

Continental Device India Limited

An ISO/TS16949 and ISO 9001 Certified Company

SOT-23 Formed SMD Package

BC859 BC860

SILICON PLANAR EPITAXIAL TRANSISTORS

P-N-P transistors

Marking $BC859 = 4D$ $BC859A = 4A$	PACKAGE OUTLINE DETAILS ALL DIMENSIONS IN mm					
BC859B = 4B BC859C = 4C BC860 = 4H BC860A = 4E BC860B = 4F BC860C = 4G	3.0 2.8 0.48 0.38	0.14 0.09 0.70 0.50				
Pin configuration 1 = BASE 2 = EMITTER 3 = COLLECTOR	2.6 2.4 1.02 0.89 0.60 2.00 0.40 1.80	R0.1 (.004) R0.05 (.002) 0.12 1.15 0.90				

ABSOLUTE MAXIMUM RATINGS

2

			BC859	<u>BC86</u>)
Collector-emitter voltage $(+V_{BE} = 1 \ V)$	$-V_{CEX}$	max.	. 30	<i>50</i>	V
Collector-emitter voltage (open base)	-V _{CE0}	max.	. 30	45	V
Collector current (peak value)	-I _{CM}	max.	200	200	mA
Total power dissipation up to $T_{amb} = 60 ^{\circ}C$	P_{tot}	max.	250	<i>250</i>	mW
Junction temperature	T_{j}	max.	150	<i>150</i>	$^{\circ}$ C
Small-signal current gain	J	>	125	125	
$-I_C = 2 \text{ mA}; -V_{CE} = 5 \text{ V}; f = 1 \text{ kHz}$	h_{fe}	<	900	900	
Transition frequency					
$-I_{C:}$ 10 mA; $-V_{CE} = 5$ V; $f = 100$ MHz	f_T	>	100	100	MHz
Noise figure at $R_S = 2 k\Omega$					
$-I_C = 200 \mu A; -V_{CE} = 5 V$					
f = 30 Hz to 15 kHz	$\boldsymbol{\mathit{F}}$	typ.	1,2	1	dB
		<	4	3	dB
f = 1 KHz; B = 200 Hz	F	<	4	4	dB

RATINGS (at $T_A = 25^{\circ}C$ unless otherwise spec	rified)				
Limiting values			BC859	BC86	_
Collector-base voltage (open emitter)	$-V_{CB0}$	max.			V
Collector-emitter voltage $(+V_{BE} = 1 \ V)$	-V _{CEX}	max.		50	
Collector-emitter voltage (open base)	−V _{CE0}	max.		45	
Emitter-base voltage (open collector)	$-V_{EB0}$	max.		5	
Collector current (d.c.)	$-I_C$	max.		00	mA
Collector current (peak value)	-I _{CM}	max.			mA
Emitter current (peak value)	I_{EM}	max.		200	mA
Base current (peak value)	$-I_{BM}$	max.			mA
Total power dissipation up to $T_{amb} = 60 \text{ °C**}$	P_{tot}	max.			mW
Storage temperature	T_{stg}		−55 to +150		° C
Junction temperature	T_j	max.	x. 150		° C
THERMAL CHARACTERISTICS					
$T_j = P_X (R_{th j-t} + R_{th t-s} + R_{th s-a}) + T_{amb}$					
Thermal resistance					
From junction to tab	$R_{th j-t}$	=		60	KW
From tab to soldering points	$R_{th \ t-s}$	=		280	KW
From soldering points to ambient**	$R_{th \ s-a}$			90	KW
Troni soldering points to ambient	viii s-a		•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1277
CHARACTERISTICS					
$T_i = 25$ °C unless otherwise specified					
Collector cut-off current					
$I_E = 0$; $-V_{CB} = 30V$; $T_i = 25^{\circ}C$	$-I_{CBO}$	typ.		1	nΑ
J		<		15	nΑ
	_				
$T_j = 150 ^{\circ}C$	$-I_{CBO}$	<		4	mA
Base-emitter voltage					
$-I_C = 2 \text{ mA}; -V_{CE} = 5 \text{ V}$	$-V_{BE}$	typ.	6	3 <i>50</i>	mV
			600	to 750	mV
$-I_C = 10 \text{ mA; } -V_{CE} = 5 \text{ V}$	$-V_{BE}$	<	8	320	mV
Saturation voltages					
$-I_C = 10 \text{ mA}; -I_B = 0.5 \text{ mA}$	-V _{CEsat}	tvn		75	mV
10 111 1, 1 _D 0,0 112 1	CESat	<i>cyp.</i>		800	mV
	-V _{BEsat}	typ.		700	mV
$-I_C = 100 \text{ mA}; -I_B = 5 \text{ mA}$	-V _{CEsat}	typ.	2	250	mV
		<	6	3 <i>50</i>	mV
C. II	-V _{BEsat}	typ.	8	350	mV
Collector capacitance at $f = 1$ MHz $I_E = I_e = 0$; $-V_{CB} = 10$ V	C_{c}	typ.	4	1,5	рF
L C , OD	·	JI			1

Transition frequency at $f = 100$ MHz $-I_C = 10$ mA; $-V_{CE} = 5$ V Small-signal current gain at $f = 1$ kHz	f_T	>		100	МНz	
$-I_C = 2 \text{ mA; } -V_{CF} = 5 \text{ V}$	h_{fe}		125 to 800			
Noise figure at $R_S = 2 k\Omega$	IC.					
			BC859 BC860			
$-I_C = 200 \ \mu A; -V_{CE} = 5 \ V$	F	typ.	1,2	1	dB	
f = 30 Hz to 15 kHz		<	4	3	dΒ	
f = 1 kHz; B = 200 Hz	F	typ.	1	1	dВ	
		<	4	4	dB	
Equivalent noise voltage at $R_S = 2 k\Omega$						
$-I_C = 200 \ \mu A; \ -V_{CE} = 5 \ V$						
$f = 10Hz$ to 50Hz; $T_{amb} = 25$ °C	V_n	<	_	0,1	I m V	
D.C. current gain						
$-I_C = 2mA$; $-V_{CE} = 5V$; total range	h_{FE}	hff 125 to 800				
A selections	h_{FE}		125 to 250			
B selections	h_{FE}		220 to 475			
C selections	h_{FE}		420	to 800		

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Discrete Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished on the CDIL Web Site/CD is believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Discrete Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered Trademark of Continental Device India Limited

C-120 Naraina Industrial Area, New Delhi 110 028, India.

Telephone + 91-11-2579 6150, 5141 1112 Fax + 91-11-2579 5290, 5141 1119

email@cdil.com www.cdilsemi.com