i.MX 7ULP

ULTRA LOW POWER PLATFORM FOR PORTABLE APPLICATIONS

ULP Family: Market Opportunity in Power Efficiency

6QuadPlus **6**Quad **6**DualPlus 6Dual **6**DualLite 6Solo 6Solc **6**SoloLite 6SLL **6**UltraLite **6ULL** ARM® v7-A

i.MX 8 series

Advanced Graphics and Performance

i.MX 8M series

M4

Advanced Audio and Video

i.MX 8X series

M4

BOM and Energy Efficiency

i.MX 7

M4

ARM® v7-A

(32-Bit)

ARM® v8-A

(32-Bit / 64-Bit)

SCALABILITY OF EMBEDDED PROCESSING THE NEW NORMAL Applications Processors i.MX 7ULP **Ultra-low Power Dynamic & Static** i.MX 6UL/ULL/ULZ ARM v8/v8m + GPU/DSP ARM v7/v7m + 2D/3DARM v7m + Audio i.MX RT MCU

HETEROGENEOUS PROCESSING: PROVIDING SOLUTIONS TO MARKET CHALLENGES

OFFLOAD TASKS

Right core for the task

OPTIMIZE POWER

Power gate maximum amount of silicon

INCREASE SECURITY

Allocate H/W access to silicon

RICH GRAPHICS

3D/2D based rich UIs

i.MX 7ULP Key Highlights

Bringing together

Apps Processor performance and **MCU Low Power**

Ultra Low Power

- FDSOI
 - Effective control of the transistor channel through biasing
- High Performance/mW extending battery life for portable devices.
- Performance on Demand with fast wake up times

Efficient 3D & 2D Graphics

- · GC7000 nanoULTRA
 - OpenGL ES 2.0/1.1
 - OpenVG 1.1
- GC320 2D Composition
 - · Offloads tasks from 3D GPU
 - Stretch/Shrinking, rotation, GUI processing

Heterogeneous Domain Computing

- Multiple software execution:
 - Powerful processing using Cortex-A7 and Neon co-processor
 - Real-time performance through Cortex-M4
- System integrity and security
 - Resource Domain Controller
 - Fast Low Power Boot
 - Safe Recovery of Application domain

Target Applications

- Wearables
- Home Control
- Portable Healthcare
- Portable Printing
- Gaming Accessories
- General Embedded Control
- IoT Edge

Cortex-A7 enables power efficiency

EXTERNAL USE

i.MX 7ULP Applications Processor

Specifications:

CPU:

- Cortex-A7 @ 720MHz
- · Cortex-M4 @ 200Mhz

Process: 28nm FD-SOI

Package:

- 14x14 393BGA, 0.5mm pitch: Consumer & Industrial
- 10x10 361BGA, 0.5mm pitch: Consumer Only

Temp Range (junction):

Industrial: -40C to +105C Consumer: 0C to +95C

Key Features:

- Graphics
 - GC7000 nanoULTRA GPU: OpenGL 2.0 / OpenVG
 - GC320 Composition Engine
- Ultra Low Power
 - Independent Real-time domain
 - Ultra Low Run Current
- Memory options
 - QSPI (on the fly decryption)
 - 32-bit LPDDR2/3 @380MHz
 - eMMC 5.0 /SD3.0
- Connectivity
 - USB HS OTG with PHY
 - USB HS HOST HSIC
 - I2C X 8, SPI X 4, UART X 8, SDIO X 2, I2S X 2
- Security
 - High Assurance Boot
 - Crypto Acceleration: AES-128/256, SHA-1, SHA-224, SHA-256
 - RNG and Tamper Detection

28nm FD SOI

Power – Performance Benefits

- Improved electrostatics enables shorter gate lengths
- Reduced device parasitics
- Device back bias allows for lower Vdd while maintaining performance
- Device tuning with back biasing to compensate process variation

Analog Integration and Performance Benefits

- Higher gain, better matching and lower 1/f noise
- Gate first integration removes density rules for precision analog

Better SER and Latchup Immunity

- 10-100x better SER performance versus 28nm bulk alternatives
- Thin buried oxide layer makes device immune to latchup

Body Biasing: Faster when required and more energy efficient when performance isn't as critical

NXP Complete Solutions

+

i.MX7 ULP **Family Processors**

- 720 MHz Cortex™-A7
 - NEON™ coprocessor
- ARM[®] Cortex[™]-M4,
- · Targeting a broad range of Low Power Applications that rely on a multitude of Low power states to extend battery life to its fullest.

PF1550 **PMIC**

- Integration of NXP's PMIC chip set with i.MX processor for optimization of power efficiency and software/hardware integration
- One-stop customer service and support during development phase to enable the design process

Sensors

- MEMS gyroscopes for reliable sensing and measuring
- Magnetometers: measuring the magnitude and direction of magnetic fields
- Pressure Sensing Devices, composed of single silicon, piezoresistive devices

ULP EVK Development Platform

Development platform:

=

- SOM based evaluation kit
- Linux[®] and Android[™] Board Support Packages are available through NXP

+

i.MX WiFi & Bluetooth Strategy

3 companies partnering to deliver world-class solutions for connected products

Leading Microprocessor Solutions with i.MX products

Industry leader for WiFi & Bluetooth IC #1 market share for WiFi & Bluetooth modules

- Out-of-box processor and wireless connectivity for Linux and Android based systems
- Wi-Fi (802.11bgn, abgn, abgn/ac) & Bluetooth Smart Ready Options

i.MX 7ULP SOM Based Platform

- Enables fast use case evaluation through quick builds of of customized base boards.
- Allows customers to leverage the critical features of SOM design including DDR and PMIC design/layout.
- Design Files provided
 - Schematics
 - -Layout
 - -BOM

Part Numbers: i.MX 7ULP Family

All parts are orderable now and shipment is expected to start in Jun 2019 (Consumer) /Q3 2019 (Industrial)

Part number	Qual tier	Package	Main CPU	On-chip SRAM	Real-time companion CPU	Real-time companion CPU: Tightly-coupled memory	2D & 3D GPU	I ² S	SPI	UART	I ² C	USB	Temperature range
MCIMX7U5DVP07SC	Consumer	MAPBGA 393	ARM Cortex-A7 720 MHz	256 KB	ARM Cortex-M4 200 MHz	256 KB	Υ	4	4	8	8	USB 2.0 OTG +PHY, USB 2.0 Host +HSIC	0-95°C
MCIMX7U5DVK07SC	Consumer	VFBGA 361	ARM Cortex-A7 720 MHz	256 KB	ARM Cortex-M4 200 MHz	256 KB	Υ	4	4	8	8	USB 2.0 OTG +PHY, USB 2.0 Host +HSIC	0-95°C
MCIMX7U3DVK07SC	Consumer	VFBGA 361	ARM Cortex-A7 720 MHz	256 KB	ARM Cortex-M4 200 MHz	256 KB	-	4	4	8	8	USB 2.0 OTG +PHY, USB 2.0 Host +HSIC	0-95°C
MCIMX7U5CVP06SC	Industrial	MAPBGA 393	ARM Cortex-A7 650 MHz	256 KB	ARM Cortex-M4 200 MHz	256 KB	Υ	4	4	8	8	USB 2.0 OTG +PHY, USB 2.0 Host +HSIC	-40-105°C
MCIMX7U3CVP06SC	Industrial	MAPBGA 393	ARM Cortex-A7 650 MHz	256 KB	ARM Cortex-M4 200 MHz	256 KB	-	4	4	8	8	USB 2.0 OTG +PHY, USB 2.0 Host +HSIC	-40-105°C

SECURE CONNECTIONS FOR A SMARTER WORLD