INTERNATIONAL

Leitungsfilter LF Leitungsfilter LFF für reversierbaren Ölstrom bis 660 l/min, bis 100 bar

1. TECHNISCHE **BESCHREIBUNG**

1.1 FILTERGEHÄUSE Aufbau

Die Filtergehäuse sind entsprechend den internationalen Regelwerken ausgelegt. Sie bestehen aus dem Filterkopf, in den der Filtertopf eingeschraubt ist. Die Filter LFF sind für beide Durchflussrichtungen geeignet. Serienausstattung:

- Bohrung für Verschmutzungsanzeige im Filterkopf
- Befestigungsbohrungen am Kopf
- Ölablassschraube mit Druckentlastung (ab LF 330)

1.2 FILTERELEMENTE

HYDAC-Filterelemente werden nach den folgenden Standards validiert und ständig qualitätsüberwacht:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968 ● ISO 11170
- ISO 16889

Schmutzaufnahmekapazitäten in g

	Betamicron® (BN4HC)										
LF/LFF	3 µm	5 µm	10 µm	20 µm							
30	4,6	5,1	5,4	5,6							
60	6,5	7,3	7,8	8,0							
110	13,8	15,5	16,4	16,9							
160	19,8	22,2	23,5	24,3							
240	32,3	36,3	38,4	39,6							
330	47,2	53,1	56,1	57,9							
660	102,2	114,9	121,5	125,4							

Betamicron® (BH4HC)											
LF/LFF	3 µm	5 µm	10 µm	20 µm							
30	3,0	2,9	3,2	3,7							
60	4,6	4,5	5,0	5,7							
110	10,1	9,9	10,9	12,4							
160	12,9	12,6	13,9	15,9							
240	21,6	21,1	23,2	26,5							
330	34,6	33,9	37,2	42,5							
660	76,8	75,2	82,6	94,3							

Filterelemente sind mit nachfolgenden Kollapsdruckfestigkeiten lieferbar:

Betamicron® (BN4HC): Betamicron® (BH4HC): 20 bar 210 bar Drahtgewebe (W): 20 bar 210 bar Edelstahlvlies (V):

1.3 FILTERKENNDATEN

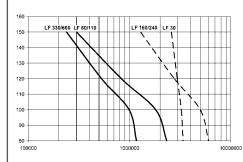
Nenndruck	100 bar
Ermüdungsfestigkeit	bei Nenndruck 10 ⁶ Lastwechsel von 0 bis Nenndruck (andere Drücke siehe Diagramm 1.8)
Temperaturbereich	-30 °C bis +100 °C (LF/LFF 660: -30 °C bis -10 °C: p _{max} = 75 bar)
Material Filterkopf	Aluminium
Material Filtertopf	Aluminium (LF 660: Stahl)
Typ der Verschmutzungsanzeige	VM (Differenzdruckmessung bis 210 bar Betriebsdruck)
Ansprechdruck der Verschmutzungsanzeige	5 bar (andere auf Anfrage)
Öffnungsdruck Bypass (optional)	6 bar (andere auf Anfrage)

1.4 DICHTUNGEN

NBR (=Perbunan)

1.5 EINBAU

Als Rohrleitungsfilter mit oder ohne reversierbaren Ölstrom und


1.6 SONDERAUSFÜHRUNGEN UND ZUBEHÖR

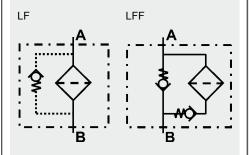
- im Kopf integriertes Bypassventil außerhalb des Hauptvolumenstroms
- Ölablassschraube bis LF/LFF 240
- Dichtungen aus FPM, EPDM
- Prüf- und Abnahmezeugnisse

1.7 ERSATZTEILE

siehe Original-Ersatzteilliste

1.8 ERMÜDUNGSFESTIGKEIT

1.9 ZERTIFIKATE UND ABNAHMEN auf Anfrage


1.10 VERTRÄGLICHKEIT MIT **DRUCKFLÜSSIGKEITEN ISO 2943**

- Hydrauliköle H bis HLPD DIN 51524
- Schmieröle DIN 51517, API, ACEA, DIN 51515. ISO 6743
- Verdichteröle DIN 51506
- Biologisch schnell abbaubare Druckflüssigkeiten VDMA 24568 HETG, HEES, HEPG
- Schwerentflammbare Druckflüssigkeiten HFA, HFB, HFC und HFD
- hoch wasserhaltige Druckflüssigkeiten (>50% Wasseranteil) auf Anfrage

1.11 WARNHINWEISE

- Filtergehäuse müssen geerdet werden
- Bei Einsatz von elektrischen Verschmutzungsanzeigen muss vor der Demontage des Verschmuztungsanzeigensteckers die Anlage spannungsfrei geschaltet werden.

Sinnbild für Hydraulikanlagen

LF BN/HC 60 I C 10 D 1 . X /-L24

2. TYPENSCHLÜSSEL (gleichzeitig Bestellbeispiel)

2.1 KOMPLETTFILTER

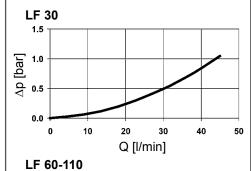
Filtertyp LF bzw. LFF

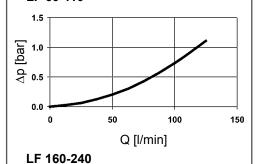
3. FILTERAUSLEGUNG / DIMENSIONIERUNG

Der Gesamtdruckverlust eines Filters bei einem bestimmten Volumenstrom Q besteht aus Gehäuse-∆p und Element-∆p, und ermittelt sich wie folgt:

$$\Delta p_{Gesamt} = \Delta p_{Gehäuse} + \Delta p_{Element}$$

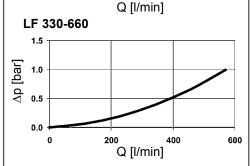
 $\Delta p_{Gehäuse} = (siehe Pkt. 3.1)$


$$\Delta p_{\text{Element}} = Q \cdot \frac{\text{SK}^*}{1000} \cdot \frac{\text{Viskosität}}{30}$$
(*siehe Pkt. 3.2)

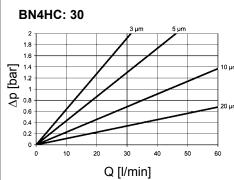

Eine komfortable Auslegung ohne Rechenaufwand ermöglicht unser Filterauslegungsprogramm, das wir Ihnen gerne kostenlos zusenden.

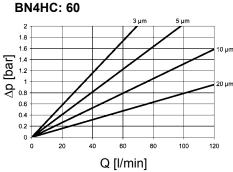
NEU: Auslegung online unter www.hydac.com

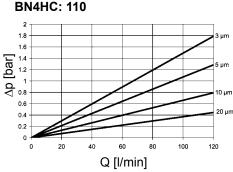
3.1 Ap-Q-GEHÄUSEKENNLINIEN **IN ANLEHNUNG AN ISO 3968**

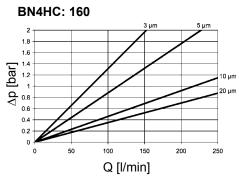

Die Gehäusekennlinien gelten für Mineralöl mit der Dichte 0,86 kg/dm³ und der kinematischen Zähigkeit 30 mm²/s. Der Differenzdruck ändert sich hierbei proportional zur Dichte.

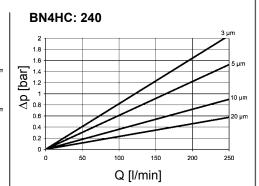
200

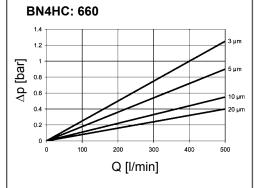


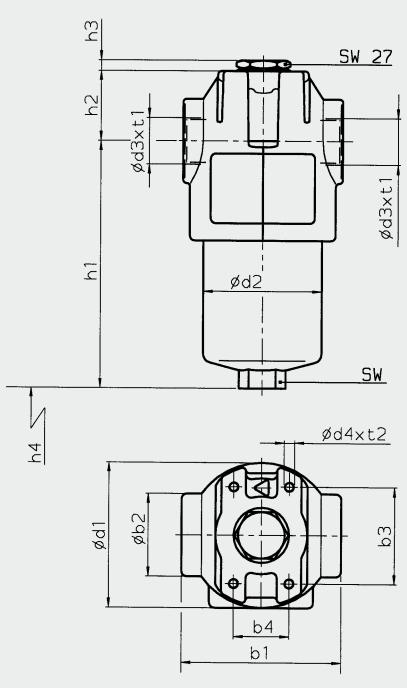

LFF Ap-Q-Gehäusekennlinien auf Anfrage!


3.2 STEIGUNGSKOEFFIZIENTEN (SK) FÜR FILTERELEMENTE


Die Steigungskoeffizienten in mbar/(I/min) gelten für Mineralöle mit einer kinematischen Viskosität von 30 mm²/s. Der Druckverlust ändert sich proportional zur Viskositätsänderung.


LF/	V				W	ВН4НС	ВН4НС						
LFF	3 μm 5 μm 10 μm		20 µm	-	3 µm	5 µm	10 µm	20 µm					
30	18,0	13,0	7,4	3,7	3,367	91,2	50,7	36,3	19,0				
60	16,0	11,0	6,5	3,3	1,683	58,6	32,6	18,1	12,2				
110	8,3	6,0	4,2	2,1	0,918	25,4	14,9	8,9	5,6				
160	4,5	3,2	2,3	1,4	0,631	16,8	10,4	5,9	4,4				
240	3,2	2,4	1,9	1,1	0,421	10,6	6,8	3,9	2,9				
330	2,1	1,5	1,3	0,8	0,307	7,7	4,5	2,8	2,0				
660	1,1	0,9	0,6	0,3	0,153	3,3	1,9	1,0	0,9				





4. ABMESSUNGEN

LF / LFF	b1	b2	b3	b4	d1	d2	d3	d4	h1	h2	h3	h4	SW	t1	t2	Gewicht mit Element [kg]	Inhalt des Druck- raumes [l]
30	69	36	45	30	67	52	G½	M5	125,5	31	7	75	24	15	8	0,8	0,13
60	90	48	56	32	84	68	G3/4	M6	137,5	39	6	75	27	17	9	1,5	0,24
110	90	48	56	32	84	68	G¾	M6	207,0	39	6	75	27	17	9	1,8	0,42
160	125	65	85	35	116	95	G1¼	M10	190,5	46	6	95	32	21	14	3,7	0,60
240	125	65	85	35	116	95	G1¼	M10	250,5	46	6	95	32	21	14	4,3	0,80
330	159	85	115	60	160	130	G1½	M12	252,5	50	6	105	36	23	17	8,0	1,50
660	159	85	115	60	160	127	G1½	M12	417,5	50	6	105	36	23	17	17,6	3,00

ANMERKUNG

Die Angaben in diesem Prospekt beziehen sich auf die beschriebenen Betriebsbedingungen und Einsatzfälle.

Bei abweichenden Einsatzfällen und/oder Betriebsbedingungen wenden Sie sich bitte an die entsprechende Fachabteilung. Technische Änderungen sind vorbehalten.

HYDAD Filtertechnik GmbH Industriegebiet

D-66280 Sulzbach/Saar

Tel.: 0 68 97 / 509-01 Telefax: 0 68 97 / 509-300 Internet: www.hydac.com E-Mail: filter@hydac.com