
dsPIC33CK32MP506	0x7C43
dsPIC33CK32MP505	0x7C42
dsPIC33CK32MP503	0x7C41
dsPIC33CK32MP502	0x7C40
Device IDs for dsPIC33CK256MP508 Family without	CAN FD
dsPIC33CK256MP208	0x7C34
dsPIC33CK256MP206	0x7C33
dsPIC33CK256MP205	0x7C32
dsPIC33CK256MP203	0x7C31
dsPIC33CK256MP202	0x7C30
dsPIC33CK128MP208	0x7C24
dsPIC33CK128MP206	0x7C23
dsPIC33CK128MP205	0x7C22
dsPIC33CK128MP203	0x7C21
dsPIC33CK128MP202	0x7C20
dsPIC33CK64MP208	0x7C14
dsPIC33CK64MP206	0x7C13
dsPIC33CK64MP205	0x7C12
dsPIC33CK64MP203	0x7C11
dsPIC33CK64MP202	0x7C10
dsPIC33CK32MP206	0x7C03
dsPIC33CK32MP205	0x7C02
dsPIC33CK32MP203	0x7C01
dsPIC33CK32MP202	0x7C00

#### TABLE 30-4: DEVICE IDs FOR THE dsPIC33CK256MP508 FAMILY

## 30.3 User OTP Memory

The dsPIC33CK256MP508 family devices contain 64 One-Time-Programmable (OTP) double words, located at addresses, 801700h through 8017FEh. Each 48-bit OTP double word can only be written one time. The OTP Words can be used for storing checksums, code revisions, manufacturing dates, manufacturing lot numbers or any other application-specific information.

The OTP area is not cleared by any erase command. This memory can be written only once.


## 30.4 On-Chip Voltage Regulators

dsPIC33CK256MP508 family devices have a capacitorless internal voltage regulator to supply power to the core at 1.2V (typical). A pair of voltage regulators, VREG1 and VREG2 together, provide power for the core. The PLL is powered using a separate regulator, VREGPLL, as shown in Figure 30-1.

The regulators have Low-Power and Standby modes for use in Sleep modes. For additional information about Sleep, see Section 29.2.1 "Sleep Mode".

When the regulators are in Low-Power mode (LPWREN = 1), the power available to the core is limited. Before the LPWREN bit is set, the device should be placed into a lower power state by disabling peripherals and lowering CPU frequency (e.g., 8 MHz FRC without PLL).

The output voltages of the three regulators can be controlled independently by the user, which gives the capability to save additional power during Sleep mode.



#### FIGURE 30-1: INTERNAL REGULATOR

#### REGISTER 30-20: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER

R/W-0	U-0						
LPWREN ⁽¹⁾	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	VREG3OV<1:0>		VREG2OV<1:0>		VREG10V<1:0>	
bit 7							bit 0

#### Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	LPWREN: Low-Power Mode Enable bit ⁽¹⁾ 1 = Voltage regulators are in Low-Power mode 0 = Voltage regulators are in Full Power mode
bit 14-6	Unimplemented: Read as '1'
bit 5-4	VREG3OV<1:0>: Low-Power Mode Enable bits
	11/00 = VOUT = 1.5 * VBG = 1.2V 10 = VOUT = 1.25 * VBG = 1.0V 01 = VOUT = VBG = 0.8V
bit 3-2	VREG2OV<1:0>: Low-Power Mode Enable bits
	11/00 = VOUT = 1.5 * VBG = 1.2V
	10 = VOUT = 1.25 * VBG = 1.0V 01 = VOUT = VBG = 0.8V
bit 1-0	VREG10V<1:0>: Low-Power Mode Enable bits
	11/00 = VOUT = 1.5 * VBG = 1.2V 10 = VOUT = 1.25 * VBG = 1.0V
	0 = VOUT = 1.25 VBG = 1.0V 01 = VOUT = VBG = 0.8V

**Note 1:** Low-Power mode can only be used within the industrial temperature range. The CPU should be run at slow speed (8 MHz or less) before setting this bit.

#### 30.5 Brown-out Reset (BOR)

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse which resets the device. The BOR selects the clock source based on the device Configuration bit selections.

If an Oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT Time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM is applied. The total delay in this case is TFSCM. Refer to Parameter SY35 in Table 33-25 of **Section 33.0 "Electrical Characteristics"** for specific TFSCM values.

The BOR status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle mode and resets the device should VDD fall below the BOR threshold voltage.

## 30.6 Dual Watchdog Timer (WDT)

Note 1: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Dual Watchdog Timer", (DS70005250) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com).

The dsPIC33 dual Watchdog Timer (WDT) is described in this section. Refer to Figure 30-2 for a block diagram of the WDT.

The WDT, when enabled, operates from the internal Low-Power RC (LPRC) Oscillator clock source or a selectable clock source in Run mode. The WDT can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. The WDT can be configured in Windowed mode or Non-Windowed mode. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode (Power Save mode). If the WDT expires and issues a device Reset, the WTDO bit in RCON (Register 6-1) will be set.

The following are some of the key features of the WDT modules:

- Configuration or Software Controlled
- Separate User-Configurable Time-out Periods for Run and Sleep/Idle
- · Can Wake the Device from Sleep or Idle
- User-Selectable Clock Source in Run mode
- Operates from LPRC in Sleep/Idle mode

#### Power Save Mode WDT LPRC Oscillator Wake-up and 32-Bit Counter Power Save Comparator NMI 1 Reset Power Save CLKSEL<1:0> SLPDIV<4:0> ON Run Mode WDT SYSCLK Reserved NMI and Start 01 Power Save 32-Bit Counter Comparator NMI Counter FRC Oscillator 10 LPRC Oscillator Reset RUNDIV<4:0> WDTCLRKEY<15:0> = 5743h ON All Resets Clock Switch

## FIGURE 30-2: WATCHDOG TIMER BLOCK DIAGRAM

#### REGISTER 30-21: WDTCONL: WATCHDOG TIMER CONTROL REGISTER LOW

R/W-0	U-0	U-0	R-y	R-y	R-y	R-y	R-y			
ON ^(1,2)		_	RUNDIV4 ⁽³⁾	RUNDIV3 ⁽³⁾	RUNDIV2 ⁽³⁾	RUNDIV1 ⁽³⁾	RUNDIV0 ⁽³⁾			
bit 15							bit			
R	R	R-y	R-y	R-y	R-y	R-y	HS/R/W-0			
CLKSEL1	^(3,5) CLKSEL0 ^(3,5)	SLPDIV4 ⁽³⁾	SLPDIV3 ⁽³⁾	SLPDIV2 ⁽³⁾	SLPDIV1 ⁽³⁾	SLPDIV0 ⁽³⁾	WDTWINEN ⁽⁴			
bit 7							bit			
Legend:		HS = Hardwa	e Settable bit	y = Value from	n Configuration	h bit on POR				
R = Reada	able bit	W = Writable		-	nented bit, read					
-n = Value		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	NOWD			
				o Ditio didi						
bit 15	ON: Watchdo	og Timer Enable	e bit ^(1,2)							
	1 = Enables f	he Watchdog T	imer if it is not	enabled by the	device config	uration				
	0 = Disables	the Watchdog	imer if it was e	enabled in softw	vare					
bit 14-13	Unimplemen	ited: Read as '	)'							
bit 12-8	RUNDIV<4:0	RUNDIV<4:0>: WDT Run Mode Postscaler Status bits ⁽³⁾								
	11111 = Divide by 2 ^ 31 = 2,147,483,648									
	11110 <b>= Divi</b>	de by 2 ^ 30 =	1,073,741,824							
	 00001 = Divi	de by 2 ^ 1, 2								
		de by 2 ^ 0, 1								
bit 7-6	CLKSEL<1:0	)>: WDT Run M	ode Clock Sel	ect Status bits ^{(;}	3,5)					
	11 = LPRC C	Oscillator								
	10 = FRC Os									
	01 = Reserve									
	00 = SYSCLI									
bit 5-1		>: Sleep and Id		Postscaler Stat	us bits(3)					
		de by 2 ^ 31 = 2 de by 2 ^ 30 = 2								
		ue by 2 * 30 =	1,073,741,024							
	00001 = Divi	de by 2 ^ 1, 2								
	00000 <b>= Divi</b>	de by 2 ^ 0, 1								
bit 0	WDTWINEN:	Watchdog Tim	er Window Ena	able bit ⁽⁴⁾						
	1 = Enables	Window mode								
	0 = Disables	Window mode								
Note 1:	A read of this bit	will result in a '1	if the WDT is	enabled by the	e device config	juration or by s	oftware.			
2:	The user's softwa			-	-	-				
		wing the instruction that clears the module's ON bit. se bits reflect the value of the Configuration bits.								

- 4: The WDTWINEN bit reflects the status of the Configuration bit if the bit is set. If the bit is cleared, the value is controlled by software.
- 5: The available clock sources are device-dependent.

W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			WDTCLF	RKEY<15:8>			
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			WDTCL	RKEY<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	red	x = Bit is unk	nown

## REGISTER 30-22: WDTCONH: WATCHDOG TIMER CONTROL REGISTER HIGH

bit 15-0 WDTCLRKEY<15:0>: Watchdog Timer Clear Key bits

To clear the Watchdog Timer to prevent a time-out, software must write the value, 0x5743, to this location using a single 16-bit write.

## 30.7 JTAG Interface

The dsPIC33CK256MP508 family devices implement a JTAG interface, which supports boundary scan device testing. Detailed information on this interface will be provided in future revisions of this document.

Note:	Refer to "Programming and Diagnostics"							
	(DS70608) in the "dsPIC33/PIC24 Family							
	Reference Manual" for further information on							
	usage, configuration and operation of the							
	JTAG interface.							

## 30.8 In-Circuit Serial Programming™ (ICSP™)

The dsPIC33CK256MP508 family devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33CK256MP508 Family Flash Programming Specification" (DS70005300) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGC1 and PGD1
- PGC2 and PGD2
- PGC3 and PGD3

## 30.9 In-Circuit Debugger

When MPLAB[®] ICD 3 or the REAL ICE[™] emulator is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGCx (Emulation/Debug Clock) and PGDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGC1 and PGD1
- PGC2 and PGD2
- PGC3 and PGD3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to  $\overline{MCLR}$ , VDD, VSS and the PGCx/PGDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins (PGCx and PGDx).

## 30.10 Code Protection and CodeGuard™ Security

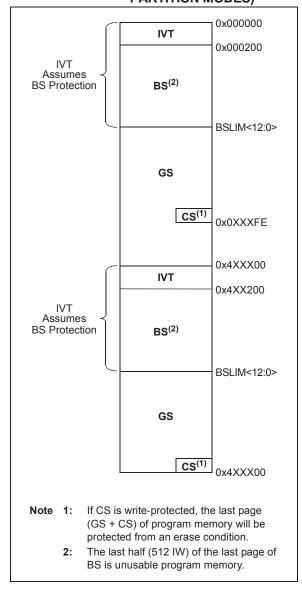
dsPIC33CK256MP508 family devices offer multiple levels of security for protecting individual intellectual property. The program Flash protection can be broken up into three segments: Boot Segment (BS), General Segment (GS) and Configuration Segment (CS). Boot Segment has the highest security privilege and can be thought to have limited restrictions when accessing other segments. General Segment has the least security and is intended for the end user system code. Configuration Segment contains only the device user configuration data, which is located at the end of the program memory space.

The code protection features are controlled by the Configuration registers, FSEC and FBSLIM. The FSEC register controls the code-protect level for each segment and if that segment is write-protected. The size of BS and GS will depend on the BSLIM<12:0> bits setting and if the Alternate Interrupt Vector Table (AIVT) is enabled. The BSLIM<12:0> bits define the number of pages for BS with each page containing 1024 IW. The smallest BS size is one page, which will consist of the Interrupt Vector Table (IVT) and 512 IW of code protection.

If the AIVT is enabled, the last page of BS will contain the AIVT and will not contain any BS code. With AIVT enabled, the smallest BS size is now two pages (2048 IW), with one page for the IVT and BS code, and the other page for the AIVT. Write protection of the BS does not cover the AIVT. The last page of BS can always be programmed or erased by BS code. The General Segment will start at the next page and will consume the rest of program Flash, except for the Flash Configuration Words. The IVT will assume GS security only if BS is not enabled. The IVT is protected from being programmed or page erased when either security segment has enabled write protection. SECURITY SEGMENTS

The different device security segments are shown in Figure 30-3. Here, all three segments are shown, but are not required. If only basic code protection is required, then GS can be enabled independently or combined with CS, if desired.

**FIGURE 30-3:** 


EXAMPLE							
	IVT	0x000000					
IVT and AIVT Assume → BS Protection	BS	0x000200					
	AIVT + 512 IW ⁽²⁾	BSLIM<12:0>					
	GS						
	CS ⁽¹⁾	0x0XXX00					
(GS + 0	write-protected, the CS) of program me ed from an erase co	mory will be					
	st half (256 IW) of th inusable program m	1 0					

The dsPIC33CK256MP508 family can be operated in Dual Partition mode, where security is required for each partition. When operating in Dual Partition mode, the Active and Inactive Partitions both contain unique copies of the Reset vector and Interrupt Vector Tables (IVT, if enabled). Both partitions have the three security segments described previously. Code may not be executed from the Inactive Partition, but it may be programmed by, and read from, the Active Partition, subject to defined code protection. Figure 30-4 shows the different security segments for a device operating in Dual Partition mode.

The device may also operate in a Protected Dual Partition mode or in Privileged Dual Partition mode. In Protected Dual Partition mode, Partition 1 is permanently erase/write-protected. This implementation allows for a "Factory Default" mode, which provides a fail-safe backup image to be stored in Partition 1. For example, a fail-safe bootloader can be placed in Partition 1, along with a fail-safe backup code image, which can be used or rewritten into Partition 2 in the event of a failed Flash update to Partition 2. Privileged Dual Partition mode performs the same function as Protected Dual Partition mode, except additional constraints are applied in an effort to prevent code in the Boot Segment and General Segment from being used against each other.



SECURITY SEGMENTS EXAMPLE (DUAL PARTITION MODES)



## 31.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33CK256MP508 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"16-Bit MCU and DSC Programmer's Reference Manual"* (www.microchip.com/DS70000157), which is available from the Microchip website.

The dsPIC33CK256MP508 family instruction set is almost identical to that of the dsPIC30F and dsPIC33F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- DSP operations
- Control operations

Table 31-1 lists the general symbols used in describing the instructions.

The dsPIC33 instruction set summary in Table 31-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- · The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- The accumulator write-back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the Table Read and Table Write instructions

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the eight MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter is changed as a result of the instruction, or a PSV or Table Read is performed. In these cases, the execution takes multiple instruction cycles, with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or twoword instruction. Moreover, double-word moves require two cycles.

Note: In dsPIC33CK256MP508 devices, read and Read-Modify-Write operations on non-CPU Special Function Registers require an additional cycle when compared to dsPIC30F, dsPIC33F, PIC24F and PIC24H devices.

**Note:** For more details on the instruction set, refer to the *"16-Bit MCU and DSC Programmer's Reference Manual"* (DS70000157).

TABLE 31-1:	SYMBOLS	S USED IN OPCODE DESCRIPTIONS

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{}	Optional field or operation
a ∈ {b, c, d}	a is selected from the set of values b, c, d
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.W	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator Write-Back Destination Address register ∈ {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word-addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal $\in \{0255\}$
lit10	10-bit unsigned literal $\in$ {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal $\in \{016384\}$
lit16	16-bit unsigned literal $\in \{065535\}$
lit23	23-bit unsigned literal ∈ {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal $\in$ {-512511}
Slit16	16-bit signed literal $\in$ {-3276832767}
Slit6	6-bit signed literal $\in$ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor Working register pair (direct addressing)

## TABLE 31-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

Field	Description
Wm*Wm	Multiplicand and Multiplier Working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier Working register pair for DSP instructions $\in$ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 Working registers ∈ {W0W15}
Wnd	One of 16 Destination Working registers ∈ {W0W15}
Wns	One of 16 Source Working registers ∈ {W0W15}
WREG	W0 (Working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BFEXT	BFEXT	bit4,wid5,Ws,Wb	Bit Field Extract from Ws to Wb	2	2	None
		BFEXT	bit4,wid5,f,Wb	Bit Field Extract from f to Wb	2	2	None
7	BFINS	BFINS	bit4,wid5,Wb,Ws	Bit Field Insert from Wb into Ws	2	2	None
		BFINS	bit4,wid5,Wb,f	Bit Field Insert from Wb into f	2	2	None
		BFINS	bit4,wid5,lit8,Ws	Bit Field Insert from #lit8 to Ws	2	2	None
8	BOOTSWP	BOOTSWP		Swap the Active and Inactive Program Flash Space	1	2	None

## TABLE 31-2: INSTRUCTION SET OVERVIEW

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.
 2: The divide instructions must be preceded with a "REPEAT #5" instruction, such that they are executed six consecutive times.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
9	BRA	BRA	C,Expr	Branch if Carry	1	1 (4)	None
		BRA	GE,Expr	Branch if Greater Than or Equal	1	1 (4)	None
		BRA	GEU,Expr	Branch if unsigned Greater Than or Equal	1	1 (4)	None
		BRA	GT,Expr	Branch if Greater Than	1	1 (4)	None
		BRA	GTU,Expr	Branch if Unsigned Greater Than	1	1 (4)	None
		BRA	LE,Expr	Branch if Less Than or Equal	1	1 (4)	None
		BRA	LEU,Expr	Branch if Unsigned Less Than or Equal	1	1 (4)	None
		BRA	LT,Expr	Branch if Less Than	1	1 (4)	None
		BRA	LTU,Expr	Branch if Unsigned Less Than	1	1 (4)	None
		BRA	N,Expr	Branch if Negative	1	1 (4)	None
		BRA	NC,Expr	Branch if Not Carry	1	1 (4)	None
		BRA	NN,Expr	Branch if Not Negative	1	1 (4)	None
		BRA	NOV, Expr	Branch if Not Overflow	1	1 (4)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (4)	None
		BRA	OA,Expr	Branch if Accumulator A Overflow	1	1 (4)	None
		BRA	OB,Expr	Branch if Accumulator B Overflow	1	1 (4)	None
		BRA	OV,Expr	Branch if Overflow	1	1 (4)	None
		BRA	SA,Expr	Branch if Accumulator A Saturated	1	1 (4)	None
		BRA	SB,Expr	Branch if Accumulator B Saturated	1	1 (4)	None
		BRA	Expr	Branch Unconditionally	1	4	None
		BRA	Z,Expr	Branch if Zero	1	1 (4)	None
		BRA	Wn	Computed Branch	1	4	None
10	BREAK	BREAK		Stop User Code Execution	1	1	None
11	BSET	BSET	f,#bit4	Bit Set f	1	1	None
			Ws,#bit4	Bit Set Ws	1	1	None
12	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
13	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
14	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
15	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
16	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
17	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
18	CALL	CALL	lit23	Call Subroutine	2	4	SFA
		CALL	Wn	Call Indirect Subroutine	1	4	SFA
		CALL.L	Wn	Call Indirect Subroutine (long address)	1	4	SFA
19	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc, Wx, Wxd, Wy, Wyd, AW	B Clear Accumulator	1	1	OA,OB,SA,SE

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

2: The divide instructions must be preceded with a "REPEAT #5" instruction, such that they are executed six consecutive times.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
20	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
21	COM	COM	f	f = Ī	1	1	N,Z
		COM	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
22	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
23	CPO	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CPO	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
24	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C,DC,N,OV,Z
25	CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
	CPBEQ	CPBEQ	Wb,Wn,Expr	Compare Wb with Wn, Branch if =	1	1 (5)	None
26	CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
	CPBGT	CPBGT	Wb,Wn,Expr	Compare Wb with Wn, Branch if >	1	1 (5)	None
27	CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
		CPBLT	Wb,Wn,Expr	Compare Wb with Wn, Branch if <	1	1 (5)	None
28	CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, Skip if $\neq$	1	1 (2 or 3)	None
		CPBNE	Wb,Wn,Expr	Compare Wb with Wn, Branch if ≠	1	1 (5)	None
29	CTXTSWP	CTXTSWP	#lit3	Switch CPU Register Context to Context Defined by lit3	1	2	None
30	CTXTSWP	CTXTSWP	Wn	Switch CPU Register Context to Context Defined by Wn	1	2	None
31	DAW.B	DAW.B	Wn	Wn = Decimal Adjust Wn	1	1	С
32	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
33	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
34	DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None
35	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
36	DIV.S ⁽²⁾	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
~=	(2)	DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
37	DIV.U ⁽²⁾	DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
38	DIVF2(2)	DIV.UD DIVF2	Wm,Wn Wm,Wn	Unsigned 32/16-bit Integer Divide Signed 16/16-bit Fractional Divide	1	18 6	N,Z,C,OV N,Z,C,OV
39	DIV2.S ⁽²⁾	DIV2.S	Wm,Wn	(W1:W0 preserved) Signed 16/16-bit Integer Divide	1	6	N,Z,C,OV
		DIV2.SD	, Wm, Wn	(W1:W0 preserved) Signed 32/16-bit Integer Divide	1	6	N,Z,C,OV
40	DIV2.U ⁽²⁾	DIV2.U	Wm, Wn	(W1:W0 preserved) Unsigned 16/16-bit Integer Divide	1	6	N,Z,C,OV
40	DTV2.0	DIV2.UD	Wm,Wn	(W1:W0 preserved) Unsigned 32/16-bit Integer Divide	1	6	N,Z,C,OV
11	<b>D</b> 0			(W1:W0 preserved)			
41	DO	DO	#lit15,Expr	Do Code to PC + Expr, lit15 + 1 Times	2	2	None
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 Times	2	2	None

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

2: The divide instructions must be preceded with a "REPEAT #5" instruction, such that they are executed six consecutive times.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
42	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
43	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
44	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
46	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
47	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
48	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
49	FLIM	FLIM	Wb, Ws	Force Data (Upper and Lower) Range Limit without Limit Excess Result	1	1	N,Z,OV
		FLIM.V	Wb, Ws, Wd	Force Data (Upper and Lower) Range Limit with Limit Excess Result	1	1	N,Z,OV
50	GOTO	GOTO	Expr	Go to Address	2	4	None
		GOTO	Wn	Go to Indirect	1	4	None
		GOTO.L	Wn	Go to Indirect (long address)	1	4	None
51	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
52	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
53	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
54	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		LAC.D	Wso, #Slit4, Acc	Load Accumulator Double	1	2	OA,SA,OB,SE
56	LNK	LNK	#lit14	Link Frame Pointer	1	1	SFA
57	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
58	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd, AWB	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
59	MAX	MAX	Acc	Force Data Maximum Range Limit	1	1	N,OV,Z
		MAX.V	Acc, Wnd	Force Data Maximum Range Limit with Result	1	1	N,OV,Z
60	MIN	MIN	Acc	If Accumulator A Less than B Load Accumulator with B or vice versa	1	1	N,OV,Z
		MIN.V	Acc, Wd	If Accumulator A Less than B Accumulator Force Minimum Data Range Limit with Limit Excess Result	1	1	N,OV,Z
		MINZ	Acc	Accumulator Force Minimum Data Range Limit	1	1	N,OV,Z
		MINZ.V	Acc, Wd	Accumulator Force Minimum Data Range Limit with Limit Excess Result	1	1	N,OV,Z

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.
 2: The divide instructions must be preceded with a "REPEAT #5" instruction, such that they are executed six consecutive times.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
61	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
62	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit Literal to DSRPAG	1	1	None
		MOVPAG	#lit8,TBLPAG	Move 8-bit Literal to TBLPAG	1	1	None
		MOVPAG	Ws, DSRPAG	Move Ws<9:0> to DSRPAG	1	1	None
		MOVPAG	Ws, TBLPAG	Move Ws<7:0> to TBLPAG	1	1	None
64	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and Store Accumulator	1	1	None
65	MPY	MPY	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
66	MPY.N	MPY.N	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
67	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd, AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
68	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
		MUL.SS	Wb,Ws,Acc	Accumulator = Signed(Wb) * Signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
		MUL.SU	Wb,Ws,Acc	Accumulator = Signed(Wb) * Unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Acc	Accumulator = Signed(Wb) * Unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
		MUL.US	Wb,Ws,Acc	Accumulator = Unsigned(Wb) * Signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc	Accumulator = Unsigned(Wb) * Unsigned(lit5)	1	1	None
		MUL.UU	Wb,Ws,Acc	Accumulator = Unsigned(Wb) * Unsigned(Ws)	1	1	None
		MULW.SS	Wb,Ws,Wnd	Wnd = Signed(Wb) * Signed(Ws)	1	1	None
		MULW.SU	Wb,Ws,Wnd	Wnd = Signed(Wb) * Unsigned(Ws)	1	1	None
		MULW.US	Wb,Ws,Wnd	Wnd = Unsigned(Wb) * Signed(Ws)	1	1	None
		MULW.UU	Wb,Ws,Wnd	Wnd = Unsigned(Wb) * Unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = Signed(Wb) * Unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	Wnd = Unsigned(Wb) * Unsigned(lit5)	1	1	None
		MUT	f	W3:W2 = f * WREG	1	1	None

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.
 2: The divide instructions must be preceded with a "REPEAT #5" instruction, such that they are executed six consecutive times.

Base Instr #	Assembly Mnemonic			Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
<b>69</b> NEG		NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = $\overline{f}$ + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
70	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
71	NORM	NORM	Acc, Wd	Normalize Accumulator	1	1	N,OV,Z
72	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
73	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
74	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
75	RCALL	RCALL	Expr	Relative Call	1	4	SFA
		RCALL	Wn	Computed Call	1	4	SFA
76	REPEAT	REPEAT	#lit15	Repeat Next Instruction lit15 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
77	RESET	RESET		Software Device Reset	1	1	None
78	RETFIE	RETFIE		Return from Interrupt	1	6 (5)	SFA
79	RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	6 (5)	SFA
80	RETURN	RETURN		Return from Subroutine	1	6 (5)	SFA
81	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
82	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
83	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
84	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
85	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
86	SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C,N,Z
87	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
88	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB

### TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

2: The divide instructions must be preceded with a "REPEAT #5" instruction, such that they are executed six consecutive times.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
89	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
91	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb - Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,Z
92	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
93	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
94	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – $(\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
95	SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
		SWAP	Wn	Wn = Byte Swap Wn	1	1	None
96	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	5	None
97	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	5	None
98	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
99	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
101	ULNK	ULNK		Unlink Frame Pointer	1	1	SFA
104	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
105	ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C,Z,N

### TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

2: The divide instructions must be preceded with a "REPEAT #5" instruction, such that they are executed six consecutive times.

## 32.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
  - MPLAB XC Compiler
  - MPASM[™] Assembler
  - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
  - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
  - MPLAB X SIM Software Simulator
- · Emulators
  - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
  - MPLAB ICD 3
  - PICkit™ 3
- Device Programmers
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

### 32.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac  $OS^{®}$  X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- · Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

### 32.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16 and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

### 32.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

### 32.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

### 32.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

### 32.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

### 32.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

### 32.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

### 32.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

### 32.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

### 32.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

### 32.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

## 33.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the dsPIC33CK256MP508 family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33CK256MP508 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

### Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(3)}$	-0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽³⁾	-0.3V to +3.6V
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	
Maximum current sunk/sourced by any 4x I/O pin	15 mA
Maximum current sunk/sourced by any 8x I/O pin	
Maximum current sunk by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those, or any other conditions above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
  - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 33-2).
  - 3: See the "Pin Diagrams" section for the 5V tolerant pins.

### **33.1 DC Characteristics**

### TABLE 33-1: OPERATING MIPS vs. VOLTAGE

VDD Range	Temperature Range	Maximum CPU Clock Frequency
3.0V to 3.6V	-40°C to +85°C	100
3.0V to 3.6V	-40°C to +125°C	100

### TABLE 33-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Max.	Unit
Industrial Temperature Devices				
Operating Junction Temperature Range	TJ	-40	+125	°C
Operating Ambient Temperature Range	TA	-40	+85	°C
Extended Temperature Devices				
Operating Junction Temperature Range	TJ	-40	+140	°C
Operating Ambient Temperature Range	TA	-40	+125	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$	PD	PINT	+ Pi/o	W
I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} \times IOH) + \Sigma (VOL \times IOL)$				
Maximum Allowed Power Dissipation	PDMAX	(TJ – 1	ΤΑ)/θјα	W

### TABLE 33-3: THERMAL PACKAGING CHARACTERISTICS⁽¹⁾

Characteristic	Symbol	Тур.	Unit
Package Thermal Resistance, 80-Pin TQFP 12x12x1 mm	θJA	50.67	°C/W
Package Thermal Resistance, 64-Pin TQFP 10x10x1.0 mm	θJA	45.7	°C/W
Package Thermal Resistance, 64-Pin QFN 9x9 mm	θJA	18.7	°C/W
Package Thermal Resistance, 48-Pin TQFP 7x7 mm	θJA	62.76	°C/W
Package Thermal Resistance, 48-Pin UQFN 6x6 mm	θJA	27.6	°C/W
Package Thermal Resistance, 36-Pin UQFN 5x5 mm	θJA	29.2	°C/W
Package Thermal Resistance, 28-Pin UQFN 6x6 mm	θJA	22.41	°C/W
Package Thermal Resistance, 28-Pin SSOP 5.30 mm	θJA	52.84	°C/W

Note 1: Junction to ambient thermal resistance, Theta-JA ( $\theta$ JA) numbers are achieved by package simulations.

### TABLE 33-4: OPERATING VOLTAGE SPECIFICATIONS

-	Operating Conditions: 3.0V to 3.6V (unless otherwise stated) ⁽¹⁾ Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended												
Param No.	Symbol Characteristic Min. Ivp. Max. Units Conditions												
Operating Voltage													
DC10	Vdd	Supply Voltage	3.0	_	3.6	V							
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal		_	Vss	V							
DC17	SVDD	<b>VDD Rise Rate</b> to Ensure Internal Power-on Reset Signal	1.0	_	_	V/ms	0V-3V in 3 ms						
BO10	VBOR	BOR Event on VDD Transition High-to-Low ⁽²⁾	2.68	2.84	2.99	V							

**Note 1:** Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC and comparators) may have degraded performance.

2: Parameters are characterized but not tested.

Operating Conditions: 3. Operating temperature	$40^{\circ}C \le TA$	≤ +85°C		al						
Parameter No.	Typ. ⁽¹⁾	Max.	Units	Conditions						
DC20	7.76	10.7	mA	-40°C						
	7.49	10	mA	+25°C	0.01/	10 MIPS (N1 = 1, N2 = 5, N3 = 2,				
	7.82	15.5	mA	+85°C	3.3V	M = 50, Fvco = 400 MHz, FPLLO = 40 MHz)				
	10.32	23.5	mA	+125°C						
DC21	10.36	13.1	mA	-40°C						
	10.09	12.45	mA	+25°C	2.21/	20 MIPS (N1 = 1, N2 = 5, N3 = 1,				
	10.42	17.5	mA	+85°C	3.3V	M = 50, Fvco = 400 MHz, FPLLO = 80 MHz)				
	12.89	25.5	mA	+125°C						
DC22	14.54	17.45	mA	-40°C						
	14.26	16.7	mA	+25°C	3.3V	40 MIPS (N1 = 1, N2 = 3, N3 = 1, M = 60, Fvco = 480 MHz,				
	14.58	22	mA	+85°C		FPLLO = 160  MHz				
	17.06	30	mA	+125°C		· · _ · · · · · · · · · · · · · · · · ·				
DC23	22.2	25.4	mA	-40°C						
	21.91	24.9	mA	+25°C	3.3V	70 MIPS (N1 = 1, N2 = 2, N3 = 1, M = 70, Fvco = 560 MHz,				
	22.21	30.75	mA	+85°C	3.3V	$F_{PLLO} = 280 \text{ MHz}$				
	24.65	37.5	mA	+125°C		···				
DC24	27.36	30.7	mA	-40°C						
	26.96	30.5	mA	+25°C	3.3V	90 MIPS (N1 = 1, N2 = 2, N3 = 1, M = 90, Fvco = 720 MHz,				
	26.68	35	mA	+85°C	3.3V	FPLLO = 360  MHz				
	29.01	42	mA	+125°C		···,				
DC25	27.14	30.9	mA	-40°C						
	26.54	30.1	mA	+25°C	3.3V	100 MIPS (N1 = 1, N2 = 1, N3 = 1, M = 50, Fvco = 400 MHz,				
	26.79	35	mA	+85°C	3.3V	$F_{PLLO} = 400 \text{ MHz},$				
	29.23	42.5	mA	+125°C	]	···,				

### TABLE 33-5: OPERATING CURRENT (IDD)⁽²⁾

**Note 1:** Data in the "Typ." column are for design guidance only and are not tested.

2: Base Run current (IDD) is measured as follows:

- · Oscillator is switched to EC+PLL mode in software
- OSC1 pin is driven with external 8 MHz square wave with levels from 0.3V to VDD 0.3V
- OSC2 is configured as an I/O in the Configuration Words (OSCIOFCN (FOSC<2>) = 0)
- FSCM is disabled (FCKSM<1:0> (FOSC<7:6>) = 01)
- Watchdog Timer is disabled (FWDT<15> = 0 and WDTCONL<15> = 0)
- · All I/O pins (except OSC1) are configured as outputs and driving low
- No peripheral modules are operating or being clocked (defined PMDx bits are all '1's)
- JTAG is disabled (JTAGEN (FICD<5>) = 0)
- NOP instructions are executed in while (1) loop

Parameter No.	$-40^{\circ}C \le TA \le +125^{\circ}C \text{ for Extended}$ $Typ.^{(1)} Max. Units Conditions$									
		_	Units			onations				
DC40	6.41	8.47	mA	-40°C		10 MIPS (N1 = 1, N2 = 5, N3 = 2,				
	6.15	7.57	mA	+25°C	3.3V	M = 50, FVCO = 400 MHz,				
	6.45	13	mA	+85°C	0.01	FPLLO = 40  MHz				
	8.95	22	mA	+125°C						
DC41	7.31	10.1	mA	-40°C						
	7.04	9.1	mA	+25°C	- 3.3V	20 MIPS (N1 = 1, N2 = 5, N3 = 1, M = 50, Fvco = 400 MHz,				
	7.36	14.75	mA	+85°C	3.3V	FPLLO = 80  MHz				
	9.83	22.75	mA	+125°C						
DC42	9.4	12.3	mA	-40°C						
	9.13	11.2	mA	+25°C	2 21/	40 MIPS (N1 = 1, N2 = 3, N3 = 1,				
	9.45	16.5	mA	+85°C	3.3V	M = 60, Fvco = 480 MHz, FPLLO = 160 MHz)				
	11.92	25	mA	+125°C						
DC43	12.39	15.3	mA	-40°C						
	12.11	14.3	mA	+25°C	0.01/	70 MIPS (N1 = 1, N2 = 2, N3 = 1,				
	12.43	19.75	mA	+85°C	- 3.3V	M = 70, Fvco = 560 MHz, FPLLO = 280 MHz)				
	14.89	28.25	mA	+125°C	1					
DC44	14.78	17.85	mA	-40°C						
	14.5	16.9	mA	+25°C		90 MIPS (N1 = 1, N2 = 2, N3 = 1,				
	14.81	22.5	mA	+85°C	- 3.3V	M = 90, Fvco = 720 MHz, FPLLO = 360 MHz)				
	17.26	29.5	mA	+125°C	-					
DC45	14.44	17.55	mA	-40°C						
	14.15	16.5	mA	+25°C		100 MIPS (N1 = 1, N2 = 1, N3 = 1,				
	14.46	22.25	mA	+85°C	3.3V	M = 50, Fvco = 400 MHz, Fpllo = 400 MHz)				
	16.9	30	mA	+125°C	-	FPLLO = 400 WHIZ)				

### TABLE 33-6: IDLE CURRENT (IIDLE)⁽²⁾

Note 1: Data in the "Typ." column are for design guidance only and are not tested.

**2:** Base Idle current (IIDLE) is measured as follows:

- Oscillator is switched to EC+PLL mode in software
- OSC1 pin is driven with external 8 MHz square wave with levels from 0.3V to VDD 0.3V
- OSC2 is configured as an I/O in the Configuration Words (OSCIOFCN (FOSC<2>) = 0)
- FSCM is disabled (FCKSM<1:0> (FOSC<7:6>) = 01)
- Watchdog Timer is disabled (FWDT<15> = 0 and WDTCONL<15> = 0)
- · All I/O pins (except OSC1) are configured as outputs and driving low
- No peripheral modules are operating or being clocked (defined PMDx bits are all '1's)
- JTAG is disabled (JTAGEN (FICD<5>) = 0)
- Flash in standby with NVMSIDL (NVMCON<12>) = 1

### TABLE 33-7: POWER-DOWN CURRENT (IPD)⁽²⁾

	$\begin{array}{llllllllllllllllllllllllllllllllllll$											
Parameter No.	Characteristic Typ V Max Units Conditions											
DC60	Base Power-Down Current	270	383	μA	-40°C							
	418.99 1000 μA +25°C											
		939.53	7250	μA	+85°C	3.3V						
		5.59	18.5	mA	+125°C ⁽³⁾							

**Note 1:** Data in the "Typ." column are for design guidance only and are not tested.

- 2: Base Sleep current (IPD) is measured as follows:
  - OSC1 pin is driven with external 8 MHz square wave with levels from 0.3V to VDD 0.3V
  - OSC2 is configured as an I/O in the Configuration Words (OSCIOFCN (FOSC<2>) = 0)
  - FSCM is disabled (FCKSM<1:0> (FOSC<7:6>) = 01)
  - Watchdog Timer is disabled (FWDT<15> = 0 and WDTCONL<15> = 0)
  - All I/O pins (except OSC1) are configured as outputs and driving low
  - No peripheral modules are operating or being clocked (defined PMDx bits are all '1's)
  - JTAG is disabled (JTAGEN (FICD<5>) = 0)
  - The regulators are in Standby mode (VREGS (RCON<8>) = 0
  - The regulators are in Low-Power mode (LPWREN (VREGCON<15>) = 1
- **3:** The regulators are in High-Power mode (LPWREN (VREGCON<15>) = 0.

### TABLE 33-8: DOZE CURRENT (IDOZE)

Operating Conditions: Operating temperature		λ ≤ +85°C	for Indu	strial	ed)					
Parameter No.	ameter No. Typ. ⁽¹⁾ Max. Doze Ratio Units Conditions									
DC70	18.19	20	1:2	mA	40%0					
	12.66	15	1:128	mA	-40°C					
	17.54	20.15	1:2	mA	+25°C					
	12.39	14.7	1:128	mA	3.3V	2 21/	70 MIPS			
	17.85	25	1:2	mA	+85°C	- 3.3V				
	12.7	20	1:128	mA						
	20.32	32.5	1:2	mA						
	15.17	28.5	1:128	mA	+125°C					
DC71	22.3	25.55	1:2	mA	-40°C					
	14.83	17.25	1:128	mA	-40 C					
	21.86	25.05	1:2	mA	+25°C					
	14.55	16.95	1:128	mA	+25 C	3.3V	100 MIPS			
	22.16	30	1:2	mA	L 9 E ° C	3.3V	TUU IVIIPS			
	14.86	22	1:128	mA	+85°C					
	24.62	36.5	1:2	mA						
	17.31	30	1:128	mA	+125°C					

**Note 1:** Data in the "Typ." column are for design guidance only and are not tested.

### TABLE 33-9: WATCHDOG TIMER DELTA CURRENT (△IwDT)⁽¹⁾

$\begin{array}{llllllllllllllllllllllllllllllllllll$											
Parameter No. Typ. Max. Units Conditions											
DC61	0.75	-40°C									
	2.0	12	μA	+25°C	3.3V						
	3.88	24	μA	+85°C	3.3V						
5.69 40 µA +125°C											

**Note 1:** The  $\triangle$ IWDT current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. All parameters are characterized but not tested during manufacturing.

Operating Con Operating temp		-40°C	$3 \le TA \le +8$		ial	
Parameter No.	Тур.	Max.	Units			Conditions
DC100	5.96	6.6	mA	-40°C		PWM Output Frequency = 500 kHz,
	5.99	6.7	mA	+25°C	2.21/	PWM Input (AFPLLO = 500 MHz)
	5.92	6.9	mA	+85°C	3.3V	(AVCO = 1000 MHz, PLLFBD = 125,
	5.47	7	mA	+125°C		APLLDIV1 = 2)
DC101	4.89	5.4	mA	-40°C		PWM Output Frequency = 500 kHz,
	4.91	5.5	mA	+25°C	3.3V	PWM Input (AFPLLO = 400 MHz),
	4.85	5.7	mA	+85°C	3.3V	(AVCO = 400 MHz, PLLFBD = 50,
	4.42	5.7	mA	+125°C		APLLDIV1 = 1)
DC102	2.77	3.7	mA	-40°C		PWM Output Frequency = 500 kHz,
	2.75	3.7	mA	+25°C	3.3V	PWM Input (AFPLLO = 200 MHz),
	2.7	3.7	mA	+85°C	3.3V	(AVCO = 400 MHz, PLLFBD = 50,
	2.26	3.7	mA	+125°C		APLLDIV1 = 2)
DC103	1.67	2	mA	-40°C		PWM Output Frequency = 500 kHz,
	1.66	2.2	mA	+25°C	3.3V	PWM Input (AFPLLO = 100 MHz),
	1.63	2.3	mA	+85°C		(AVCO = 400 MHz, PLLFBD = 50,
	1.17	2.3	mA	+125°C		APLLDIV1 = 4)

TABLE 33-10: PWM DELTA CURRENT⁽¹⁾

**Note 1:** APLL current is not included. The APLL current will be the same if more than one PWM is running. Listed delta currents are for only one PWM instance when HREN = 0 (PGxCONL<7>). All parameters are characterized but not tested during manufacturing.

Operating Conditi Operating tempera	ture -40	°C ≤ TA ≤	+85°C for		ted)				
Parameter No.	Тур.	Max.	Units			Conditions ⁽¹⁾			
DC110	5.93	6.6	mA	-40°C					
	5.95	7	mA	+25°C	2.21/	AFPLLO = 500  MHz			
	6.15	7.6	mA	+85°C	3.3V	(AVCO = 1000 MHz, PLLFBD = 125, APLLDIV1 = 2)			
	7.15	9	mA	+125°C		,			
DC111	2.72	3.3	mA	-40°C					
	2.74	3.7	mA	+25°C	3.3V	AFPLLO = 400 MHz (AVCO = 400 MHz, PLLFBD = 50,			
	2.92	4.3	mA	+85°C	0.00	(AVCO = 400  MHz,  PLLPBD = 50, APLLDIV1 = 1)			
	3.87	5.6	mA	+125°C	1	, 			
DC112	1.39	2.7	mA	-40°C					
	1.49	2.7	mA	+25°C	3.3V	AFPLLO = 200 MHz (AVCO = 400 MHz, PLLFBD = 50,			
	1.65	3	mA	+85°C	3.3V	(AVCO = 400 MHZ, FELFBD = 50, APLLDIV1 = 2)			
	2.6	4.4	mA	+125°C		· · ·,			
DC113	0.79	1.1	mA	-40°C					
	0.84	1.4	mA	+25°C	3.3V	AFPLLO = 100 MHz (AVCO = 400 MHz, PLLFBD = 50,			
	0.96	2.3	mA	+85°C	3.30	(AVCO = 400 MHZ, FELFBD = 50, APLLDIV1 = 4)			
	1.93	3.6	mA	+125°C		,			

### TABLE 33-11: APLL DELTA CURRENT

**Note 1:** The APLL current will be the same if more than one PWM or DAC is run to the APLL clock. All parameters are characterized but not tested during manufacturing.

### TABLE 33-12: ADC DELTA CURRENT⁽¹⁾

$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Parameter No. Typ. Max. Units Conditions								
DC120	3.61	4	mA	-40°C				
	3.68	4.1	mA	+25°C	3.3V	TAD = 14.3 ns		
	3.69	4.2 m		+85°C	3.3V	(3.5 Msps conversion rate)		
3.89 4.6 mA +125°C								

**Note 1:** Shared core continuous conversion. TAD = 14.3 nS (3.5 Msps conversion rate). Listed delta currents are for only one ADC core. All parameters are characterized but not tested during manufacturing.

### TABLE 33-13: COMPARATOR + DAC DELTA CURRENT

$\begin{array}{llllllllllllllllllllllllllllllllllll$									
Parameter No. Typ. Max. Units Conditions									
DC130	1.2	1.35	mA	-40°C					
	1.23	1.65	mA	+25°C	3.3V	AFpllo @ 500 MHz ⁽¹⁾			
	1.23	1.65	mA	+85°C	3.3V	AFPLLO @ 500 MHZ			
	1.24 1.65 mA +125°C								

**Note 1:** APLL current is not included. Listed delta currents are for only one comparator + DAC instance. All parameters are characterized but not tested during manufacturing.

### TABLE 33-14: OP AMP DELTA CURRENT⁽¹⁾

$\begin{array}{llllllllllllllllllllllllllllllllllll$									
Parameter No. Typ. Max. Units Conditions									
DC140	0.25	1	mA	-40°C					
	0.27	1.1	mA	+25°C	3.3V				
	0.32	1.4	mA	+85°C	5.5V				
	0.46	1.7	mA	+125°C					

**Note 1:** Listed delta currents are for only one op amp instance. All parameters are characterized but not tested during manufacturing.

### TABLE 33-15: I/O PIN INPUT SPECIFICATIONS

-	$\begin{array}{llllllllllllllllllllllllllllllllllll$									
Param No.	Symbol	Characteristic	Min. ⁽⁵⁾	Тур. ⁽¹⁾	Max. ⁽⁶⁾	Units	Conditions			
	VIL	Input Low Voltage								
DI10		Any I/O Pin and MCLR	Vss	—	0.2 VDD	V				
DI18		I/O Pins with SDAx, SCLx	Vss	_	0.3 VDD	V	SMBus disabled			
DI19		I/O Pins with SDAx, SCLx	Vss	—	0.8	V	SMBus enabled			
DI20	Vih	Input High Voltage								
		I/O Pins Not 5V Tolerant ⁽³⁾	0.8 Vdd	—	Vdd	V				
		5V Tolerant I/O Pins and MCLR ⁽³⁾	0.8 Vdd	—	5.5	V				
		5V Tolerant I/O Pins with SDAx, SCLx ⁽³⁾	0.8 Vdd	—	5.5	V	SMBus disabled			
		5V Tolerant I/O Pins with SDAx, SCLx ⁽³⁾	2.1	—	5.5	V	SMBus enabled			
		I/O Pins with SDAx, SCLx Not 5V Tolerant ⁽³⁾	0.8 Vdd	—	Vdd	V	SMBus disabled			
		I/O Pins with SDAx, SCLx Not 5V Tolerant ⁽³⁾	2.1	—	Vdd	V	SMBus enabled			
DI30	ICNPU	Input Change Notification Pull-up Current ^(2,4)	175	360	545	μA	VDD = 3.6V, VPIN = VSS			
DI31	ICNPD	Input Change Notification Pull-Down Current ⁽⁴⁾	65	215	360	μA	VDD = 3.6V, VPIN = VDD			
DI50	lı∟	Input Leakage Current ⁽²⁾								
		I/O Pins 5V Tolerant ⁽³⁾	-700	_	700	nA				
		I/O Pins Not 5V Tolerant ⁽³⁾	-700	_	700	nA				
		MCLR	-700	_	700	nA				
		OSCI	-700		700	nA	XT and HS modes			

**Note 1:** Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

**2:** Negative current is defined as current sourced by the pin.

3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.

4: Characterized but not tested.

5: VPIN = VSS.

6: VPIN = VDD.

### TABLE 33-16: I/O PIN INPUT INJECTION CURRENT SPECIFICATIONS

-	Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No.	Symbol	Characteristic	Min.	Max.	Units	Conditions			
DI60a	licl	Input Low Injection Current	0	-5 ^(1,4)	mA	All pins			
DI60b	Іісн	Input High Injection Current	0	+5 ^(2,3,4)	mA	All pins, excepting all 5V tolerant pins and SOSCI			
DI60c									

**Note 1:** VIL Source < (Vss - 0.3).

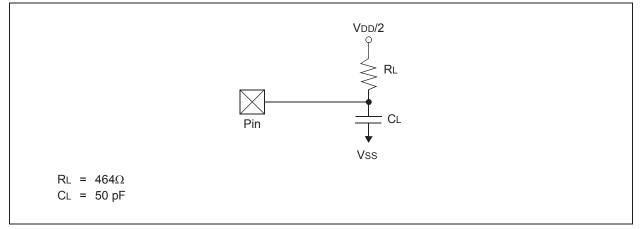
2: VIH Source > (VDD + 0.3) for non-5V tolerant pins only.

- **3:** 5V tolerant pins do not have an internal high-side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
- **4:** Injection currents can affect the ADC results.
- 5: Any number and/or combination of I/O pins, not excluded under IICL or IICH conditions, are permitted in the sum.

### TABLE 33-17: I/O PIN OUTPUT SPECIFICATIONS

	Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended									
Param.	Param. Symbol Characteristic Min. Typ. Max. Units Conditions									
DO10	Vol	Output Low Voltage 4x Sink Driver Pins	_	_	0.42	V	VDD = 3.6V, IOL < 9 mA			
		Output Low Voltage 8x Sink Driver Pins ⁽¹⁾	—	—	0.4	V	VDD = 3.6V, IOL < 11 mA			
DO20	Vон	Output High Voltage 4x Source Driver Pins	2.4	_	_	V	VDD = 3.6V, IOH > -8 mA			
		Output High Voltage 8x Source Driver Pins ⁽¹⁾	2.4	—	—	V	VDD = 3.6V, IOH > -12 mA			

**Note 1:** The 8x sink/source pins are RB1, RC8, RC9 and RD8.


### TABLE 33-18: PROGRAM MEMORY

-	Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended									
Param No.	Symbol Characteristic Min. Max. Units Conditions									
		Program Flash Memory								
D130	Eр	Cell Endurance	10,000	—	E/W	-40°C to +125°C				
D131	Vpr	VDD for Read	3.0	3.6	V					
D132b	VPEW	VDD for Self-Timed Write	3.0	3.6	V					
D134	Tretd	Characteristic Retention	20	—	Year	Provided no other specifications are violated, -40°C to +125°C				
D137a	TPE	Page Erase Time	15.3	16.82	ms	TPE = 128,454 FRC cycles (Note 1)				
D138a	Tww	Word Write Time	47.7	52.3	μs	Tww = 400 FRC cycles (Note 1)				
D139a	Trw	Row Write Time	2.0	2.2	ms	TRW = 16,782 FRC cycles (Note 1)				

**Note 1:** Other conditions: FRC = 8 MHz, TUN<5:0> = 011111 (for Minimum), TUN<5:0> = 100000 (for Maximum). This parameter depends on the FRC accuracy (see Table 33-22) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time, see **Section 5.3 "Programming Operations"**.

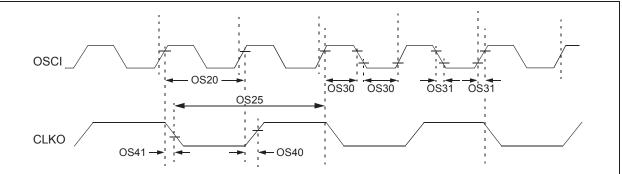

### **33.2** AC Characteristics and Timing Parameters

FIGURE 33-1:	LOAD CONDITIONS FOR I/O SPECIFICATIONS



# dsPIC33CK256MP508 FAMILY

### FIGURE 33-2: EXTERNAL CLOCK TIMING



### TABLE 33-19: EXTERNAL CLOCK TIMING REQUIREMENTS

		ditions: 3.0V to 3.6V (unless c erature $-40^{\circ}C \le TA \le +85^{\circ}C$ fo $-40^{\circ}C \le TA \le +125^{\circ}C$ f	r Industrial	ed)			
Param No.	Sym	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions
OS10	Fin	External CLKI Frequency	DC	—	64	MHz	
		Oscillator Crystal Frequency	3.5	_	10	MHz	XT
			10	—	32	MHz	HS
OS20	Tosci	External Clock Period	15.63	—	DC	ns	
OS25	Тсү	Instruction Cycle Time	10	—	DC	ns	
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc	_	0.55 x Tosc	ns	
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	—	—	5.2	ns	When FIN = 64 MHz
OS40	TckR	CLKO Rise Time ^(2,3)		5.4		ns	
OS41	TckF	CLKO Fall Time ^(2,3)	—	6.4		ns	
OS42	Gм	External Oscillator Transconductance ⁽³⁾	2.7	_	4	mA/V	XTCFG<1:0> = 00, XTBST = 0
			4	—	7	mA/V	XTCFG<1:0> = 00, XTBST = 1
			4.5	_	7	mA/V	XTCFG<1:0> = 01, XTBST = 0
			6	—	11.9	mA/V	XTCFG<1:0> = 01, XTBST = 1
			5.9	—	9.7	mA/V	XTCFG<1:0> = 10, XTBST = 0
			6.9	—	15.9	mA/V	XTCFG<1:0> = 10, XTBST = 1
			6.7	_	12	mA/V	XTCFG<1:0> = 11, XTBST = 0
			7.5	—	19	mA/V	XTCFG<1:0> = 11, XTBST = 1

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

2: Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin.

3: This parameter is characterized but not tested in manufacturing.

### TABLE 33-20: PLL TIMING SPECIFICATIONS

-	$\begin{array}{llllllllllllllllllllllllllllllllllll$									
Param No.	Symbol Characteristic Min Typ U Max Units Conditions									
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	8 ⁽²⁾	—	64	MHz	ECPLL, XTPLL modes			
OS51	Fvco	On-Chip VCO System Frequency	400	—	1600	MHz				
OS52	TLOCK	PLL Start-up Time (Lock Time)	—	125	—	μs				

**Note 1:** Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Inclusive of FRC Tolerance Specification F20a.

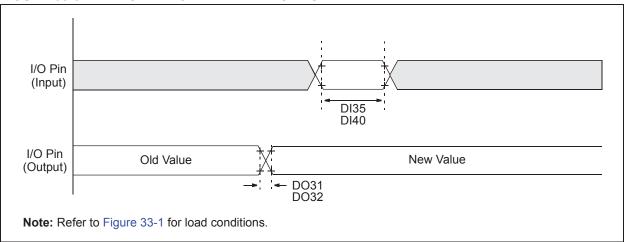
### TABLE 33-21: AUXILIARY PLL TIMING SPECIFICATIONS

-	$\begin{array}{llllllllllllllllllllllllllllllllllll$									
Param No.SymbolCharacteristicMin.Typ.(1)Max.UnitsConditions										
OS50	AFplli	APLL Voltage Controlled Oscillator (VCO) Input Frequency Range	8 ⁽²⁾	_	64	MHz	ECPLL, XTPLL modes			
OS51	AFvco	On-Chip VCO System Frequency	400		1600	MHz				
OS52	TLOCK	APLL Start-up Time (Lock Time)	_	125	—	μs				

**Note 1:** Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Inclusive of FRC Tolerance Specification F20a.

### TABLE 33-22: INTERNAL FRC ACCURACY


	$\begin{array}{llllllllllllllllllllllllllllllllllll$										
Param No.CharacteristicMin.Max.UnitsConditions											
Internal	FRC Accuracy @ FRC Fre	equency = 8 Ml	Hz ⁽¹⁾								
F20a	FRC	-3	+3	%	$-40^\circ C \le T A \le 0^\circ C$						
		-1.5	+1.5	%	$0^{\circ}C \le TA \le +85^{\circ}C$						
		-2	+2	%	$+85^{\circ}C \le TA \le +125^{\circ}C$						
F22	BFRC	-17	+17	%	$-40^\circ C \le TA \le -125^\circ C$						

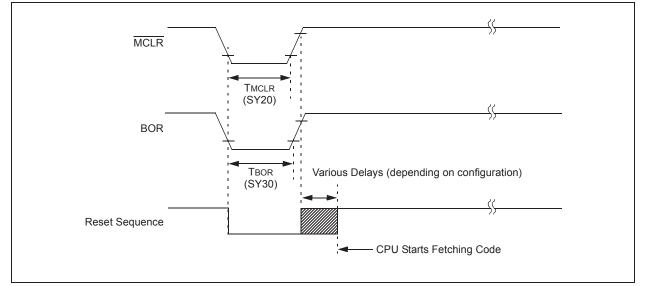
**Note 1:** Frequency is calibrated at +25°C and 3.3V.

### TABLE 33-23: INTERNAL LPRC ACCURACY

	$\begin{array}{llllllllllllllllllllllllllllllllllll$										
Param No.	Characteristic Min. Max Units Conditions										
LPRC @ 3	32 kHz										
F21	LPRC	-25	+25	%	$-40^\circ C \le T A \le 0^\circ C$						
		-10	+10	%	$0^{\circ}C \leq TA \leq +85^{\circ}C$						
		-15	+15	%	$+85^{\circ}C \leq TA \leq +125^{\circ}C$						





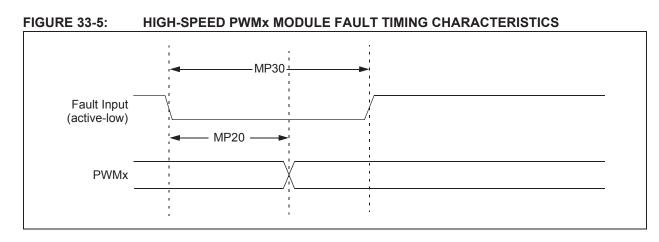

### TABLE 33-24: I/O TIMING REQUIREMENTS

	$\begin{array}{llllllllllllllllllllllllllllllllllll$										
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions				
DO31	TioR	Port Output Rise Time ⁽²⁾	_	6.5	9.7	ns					
DO32	TIOF	Port Output Fall Time ⁽²⁾	—	3.2	4.2	ns					
DI35	TINP	INTx Pin High or Low Time (input)	20	—	_	ns					
DI40	Trbp	CNx High or Low Time (input)	2	_	_	TCY					

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

**2:** This parameter is characterized but not tested in manufacturing.

### FIGURE 33-4: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS




# TABLE 33-25:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMERTIMING REQUIREMENTS

-											
	Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended										
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions				
SY00	Tpu	Power-up Period	_	200	—	μs	FNOSC<2:0> are FRC				
SY10	Tost	Oscillator Start-up Time		1024 Tosc		_	Tosc = OSCI period				
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	—	1.5	_	μs					
SY20	TMCLR	MCLR Pulse Width (low)	2	_	_	μs					
SY30	TBOR	BOR Pulse Width (low)	1	_	_	μs					
SY35	TFSCM	Fail-Safe Clock Monitor Delay	_	—	40	μs	Clock fail to BFRC switch				
SY37	TOSCDFRC	FRC Oscillator Start-up Delay	_	—	15	μs	From POR event				
SY38	TOSCDLPRC	LPRC Oscillator Start-up Delay		—	50	μs	From Reset event				

**Note 1:** These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

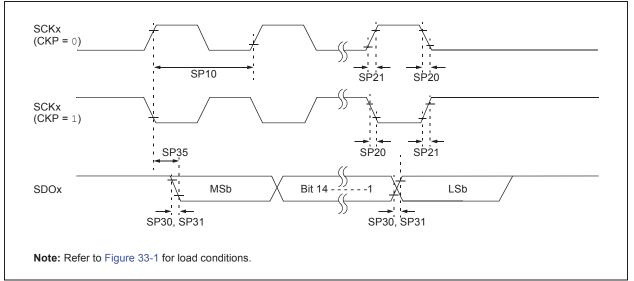


### FIGURE 33-6: HIGH-SPEED PWMx MODULE TIMING CHARACTERISTICS

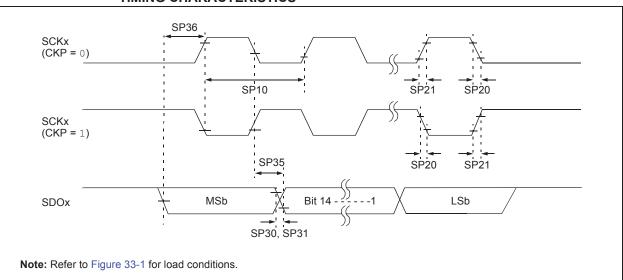


### TABLE 33-26: HIGH-SPEED PWMx MODULE TIMING REQUIREMENTS

$\begin{array}{llllllllllllllllllllllllllllllllllll$										
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Max.	Units	Conditions				
MP00	Fin	PWM Input Frequency	—	500	MHz	(Note 2)				
MP10	TFPWM	PWMx Output Fall Time	_	_	ns	See Parameter DO32				
MP11	TRPWM	PWMx Output Rise Time	_	—	ns	See Parameter DO31				
MP20	Tfd	Fault Input to PWMx I/O Change	_	26	ns	PCI Inputs 19 through 22				
MP30	Tfh	Fault Input Pulse Width	8	—	ns					


**Note 1:** These parameters are characterized but not tested in manufacturing.

2: Input frequency of 500 MHz must be used for High-Resolution mode.

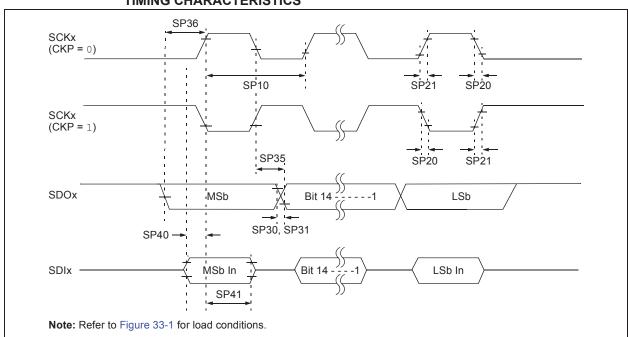

SPI Master Transmit Only (Half- Duplex)	SPI Master Transmit/Receive (Full-Duplex)	SPI Slave Transmit/Receive (Full-Duplex)	CKE
Figure 33-7 Table 33-28	_	_	0
Figure 33-8 Table 33-28	_	_	1
—	Figure 33-9 Table 33-29	—	0
—	Figure 33-10 Table 33-30	—	1
—	_	Figure 33-11 Table 33-32	0
—	_	Figure 33-12 Table 33-33	1

### TABLE 33-27: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

### FIGURE 33-7: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS








### TABLE 33-28: SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

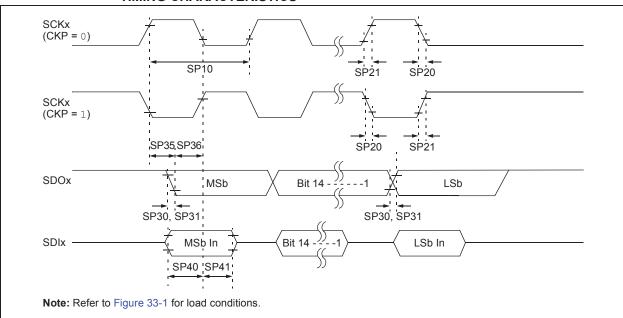
-	Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended										
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions				
SP10	FscP	Maximum SCKx Frequency	_	—	15	MHz	Using PPS pins				
			_	—	40	MHz	SPIx dedicated pins				
SP20	TscF	SCKx Output Fall Time	_	—		ns	See Parameter DO32				
SP21	TscR	SCKx Output Rise Time	—	—		ns	See Parameter DO31				
SP30	TdoF	SDOx Data Output Fall Time	_	—		ns	See Parameter DO32				
SP31	TdoR	SDOx Data Output Rise Time	—	—	—	ns	See Parameter DO31				
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	_	6	20	ns					
SP36	TdiV2scH,	2scH, SDOx Data Output Setup to	30	—	_	ns	Using PPS pins				
	TdiV2scL	First SCKx Edge	3	—	—	ns	SPIx dedicated pins				

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.



### FIGURE 33-9: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

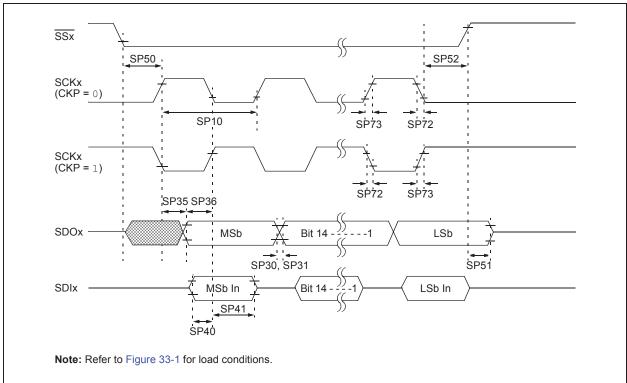

# TABLE 33-29:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)TIMING REQUIREMENTS

	$\begin{array}{llllllllllllllllllllllllllllllllllll$										
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions				
SP10	FscP	Maximum SCKx Frequency		—	15	MHz	Using PPS pins				
			_	—	40	MHz	SPIx dedicated pins				
SP20	TscF	SCKx Output Fall Time		—	_	ns	See Parameter DO32				
SP21	TscR	SCKx Output Rise Time		—	_	ns	See Parameter DO31				
SP30	TdoF	SDOx Data Output Fall Time		—		ns	See Parameter DO32				
SP31	TdoR	SDOx Data Output Rise Time		—	—	ns	See Parameter DO31				
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge		6	20	ns					
SP36	TdoV2sc,	SDOx Data Output Setup	30	—		ns	Using PPS pins				
	TdoV2scL	to First SCKx Edge	3	—	_	ns	SPIx dedicated pins				
SP40	TdiV2scH,		30	—		ns	Using PPS pins				
	TdiV2scL	Input to SCKx Edge	10	—		ns	SPIx dedicated pins				
SP41	TscH2diL,	Hold Time of SDIx Data	30			ns	Using PPS pins				
	TscL2diL	Input to SCKx Edge	15	—		ns	SPIx dedicated pins				

Note 1: These parameters are characterized but not tested in manufacturing.

**2:** Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.





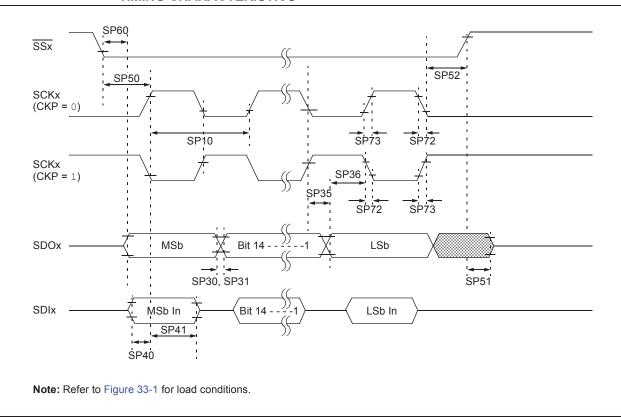

# TABLE 33-30:SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

-	<b>Operating Conditions:</b> 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended										
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions				
SP10	FscP	Maximum SCKx Frequency	_	—	15	MHz	Using PPS pins				
			_	—	40	MHz	SPIx dedicated pins				
SP20	TscF	SCKx Output Fall Time	_	—		ns	See Parameter DO32				
SP21	TscR	SCKx Output Rise Time	_	—		ns	See Parameter DO31				
SP30	TdoF	SDOx Data Output Fall Time	_	—		ns	See Parameter DO32				
SP31	TdoR	SDOx Data Output Rise Time	_	—		ns	See Parameter DO31				
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	—	6	20	ns					
SP36	TdoV2scH,	SDOx Data Output Setup to	30	—		ns	Using PPS pins				
	TdoV2scL	First SCKx Edge	20	—		ns	SPIx dedicated pins				
SP40	TdiV2scH,	Setup Time of SDIx Data	30	—		ns	Using PPS pins				
	TdiV2scL	Input to SCKx Edge	10	—		ns	SPIx dedicated pins				
SP41	TscH2diL,	Hold Time of SDIx Data Input	30	—	_	ns	Using PPS pins				
	TscL2diL	to SCKx Edge	15		_	ns	SPIx dedicated pins				

**Note 1:** These parameters are characterized but not tested in manufacturing.

**2:** Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.




### FIGURE 33-11: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 0) TIMING CHARACTERISTICS

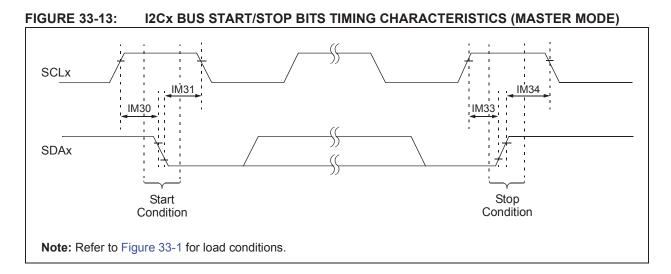
# TABLE 33-31:SPix SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 0)TIMING REQUIREMENTS

Operati	Operating Conditions: 3.0V to 3.6V (unless otherwise stated)											
	$\begin{array}{llllllllllllllllllllllllllllllllllll$											
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions					
SP10	FscP	Maximum SCKx Input Frequency	_	_	15	MHz	Using PPS pins					
					40	MHz	SPIx dedicated pins					
SP72	TscF	SCKx Input Fall Time	—	—		ns	See Parameter DO32					
SP73	TscR	SCKx Input Rise Time	—	—		ns	See Parameter DO31					
SP30	TdoF	SDOx Data Output Fall Time	—			ns	See Parameter DO32					
SP31	TdoR	SDOx Data Output Rise Time	—	—		ns	See Parameter DO31					
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	—	6	20	ns						
SP36	TdoV2scH,	SDOx Data Output Setup to	30	—		ns	Using PPS pins					
	TdoV2scL	First SCKx Edge	20	—		ns	SPIx dedicated pins					
SP40	TdiV2scH,	Setup Time of SDIx Data Input	30	—		ns	Using PPS pins					
	TdiV2scL	to SCKx Edge	10	—		ns	SPIx dedicated pins					
SP41	TscH2diL,	Hold Time of SDIx Data Input	30	—		ns	Using PPS pins					
	TscL2diL	to SCKx Edge	15	—		ns	SPIx dedicated pins					
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx $\uparrow$ or SCKx $\downarrow$ Input	120	_	—	ns						
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	8	_	50	ns						
SP52	TscH2ssH, TscL2ssH	SSx ↑ After SCKx Edge	1.5 TCY + 40	—	_	ns						

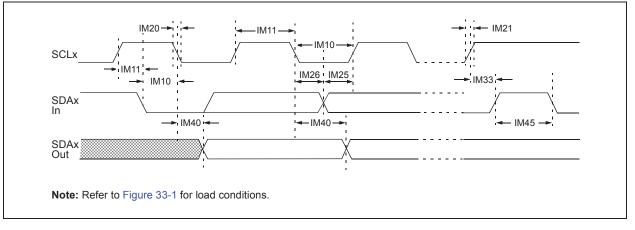
Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.




### FIGURE 33-12: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 0) TIMING CHARACTERISTICS

# TABLE 33-32:SPix SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 0)TIMING REQUIREMENTS


-	Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended										
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions				
SP10	FscP	Maximum SCKx Input		—	15	MHz	Using PPS pins				
		Frequency	_		40	MHz	SPIx dedicated pins				
SP72	TscF	SCKx Input Fall Time	_	—	_	ns	See Parameter DO32				
SP73	TscR	SCKx Input Rise Time	_	—		ns	See Parameter DO31				
SP30	TdoF	SDOx Data Output Fall Time	_	—	—	ns	See Parameter DO32				
SP31	TdoR	SDOx Data Output Rise Time	—	—	—	ns	See Parameter DO31				
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	_	6	20	ns					
SP36	TdoV2scH,	SDOx Data Output Setup to	30	—	—	ns	Using PPS pins				
	TdoV2scL	First SCKx Edge	20	—	—	ns	SPIx dedicated pins				
SP40	TdiV2scH,	Setup Time of SDIx Data Input	30	—	—	ns	Using PPS pins				
	TdiV2scL	to SCKx Edge	10	—	_	ns	SPIx dedicated pins				
SP41	TscH2diL,	Hold Time of SDIx Data Input	30	—	—	ns	Using PPS pins				
	TscL2diL	to SCKx Edge	15	_	_	ns	SPIx dedicated pins				
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx $\uparrow$ or SCKx $\downarrow$ Input	120	—	—	ns					
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	8	—	50	ns					
SP52	TscH2ssH, TscL2ssH	SSx ↑ After SCKx Edge	1.5 Tcy + 40	—	_	ns					
SP60	TssL2doV	SDOx Data Output Valid After SSx Edge		—	50	ns					

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.





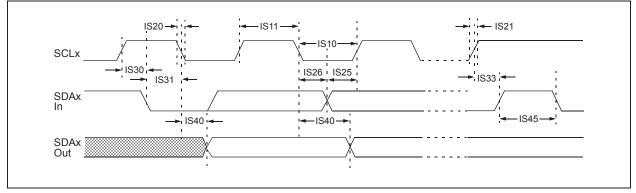


### TABLE 33-33: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Operating Conditions:3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Symbol	Characteristic ⁽⁴⁾		Min. ⁽¹⁾	Max.	Units	Conditions
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy (BRG + 1)	_	μs	
			400 kHz mode	Tcy (BRG + 1)	—	μs	
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)	—	μs	
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy (BRG + 1)		μs	
			400 kHz mode	Tcy (BRG + 1)	—	μs	
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)	—	μs	
IM20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode		300	ns	CB is specified to be from 10 to 400 pF
			400 kHz mode	20 x (VDD/5.5V)	300	ns	
			1 MHz mode ⁽²⁾	20 x (VDD/5.5V)	120	ns	
IM21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	CB is specified to be from 10 to 400 pF
			400 kHz mode	20 + 0.1 CB	300	ns	
			1 MHz mode ⁽²⁾	_	120	ns	
IM25	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns	
			400 kHz mode	100		ns	
			1 MHz mode ⁽²⁾	50		ns	
IM26	Thd:dat	Data Input Hold Time	100 kHz mode	0		μs	
			400 kHz mode	0	0.9	μs	-
			1 MHz mode ⁽²⁾	0	0.3	μs	
IM30	Tsu:sta	Start Condition Setup Time	100 kHz mode	TCY (BRG + 1)		μs	Only relevant for Repeated Start condition
			400 kHz mode	TCY (BRG + 1)		μs	
			1 MHz mode ⁽²⁾	TCY (BRG + 1)		μs	
IM31	Thd:sta	Start Condition Hold Time	100 kHz mode	TCY (BRG + 1)		μs	After this period, the first clock pulse is generated
			400 kHz mode	TCY (BRG + 1)		μs	
			1 MHz mode ⁽²⁾	TCY (BRG + 1)		μs	
IM33	TSU:STO	Stop Condition Setup Time	100 kHz mode	TCY (BRG + 1)		μs	
			400 kHz mode	TCY (BRG + 1)		μs	-
			1 MHz mode ⁽²⁾	TCY (BRG + 1)	_	μs	
IM34	THD:STO	Stop Condition Hold Time	100 kHz mode	TCY (BRG + 1)		μs	
			400 kHz mode	TCY (BRG + 1)		μs	-
			1 MHz mode ⁽²⁾	TCY (BRG + 1)	_	μs	
IM40	TAA:SCL	Output Valid from Clock	100 kHz mode		3450	ns	
			400 kHz mode	_	900	ns	
			1 MHz mode ⁽²⁾	_	450	ns	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μs	Time the bus must be
			400 kHz mode	1.3		μs	free before a new
			1 MHz mode ⁽²⁾	0.5		μs	transmission can star
IM50	Св	Bus Capacitive L			400	pF	
IM51	TPGD	Pulse Gobbler De	•	65	390	ns	(Note 3)

**Note 1:** BRG is the value of the I²C Baud Rate Generator.

2: Maximum Pin Capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).


**3:** Typical value for this parameter is 130 ns.

4: These parameters are characterized but not tested in manufacturing.

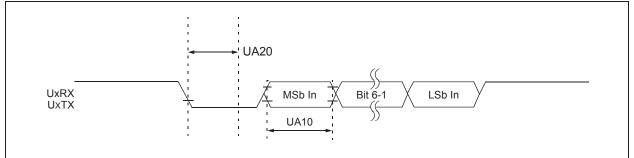
# dsPIC33CK256MP508 FAMILY

# FIGURE 33-15: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)





#### TABLE 33-34: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)


				stated) ial		,		
Param No.	Symbol	Characte	Min.	Max.	Units	Conditions		
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	_	μs		
			400 kHz mode	1.3	_	μs		
			1 MHz mode ⁽¹⁾	0.5	_	μs		
IS11	11 THI:SCL (	Clock High Time	100 kHz mode	4.0	_	μs	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	_	μs	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.26	—	μs		
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 x (VDD/5.5V)	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	20 x (VDD/5.5V)	120	ns		
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	_	120	ns		
IS25	TSU:DAT	Data Input	100 kHz mode	250	_	ns		
		Setup Time	400 kHz mode	100	_	ns		
			1 MHz mode ⁽¹⁾	50		ns		
IS26	THD:DAT	Data Input	100 kHz mode	0		μs		
		Hold Time	400 kHz mode	0	0.9	μs		
			1 MHz mode ⁽¹⁾	0	0.3	μs		
IS30	TSU:STA	Start Condition	100 kHz mode	4.7		μs	Only relevant for Repeated	
		Setup Time	400 kHz mode	0.6		μs	Start condition	
			1 MHz mode ⁽¹⁾	0.26		μs		
IS31	THD:STA	Start Condition	100 kHz mode	4.0		μs	After this period, the first	
		Hold Time	400 kHz mode	0.6		μs	clock pulse is generated	
			1 MHz mode ⁽¹⁾	0.26	_	μs		
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.0		μs		
		Setup Time	400 kHz mode	0.6		μs		
			1 MHz mode ⁽¹⁾	0.26		μs		
IS34	THD:STO	Stop Condition	100 kHz mode	>0	_	μs		
		Hold Time	400 kHz mode	>0		μs		
			1 MHz mode ⁽¹⁾	>0		μs		
IS40	TAA:SCL	Output Valid from	100 kHz mode	0	3450	ns		
		Clock	400 kHz mode	0	900	ns	1	
			1 MHz mode ⁽¹⁾	0	450	ns	1	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μs	Time the bus must be free	
			400 kHz mode	1.3		μs	before a new transmission	
			1 MHz mode ⁽¹⁾	0.5		μs	can start	
IS50	Св	Bus Capacitive Lo			400	pF		
IS51	TPGD	Pulse Gobbler Del		65	390	ns	(Note 2)	

**Note 1:** Maximum Pin Capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

**2:** Typical value for this parameter is 130 ns.

3: These parameters are characterized but not tested in manufacturing.

#### FIGURE 33-17: UARTX MODULE I/O TIMING CHARACTERISTICS



### TABLE 33-35: UARTX MODULE I/O TIMING REQUIREMENTS

Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.         Symbol         Characteristic ⁽¹⁾ Min.         Typ. ⁽²⁾ Max.         Units         Conditions									
UA10	TUABAUD	UARTx Baud Time	40	—	_	ns			
UA11	FBAUD	UARTx Baud Frequency	_	—	25	Mbps			
UA20									

**Note 1:** These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 33-36: A	DC MODULE SPECIFICATIONS
----------------	--------------------------

				· · · · · · (1)						
	ng Conditions temperat	ons: 3.0V to 3.6V (unless ure $-40^{\circ}C \le TA \le +85^{\circ}C$		tated) ⁽⁴⁾						
oporadi	ig tomporat	$-40^{\circ}C \le TA \le +125^{\circ}C$		d						
Param No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions			
	Analog Input									
AD12 VINH-VINL Full-Scale Input Span AVss — AVDD V										
AD14	Vin	Absolute Input Voltage	AVss - 0.3	_	AVDD + 0.3	V				
AD17	Rin	Recommended Impedance of Analog Voltage Source	—	100	—	Ω	For minimum sampling time (Note 1)			
AD66	Vbg	Internal Voltage Reference Source	—	1.2	—	V				
			ADC Ac	curacy						
AD20c	Nr	Resolution	1	2 data bits		bits				
AD21c	INL	Integral Nonlinearity	> -11.3	—	< 11.3	LSb	AVss = 0V, AVDD = 3.3V			
AD22c	DNL	Differential Nonlinearity	> -1.5	—	< 11.5	LSb	AVss = 0V, AVDD = 3.3V			
AD23c	Gerr	Gain Error	> -12	—	< 12	LSb	AVss = 0V, AVDD = 3.3V			
AD24c	EOFF	Offset Error	> -7.5	—	< 7.5	LSb	AVss = 0V, AVDD = 3.3V			
			Dynamic Pe	erformanc	e					
AD31b	SINAD	Signal-to-Noise and Distortion	56	—	70	dB	(Notes 2, 3)			
AD34b	ENOB	Effective Number of Bits	9.0		11.4	bits	(Notes 2, 3)			
AD50	Tad	ADC Clock Period	14.3	—	—	ns				
AD51	Ftp	Throughput Rate			3.5	Msps	Dedicated Cores 0 and 1			
				_	3.5	Msps	Shared core			

Note 1: These parameters are not characterized or tested in manufacturing.

2: These parameters are characterized but not tested in manufacturing.

**3:** Characterized with a 1 kHz sine wave.

**4:** The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is ensured, but not characterized.

## TABLE 33-37: HIGH-SPEED ANALOG COMPARATOR MODULE SPECIFICATIONS

	Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Comments		
CM09	Fin	Input Frequency	400	500	550	MHz			
CM10	VIOFF	Input Offset Voltage	-20	_	+20	mV			
CM11	VICM	Input Common-Mode Voltage Range ⁽¹⁾	AVss	—	AVDD	V			
CM13	CMRR	Common-Mode Rejection Ratio ⁽¹⁾	65	—	—	dB			
CM14	TRESP	Large Signal Response	_	15	—	ns	V+ input step of 100 mV while V- input is held at AVDD/2		
CM15	VHYST	Input Hysteresis	15	—	45	mV	Depends on HYSSEL<1:0>		

Note 1: These parameters are for design guidance only and are not tested in manufacturing.

**2:** The comparator module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

#### TABLE 33-38: DACx MODULE SPECIFICATIONS

•	Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended									
Param No.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Comments			
DA02	CVRES	Resolution		12		bits				
DA03	INL	Integral Nonlinearity Error	-38	—	0	LSB				
DA04	DNL	Differential Nonlinearity Error	-5	—	5	LSB				
DA05	EOFF	Offset Error	-3.5	—	21.5	LSB	Internal node at comparator input			
DA06	EG	Gain Error	0	—	41	LSB	Internal node at comparator input			
DA07	TSET	Settling Time		750	—	ns	Output within 1% of desired output voltage with a 5%-95% or 95%-5% step			
DA08	Vout	Voltage Output Range	0.165		3.135	V	VDD = 3.3V			

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

## TABLE 33-39: DACx OUTPUT (DACOUT1 PIN) SPECIFICATIONS

	Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No.SymbolCharacteristicMin.Typ.Max.UnitsComments									
DA11	RLOAD	Resistive Output Load Impedance	10K	_	_	Ohm			
DA11a	CLOAD	Output Load Capacitance	—	—	30	pF	Including output pin capacitance		
DA12	Ιουτ	Output Current Drive Strength	—	3	—	mA	Sink and source		

**Note 1:** The DACx module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

2: Using other pin functions may degrade DAC performance.

#### TABLE 33-40: CONSTANT-CURRENT SOURCE SPECIFICATIONS

	Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No.	Symbol Characteristic Min Typ Max Units Conditions								
CC02	IREG	Current Regulation	_	±3	_	%			
CC03	CC03 IOUT Current Output at Terminal — 10 — µA ISRCx pin								
	— 50 — μA IBIASx pin								

**Note 1:** The constant-current source module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

#### TABLE 33-41: OPERATIONAL AMPLIFIER SPECIFICATIONS

	Operating Conditions: 3.0V to 3.6V (unless otherwise stated) ⁽¹⁾ Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Comments		
OA01	GBWP	Gain Bandwidth Product	_	20	_	MHz			
OA02	SR	Slew Rate	—	40		V/µs			
OA03	VIOFF	Input Offset Voltage	-15	5	15	mV	NCHDISx = 0		
			-20		20	mV	NCHDISx = 1		
OA04	VIBC	Input Bias Current	—			nA	(Note 2)		
OA05	VICM	Common-Mode Input Voltage	AVss	_	AVdd	V	NCHDISx = 0		
		Range	AVss	_	2.8	V	NCHDISx = 1		
OA07	CMRR	Common-Mode Rejection Ratio	—	68		dB			
OA08	PSRR	Power Supply Rejection Ratio	—	74	_	dB			
OA09	Vor	Output Voltage Range	AVss	—	AVdd	mV	0.5V input overdrive, no output loading		
OA10	RLOAD	Resistive Output Load Impedance	10K		_	Ohm			
OA11	CLOAD	Output Load Capacitance	_	_	30	pF	Including output pin capacitance		
OA12	Ιουτ	Output Current Drive Strength	—	3	_	mA	Sink and source		
OA13	PMARGIN	Phase Margin	44	—	—	degree	Unity gain		
OA14	GMARGIN	Gain Margin	7		_	dB	Unity gain		
OA15	OLG	Open-Loop Gain	68	75	_	dB			
OA16	RFB	Feedback Resistance	AV _{DD} / (Gain * 200 nA)		15	kOhm			

**Note 1:** These parameters are for design guidance only and are not tested in manufacturing.

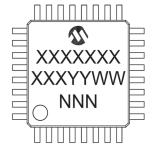
2: The op amps use CMOS input circuitry with negligible input bias current. The maximum "effective bias current" is the I/O pin leakage specified by electrical Parameter DI50.

## 34.0 PACKAGING INFORMATION

## 34.1 Package Marking Information

28-Lead SSOP (5.30 mm)




28-Lead UQFN (6x6 mm)



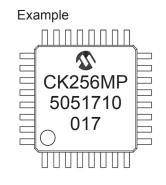
36-Lead UQFN (5x5 mm)



48-Lead TQFP (7x7 mm)



Example




#### Example



#### Example





Legend	I: XXX Y YY WW NNN	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
Note:	be carried	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

## 34.1 Package Marking Information (Continued)

48-Lead UQFN (6x6 mm)



64-Lead TQFP (10x10x1 mm)



64-Lead QFN (9x9x0.9 mm)



80-Lead TQFP (12x12x1 mm)



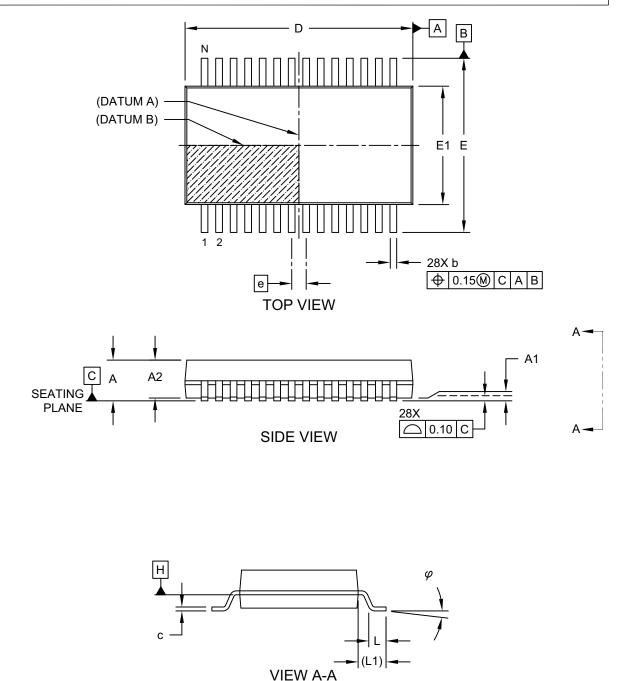


### Example



## Example

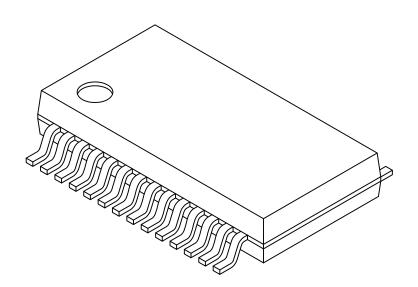



#### Example



## 34.2 Package Details

## 28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]


**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-073 Rev C Sheet 1 of 2

## 28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

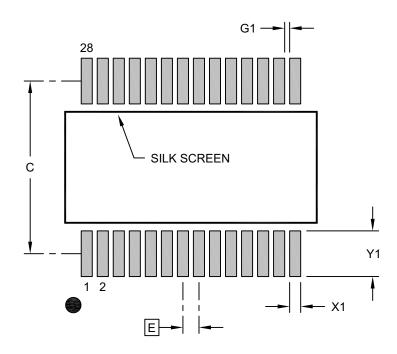
**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



	Units					
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	Ν		28			
Pitch	е		0.65 BSC			
Overall Height	Α	-	-	2.00		
Molded Package Thickness	A2	1.65	1.75	1.85		
Standoff	A1	0.05	-	-		
Overall Width	Е	7.40	7.80	8.20		
Molded Package Width	E1	5.00	5.30	5.60		
Overall Length	D	9.90	10.20	10.50		
Foot Length	L	0.55	0.75	0.95		
Footprint	L1	1.25 REF				
Lead Thickness	С	0.09	-	0.25		
Foot Angle	φ	0°	4°	8°		
Lead Width	b	0.22	-	0.38		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073 Rev C Sheet 2 of 2

## 28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

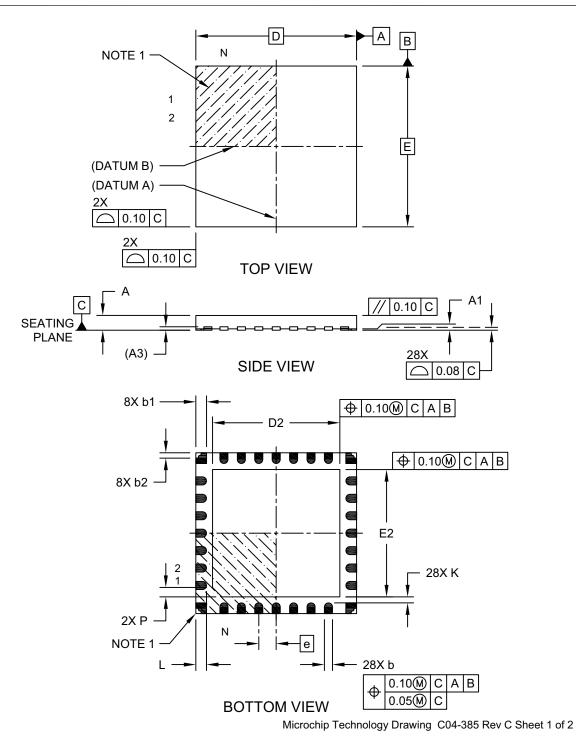


## RECOMMENDED LAND PATTERN

	Units				
Dimension	Dimension Limits			MAX	
Contact Pitch	E	0.65 BSC			
Contact Pad Spacing	С	7.00			
Contact Pad Width (X28)	X1			0.45	
Contact Pad Length (X28)	Y1			1.85	
Contact Pad to Center Pad (X26) G1		0.20			

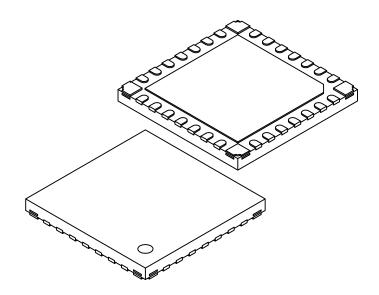
Notes:

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2073 Rev B


# 28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (2N) - 6x6x0.55 mm Body [UQFN] With 4.65x4.65 mm Exposed Pad and Corner Anchors

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



## 28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (2N) - 6x6x0.55 mm Body [UQFN] With 4.65x4.65 mm Exposed Pad and Corner Anchors

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

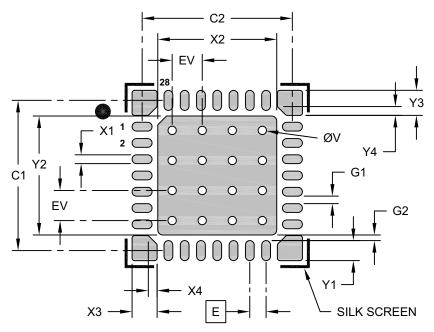


	Units	Ν	<b>/ILLIMETER</b>	S
Dimensior	า Limits	MIN	NOM	MAX
Number of Terminals	N		28	
Pitch	е		0.65 BSC	
Overall Height	Α	0.45	0.50	0.55
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.127 REF		
Overall Width	E	6.00 BSC		
Exposed Pad Width	E2	4.55	4.65	4.75
Overall Length	D		6.00 BSC	
Exposed Pad Length	D2	4.55	4.65	4.75
Exposed Pad Corner Chamfer	Р	-	0.35	-
Terminal Width	b	0.25	0.30	0.35
Corner Anchor Pad	b1	0.35	0.40	0.43
Corner Pad, Metal Free Zone	b2	0.15	0.20	0.25
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed-Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated


3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

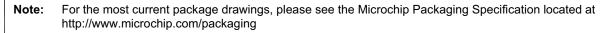
Microchip Technology Drawing C04-385 Rev C Sheet 2 of 2

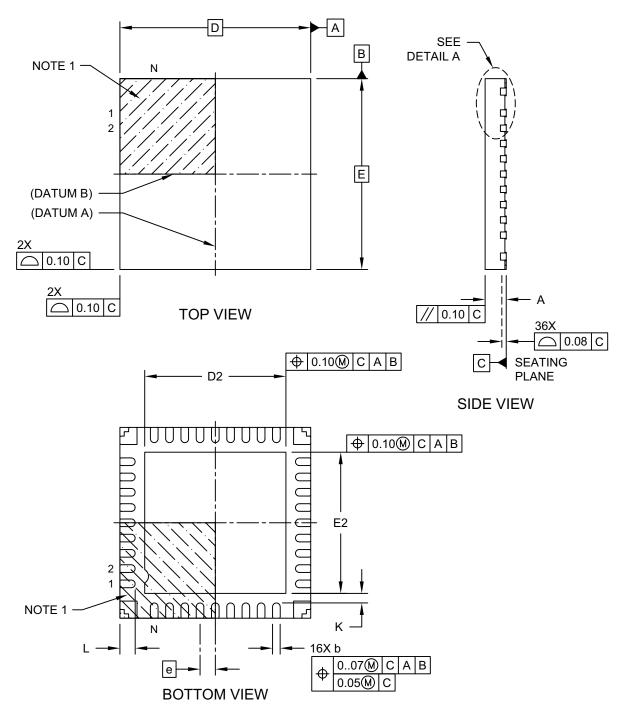
# 28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (2N) - 6x6x0.55 mm Body [UQFN] With 4.65x4.65 mm Exposed Pad and Corner Anchors

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



**RECOMMENDED LAND PATTERN** 

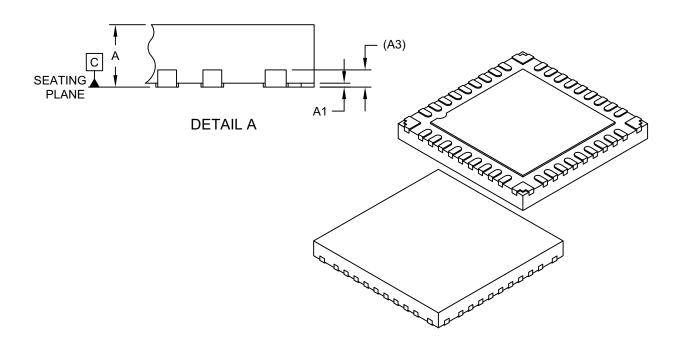

Units		Ν	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	Е		0.65 BSC		
Optional Center Pad Width	X2			4.75	
Optional Center Pad Length	Y2			4.75	
Contact Pad Spacing	C1		6.00		
Contact Pad Spacing	C2		6.00		
Contact Pad Width (X28)	X1			0.35	
Contact Pad Length (X28)	Y1			0.80	
Corner Anchor (X4)	X3			1.00	
Corner Anchor (X4)	Y3			1.00	
Corner Anchor Chamfer (X4)	X4			0.35	
Corner Anchor Chamfer (X4)	Y4			0.35	
Contact Pad to Pad (X28)	G1	0.20			
Contact Pad to Center Pad (X28)	G2	0.20			
Thermal Via Diameter	V		0.33		
Thermal Via Pitch	EV		1.20		


Notes:

- 1. Dimensioning and tolerancing per ASME Y14.5M
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2385B

# 36-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M5) - 5x5 mm Body [UQFN] With Corner Anchors






Microchip Technology Drawing C04-436A–M5 Sheet 1 of 2

# 36-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M5) - 5x5 mm Body [UQFN] With Corner Anchors

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



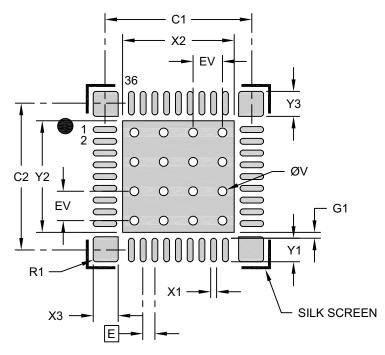
	MILLIMETERS			
Dimension	Dimension Limits		NOM	MAX
Number of Terminals	Ν		36	
Pitch	е		0.40 BSC	
Overall Height	Α	0.50	0.55	0.60
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.152 REF		
Overall Length	D	5.00 BSC		
Exposed Pad Length	D2	3.60	3.70	3.80
Overall Width	E		5.00 BSC	
Exposed Pad Width	E2	3.60	3.70	3.80
Terminal Width	b	0.15	0.20	0.25
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed-Pad	Κ		0.25 REF	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-436A-M5 Sheet 2 of 2

# 36-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M5) - 5x5 mm Body [UQFN] With Corner Anchors

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

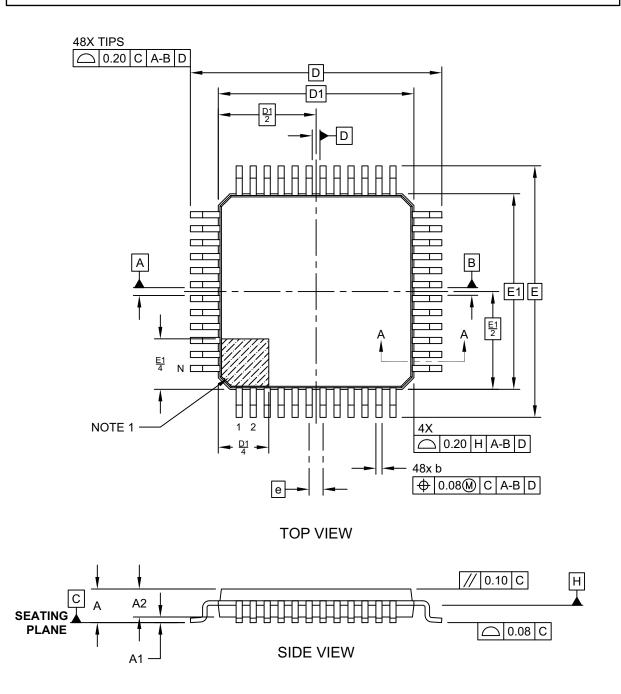


## RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimensior	า Limits	MIN	NOM	MAX
Contact Pitch	E	0.40 BSC		
Optional Center Pad Width	X2			3.80
Optional Center Pad Length	Y2			3.80
Contact Pad Spacing	C1		5.00	
Contact Pad Spacing	C2		5.00	
Contact Pad Width (X36)	X1			0.20
Contact Pad Length (X36)	Y1			0.80
Corner Pad Width (X4)	X3			0.20
Corner Pad Length (X36)	Y3			0.85
Corner Pad Radius	R1		0.10	
Contact Pad to Center Pad (X36)	G1	0.20		
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

Notes:

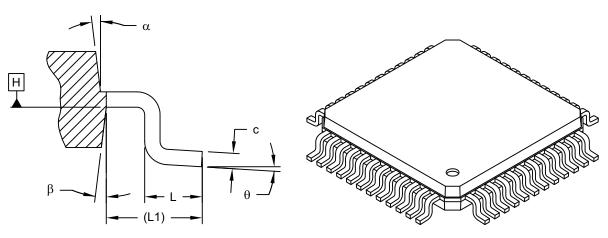
1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2436A-M5

## 48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]


**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-300-PT Rev A Sheet 1 of 2

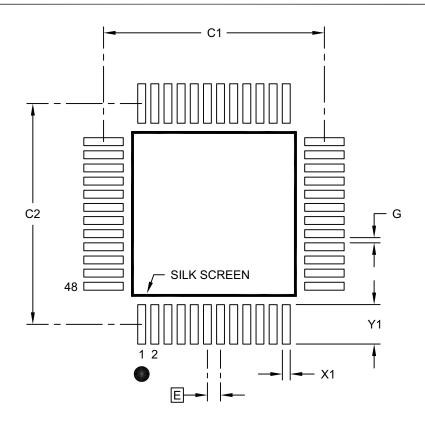
## 48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



SECTION A-A

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Number of Leads	Ν		48	
Lead Pitch	е		0.50 BSC	
Overall Height	Α	-	-	1.20
Standoff	A1	0.05	-	0.15
Molded Package Thickness	A2	0.95	1.00	1.05
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	¢	0° 3.5° 7°		
Overall Width	E		9.00 BSC	
Overall Length	D		9.00 BSC	
Molded Package Width	E1		7.00 BSC	
Molded Package Length	D1	7.00 BSC		
Lead Thickness	С	0.09	-	0.16
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.
- Dimensioning and tolerancing per ASME Y14.5M
   BSC: Basic Dimension. Theoretically exact value shown without tolerances.
   REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. DatumsA-BandDto be determined at center line between leads where leads exit plastic body at datum plane

Microchip Technology Drawing C04-300-PT Rev A Sheet 2 of 2

## 48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]

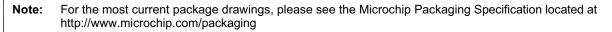
**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

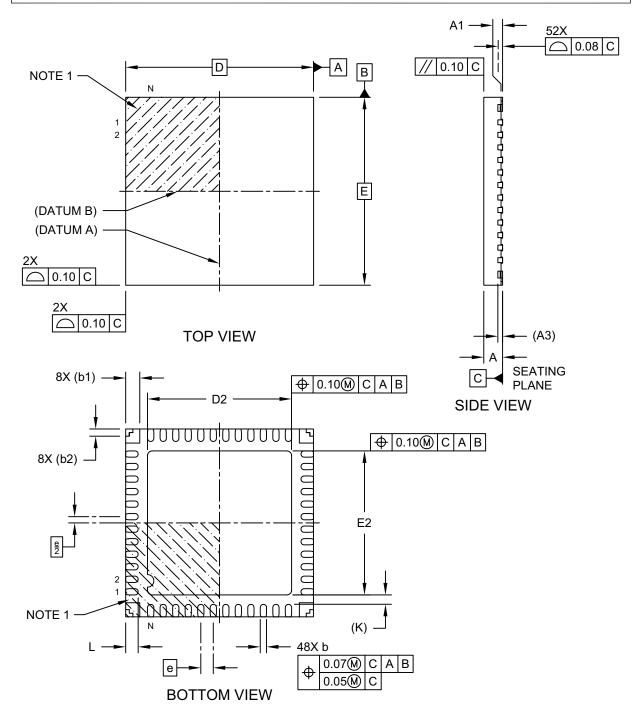


#### RECOMMENDED LAND PATTERN

	Units		MILLIMETERS			
Dimension	Dimension Limits		NOM	MAX		
Contact Pitch	E	E 0.50 BSC				
Contact Pad Spacing	C1		8.40			
Contact Pad Spacing	C2		8.40			
Contact Pad Width (X48)	X1			0.30		
Contact Pad Length (X48)	Y1			1.50		
Distance Between Pads	G	0.20				

Notes:

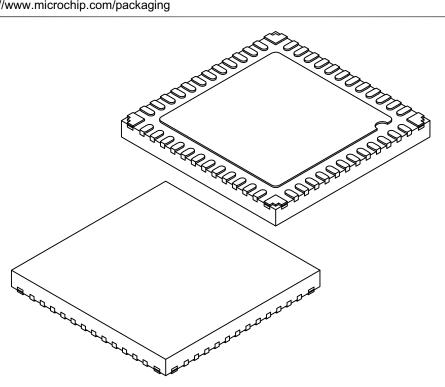

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2300-PT Rev A

# 48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M4) - 6x6 mm Body [UQFN] With Corner Anchors and 4.6x4.6 mm Exposed Pad






Microchip Technology Drawing C04-442A-M4 Sheet 1 of 2

### 48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M4) - 6x6 mm Body [UQFN] With Corner Anchors and 4.6x4.6 mm Exposed Pad

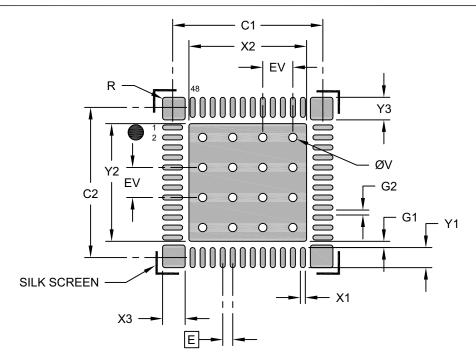
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Number of Terminals	N		48	
Pitch	е		0.40 BSC	
Overall Height	A	0.50	0.55	0.60
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3		0.15 REF	
Overall Length	D		6.00 BSC	
Exposed Pad Length	D2	4.50	4.60	4.70
Overall Width	E		6.00 BSC	
Exposed Pad Width	E2	4.50	4.60	4.70
Terminal Width	b	0.15	0.20	0.25
Corner Anchor Pad	b1		0.45 REF	
Corner Anchor Pad, Metal-free Zone	b2		0.23 REF	
Terminal Length	L	0.35	0.40	0.45
Terminal-to-Exposed-Pad	K		0.30 REF	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


2. Package is saw singulated

- 3. Dimensioning and tolerancing per ASME Y14.5M
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-442A-M4 Sheet 2 of 2

# 48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M4) - 6x6 mm Body [UQFN] With Corner Anchors and 4.6x4.6 mm Exposed Pad

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

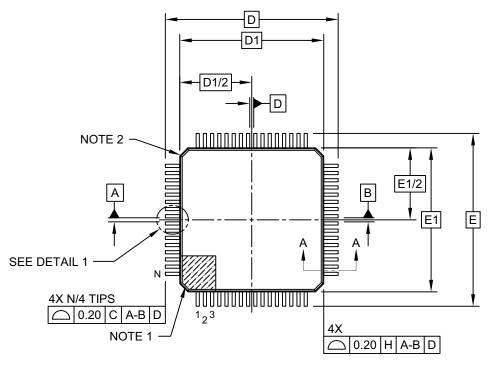


## RECOMMENDED LAND PATTERN

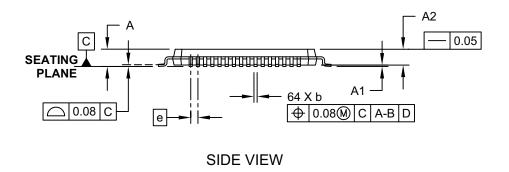
Units		MILLIMETERS		
Dimensior	Dimension Limits		NOM	MAX
Contact Pitch	E		0.40 BSC	
Center Pad Width	X2			4.70
Center Pad Length	Y2			4.70
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X48)	X1			0.20
Contact Pad Length (X48)	Y1			0.80
Corner Anchor Pad Width (X4)	X3			0.90
Corner Anchor Pad Length (X4)	Y3			0.90
Pad Corner Radius (X 20)	R			0.10
Contact Pad to Center Pad (X48)	G1	0.25		
Contact Pad to Contact Pad	G2	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process


Microchip Technology Drawing C04-2442A-M4

## 64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging








Microchip Technology Drawing C04-085C Sheet 1 of 2

## 64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



### DETAIL 1

Units		MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Number of Leads	N		64		
Lead Pitch	е		0.50 BSC		
Overall Height	Α	-	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	ø	0°	3.5°	7°	
Overall Width	E		12.00 BSC		
Overall Length	D		12.00 BSC		
Molded Package Width	E1		10.00 BSC		
Molded Package Length	D1	10.00 BSC			
Lead Thickness	С	0.09 - 0.20			
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	

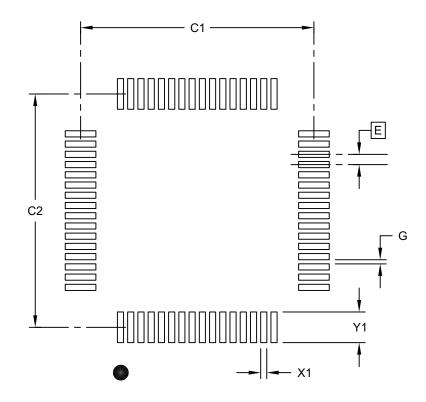
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2

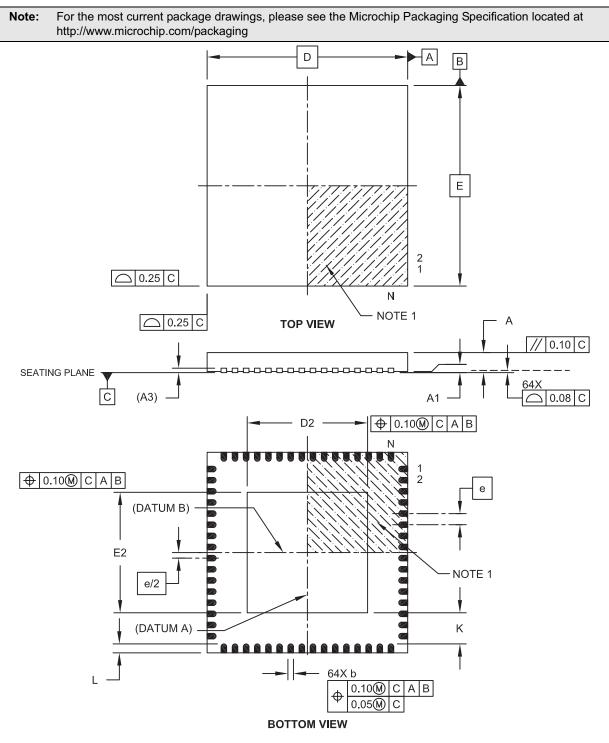
## 64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



## RECOMMENDED LAND PATTERN

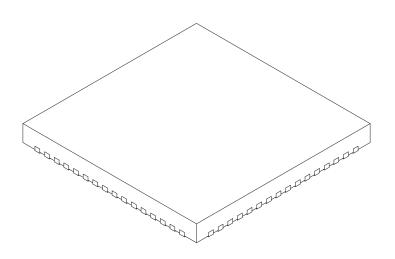
	Units		MILLIMETERS		
Dimension	Dimension Limits		NOM	MAX	
Contact Pitch	E	0.50 BSC			
Contact Pad Spacing	C1		11.40		
Contact Pad Spacing	C2		11.40		
Contact Pad Width (X28)	X1			0.30	
Contact Pad Length (X28)	Y1			1.50	
Distance Between Pads	G	0.20			


#### Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2085B Sheet 1 of 1


## 64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]



Microchip Technology Drawing C04-154A Sheet 1 of 2

## 64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



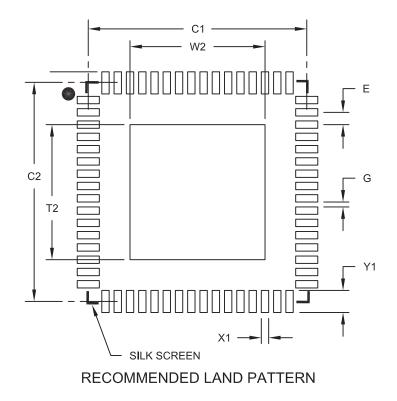
	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		64	
Pitch	е		0.50 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	E	9.00 BSC		
Exposed Pad Width	E2	5.30	5.40	5.50
Overall Length	D		9.00 BSC	
Exposed Pad Length	D2	5.30	5.40	5.50
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2

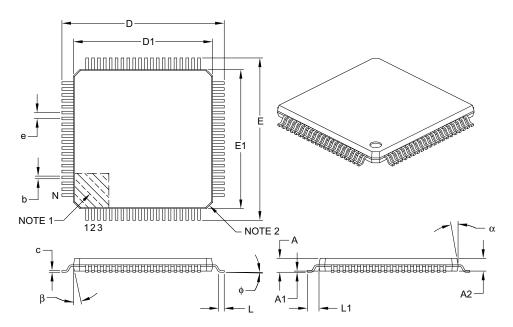
64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length and 5.40x5.40mm Exposed Pad

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Units		MILLIMETERS			
Dimensi	Dimension Limits		NOM	MAX	
Contact Pitch	E		0.50 BSC		
Optional Center Pad Width	W2			5.50	
Optional Center Pad Length	T2			5.50	
Contact Pad Spacing	C1		8.90		
Contact Pad Spacing	C2		8.90		
Contact Pad Width (X64)	X1			0.30	
Contact Pad Length (X64)	Y1			0.85	
Distance Between Pads	G	0.20			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2154A

### 80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



	Units		MILLIMETERS	5
	Dimension Limits	MIN	NOM	MAX
Number of Leads	N		80	
Lead Pitch	е		0.50 BSC	
Overall Height	А	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	—	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	ф	0°	3.5°	7°
Overall Width	E	14.00 BSC		
Overall Length	D	14.00 BSC		
Molded Package Width	E1	12.00 BSC		
Molded Package Length	D1	12.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

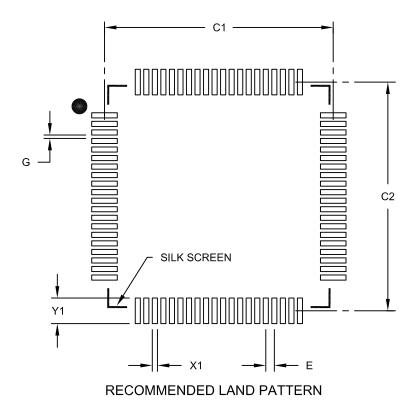
#### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-092B

80-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



	Units	MILLIMETERS		S
Dimensi	on Limits	MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X80)	X1			0.30
Contact Pad Length (X80)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092B

NOTES:

## APPENDIX A: REVISION HISTORY

## **Revision A (December 2017)**

This is the initial version of the document.

## Revision B (May 2018)

This revision incorporates the following updates:

- Sections:
  - Updated Section 4.2.7 "BIST at Start-up", Section 4.2.8 "BIST at Run Time", Section 15.0 "Quadrature Encoder Interface (QEI)", Section 30.2 "Device Calibration and Identification", Section 30.10 "Code Protection and CodeGuard™ Security" and Section 34.1 "Package Marking Information".
  - Added Section 5.3.2 "Error Correcting Code (ECC)" and Section 5.5.4 "ECC Control Registers".
- Tables:
  - Updated Table 4-3, Table 4-9, Table 7-3, Table 7-4, Table 7-5, Table 8-7, Table 15-1, Table 24-3, Table 30-3, Table 33-1, Table 33-3, Table 33-5, Table 33-6 (was Table 33-9), Table 33-7 (was Table 33-11), Table 33-22, Table 33-37 and Table 33-40.
  - Deleted Table 33-6, Table 33-7, Table 33-8 and Table 33-10.
  - Added Table 33-10, Table 33-11, Table 33-12 and Table 33-13.
- Figures:
  - Updated Figure 3-1, Figure 4-1, Figure 4-12, Figure 15-2, Figure 30-3 and Figure 30-4.
- Registers:
  - Updated Register 4-1, Register 14-1, Register 14-6, Register 14-7, Register 14-9, Register 15-1, Register 15-2, Register 15-3, Register 15-5, Register 15-6, Register 15-7, Register 15-9, Register 15-11, Register 15-17, Register 27-1, Register 27-2, Register 30-5 and Register 30-7.
  - Added Register 5-7, Register 5-8, Register 5-9, Register 5-10, Register 5-11, Register 5-12, Register 15-18 and Register 15-19.
  - Deleted Register 15-8, Register 15-12 and Register 15-20.
- Examples:
  - Updated Example 29-1.
  - Added Example 29-2.
- Equations:
  - Deleted Equation 4-1.

## **Revision C (July 2018)**

This revision incorporates the following updates:

- · Tables:
  - Updated Table 1-1, Table 33-10, Table 33-20, Table 33-21, Table 33-26 and Table 33-41.
- Registers:
  - Updated Register 4-1, Register 10-1, Register 12-12, Register 12-13, Register 13-30, Register 14-6, Register 14-7, Register 15-2, Register 16-4, Register 20-2, Register 22-7, Register 28-5, Register 28-6, Register 28-7, Register 28-8, Register 28-9, Register 28-10 and Register 28-11.
- Figures:
  - Updated Figure 13-1 and Figure 13-2.

## **Revision D (September 2018)**

This revision incorporates the following updates:

- Sections:
  - Updated Section 18.0 "Inter-Integrated Circuit (I²C)".
  - Added Section 18.4 "SMBus Support".
  - Updated the packaging diagrams for the 28-Lead SSOP and 28-Lead UQFN in Section 34.0 "Packaging Information".
- · Tables:
  - Updated Table 33-5, Table 33-6, Table 33-7, Table 33-8, Table 33-13 and Table 33-23.
    Added Table 18-3.
- Registers:
  - Updated Register 12-9, Register 13-3, Register 30-6 and Register 30-21.
- · Figures:
  - Updated Figure 9-4.

## **Revision E (December 2018)**

This revision incorporates the following updates:

- · Sections:
  - Updated the "Operating Conditions", "Safety Features" and "Pin Diagrams" sections.
  - Updated Section 5.0 "Flash Program Memory", Section 5.2 "RTSP Operation", Section 5.3.1 "Programming Algorithm for Flash Program Memory", Section 5.3.3 "ECC Fault Injection", Section 8.5.5 "Input Mapping", Section 12.0 "High-Resolution PWM with Fine Edge Placement", Section 23.1 "Control Registers" and the "Product Identification System" section.
  - Added Section 8.5.3 "Controlling Configuration Changes", Section 8.5.3.1 "Control Register Lock", Section 8.5.4 "Considerations for Peripheral Pin Selection", Section 9.6 "OSCCON Unlock Sequence", Section 12.3 "Lock and Write Restrictions" and Section 34.0 "High-Temperature Electrical Characteristics".
- Tables:
  - Added Table 7-1 and Table 12-1.
  - Updated Table 7-2, Table 26-1, Table 33-4, Table 33-39 and Table 33-41.
- · Registers:
  - Added Register 3-3 and Register 5-6.
  - Updated Register 5-5, Register 8-13, Register 9-1, Register 9-4, Register 12-1, Register 13-6, Register 16-1, Register 17-1 and Register 30-14.
- Figures:
- Updated Figure 17-1 and Figure 17-2.
- Examples:
  - Added Example 5-1 and Example 8-1.

## INDEX

Α	
Absolute Maximum Ratings	547
AC Characteristics	
Load Conditions	
Alternate Interrupt Vector Table	101
Analog-to-Digital Converter. See ADC.	
Arithmetic Logic Unit (ALU)	
Assembler	
MPASM Assembler	544
MPLAB Assembler, Linker, Librarian	544
Auto-Shutdown and Gating Sources	441
В	
Bit-Reversed Addressing	74
Example	
Implementation	
Sequence Table (16-Entry)	
Block Diagrams	
16-Bit Timer1 Module	429
ADC Module	296
ADC Shared Core	297
Addressing for Table Registers	
APLL and VCO Detail	187
CALL Stack Frame	70
CAN FD Module	218
CLCx Input Source Selection	
CLCx Logic Function Combinatorial Options	
CLCx Module	
Conceptual SCCPx Modules	
Constant-Current Source	
CPU Core	
CRC Module	
Data Access from Program Space	70
Address Generation	
Deadman Timer Module Dedicated ADC Core	
dsPIC33CK256MP508 Core Clock Sources	
dsPIC33CK256MP508 Core	103
Oscillator Subsystem	18/
dsPIC33CK256MP508 Family	
Functional Direct Memory Access (DMA)	
High-Speed Analog Comparator	
I2Cx Module	
Interleaved PFC	
Internal Regulator	
Master Reset System	
MCLR Pin Connections	
Multiplexing Remappable Outputs for RPn	136
Off-Line UPS	
Operational Amplifier	483
Phase-Shifted Full-Bridge Converter	
PLL and VCO	185
PMP Pinout and Connections to	
External Devices	
Programmer's Model	
PSV Read Address Generation	
PTG	
PWM High-Level Module	
QEI Module	
Recommended Minimum Connection	
Remappable Input for U1RX	

Converte Conversion	500
Security Segments	
Security Segments (Dual Partition)	532
SENTx Module	420
Shared Port Structure	121
Simplified UARTx	356
SPIx Master, Frame Master Connection	393
SPIx Master, Frame Slave Connection	394
SPIx Master/Slave Connection	
(Enhanced Buffer Modes)	393
SPIx Master/Slave Connection (Standard Mode)	392
SPIx Module (Enhanced Mode)	380
SPIx Module (Standard Mode)	379
SPIx Slave, Frame Master Connection	394
SPIx Slave, Frame Slave Connection	394
Suggested Oscillator Circuit Placement	25
Timer Clock Generator	434
Watchdog Timer (WDT)	528
Brown-out Reset (BOR)	527
Built-In Self-Test (BIST)	50
At Run Time	50
At Start-up	50
Flowchart	50
Built-In Self-Test. See BIST.	

## С

C Compilers	
MPLAB XC	544
CAN FD Module	
Control Registers	219
Features	217
Message Reception	217
Capture/Compare/PWM/Timer	
Auto-Shutdown and Gating Sources	441
Auxiliary Output	436
Control Registers	437
General Purpose Timer	434
Input Capture Mode	435
Output Compare Mode	435
Synchronization Sources	440
Time Base Generator	
Capture/Compare/PWM/Timer (SCCP/MCCP) CLC	433
Control Registers	450
Code Examples	
Configuring UART1 Input and Output Functions	131
Flash Write/Read	81
PWRSAV Instruction Syntax in Assembly	495
PWRSAV Instruction Syntax in C Language	495
Using Auxiliary PLL with Internal FRC Oscillator	
Using PLL (50 MIPS) with POSC	191
Using Primary PLL with 8 MHz Internal FRC	186
Code Protection 507,	531
CodeGuard Security 507,	531
Comparator/DAC	
Control Registers	325
Features Overview	325
Configurable Logic Cell (CLC)	447
Configurable Logic Cell. See CLC.	
Configuration Bits	
Bit Values for Clock Selection	192
Controller Area Network. See CAN.	

Addressing Modes       29         Control Registers       34         Data Space Addressing       29         Instruction Set       29         Registers       29         Resources       33         CRC       20         Control Registers       476         Current Bias Generator       480         Current Bias Generator (CBG)       479         Current Bias Generator. See CBG.       479	CPU	
Data Space Addressing       29         Instruction Set       29         Registers       29         Resources       33         CRC       33         Control Registers       476         Current Bias Generator       480         Current Bias Generator (CBG)       479         Current Bias Generator. See CBG.       479	Addressing Modes	
Instruction Set	Control Registers	
Registers       29         Resources       33         CRC       33         Current Bias Generator       476         Control Registers       480         Current Bias Generator (CBG)       479         Current Bias Generator. See CBG.       479	Data Space Addressing	
Resources	Instruction Set	
CRC Control Registers	Registers	
Control Registers	Resources	
Current Bias Generator Control Registers	CRC	
Control Registers	Control Registers	476
Current Bias Generator (CBG)	Current Bias Generator	
Current Bias Generator. See CBG.	Control Registers	480
	Current Bias Generator (CBG)	479
	Current Bias Generator. See CBG.	
Customer Change Notification Service	Customer Change Notification Service	619
Customer Notification Service	Customer Notification Service	619
Customer Support 619	Customer Support	619
	Cyclic Redundancy Check. See CRC.	
outonioi cupport	Cyclic Redundancy Check. See CRC.	

## D

Data Address Space	45
Memory Map for dsPIC33CK128MPX0X Devices	48
Memory Map for dsPIC33CK256MP508 Devices	47
Memory Map for dsPIC33CK64MPX0X and	
dsPIC33CK32MPX0X Devices	49
Near Data Space	46
Organization, Alignment	45
SFR Space	46
Width	45
Data Space	
Extended X	70
Paged Data Memory Space (figure)	
Paged Memory Scheme	
DC Characteristics	
Operating MIPS vs. Voltage	548
Deadman Timer (DMT)	
Control Registers	
Deadman Timer. See DMT.	
Demo/Development Boards, Evaluation and	
Starter Kits	546
Development Support	
Device Calibration	
and Identification	
Device Overview	
Device Programmer	
MPLAB PM3	545
Direct Memory Access Controller. See DMA.	
DMA	
Channel Trigger Sources	215
Control Registers	
Peripheral Module Disable (PMD)	
Summary of Operations	
Types of Data Transfers	
Typical Setup	
Doze Mode	
DSP Engine	
Dual Watchdog Timer (Dual WDT)	
	020

## Е

ECC	
Control Registers	92
Electrical Characteristics	547
AC	559
ADC Delta Current	554
ADC Specifications	579
APLL Delta Current	554
APLL Timing Specifications	561

Comparator + DAC Delta Current	. 555
Constant-Current Source Specifications	. 582
DACx Output (DACOUT1 Pin) Specifications	. 581
DACx Specifications	
Doze Current (IDOZE)	
External Clock Requirements	
High-Speed Analog Comparator Specifications	
High-Speed PWMx Timing Requirements	
I/O Pin Input Injection Current Specifications	
I/O Pin Input Injection Current Opecinications	
I/O Pin Output Specifications	
I/O Timing Requirements	503
I2Cx Bus Data Timing Requirements	
(Master Mode)	575
I2Cx Bus Data Timing Requirements	
(Slave Mode)	
Idle Current (IIDLE)	
Internal FRC Accuracy	
Internal LPRC Accuracy	
Op Amp Delta Current	555
Operating Current (IDD)	
Operating Voltage Specifications	549
Operational Amplifier Specifications	. 582
PLL Timing Specifications	. 561
Power-Down Current (IPD)	
Program Memory	558
PWM Delta Current	
Reset, WDT, OST, PWRT Timing Requirements	
SPIx Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1) Timing Requirements	569
SPIx Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1) Timing Requirements	568
SPIx Master Mode (Half-Duplex, Transmit Only)	. 500
Timing Requirements	567
SPIx Maximum Data/Clock Rate Summary	
	. 500
SPIx Slave Mode (Full-Duplex, CKE = $0$ ,	<b>F7</b> 4
CKP = x, SMP = 0) Timing Requirements	571
SPIx Slave Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 0) Timing Requirements	
UARTx I/O Timing Requirements	
Watchdog Timer Delta Current (AlWDT)	553
Equations	
AFPLLO Calculation	
AFvco Calculation	
FPLLO Calculation	
Frame Time Calculations	421
Fvco Calculation	
I ² C Baud Rate Reload Calculation	. 397
Relationship Between Device and	
SPIx Clock Speed	. 394
SYNCMINx and SYNCMAXx Calculations	422
Tick Period Calculation	
Errata	
Error Correcting Code (ECC)	
Fault Injection	
	02

## F

Flash Program Memory	
and Table Instructions	
Control Registers	86
Dual Partition Flash Configuration	84
Operations	
RTSP Operation	80
Flexible Configuration	

## dsPIC33CK256MP508 FAMILY

### G

Getting Started Guidelines	23
Connection Requirements	23
Decoupling Capacitors	23
External Oscillator Pins	25
ICSP Pins	25
Master Clear (MCLR) Pin	24
Oscillator Value Conditions on Start-up	
Targeted Applications	
Unused I/Os	

### Η

High-Resolution PWM (HSPWM) with	
Fine Edge Placement	
High-Speed Analog Comparator with	
Slope Compensation DAC	323
High-Speed, 12-Bit Analog-to-Digital	
Converter (ADC)	
Control Registers	
Features Overview	
Resources	
HSPWM	
Architecture	
Control Registers	
Lock and Write Restrictions	
PWM Output Availability (table)	

### I

I/O Ports	
Configuring Analog/Digital Port Pins	122
Control Registers	
Helpful Tips	141
Parallel I/O (PIO)	
Resources	
Write/Read Timing	
I ² C	
Clock Rates	
Communicating as Master in Single	
Master Environment	
Control Registers	
Reserved Addresses	
Setting Baud Rate as Bus Master	
Slave Address Masking	
SMBus Support	
ICSP Write Inhibit	
Activation	
In-Circuit Debugger	531
MPLAB ICD 3	
PICkit 3 Programmer	
In-Circuit Emulation	
In-Circuit Serial Programming (ICSP)	507, 531
Input Change Notification (ICN)	
Instruction Addressing Modes	71
File Register Instructions	71
Fundamental Modes Supported	71
MAC Instructions	72
MCU Instructions	71
Move and Accumulator Instructions	72
Other Instructions	72
Instruction Set Summary	533
Overview	
Symbols Used in Opcode Descriptions	

Idle	496
Sleep	496
Inter-Integrated Circuit. See I ² C.	
Internet Address	619
Interrupt Controller	
Alternate Interrupt Vector Table (AIVT)	
Control and Status Registers	
INTCON1	
INTCON2	
INTCON3	
INTCON4	
INTTREG	
Interrupt Vector Details	
Interrupt Vector Table (IVT)	
Reset Sequence	
Resources	
Trap Vector Details	
Interrupt Vector Table	
Interrupts Coincident with Power Save Instructions .	496
J	
JTAG Boundary Scan Interface	507
JTAG Interface	
JTAG Intenace	
L	
Low-Power Sleep Modes (table)	496
Μ	
Memory Organization	
Resources	
Microchip Internet Website	
Modulo Addressing	
Applicability	
Operation Example	
Start and End Address	
W Address Register Selection	
MPLAB REAL ICE In-Circuit Emulator System	545
MPLAB X Integrated Development	
Environment Software	
MPLINK Object Linker/MPLIB Object Librarian	544
0	
Operational Amplifier	483
Control Registers	
	404

Control Registers	
Oscillator	
Configuration	192
Control Registers	193
CPU Clocking	
Internal Fast RC (FRC)	190
Low-Power RC (LPRC)	190
OSCCON Unlock Sequence	192
Primary (POSC)	190
Oscillator with High-Frequency PLL	183

### Ρ

Packaging	583
Details	585
Marking	583
Parallel Master Port (PMP)	405
Peripheral Module Disable (PMD)	497

Peripheral Pin Select (PPS)	129
Available Peripherals	129
Available Pins	129
Control Registers	
Controlling Configuration Changes	
Input Mapping	
Output Mapping	
Output Selection for Remappable Pins	
Remappable Output Pin Registers	
Remappable Pin Inputs	
Selectable Input Sources	
Peripheral Trigger Generator (PTG)	459
Peripheral Trigger Generator. See PTG.	
Pin and ANSELx Availability	
Pinout I/O Descriptions (table)	18
Control Registers	406
Power-Saving Features	
Clock Frequency and Switching	495
Resources	
Program Address Space	
Memory Map for dsPIC33CK128MP50X/20X	
Devices	42
Memory Map for dsPIC33CK256MP50X/20X	
Devices	42
Memory Map for dsPIC33CK32MP50X/20X	
Devices	43
Memory Map for dsPIC33CK64MP50X/20X	
Devices	43
Memory Map for dsPIC33CKXXXMP50X/20X	
Devices	41
Program Memory	
Address Space	41
Construction	76
Data Access from Program Memory Using	
Table Instructions	77
Table Read High Instructions (TBLRDH)	
Table Read Low Instructions (TBLRDL)	
Interfacing with Data Memory Spaces	76
Organization	44
Reset Vector	44
Programmer's Model	31
Register Descriptions	31
PTG	
Command Options	
Control Registers	
Features	
Input Descriptions	
Output Descriptions	
Step Command Format/Description	470

### **Q** OFI

QLI	
Control and Status Registers	338
Truth Table	336
Quadrature Encoder Interface (QEI)	335
Quadrature Encoder Interface. See QEI.	

## R

Referenced Sources	
Register Maps	
Configuration	509
Interrupt Enable	107
Interrupt Flag	107
Interrupt Priority	
PMD	505

PORTA	143
PORTB	143
PORTC	
PORTD	144
PORTE	145
PPS Input Control	181
PPS Output Control	
Registers	
ACLKCON1 (Auxiliary Clock Control)	200
ADCMPxCON (ADC Digital	
Comparator x Control)	319
ADCMPxENH (ADC Digital Comparator x	
Channel Enable High)	320
ADCMPxENL (ADC Digital Comparator x	020
Channel Enable Low)	320
ADCON1H (ADC Control 1 High)	
ADCON1L (ADC Control 1 Low)	
ADCON12 (ADC Control 1 Low)	
ADCON2H (ADC Control 2 High)	
ADCON3H (ADC Control 3 High)	
ADCON3L (ADC Control 3 Low)	302
ADCON4H (ADC Control 4 High)	
ADCON4L (ADC Control 4 Low)	
ADCON5H (ADC Control 5 High)	
ADCON5L (ADC Control 5 Low)	306
ADCORExH (Dedicated ADC Core x	
Control High)	309
ADCORExL (Dedicated ADC Core x	
Control Low)	308
ADEIEH (ADC Early Interrupt Enable High)	311
ADEIEL (ADC Early Interrupt Enable Low)	311
ADEISTATH (ADC Early Interrupt Status High)	
ADEISTATL (ADC Early Interrupt Status Low)	
ADFLxCON (ADC Digital Filter x Control)	
ADIEH (ADC Interrupt Enable High)	
ADIEL (ADC Interrupt Enable Low)	
ADLVLTRGH (ADC Level-Sensitive Trigger	010
Control High)	310
ADLVLTRGL (ADC Level-Sensitive Trigger	010
Control Low)	310
ADMOD0H (ADC Input Mode Control 0 High)	
ADMOD0L (ADC Input Mode Control 0 Low) ADMOD1H (ADC Input Mode Control 1 High)	
ADMOD1L (ADC Input Mode Control 1 Low)	
ADSTATH (ADC Data Ready Status High)	
ADSTATL (ADC Data Ready Status Low)	316
ADTRIGnL/ADTRIGnH (ADC Channel Trigger n(x)	
Selection Low/High)	
AMPCON1H (Op Amp Control High)	
AMPCON1L (Op Amp Control Low)	
ANSELx (Analog Select for PORTx)	
APLLDIV1 (APLL Output Divider)	202
APLLFBD1 (APLL Feedback Divider)	201
BIASCON (Current Bias Generator Control)	480
C1BDIAG0H (CAN Bus Diagnostics 0 High)	253
C1BDIAG0L (CAN Bus Diagnostics 0 Low)	
C1BDIAG1H (CAN Bus Diagnostics 1 High)	
C1BDIAG1L (CAN Bus Diagnostics 1 Low)	
C1CONH (CAN Control High)	
C1CONL (CAN Control Low)	
C1DBTCFGH (CAN Data Bit Time	'
Configuration High)	223
C1DBTCFGL (CAN Data Bit Time	
Configuration Low)	

C1FIFOBAH (CAN Message Memory Base	227
Address High) C1FIFOBAL (CAN Message Memory Base	
Address Low)	
C1FIFOCONHx (CAN FIFO Control x High)	
C1FIFOCONLx (CAN FIFO Control x Low)	
C1FIFOSTAx (CAN FIFO Status x)	
C1FIFOUAHx (CAN FIFO User Address x High)	
C1FIFOUALx (CAN FIFO User Address x Low)	
C1FLTCONxH (CAN Filter Control x High)	
C1FLTCONxL (CAN Filter Control x Low) C1FLTOBJxH (CAN Filter Object x High)	207
C1FLTOBJXH (CAN Filter Object x High)	
C1INTH (CAN Interrupt High)	
C1INTL (CAN Interrupt Low)	221
C1MASKxH (CAN Mask x High)	
C1MASKXL (CAN Mask x Low)	
C1NBTCFGH (CAN Nominal Bit Time	209
Configuration High)	222
C1NBTCFGL (CAN Nominal Bit Time	222
Configuration Low)	222
C1RXIFH (CAN Receive Interrupt Status High)	
C1RXIFL (CAN Receive Interrupt Status Fight)	
C1RXOVIFH (CAN Receive Overflow Interrupt	232
Status High)	223
C1RXOVIFL (CAN Receive Overflow Interrupt	200
Status Low)	233
C1TBCH (CAN Time Base Counter High)	
C1TBCL (CAN Time Base Counter Low)	
C1TDCH (CAN Transmitter Delay	220
Compensation High)	224
C1TDCL (CAN Transmitter Delay	
Compensation Low)	225
C1TEFCONH (CAN Transmit Event	220
FIFO Control High)	246
C1TEFCONL (CAN Transmit Event	
FIFO Control Low)	247
C1TEFSTA (CAN Transmit Event FIFO Status)	
C1TEFUAH (CAN Transmit Event	
FIFO User Address High)	250
C1TEFUAL (CAN Transmit Event	
FIFO User Address Low)	250
C1TRECH (CAN Transmit/Receive	
Error Count High)	252
C1TRECL (CAN Transmit/Receive	
Error Count Low)	252
C1TSCONH (CAN Timestamp Control High)	227
C1TSCONL (CAN Timestamp Control Low)	227
C1TXATIFH (CAN Transmit Attempt Interrupt	
Status High)	235
C1TXATIFL (CAN Transmit Attempt Interrupt	
Status Low)	
C1TXIFH (CAN Transmit Interrupt Status High)	
C1TXIFL (CAN Transmit Interrupt Status Low)	234
C1TXQCONH (CAN Transmit Queue	
Control High)	238
C1TXQCONL (CAN Transmit Queue	
Control Low)	
C1TXQSTA (CAN Transmit Queue Status)	240
C1TXQUAH (CAN Transmit Queue User	
Address High)	251
Address High) C1TXQUAL (CAN Transmit Queue User	
Address High) C1TXQUAL (CAN Transmit Queue User Address Low)	251
Address High) C1TXQUAL (CAN Transmit Queue User Address Low) C1TXREQH (CAN Transmit Request High)	251 236
Address High) C1TXQUAL (CAN Transmit Queue User Address Low)	251 236

	~~~
C1VECH (CAN Interrupt Code High)	
C1VECL (CAN Interrupt Code Low)	229
CANCLKCON (CAN Clock Control)	
CCPxCON1H (CCPx Control 1 High)	
CCPxCON1L (CCPx Control 1 Low)	437
CCPxCON2H (CCPx Control 2 High)	
	442
CCPxCON2L (CCPx Control 2 Low)	
CCPxCON3H (CCPx Control 3 High)	444
CCPxCON3L (CCPx Control 3 Low)	
CCPxSTATL (CCPx Status)	
CLCxCONH (CLCx Control High)	451
CLCxCONL (CLCx Control Low)	
CLCxGLSH (CLCx Gate Logic Input Select High)	456
CLCxGLSL (CLCx Gate Logic Input Select Low)	454
CLCxSEL (CLCx Input MUX Select)	
CLKDIV (Clock Divider)	. 195
CMBTRIGH (Combinational Trigger High)	
CMBTRIGL (Combinational Trigger Low)	267
CNCONx (Change Notification Control	
for PORTx)	126
	120
CNEN0x (Interrupt Change Notification Enable	
for PORTx)	126
CNEN1x (Interrupt Change Notification Edge Select	
for PORTx)	. 127
CNFx (Interrupt Change Notification Flag	
CNFx (Interrupt Change Notification Flag for PORTx)	100
101 PORTX)	120
CNPDx (Change Notification Pull-Down Enable	
for PORTx)	125
	120
CNPUx (Change Notification Pull-up Enable	
for PORTx)	125
CNSTATx (Interrupt Change Notification Status	
	407
for PORTx)	
CORCON (Core Control) 36,	112
CORCON (Core Control)	112 477
CORCON (Core Control)	112 477 476
CORCON (Core Control)	112 477 476
CORCON (Core Control)	112 477 476 478
CORCON (Core Control)	112 477 476 478 478
CORCON (Core Control)	112 477 476 478 478 478 38
CORCON (Core Control)	112 477 476 478 478 478 38
CORCON (Core Control)	112 477 476 478 478 38 326
CORCON (Core Control)	112 477 476 478 478 38 326 .327
CORCON (Core Control)	112 477 476 478 478 38 326 327 .327
CORCON (Core Control)	112 477 476 478 478 38 326 327 .327
CORCON (Core Control)	112 477 476 478 478 326 327 327 328
CORCON (Core Control)	112 477 476 478 478 478 326 327 327 327 328 328
CORCON (Core Control)	112 477 476 478 478 326 327 327 327 328 328 330
CORCON (Core Control)	112 477 476 478 478 326 327 327 327 328 328 330
CORCON (Core Control)	112 477 476 478 478 326 327 327 328 328 328 330 330
CORCON (Core Control)	112 477 476 478 326 327 327 327 328 328 330 330 524
CORCON (Core Control)	112 477 476 478 478 326 327 327 327 328 327 328 320 330 524 524
CORCON (Core Control)	112 477 476 478 478 326 327 327 327 328 327 328 320 330 524 524
CORCON (Core Control)	112 477 476 478 478 326 327 327 328 328 328 330 330 524 524 213
CORCON (Core Control)	112 477 476 478 326 327 327 328 328 330 330 524 524 213 212
CORCON (Core Control)	112 477 476 478 326 327 327 328 328 330 524 524 213 212 214
CORCON (Core Control)	112 477 476 478 326 327 327 328 328 330 524 524 213 212 214
CORCON (Core Control)	112 477 476 478 478 326 327 328 328 330 330 524 524 213 212 214 489
CORCON (Core Control)	112 477 476 478 478 326 327 327 328 328 330 320 330 524 213 212 214 489 491
CORCON (Core Control)	112 477 476 478 478 326 327 328 328 330 330 524 213 212 214 489 491 491
CORCON (Core Control)	112 477 476 478 478 326 327 328 328 330 330 524 213 212 214 489 491 491
CORCON (Core Control)	112 477 476 478 478 326 327 328 328 320 330 320 524 213 212 214 489 491 488
CORCON (Core Control)	112 477 476 478 478 326 327 328 328 320 330 320 524 213 212 214 489 491 488 494
CORCON (Core Control)	112 477 476 478 478 326 327 328 328 320 330 320 524 213 212 214 489 491 488 494
CORCON (Core Control)	112 477 476 478 478 326 327 328 328 320 330 320 524 213 212 214 489 491 488 494
CORCON (Core Control)	112 477 476 478 478 326 327 327 328 330 330 330 524 213 212 214 489 491 488 494 488
CORCON (Core Control)	112 477 476 478 478 326 327 327 328 330 330 330 524 213 212 214 489 491 488 494 488
CORCON (Core Control)	112 477 476 478 478 326 327 327 328 330 330 524 213 212 214 489 491 488 494 488 494 488
CORCON (Core Control)	112 477 476 478 478 326 327 327 328 330 330 524 213 212 214 489 491 488 494 488 494 488
CORCON (Core Control)	112 477 476 478 478 326 327 327 328 330 330 524 213 212 214 489 491 488 494 488 494 488
CORCON (Core Control)	112 477 476 478 326 327 327 328 320 330 330 524 213 212 214 489 491 488 494 488 492 492
CORCON (Core Control)	112 477 476 478 326 327 327 328 320 330 330 524 213 212 214 489 491 488 494 488 492 492
CORCON (Core Control)	112 477 476 478 326 327 327 328 320 330 330 524 213 212 214 489 491 488 494 488 492 492
CORCON (Core Control)	112 477 476 478 326 327 328 328 320 330 320 524 213 212 214 489 491 491 488 494 492 492 492
CORCON (Core Control)	112 477 476 478 326 327 328 328 320 330 320 524 213 212 214 489 491 488 494 488 492 492 492 492 493

ECCADDRH (ECC Fault Inject Address
Compare High)93
ECCADDRL (ECC Fault Inject Address
Compare Low)93
ECCCONH (ECC Fault Injection
Configuration High)92
ECCCONL (ECC Fault Injection
Configuration Low)92
ECCSTATH (ECC System Status Display High)94
ECCSTATL (ECC System Status Display Low)94
FALTREG Configuration521
FBOOT Configuration
FBSLIM Configuration511
FBTSEQ Configuration
FDEVOPT Configuration
FDMT Configuration519
FDMTCNTH Configuration518
FDMTCNTL Configuration518
FDMTIVTH Configuration517
FDMTIVTL Configuration517
FICD Configuration516
FOSC Configuration
FOSCSEL Configuration
FPOR Configuration515
FSCL (Frequency Scale)264
FSEC Configuration
FSIGN Configuration511
FSMINPER (Frequency Scaling
Minimum Period)264
FWDT Configuration
I2CxCONH (I2Cx Control High)
I2CxCONL (I2Cx Control Low)
I2CxMSK (I2Cx Slave Mode Address Mask)
I2CxMSK (I2Cx Slave Mode Address Mask) 403 I2CxSTAT (I2Cx Status) 402 IBIASCONH (Current Bias Generator Current Source Control High) 481 IBIASCONL (Current Bias Generator Current Source Control Low) 482 INDXxCNTH (Index x Counter High) 350
I2CxMSK (I2Cx Slave Mode Address Mask) 403 I2CxSTAT (I2Cx Status) 402 IBIASCONH (Current Bias Generator Current Source Control High) 481 IBIASCONL (Current Bias Generator Current Source Control Low) 482 INDXxCNTH (Index x Counter High) 350 INDXxCNTL (Index x Counter Low) 350
I2CxMSK (I2Cx Slave Mode Address Mask) 403 I2CxSTAT (I2Cx Status) 402 IBIASCONH (Current Bias Generator Current Source Control High) 481 IBIASCONL (Current Bias Generator Current Source Control Low) 482 INDXxCNTH (Index x Counter High) 350 INDXxCNTL (Index x Counter Low) 351
I2CxMSK (I2Cx Slave Mode Address Mask) 403 I2CxSTAT (I2Cx Status) 402 IBIASCONH (Current Bias Generator Current Source Control High) 481 IBIASCONL (Current Bias Generator Current Source Control Low) 482 INDXxCNTH (Index x Counter High) 350 INDXxCNTL (Index x Counter Low) 351 INDXCN1 (Interrupt Control 1) 113
I2CxMSK (I2Cx Slave Mode Address Mask) 403 I2CxSTAT (I2Cx Status) 402 IBIASCONH (Current Bias Generator Current Source Control High) 481 IBIASCONL (Current Bias Generator Current Source Control Low) 482 INDXxCNTH (Index x Counter High) 350 INDXxCNTL (Index x Counter Low) 350 INDXxHLD (Index x Counter Hold) 351 INTCON1 (Interrupt Control 1) 113 INTCON2 (Interrupt Control 2) 115
I2CxMSK (I2Cx Slave Mode Address Mask) 403 I2CxSTAT (I2Cx Status) 402 IBIASCONH (Current Bias Generator Current Source Control High) 481 IBIASCONL (Current Bias Generator Current Source Control Low) 482 INDXxCNTH (Index x Counter High) 350 INDXxCNTL (Index x Counter Low) 350 INDXxHLD (Index x Counter Hold) 351 INTCON1 (Interrupt Control 1) 113 INTCON3 (Interrupt Control 3) 116
I2CxMSK (I2Cx Slave Mode Address Mask) 403 I2CxSTAT (I2Cx Status) 402 IBIASCONH (Current Bias Generator Current 481 Source Control High) 481 IBIASCONL (Current Bias Generator Current 482 Source Control Low) 482 INDXxCNTH (Index x Counter High) 350 INDXxCNTL (Index x Counter Low) 351 INTCON1 (Interrupt Control 1) 113 INTCON2 (Interrupt Control 2) 115 INTCON3 (Interrupt Control 3) 116 INTCON4 (Interrupt Control 4) 117
I2CxMSK (I2Cx Slave Mode Address Mask) 403 I2CxSTAT (I2Cx Status) 402 IBIASCONH (Current Bias Generator Current 481 Source Control High) 481 IBIASCONL (Current Bias Generator Current 482 Source Control Low) 482 INDXxCNTH (Index x Counter High) 350 INDXxCNTL (Index x Counter Low) 350 INDXxHLD (Index x Counter Hold) 351 INTCON1 (Interrupt Control 1) 113 INTCON2 (Interrupt Control 2) 115 INTCON3 (Interrupt Control 3) 116 INTCON4 (Interrupt Control 4) 117 INTTREG (Interrupt Control 4) 118
I2CxMSK (I2Cx Slave Mode Address Mask) 403 I2CxSTAT (I2Cx Status) 402 IBIASCONH (Current Bias Generator Current 481 Source Control High) 481 IBIASCONL (Current Bias Generator Current 482 Source Control Low) 482 INDXxCNTH (Index x Counter High) 350 INDXxCNTL (Index x Counter Low) 350 INDXxHLD (Index x Counter Hold) 351 INTCON1 (Interrupt Control 1) 113 INTCON2 (Interrupt Control 2) 115 INTCON3 (Interrupt Control 3) 116 INTCON4 (Interrupt Control 4) 117 INTREG (Interrupt Control 4) 118 INTXRRH (Interval x Timer High) 348
I2CxMSK (I2Cx Slave Mode Address Mask) 403 I2CxSTAT (I2Cx Status) 402 IBIASCONH (Current Bias Generator Current Source Control High) 481 IBIASCONL (Current Bias Generator Current Source Control Low) 482 INDXxCNTH (Index x Counter High) 350 INDXxCNTL (Index x Counter Low) 350 INDXxHLD (Index x Counter Hold) 351 INTCON1 (Interrupt Control 1) 113 INTCON2 (Interrupt Control 2) 115 INTCON3 (Interrupt Control 3) 116 INTCON4 (Interrupt Control 4) 117 INTREG (Interrupt Control and Status) 118 INTXTMRH (Interval x Timer High) 348
I2CxMSK (I2Cx Slave Mode Address Mask) 403 I2CxSTAT (I2Cx Status) 402 IBIASCONH (Current Bias Generator Current Source Control High) 481 IBIASCONL (Current Bias Generator Current Source Control Low) 482 INDXxCNTH (Index x Counter High) 350 INDXxCNTL (Index x Counter Low) 350 INDXxCNTL (Index x Counter Hold) 351 INTCON1 (Interrupt Control 1) 113 INTCON2 (Interrupt Control 2) 115 INTCON3 (Interrupt Control 3) 116 INTCON4 (Interrupt Control 4) 117 INTREG (Interrupt Control and Status) 118 INTxTMRH (Interval x Timer High) 348 INTXTMRL (Interval x Timer Low) 349
I2CxMSK (I2Cx Slave Mode Address Mask) 403 I2CxSTAT (I2Cx Status) 402 IBIASCONH (Current Bias Generator Current Source Control High) 481 IBIASCONL (Current Bias Generator Current Source Control Low) 482 INDXxCNTH (Index x Counter High) 350 INDXxCNTL (Index x Counter Low) 350 INDXxCNTL (Index x Counter Hold) 351 INTCON1 (Interrupt Control 1) 113 INTCON2 (Interrupt Control 2) 115 INTCON3 (Interrupt Control 3) 116 INTCON4 (Interrupt Control 4) 117 INTREG (Interrupt Control 4) 118 INTXTMRH (Interval x Timer High) 348 INTXTMRL (Interval x Timer Hold High) 349 INTXXHLDH (Interval x Timer Hold High) 349
I2CxMSK (I2Cx Slave Mode Address Mask) 403 I2CxSTAT (I2Cx Status) 402 IBIASCONH (Current Bias Generator Current Source Control High) 481 IBIASCONL (Current Bias Generator Current Source Control Low) 482 INDXxCNTH (Index x Counter High) 350 INDXxCNTL (Index x Counter Low) 350 INDXxCNTL (Index x Counter Hold) 351 INTCON1 (Interrupt Control 1) 113 INTCON2 (Interrupt Control 2) 115 INTCON3 (Interrupt Control 3) 116 INTCON4 (Interrupt Control 4) 117 INTREG (Interrupt Control 4) 118 INTXTMRH (Interval x Timer High) 348 INTXTMRL (Interval x Timer Hold High) 349 INTXXHLDH (Interval x Timer Hold High) 349 INTXXHLDL (Interval x Timer Hold Low) 349
I2CxMSK (I2Cx Slave Mode Address Mask)403I2CxSTAT (I2Cx Status)402IBIASCONH (Current Bias Generator Current841Source Control High)481IBIASCONL (Current Bias Generator Current850Source Control Low)482INDXxCNTH (Index x Counter High)350INDXxCNTL (Index x Counter Low)350INDXxHLD (Index x Counter Hold)351INTCON1 (Interrupt Control 1)113INTCON2 (Interrupt Control 2)115INTCON3 (Interrupt Control 3)116INTCON4 (Interrupt Control 4)117INTREG (Interrupt Control 4)118INTXTMRH (Interval x Timer High)348INTXTMRL (Interval x Timer Hold High)349INTXXHLDH (Interval x Timer Hold High)349INTXXHLDL (Interval x Timer Hold Low)349LATx (Output Data for PORTx)124LFSR (Linear Feedback Shift)273
I2CxMSK (I2Cx Slave Mode Address Mask) 403 I2CxSTAT (I2Cx Status) 402 IBIASCONH (Current Bias Generator Current 402 Source Control High) 481 IBIASCONL (Current Bias Generator Current 481 Source Control Low) 482 INDXxCNTH (Index x Counter High) 350 INDXXCNTL (Index x Counter Low) 351 INTCON1 (Interrupt Control 1) 113 INTCON2 (Interrupt Control 2) 115 INTCON3 (Interrupt Control 4) 117 INTREG (Interrupt Control 4) 117 INTREG (Interrupt Control and Status) 118 INTXMRL (Interval x Timer High) 348 INTXMRL (Interval x Timer Hold High) 349 INTXHLDH (Interval x Timer Hold High) 349 LATx (Output Data for PORTx) 124 LFSR (Linear Feedback Shift) 273 LOGCONy (Combinatorial PWM Logic 273
I2CxMSK (I2Cx Slave Mode Address Mask) 403 I2CxSTAT (I2Cx Status) 402 IBIASCONH (Current Bias Generator Current 5000000000000000000000000000000000000
I2CxMSK (I2Cx Slave Mode Address Mask) 403 I2CxSTAT (I2Cx Status) 402 IBIASCONH (Current Bias Generator Current 481 Source Control High) 481 IBIASCONL (Current Bias Generator Current 482 Source Control Low) 482 INDXxCNTH (Index x Counter High) 350 INDXxCNTL (Index x Counter Low) 350 INDXxCNTL (Index x Counter Hold) 351 INTCON1 (Interrupt Control 1) 113 INTCON2 (Interrupt Control 2) 115 INTCON3 (Interrupt Control 3) 116 INTCON4 (Interrupt Control 4) 117 INTREG (Interrupt Control 4) 117 INTRREG (Interrupt Control and Status) 118 INTXTMRH (Interval x Timer High) 348 INTXxHLDH (Interval x Timer Hold High) 349 INTXxHLDL (Interval x Timer Hold Low) 349 INTXxHLDL (Interval x Timer Hold Low) 349 LATx (Output Data for PORTx) 124 LFSR (Linear Feedback Shift) 273 LOGCONy (Combinatorial PWM Logic Control y) 269 MBISTCON (MBIST Control) 51
I2CxMSK (I2Cx Slave Mode Address Mask) 403 I2CxSTAT (I2Cx Status) 402 IBIASCONH (Current Bias Generator Current 5000000000000000000000000000000000000
I2CxMSK (I2Cx Slave Mode Address Mask) 403 I2CxSTAT (I2Cx Status) 402 IBIASCONH (Current Bias Generator Current 5000000000000000000000000000000000000
I2CxMSK (I2Cx Slave Mode Address Mask) 403 I2CxSTAT (I2Cx Status) 402 IBIASCONH (Current Bias Generator Current Source Control High) 481 IBIASCONL (Current Bias Generator Current Source Control Low) 482 INDXxCNTH (Index x Counter High) 350 350 INDXxCNTL (Index x Counter Low) 351 INTCON1 (Interrupt Control 1) 113 INTCON2 (Interrupt Control 2) 115 INTCON3 (Interrupt Control 3) 116 INTCON4 (Interrupt Control 4) 117 INTREG (Interrupt Control and Status) 118 INTXTMRH (Interval x Timer High) 348 INTXMRL (Interval x Timer Hold Low) 349 INTXHLDH (Interval x Timer Hold Low) 349 LATX (Output Data for PORTX) 124 LFSR (Linear Feedback Shift) 273 LOGCONy (Combinatorial PWM Logic Control y) 269 MBISTCON (MBIST Control) 51 MDC (Master Duty Cycle) 265 MPER (Master Period) 266
I2CxMSK (I2Cx Slave Mode Address Mask) 403 I2CxSTAT (I2Cx Status) 402 IBIASCONH (Current Bias Generator Current Source Control High) Source Control Low) 481 IBIASCONL (Current Bias Generator Current Source Control Low) Source Control Low) 482 INDXxCNTH (Index x Counter High) 350 INDXXCNTL (Index x Counter Low) 350 INDXXHLD (Index x Counter Hold) 351 INTCON1 (Interrupt Control 1) 113 INTCON2 (Interrupt Control 2) 115 INTCON3 (Interrupt Control 3) 116 INTCON4 (Interrupt Control 4) 117 INTREG (Interrupt Control and Status) 118 INTXTMRH (Interval x Timer High) 348 INTXHLDH (Interval x Timer Low) 349 INTXHLDH (Interval x Timer Hold Low) 349 LATx (Output Data for PORTx) 124 LFSR (Linear Feedback Shift) 273 LOGCONy (Combinatorial PWM Logic 269 MBISTCON (MBIST Control) 51 MDC (Master Duty Cycle) 265 MPER (Master Period) 266 MPHASE (Master Phase) 265 </td
I2CxMSK (I2Cx Slave Mode Address Mask) 403 I2CxSTAT (I2Cx Status) 402 IBIASCONH (Current Bias Generator Current Source Control High) Source Control Low) 481 IBIASCONL (Current Bias Generator Current Source Control Low) Source Control Low) 482 INDXxCNTH (Index x Counter High) 350 INDXxCNTL (Index x Counter Low) 350 INDXxHLD (Index x Counter Hold) 351 INTCON1 (Interrupt Control 1) 113 INTCON2 (Interrupt Control 2) 115 INTCON3 (Interrupt Control 3) 116 INTCON4 (Interrupt Control 4) 117 INTREG (Interrupt Control and Status) 118 INTXTMRH (Interval x Timer High) 348 INTXTMRL (Interval x Timer Hold High) 349 INTXHLDL (Interval x Timer Hold Low) 349 INTXHLDL (Interval x Timer Hold Low) 349 LATx (Output Data for PORTx) 124 LFSR (Linear Feedback Shift) 273 LOGCONy (Combinatorial PWM Logic 51 MDC (Master Duty Cycle) 265 MPER (Master Period) 266 MPHASE (Master Phase) 265 </td
I2CxMSK (I2Cx Slave Mode Address Mask) 403 I2CxSTAT (I2Cx Status) 402 IBIASCONH (Current Bias Generator Current Source Control High) Source Control Low) 481 IBIASCONL (Current Bias Generator Current Source Control Low) Source Control Low) 482 INDXxCNTH (Index x Counter High) 350 INDXxCNTL (Index x Counter Low) 350 INDXXHLD (Index x Counter Hold) 351 INTCON1 (Interrupt Control 1) 113 INTCON2 (Interrupt Control 2) 115 INTCON3 (Interrupt Control 3) 116 INTCON4 (Interrupt Control 4) 117 INTREG (Interrupt Control and Status) 118 INTXTMRH (Interval x Timer High) 348 INTXTMRL (Interval x Timer Hold High) 349 INTXHLDH (Interval x Timer Hold Low) 349 INTXHLDL (Interval x Timer Hold Low) 349 LATx (Output Data for PORTx) 124 LFSR (Linear Feedback Shift) 273 LOGCONy (Combinatorial PWM Logic 51 MDC (Master Duty Cycle) 265 MPER (Master Period) 266 MPHASE (Master Phase) 265 </td
I2CxMSK (I2Cx Slave Mode Address Mask) 403 I2CxSTAT (I2Cx Status) 402 IBIASCONH (Current Bias Generator Current Source Control High) Source Control Low) 481 IBIASCONL (Current Bias Generator Current Source Control Low) Source Control Low) 482 INDXxCNTH (Index x Counter High) 350 INDXxCNTL (Index x Counter Low) 350 INDXxHLD (Index x Counter Hold) 351 INTCON1 (Interrupt Control 1) 113 INTCON2 (Interrupt Control 2) 115 INTCON3 (Interrupt Control 3) 116 INTCON4 (Interrupt Control 4) 117 INTREG (Interrupt Control and Status) 118 INTXTMRH (Interval x Timer High) 348 INTXTMRL (Interval x Timer Hold High) 349 INTXHLDL (Interval x Timer Hold Low) 349 INTXHLDL (Interval x Timer Hold Low) 349 LATx (Output Data for PORTx) 124 LFSR (Linear Feedback Shift) 273 LOGCONy (Combinatorial PWM Logic 51 MDC (Master Duty Cycle) 265 MPER (Master Period) 265 MPER (EDS Bus Master Priority Control)
I2CxMSK (I2Cx Slave Mode Address Mask) 403 I2CxSTAT (I2Cx Status) 402 IBIASCONH (Current Bias Generator Current Source Control High) Source Control Low) 481 IBIASCONL (Current Bias Generator Current Source Control Low) Source Control Low) 482 INDXxCNTH (Index x Counter High) 350 INDXxCNTL (Index x Counter Low) 350 INDXXHLD (Index x Counter Hold) 351 INTCON1 (Interrupt Control 1) 113 INTCON2 (Interrupt Control 2) 115 INTCON3 (Interrupt Control 3) 116 INTCON4 (Interrupt Control 4) 117 INTREG (Interrupt Control and Status) 118 INTXTMRH (Interval x Timer High) 348 INTXTMRL (Interval x Timer Hold High) 349 INTXHLDH (Interval x Timer Hold Low) 349 INTXHLDL (Interval x Timer Hold Low) 349 LATx (Output Data for PORTx) 124 LFSR (Linear Feedback Shift) 273 LOGCONy (Combinatorial PWM Logic 51 MDC (Master Duty Cycle) 265 MPER (Master Period) 266 MPHASE (Master Phase) 265 </td

NVMSRCADRL (NVM Source Data
Address Low)
ODCx (Open-Drain Enable for PORTx) 124
OSCCON (Oscillator Control) 193
OSCTUN (FRC Oscillator Tuning) 198
PCLKCON (PWM Clock Control)
PGxCAP (PWM Generator x Capture) 293
PGxCONH (PWM Generator x Control High) 275
PGxCONL (PWM Generator x Control Low) 274
PGxDC (PWM Generator x Duty Cycle) 289
PGxDCA (PWM Generator x
Duty Cycle Adjustment)
PGxDTH (PWM Generator x Dead-Time High) 292
PGxDTL (PWM Generator x Dead-Time Low)
PGxEVTH (PWM Generator x Event High)
PGxEVTL (PWM Generator x Event Low)
PGxIOCONH (PWM Generator x
I/O Control High)
PGxIOCONL (PWM Generator x I/O Control Low)
PGxLEBH (PWM Generator x Leading-Edge Blanking High)
PGxLEBL (PWM Generator x Leading-Edge
Blanking Low)
PGxPER (PWM Generator x Period)
PGxPHASE (PWM Generator x Phase)
PGxSTAT (PWM Generator x Status)
PGxTRIGA (PWM Generator x Trigger A)
PGxTRIGB (PWM Generator x Trigger B)
PGxTRIGC (PWM Generator x Trigger C)
PGxyPCIH (PWM Generator xy PCI High)
PGxyPCIL (PWM Generator xy PCI Low)
PLLDIV (PLL Output Divider)
PLLFBD (PLL Feedback Divider) 197
PMADDR (PMP Address) 411
PMAEN (PMP Pin Enable) 414
PMCON (PMP Control)
PMCONH (PMP Control High) 408
PMD1 (PMD1 Control)
PMD2 (PMD2 Control)
PMD3 (PMD3 Control)
PMD4 (PMD4 Control)
PMD6 (PMD6 Control)502
PMD7 (PMD7 Control)503
PMD8 (PMD8 Control)504
PMDIN1 (PMP Data Input/Output Low) 413
PMDIN2 (PMP Data Input/Output High) 413
PMDOUT1 (PMP Data Output Low) 412
PMDOUT2 (PMP Data Output High) 412
PMMODE (PMP Mode) 409
PMRADDR (PMP Read Address) 417
PMRDIN (PMP Read Input Data) 418
PMSTAT (PMP Status)
PMWADDR (PMP Write Address)
PORTx (Input Data for PORTx)
POSxCNTH (Position x Counter High)
POSxCNTL (Position x Counter Low)
POSxHLD (Position x Counter Hold)
DTCAD L (DTC Adjust)
PTGADJ (PTG Adjust)
PTGBTE (PTG Broadcast Trigger Enable Low) 464
PTGBTE (PTG Broadcast Trigger Enable Low) 464 PTGBTEH (PTG Broadcast Trigger
PTGBTE (PTG Broadcast Trigger Enable Low) 464 PTGBTEH (PTG Broadcast Trigger Enable High)
PTGBTE (PTG Broadcast Trigger Enable Low) 464 PTGBTEH (PTG Broadcast Trigger Enable High)
PTGBTE (PTG Broadcast Trigger Enable Low) 464 PTGBTEH (PTG Broadcast Trigger Enable High)

PTGCST (PTG Control/Status Low) 461	
PTGHOLD (PTG Hold)465	
PTGL0 (PTG Literal 0)	
PTGQPTR (PTG Step Queue Pointer) 469	
PTGQUEn (PTG Step Queue n Pointer)	
PTGSDLIM (PTG Step Delay Limit)	
PTGT0LIM (PTG Timer0 Limit)	
PTGT1LIM (PTG Timer1 Limit)	
PWMEVTy (PWM Event Output Control y)271	
QEIxCON (QEIx Control)	
QEIXGECH (QEIX Greater Than or Equal	
Compare High)	
QEIxGECL (QEIx Greater Than or Equal	
Compare Low)	
QEIxICH (QEIx Initialization/Capture High)	
QEIxICL (QEIx Initialization/Capture Low)	
QEIxIOC (QEIx I/O Control)	
QEIxIOCH (QEIx I/O Control High)	
QEIxLECH (QEIx Less Than or Equal	
Compare High)	
QEIxLECL (QEIx Less Than or Equal	
Compare Low)	
QEIxSTAT (QEIx Status)	
RCON (Reset Control)	
REFOCONH (Reference Clock Control High)	
REFOCONL (Reference Clock Control Low)	
RPCON (Peripheral Remapping Configuration) 146	
RPINR0 (Peripheral Pin Select Input 0)146	
RPINR1 (Peripheral Pin Select Input 1)147	
RPINR10 (Peripheral Pin Select Input 10)151	
RPINR11 (Peripheral Pin Select Input 11)152	
RPINR12 (Peripheral Pin Select Input 12)152	
RPINR13 (Peripheral Pin Select Input 13)153	
RPINR14 (Peripheral Pin Select Input 14)153	
RPINR15 (Peripheral Pin Select Input 15)154	
RPINR16 (Peripheral Pin Select Input 16)154	
RPINR17 (Peripheral Pin Select Input 17)155	
RPINR18 (Peripheral Pin Select Input 18)155	
RPINR19 (Peripheral Pin Select Input 19)156	
RPINR2 (Peripheral Pin Select Input 2)147	
RPINR20 (Peripheral Pin Select Input 20)156	
RPINR21 (Peripheral Pin Select Input 21) 157	
RPINR22 (Peripheral Pin Select Input 22)	
RPINR23 (Peripheral Pin Select Input 23)158	
RPINR26 (Peripheral Pin Select Input 26)	
RPINR27 (Peripheral Pin Select Input 27)	
RPINR29 (Peripheral Pin Select Input 29)	
RPINR3 (Peripheral Pin Select Input 2)	
RPINR30 (Peripheral Pin Select Input 3)	
RPINR32 (Peripheral Pin Select Input 32)	
RPINR33 (Peripheral Pin Select Input 33)	
RPINR33 (Peripheral Pin Select Input 33)	
RPINR38 (Peripheral Pin Select Input 38)	
RPINR4 (Peripheral Pin Select Input 4)	
RPINR42 (Peripheral Pin Select Input 42)	
RPINR43 (Peripheral Pin Select Input 43)	
RPINR44 (Peripheral Pin Select Input 44)	
RPINR45 (Peripheral Pin Select Input 45) 164	
RPINR46 (Peripheral Pin Select Input 46)164	
RPINR47 (Peripheral Pin Select Input 47)	
RPINR48 (Peripheral Pin Select Input 48) 165	
RPINR49 (Peripheral Pin Select Input 49) 166	
RPINR5 (Peripheral Pin Select Input 5)149	
RPINR6 (Peripheral Pin Select Input 6)	
RPINR6 (Peripheral Pin Select Input 6)	

RPINR9 (Peripheral Pin Select Input 9) 151
RPOR0 (Peripheral Pin Select Output 0) 167
RPOR1 (Peripheral Pin Select Output 1) 167
RPOR10 (Peripheral Pin Select Output 10) 172
RPOR11 (Peripheral Pin Select Output 11) 172
RPOR12 (Peripheral Pin Select Output 12) 173
RPOR13 (Peripheral Pin Select Output 13) 173
RPOR14 (Peripheral Pin Select Output 14) 174
RPOR15 (Peripheral Pin Select Output 15) 174
RPOR16 (Peripheral Pin Select Output 16) 175
RPOR17 (Peripheral Pin Select Output 17) 175
RPOR18 (Peripheral Pin Select Output 18) 176
RPOR19 (Peripheral Pin Select Output 19) 176
RPOR2 (Peripheral Pin Select Output 2) 168
RPOR20 (Peripheral Pin Select Output 20) 177
RPOR21 (Peripheral Pin Select Output 21)
RPOR22 (Peripheral Pin Select Output 22) 178
RPOR23 (Peripheral Pin Select Output 23)
RPOR24 (Peripheral Pin Select Output 24)
RPOR25 (Peripheral Pin Select Output 25)
RPOR26 (Peripheral Pin Select Output 26)
RPOR3 (Peripheral Pin Select Output 3)
RPOR4 (Peripheral Pin Select Output 4)
RPOR5 (Peripheral Pin Select Output 5)
RPOR6 (Peripheral Pin Select Output 6)
RPOR7 (Peripheral Pin Select Output 7)
RPOR8 (Peripheral Pin Select Output 8)
RPOR9 (Peripheral Pin Select Output 9)
SENTXCON1 (SENTX Control 1)
SENTxDATH (SENTx Receive Data High)
SENTxDATL (SENTx Receive Data Low)
SENTXSTAT (SENTX Status)
SLPxCONH (DACx Slope Control High)
SLPxCONL (DACx Slope Control Low)
SLPxDAT (DACx Slope Data)
SPIxCON1L (SPIx Control 1 Low)
SPIxCON2L (SPIx Control 2 Low)
SPIxIMSKH (SPIx Interrupt Mask High)
SPIxIMSKL (SPIx Interrupt Mask Low)
SPIxSTATH (SPIx Status High)
SPIxSTATL (SPIx Status Low)
SR (CPU STATUS)
11CON (Limer1 Control) 430
T1CON (Timer1 Control)
TRISx (Output Enable for PORTx) 123
TRISx (Output Enable for PORTx)
TRISx (Output Enable for PORTx)
TRISx (Output Enable for PORTx)123UxBRG (UARTx Baud Rate)366UxBRGH (UARTx Baud Rate High)366UxINT (UARTx Interrupt)375
TRISx (Output Enable for PORTx)123UxBRG (UARTx Baud Rate)366UxBRGH (UARTx Baud Rate High)366UxINT (UARTx Interrupt)375UxMODE (UARTx Configuration)358
TRISx (Output Enable for PORTx)123UxBRG (UARTx Baud Rate)366UxBRGH (UARTx Baud Rate High)366UxINT (UARTx Interrupt)375UxMODE (UARTx Configuration)358UxMODEH (UARTx Configuration High)360
TRISx (Output Enable for PORTx)123UxBRG (UARTx Baud Rate)366UxBRGH (UARTx Baud Rate High)366UxINT (UARTx Interrupt)375UxMODE (UARTx Configuration)358UxMODEH (UARTx Configuration High)360UxP1 (UARTx Timing Parameter 1)368
TRISx (Output Enable for PORTx) 123 UxBRG (UARTx Baud Rate) 366 UxBRGH (UARTx Baud Rate High) 366 UxINT (UARTx Interrupt) 375 UxMODE (UARTx Configuration) 358 UxMODEH (UARTx Configuration High) 360 UxP1 (UARTx Timing Parameter 1) 368 UxP2 (UARTx Timing Parameter 2) 369
TRISx (Output Enable for PORTx) 123 UxBRG (UARTx Baud Rate) 366 UxBRGH (UARTx Baud Rate High) 366 UxINT (UARTx Interrupt) 375 UxMODE (UARTx Configuration) 358 UxMODEH (UARTx Configuration High) 360 UxP1 (UARTx Timing Parameter 1) 368 UxP2 (UARTx Timing Parameter 2) 369 UxP3 (UARTx Timing Parameter 3) 370
TRISx (Output Enable for PORTx) 123 UxBRG (UARTx Baud Rate) 366 UxBRGH (UARTx Baud Rate High) 366 UxINT (UARTx Interrupt) 375 UxMODE (UARTx Configuration) 358 UxMODEH (UARTx Configuration High) 360 UxP1 (UARTx Timing Parameter 1) 368 UxP2 (UARTx Timing Parameter 2) 369 UxP3 (UARTx Timing Parameter 3) 370 UxP3H (UARTx Timing Parameter 3 High) 370
TRISx (Output Enable for PORTx) 123 UxBRG (UARTx Baud Rate) 366 UxBRGH (UARTx Baud Rate High) 366 UxINT (UARTx Interrupt) 375 UxMODE (UARTx Configuration) 358 UxMODEH (UARTx Configuration High) 360 UxP1 (UARTx Timing Parameter 1) 368 UxP2 (UARTx Timing Parameter 2) 369 UxP3 (UARTx Timing Parameter 3) 370 UxP3H (UARTx Timing Parameter 3 High) 370 UxRXCHK (UARTx Receive Checksum) 372
TRISx (Output Enable for PORTx) 123 UxBRG (UARTx Baud Rate) 366 UxBRGH (UARTx Baud Rate High) 366 UxINT (UARTx Interrupt) 375 UxMODE (UARTx Configuration) 358 UxMODEH (UARTx Configuration High) 360 UxP1 (UARTx Timing Parameter 1) 368 UxP2 (UARTx Timing Parameter 2) 369 UxP3H (UARTx Timing Parameter 3) 370 UxP3H (UARTx Timing Parameter 3 High) 370 UxRXCHK (UARTx Receive Checksum) 372 UxRXREG (UARTx Receive Buffer) 367
TRISx (Output Enable for PORTx) 123 UxBRG (UARTx Baud Rate) 366 UxBRGH (UARTx Baud Rate High) 366 UxINT (UARTx Interrupt) 375 UxMODE (UARTx Configuration) 358 UxMODEH (UARTx Configuration High) 360 UxP1 (UARTx Timing Parameter 1) 368 UxP2 (UARTx Timing Parameter 2) 369 UxP3H (UARTx Timing Parameter 3) 370 UxP3H (UARTx Timing Parameter 3 High) 370 UxRXCHK (UARTx Receive Checksum) 372 UxRXREG (UARTx Receive Buffer) 367 UxSCCON (UARTx Smart Card Configuration) 373
TRISx (Output Enable for PORTx)123UxBRG (UARTx Baud Rate)366UxBRGH (UARTx Baud Rate High)366UxINT (UARTx Interrupt)375UxMODE (UARTx Configuration)358UxMODEH (UARTx Configuration High)360UxP1 (UARTx Timing Parameter 1)368UxP2 (UARTx Timing Parameter 2)369UxP3 (UARTx Timing Parameter 3)370UxP3H (UARTx Timing Parameter 3 High)370UxRXCHK (UARTx Receive Checksum)372UxRXREG (UARTx Receive Buffer)367UxSCCON (UARTx Smart Card Configuration)373UxSCINT (UARTx Smart Card Interrupt)374
TRISx (Output Enable for PORTx)123UxBRG (UARTx Baud Rate)366UxBRGH (UARTx Baud Rate High)366UxINT (UARTx Interrupt)375UxMODE (UARTx Configuration)358UxMODEH (UARTx Configuration High)360UxP1 (UARTx Timing Parameter 1)368UxP2 (UARTx Timing Parameter 2)369UxP3 (UARTx Timing Parameter 3)370UxP3H (UARTx Timing Parameter 3 High)370UxRXCHK (UARTx Receive Checksum)372UxRXREG (UARTx Receive Buffer)367UxSCCON (UARTx Smart Card Configuration)373UxSCINT (UARTx Status)362
TRISx (Output Enable for PORTx)123UxBRG (UARTx Baud Rate)366UxBRGH (UARTx Baud Rate High)366UxINT (UARTx Interrupt)375UxMODE (UARTx Configuration)358UxMODEH (UARTx Configuration High)360UxP1 (UARTx Timing Parameter 1)368UxP2 (UARTx Timing Parameter 2)369UxP3 (UARTx Timing Parameter 3)370UxP3H (UARTx Timing Parameter 3 High)370UxRXCHK (UARTx Receive Checksum)372UxRXREG (UARTx Receive Buffer)367UxSCCON (UARTx Smart Card Configuration)373UxSTA (UARTx Status)362UxSTAH (UARTx Status High)364
TRISx (Output Enable for PORTx)123UxBRG (UARTx Baud Rate)366UxBRGH (UARTx Baud Rate)366UxBRGH (UARTx Interrupt)375UxMODE (UARTx Configuration)358UxMODEH (UARTx Configuration High)360UxP1 (UARTx Timing Parameter 1)368UxP2 (UARTx Timing Parameter 2)369UxP3 (UARTx Timing Parameter 3)370UxRXCHK (UARTx Timing Parameter 3 High)370UxRXCHK (UARTx Receive Checksum)372UxRXREG (UARTx Receive Buffer)367UxSCCON (UARTx Smart Card Configuration)373UxSTA (UARTx Status)362UxSTAH (UARTx Status High)364UxTXCHK (UARTx Transmit Checksum)371
TRISx (Output Enable for PORTx)123UxBRG (UARTx Baud Rate)366UxBRGH (UARTx Baud Rate High)366UxINT (UARTx Interrupt)375UxMODE (UARTx Configuration)358UxMODEH (UARTx Configuration High)360UxP1 (UARTx Timing Parameter 1)368UxP2 (UARTx Timing Parameter 2)369UxP3 (UARTx Timing Parameter 3)370UxP3H (UARTx Timing Parameter 3)370UxRXCHK (UARTx Receive Checksum)372UxRXREG (UARTx Receive Buffer)367UxSCCON (UARTx Smart Card Configuration)373UxSTA (UARTx Status)362UxSTAH (UARTx Status High)364UxTXCHK (UARTx Transmit Checksum)371UxTXREG (UARTx Transmit Buffer)367
TRISx (Output Enable for PORTx)123UxBRG (UARTx Baud Rate)366UxBRGH (UARTx Baud Rate High)366UxINT (UARTx Interrupt)375UxMODE (UARTx Configuration)358UxMODEH (UARTx Configuration High)360UxP1 (UARTx Timing Parameter 1)368UxP2 (UARTx Timing Parameter 2)369UxP3 (UARTx Timing Parameter 3)370UxP3H (UARTx Timing Parameter 3 High)370UxRXCHK (UARTx Receive Checksum)372UxRXREG (UARTx Receive Buffer)367UxSCCON (UARTx Smart Card Configuration)373UxSCINT (UARTx Status)362UxSTA (UARTx Status High)364UxTXCHK (UARTx Transmit Checksum)371UxTXREG (UARTx Transmit Buffer)367VELXCNT (Velocity x Counter)346
TRISx (Output Enable for PORTx)123UxBRG (UARTx Baud Rate)366UxBRGH (UARTx Baud Rate High)366UxINT (UARTx Interrupt)375UxMODE (UARTx Configuration)358UxMODEH (UARTx Configuration High)360UxP1 (UARTx Timing Parameter 1)368UxP2 (UARTx Timing Parameter 2)369UxP3 (UARTx Timing Parameter 3)370UxP3H (UARTx Timing Parameter 3 High)370UxRXCHK (UARTx Receive Checksum)372UxRXREG (UARTx Receive Buffer)367UxSCCON (UARTx Smart Card Configuration)373UxSCINT (UARTx Status)362UxSTAH (UARTx Status High)364UxTXCHK (UARTx Transmit Checksum)371UxTXREG (UARTx Transmit Buffer)364VELXCNT (Velocity x Counter)346
TRISx (Output Enable for PORTx)123UxBRG (UARTx Baud Rate)366UxBRGH (UARTx Baud Rate High)366UxINT (UARTx Interrupt)375UxMODE (UARTx Configuration)358UxMODEH (UARTx Configuration High)360UxP1 (UARTx Timing Parameter 1)368UxP2 (UARTx Timing Parameter 2)369UxP3 (UARTx Timing Parameter 3)370UxP3H (UARTx Timing Parameter 3 High)370UxRXCHK (UARTx Receive Checksum)372UxRXREG (UARTx Receive Buffer)367UxSCCON (UARTx Smart Card Configuration)373UxSCINT (UARTx Status)362UxSTAH (UARTx Status High)364UxTXCHK (UARTx Transmit Checksum)371UxTXREG (UARTx Transmit Buffer)367

WDTCONH (Watchdog Timer Control High)	530
WDTCONL (Watchdog Timer Control Low)	529
Resets	95
Brown-out Reset (BOR)	95
Configuration Mismatch Reset (CM)	95
Illegal Condition Reset (IOPUWR)	95
Illegal Opcode	95
Security	95
Uninitialized W Register	
Master Clear (MCLR) Pin Reset	95
Power-on Reset (POR)	95
RESET Instruction (SWR)	95
Resources	96
Trap Conflict Reset (TRAPR)	95
Watchdog Timer Time-out Reset (WDTO)	95
Revision History	

S

SENTx Protocol Data Frames
Serial Peripheral Interface (SPI)
Serial Peripheral Interface. See SPI.
SFR Blocks
000h
100h53
200h
300h
400h
500h57
600h
800h
900h60
A00h61
B00h62
C00h63
D00h64
E00h65
F00h66
Single-Edge Nibble Transmission (SENT)419
Control Registers
Receive Mode
Configuration422
Transmit Mode421
Configuration421
Single-Edge Nibble Transmission for
Automotive Applications419
Single-Edge Nibble Transmission. See SENT.
Software Simulator
MPLAB X SIM
Special Features of the CPU507 SPI
Control Registers

Т

Thermal Operating Conditions 54 Thermal Packaging Characteristics 54 Third-Party Development Tools 54 Timer1 42	8 6 9
Control Register 43	0
Timing Diagrams	_
BOR and Master Clear Reset Characteristics 56	
Clock/Instruction Cycle	
External Clock	
High-Speed PWMx Fault Characteristics 56	
High-Speed PWMx Module Characteristics 56	
I/O Characteristics	
I2Cx Bus Data (Master Mode) 574	
I2Cx Bus Data (Slave Mode) 570	
I2Cx Bus Start/Stop Bits (Master Mode) 574	
I2Cx Bus Start/Stop Bits (Slave Mode) 570	
QEI Interface Signals	5
SPIx Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	9
SPIx Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	8
SPIx Master Mode (Half-Duplex, Transmit Only,	
CKE = 0)	6
SPIx Master Mode (Half-Duplex, Transmit Only,	
CKE = 1)	7
SPIx Slave Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 0)	0
SPIx Slave Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 0)572	2
UARTx I/O Characteristics	

U

UART	
Architectural Overview	356
Character Frame	357
Control Registers	358
Data Buffers	357
Protocol Extensions	357
Unique Device Identifier (UDID)	. 45
Unique Device Identifier. See UDID.	
Universal Asynchronous Receiver	
Transmitter (UART)	355
Universal Asynchronous Receiver Transmitter. See UART	
User OTP Memory	526

V

Voltage Regulator (On-Chip)	526
w	
Watchdog Timer (WDT)	507
WWW Address	619
WWW, On-Line Support	15

THE MICROCHIP WEBSITE

Microchip provides online support via our WWW site at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://microchip.com/support

dsPIC33CK256MP508

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

	<u>dsPIC 33 CK 64 MP 508 Ț I / PT - XXX</u>	Examples:
Pin Count Tape and Reel Flag Temperature Range	ily	dsPIC33CK256MP506-I/PT: dsPIC33, Enhanced Performance, 64-Kbyte Program Memory, SMPS, 64-Pin, Industrial Temperature, TQFP Package.
Architecture:	33 = 16-Bit Digital Signal Controller	
Product Group:	MP = Motor Control/Power Supply	
Pin Count:	02 = 28-pin 03 = 36-pin 05 = 48-pin 06 = 64-pin 08 = 80-pin	
Temperature Range:	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)	
Package:	SS = Plastic Shrink Small Outline – (28-pin) 5.30 mm body (SSOP) 2N = Ultra Thin Plastic Quad Flat, No Lead – (28-pin) 6x6 mm body (UQFN) M5 = Ultra Thin Plastic Quad Flat, No Lead – (36-pin) 5x5 mm body (UQFN) PT = Thin Quad Flatpack – (48-pin) 7x7 mm body (TQFP) PT = Plastic Thin Quad Flatpack – (64-pin) 10x10 mm body (TQFP) MR = Plastic Quad Flat, No Lead – (64-pin) 9x9 mm body (QFN) PT = Plastic Thin Quad Flatpack – (80-pin) 12x12 mm body (TQFP)	

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A. Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM, net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-3930-1

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160 Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu

Tel: 886-3-577-8366 Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100 Fax: 43-7242-2244-393 Denmark - Copenhagen

EUROPE

Austria - Wels

Tel: 45-4450-2828 Fax: 45-4485-2829

Tel: 43-7242-2244-39

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820