gesis ${ }^{\oplus} \mid \mathrm{P}_{+}$


$$
\begin{aligned}
& \text { Marketing Center } \\
& \text { in Bamberg }
\end{aligned}
$$

$\Delta$ Photo of the Bamberg headquarters
$\triangle$ STOCKO headquarters in Wuppertal

# wieland group 

## ACTIVE WORLDWIDE

With its staff of almost 2,200 employees,
the Wieland Group is at home on all continents.

Subsidiaries in Great Britain, France, Spain,
Italy, Poland, Canada, the USA, China, and
Denmark speak for themselves. With a great
number of representatives, Wieland Holding

## Oautomation

## building

 -electronics
## One company group, a thousand opportunities

The philosophy of the Wieland Group with its headquarters in Bamberg can be summarized that simply. The independent subsidiaries, Wieland Electric and STOCKO Contact, are active beneath Wieland Holding.

Together they cover an extraordinarily wide product portfolio in the field of electrical engineering and electronics. It comprises control cabinet engineering and industrial multipole connectors, as well as overvoltage technology and building system technology.
is active in almost all strategically important
countries. Just a medium size global player
with a clear commitment to the German
location where most of the products are still manufactured.

## 

gesis ${ }^{\circ}$

| The idea of pluggable installation | 4－5 |  |
| :---: | :---: | :---: |
| Electrical installation |  |  |
| with a system | 6－7 |  |
| Schedule，outdoor product lines | 8－9 |  |
| Overview of the fields of application | 10－11 |  |
| Power connections for devices | 12－13 |  |
| System engineering，industry | 14－15 |  |
| System engineering，ASi and 24 V | 16－17 |  |
| System engineering，EX applications | 18－19 |  |
| Flat cable power bus | 20－21 |  |
| AC solar technology | 22－23 |  |
| Construction power systems | 24－25 |  |
| Event technology | 26－27 |  |
| Outdoor lighting | 30－31 |  |
| 3D application examples | 32－35 |  |
| System description－matrix | 36－39 |  |
| RST20i2－ 2 pole | 40－57 | HILJ |
| RST20i3－3 pole | 58－75 | 目 |
| RST25i3－3 pole | 76－81 | HILI |
| RST20i4－ 4 pole | 82－101 | H1］ |
| RST20i5－ 5 pole | 102－123 | HLT］ |
| RST25i5－ 5 pole | 124－129 | H1］ |
| RST20i 2 pole－ 5 pole | 130－141 | 11111 |
| Accesories RST20i2．．．i5 | 142－147 | HLL］ |
| RST50i4－Power 4 pole | 148－155 | 戊陁 |
| RST50i5－Power 5 pole | 156－159 | 1䧉 |
| Accessories RST50i4．．．i5 | 160－161 | 昭蹅 |
| Definition of degrees of protection | 162 |  |
| Material resistance | 163 |  |
| Long－term studies | 159 |  |
| Technical data，RST | 166－179 | Not |
| Installation instructions |  |  |
| Index，Support | 180－195 |  |

## The idea of pluggable installation As easy as brilliant



## Work steps:

## Power distribution:

■ Cut the cable to length

- Strip the cable sheath
- Insert the cable into the junction box
- Strip the wire insulation
- Connect the individual wires
- Close the junction box



## Luminaire installation:

- Open the luminaire

■ Strip the cable sheath
■ Insert the wire into the luminaire
■ Strip the wire insulation

- Connect the individual wires

■ Close the luminaire


## Electrical installation with a system A concept for all situations

Wieland, as the world market leader in the field of pluggable electrical installation, provides a consistently pluggable installation system: complex installations from the distribution board to each point of demand can be implemented with only four base components.


Connector (female + male) for the supply into the connector system

- interface between conventional and pluggable installation

Distribution blocks for power or signal distribution within the network

Pre-assembled cables for routing or supply of electrical power or signals


Device connections are directly integrated into the end devices and function as the interface to the connector system
gesis Con
IP 20

INCOMING
SUPPLY

DISTRIBUTION

ROUTING



Transfer of the successful gesis installation philosophy ...




In many applications, electrical devices and systems must work safely under difficult environmental conditions for many years. For a reliable function, the ingress of water or foreign particles (such as dust, oil, and soot) into production systems, parking garages or outer premises must be avoided. Within the scope of the specified degree of protection the RST system even withstands unplanned immersion.
The system is not designed for permanent operation under water.

## gesis




Overview of the fields of application
Power everywhere - safe and quick!


Outdoor



# Export-oriented solutions for all nations International operations with RST connectors 




On request, we can also realize intermediate angles ranging between $0^{\circ}$ and $90^{\circ}$ in order to provide a solution for specific housing geometries.


Also see:
RST 20i2 Protection class II
RST20i3 Power with $\mathcal{E}$ )


Device connectors are integrated into the relevant housing knock-outs and function as an outward interface.

There are basically two variations: the single-piece M 25 standard device connectors are simply installed inside the housing.

The modular device connectors (two-piece) are available in M 16, M 20


# Complete system for industrial use Connecting quickly and safely 



The pluggable electrical installation also for industrial use

## $\square$ The challenge:

Whether individual applications or complex systems - the tasks are the same: electrical consumer devices must be connected quickly and safely.

Conventional installations do not meet these requirements. Cutting the cables to length, stripping the cable sheath and wire insulation, and finally connecting the components, are not only time-consuming operations, but frequently also cause errors and result in reworking. Cooperation of different trades (mechanical and electrical installation) during the setup of a system impedes the continuous progress of operations. This does not just apply to initial installations.

For expansions, regular servicing or replacement of defective devices, the same installation steps recur over and over again.

## Possible applications:

- Motor connection (3~)
- Power distribution 250/400 V ~
- Power supply up to 50V, bus
- Voltage supply $24 \mathrm{~V}, \mathrm{ASi}$
- Workstation illumination
- Painting checks



## Pre-assembly in a separate location:

The gesis $\mathrm{P}+$ installation system enables completely new possibilities. Entire system sections can be pre-assembled and tested independent of the location of operation.

The individual modules are simply plugged together on site.

## - The solution:

As a complete installation system, gesis $\mathrm{P}+$ provides definite time savings during installation. The components are pre-assembled in the factory and simply plugged together in the field. Troublesome cutting to length, stripping of sheath and insulation, and connecting is now a matter of the past.

Operational downtimes are thus clearly reduced. In the case of defective devices or regular servicing, the consumer devices can be disconnected from the network quickly. As an additional advantage the installer does not have to open the device for completion of the electrical connection, which means that incorrect assembly especially of water-protected devices can be excluded.


## Cost reductions:

Connections in system sections are frequently over-dimensioned. This was not least due to a lack of alternatives. But this is where a major savings potential is provided.

The RST system counts on completely pre-assembled components which only have to be plugged in on site.

## Making electrical devices pluggable

Device connectors function as an interface between the electrical consumer devices and the gesis $\mathrm{P}+$ installation system. The consumer device becomes pluggable through the integrated device connector and can therefore be incorporated into the installation system as required.

The device connectors have been equipped with standard threads ( M 16 and M 25 ) and can therefore be replaced easily by conventional feed-through facilities.

## Also see:

RST20i2
ASi or 24 V
RST20i3 Power with $\Theta^{()}$
RST20i4 Power with $\oplus_{5}$ ) ASi and 24 V
RST20i5
Power with $)$
Compact and multi-distribution units

RST50i4
Power with $\Theta$
RST50i5

## Rapid mounting system

## Flexible and modular AS Interface



AS-i coding in pebble gray

24 V auxiliary voltage with brown coding

- Connectors can be pre-assembled on site and are available either for connection of a round connector or of the AS-i profile cable.
- Distribution blocks enable distribution of electrical power and signals throughout the network.
- Pre-assembled cables are available in various lengths and designs and are used for the routing and supply of auxiliary power/signals.
- Device connections are directly integrated into the end devices and function as the interface to the connector system.


## Technical data:

- Voltage supply 50V, 20A
- IP66 and IP68 ( 2 m deep, 3h)
- Temperatures between -40 and $+100^{\circ} \mathrm{C}$
- Screw connection 0.5 - 4.0 mm $^{2}$


## Common laying of AS-i and 24 V

## AS-i and 24 V combined in one cable

Until now AS-i and 24 V have normally been laid separately, but can now be combined and installed in a 4 pole version, too.

The highest level of flexibility
The rapid mounting system provides the decisive advantage particularly for the increasingly modular design in function modules. Depending on the application you can switch between the low-cost round cable and the AS-i profile cable as required.
Everything is pluggable - for the user, this means top flexibility and at the same time quick and reliable installation

## Also see:

RST 20i2
AS-i or 24 V
RST 20i4
Compact and multi-distribution unit

System engineering


## gesis $\sqrt{[x]}$.

## ATEX-certified pluggable electrical installation.



Used in different industries

## Definition of explosive hazardous areas

When talking about explosive hazardous areas, everybody thinks of the chemical industry or mining. However, explosion protection is an important topic for many sectors of the processing industry. In some cases, even carpenter's workshops and industrial bakeries may be affected. Special explosion protection measures are necessary wherever a dangerously high concentration of gas/air or dust/air mixtures occurs.

Areas where a potentially explosive atmosphere is possible must be clearly identified as explosive hazardous areas.

## Coding: <br> Connectors and device connections:

( (x) II 3G ExnA IIT6
II 3D ExtD A22 IP65 $785^{\circ} \mathrm{C}$
Preassembled cables:
(Ex) II 3G ExnA IIT6
II 3D ExtD A22 IP65 $770^{\circ} \mathrm{C}$ (cable type H05VV-F)
II 3D ExtD A22 IP65 $60^{\circ} \mathrm{C}$ (cable type H07RN-F)
Temperature classes
(max. device surface temperature)

| T1 | $450^{\circ} \mathrm{C}$ |
| :--- | :--- |
| T2 | $300^{\circ} \mathrm{C}$ |
| T3 | $200^{\circ} \mathrm{C}$ |
| T4 | $135^{\circ} \mathrm{C}$ |
| T5 | $100^{\circ} \mathrm{C}$ |
| T6 | $85^{\circ} \mathrm{C}$ |


| Device group I (mining) |  |
| :---: | :---: |
| Category M1 | Category M2 |
| Continuous, long, or <br> frequent periods of <br> exposure | Occasional periods of <br> exposure |
| > Very high degree of safety | > High degree of safety |

Device group II (other areas)

| Category 1 |  | Category 2 |  | Category 3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Continuous, long or frequent periods of exposure |  | Occasional periods of exposure |  | Infrequent, short periods of exposure |  |
| > Very high degree of safety |  | > High degree of safety |  | > Normal degree of safety |  |
| Zone 0 | Zone 20 | Zone 1 | Zone 21 | Zone 2 | Zone 22 |
| Material group G | Material group D | Material group G | Material group D | Material group G | Material group D |

## podis ${ }^{\circledR}$ flat cable power bus <br> Remote power distribution without stripping

## Power bus

The podis ${ }^{\circledR}$ power bus is the innovative solution for remote power distribution. The system comprises supply and distribution modules, maintenance switches, fixed and pluggable power branches, preassembled cable harnesses and a comprehensive range of accessories.

The power (main and auxiliary power or AS-i) is distributed through an uncut 7 pole flat cable. The flat cable is tapped near the consumer device in any position required using connection modules with IDC technology. Branching and tapping to motor starters and frequency converters are implemented in a fixed or pluggable design.

Advantages of podis ${ }^{\oplus}$ at a glance:

- $5 x$ faster installation
- Fast start-up through error-free connectivity
- Modular system for various functions
- Smallest remote motor starter in IP 65 up to 1.5 kW
- Robust LED lamps for extreme temperature range $\left(-40^{\circ} \mathrm{C}\right.$ up to $+70^{\circ} \mathrm{C}$ )
podis ${ }^{\text {® }}$ power bus solutions shorten installation times, reduce production costs and increase flexibility during system expansions or later modifications to the planning.

Eng sypriem incering


## Features

- Termination without stripping of the sheath
- Easy implementation of customer-specific
solutions
- Field distributors for SEW MOV/MOT control
- Remote motor starters for airports and logistics applications
- LED emergency lamps for wind power plants
- UL approval for international applications



## The safe path into the grid <br> The AC Solar connector system

## Soliar gechnology <br> \section*{$\square$ The challenge:}

The extraordinary benefits of a pluggable electrical installation have been restricted to the DC side of photovoltaic systems thus far. The connection on the grid side still had to be made in the time-consuming conventional way.
When several inverters are used within an array, the high installation effort becomes apparent.

## ■ The solution:

With its new AC Solar round connector system, Wieland provides an optimum solution for the AC area. Pre-assembled components with an increased degree of protection ensure a quick and safe installation even under the most adverse conditions.
The system includes distribution panels which are delivered in a pre-assembled design, and cable assemblies for the connection between the inverters and the distribution panels.
The system is supplemented by connectors for assembly on site. Leading inverter manufacturers pre-assemble their devices with the relevant connectors, the interface to the system, in their factories.

## Other fields of application

■ Emergency power supply through batteries (in buildings or systems)
■ Transformation of on-board voltage (cars, trucks, railroad, caravans, boats)
$\square$ Metal working

- Power generation (fuel cell, wind power plants, photovoltaic systems)



Example: System segment up to 30 kWp , installed with RST25i3



Also see:
RST25i3 Single-phase supply
RST25i5 Three-phase supply
RST50i4 Three-phase supply
RST50i5 Three-phase supply

## The new RST50 Power series

The new RST50 Power series combines the best possible connection capabilities with the highest possible degree of compactness. The 4 and 5 pole IP 66... 67 connectors and device connectors are designed for $250 / 400 \mathrm{~V}$ and a maximum current of 50 A . The wire range includes cross sections up to $16 \mathrm{~mm}^{2}$.

Additional information can be found in the RST 50i4 and RST 50i5 sections.


## The flexible electrical installation

Construction site supply during structural works

## consiguctiom povyer sysiems

## ■ The challenge:

Time pressure in the project business is greater than ever: it is therefore even more important that all processes function and are attuned to one another without a problem.
The construction power systems make a major contribution, as they ensure the supply of electrical power during structural work. The requirements for such construction site supply are extremely high. On the one hand, they must withstand extreme conditions, and on the other hand, provide as much flexibility as possible.

## The solution:

Only three base modules are required to implement even complex installations in no time and according to the requirements. The pre-assembled cables are at the core. They are ready for use in all required lengths and can be installed as required. Distribution components furthermore enable the distribution of power to the relevant location.

And finally, there are the luminaires.
They have been equipped with device connectors and can be integrated into the installation by simply plugging them in.



## The benefits at a glance:

## Low investment requirements

All connection cables have been preassembled and tested. With the available range of device connectors almost any standard luminaires can be made pluggable. Therefore, the luminaire manufacturers can easily integrate them into their products.

## Low stock requirements

In contrast to the luminaires with a fixed connection cable, these luminaires can easily be stockpiled due to their pluggability. Transport becomes easier as well. The cables are stored separately. There are only a few different cable types, as the same lengths can be cascaded.

## Easy handling

The luminaires can be assembled easily on the construction site, as the electrical connection is made after the luminaires have been installed.

Due to the compact dimensions of the pluggable components, the cables can be laid out much more flexibly, as small bore holes or knock-outs are no obstacle.

## - High operational safety

The power supply system at the construction site cannot be used by third parties (unrelated trades), as the construction machines are normally not equipped with RST connectors. Its high degree of protection prevents any failure, even with short-term flooding of the connections.


# Pluggable solutions for event technology <br> Outdoor installations - no longer an adventure 

## Eyemt iechnology <br> ■ The challenge:

Decorative illuminations during Christmas time or for other major events are extremely popular today. The possibilities for creating pleasant atmospheres or spotlighting objects are almost unlimited. But what happens behind the scenes? Standard outlets, carefully packed in PET bottles, or simply wrapped in a plastic bag this is often common practice (not just in secrecy).

Apart from the fact that improvised solutions like that are questionable in view of safety technology, they are not aesthetically appealing at all. The fact is that there hasn't been an alternative up to now.

## $\square$ The solution:

The solution is a system which is suitable for outdoor use without additional protection measures: RST.

Consistently pluggable and with IP68 protection degree, RST enables the outdoor connection of, for example, luminaires quickly and safely. Special attention was put on the design in order to make it match inconspicuously with the existing installation


## Connectors for illumination cables:

Customary illumination cables can be integrated into the installation through special 2 pole connectors with the corresponding rectangular strain relief. This applies to applications in the professional as well as in the private sector.

The connectors are protected against accidental loosening; they can be unlatched with a tool only. This is a considerable plus in safety for places that are generally accessible. For protected areas (that are only accessible by experts), the connectors can be equipped with a manual disconnect facility for easy disassembly.

## Post outlet:

The post outlet is simply integrated into existing posts and thus ensures the power supply. It even provides minimal dimensions and optimum weather protection. The post outlet consists of a splash-water-protected device connector which is mounted directly on the post, as well as a firmly connected cable in various lengths for internal wiring.

The cable is strain-relieved and the contacts are protected against condensation.
The protective cover is removed and the decorative component is plugged in with the corresponding flexible light tube - plug \& play!



# For requirements with increased protection degree gesis installation systems provide safety 

## project and shipbuilding

## The benefits at a glance:

■ Installation up to date:
The gesis installation system and its sophisticated concept mirror the state of the art in modern technology.

■ Reduced construction times (initial installation):
An installation with gesis $1 \mathrm{P}+$ reduces the costs not only for initial installations. Even short-term reorganization can be carried out without a problem. This is enhanced by the guarantee of continuous installation quality.
■ Continuous operational cost savings:
Maintenance costs and repair during operation are possible even under more difficult work conditions (architecture). Defective consumer devices are simply replaced without disconnecting the system.
■ Safe power distribution:
The new compact and multi-distribution units are the heart of pluggable electrical installation and can also be customized.

## ■ The challenge:

Whether in underground garages, greenhouses or in shipbuilding: electrical installations with increased requirements regarding the degree of protection can be found everywhere. Especially in these fields, it is extremely important that the electrical installation is carried out by an expert. But how does it work in practice? Difficult installation conditions and extreme time pressure often lead to errors, loss of protection and finally to the failure of the system.

## $\square$ The solution:

The idea is as easy as it is brilliant. An extensive network of components pre-assembled in the plant and most carefully tested enables a consistently pluggable solution from the distributor to the point of use. This saves time and reduces the costs!


# plug \& play in outdoor applications Electrical installations using the "Lego principle" 

## owidioor lighting

## ■ The challenge:

Expert operation plays a major role particularly for electrical installations outdoors.
Difficult installation conditions and high time pressure often cause errors, loss of the protection degree and finally failure of the system.

Unfortunately customers often send their complaints about such cases to the luminaire manufacturer and are left with a bad impression.

## $\square$ The solution:

As a complete installation system, gesis $\mathrm{P}+\mathrm{is}$ istimally adapted to these increased requirements. It is very flexible in its application and has proven technology at its disposal. Luminaires can thus be delivered in a preassembled design. They only have to be plugged in on site. The connectors are also touch-safe when they have not yet been plugged in; they provide a locking device against accidental loosening. The possibility of connecting almost all customary cable types (also underground cables), as well as the IP68 protection degree make the RST connector a strong partner for outdoor lighting.

It is not possible to lay the components directly in the ground. In order to satisfy VDE 0100-520 the connections must be protected mechanically in addition and must be accessible for inspection, testing and maintenance.

## Connectors:

For the various luminaire types, power connectors for 250 V and low-voltage connectors for LED technology up to 50 V are available. These are mechanically coded and can therefore not be mismated.

For parallel applications, this provides additional safety.


INSTA

[^0]

## plug \& play in outdoor applications

Solutions for most demanding requirements


## Pluggable 3D distribution units <br> More than just distribution!

The RST compact distribution unit

- more than just distribution!

Installations differ from one another. This makes it even more important that the product range is oriented towards the application requirements. A clear separation of different circuits using mechanically coded connectors is as important as pre-assembled cables in various defined lengths.

However, the pluggable distribution units play a major role in power distribution. In their simplest function, they merely have to provide branches in the required locations.

Practice shows, however, that the requirements may be much more complex.

Examples can be found in AC and DC wiring through distribution units with fine fuses up to boxes with integrated safety outlets or switches.



## (1) Connectors

Connectors can be assembled on site. Among other functions they serve as an incoming supply for the gesis $\mid \mathrm{P}_{+}$ system. Connectors with male and female components are delivered complete with strain relief and enable the connection of all common cable types. A special version also enables the connection of illumination cables for decorative light chains. Depending on the requirements the connectors are available with spring clamp or screw technology.

## (2) Splitter connectors

Connectors can be pre-assembled on site and serve as the through-wiring of electrical consumer devices (luminaires). All connectors are delivered complete with strain relief and are compatible with all common cable types.
Depending on the requirements the connectors are available with spring clamp or screw technology.
(3) Device connections

Device connections are integrated in corresponding knock-outs in the housing of devices. They are the device's interface to the gesis $\mathrm{P}_{+}$ system. The devices can therefore be plugged in simply on site and integrated into the installation.

## 3D system description <br> Overview of the electrical installation gesis



## Overview matrix

Codings and applications at a glance



## RST 20i2



## Applications in the fields of protection class II, low voltage or signals

Application example


## General

The two pole connector is based on the 3 pole variation with one pole left empty.
Basically there are three variations: a connector for low-voltage applications (e.g. LEDs), a connector for AS Interface and a connector for applications covering protection class II. The latter are downward compatible with the 3 pole system with ground connector (RST 20i3). Thus you can change from the system with ground connector to the 2 pole system - but not vice versa!
Both connectors are mechanically coded. This means that only associated pairs of male and female can be connected with the correct polarity. You therefore have the security of a clear separation of different applications without having to redo any incorrect connections.
The color of the connectors indicates the links that belong together.

Coding

|  | Description | $\begin{aligned} & \text { Connection } \\ & \text { style } \\ & \hline \end{aligned}$ | Strain relief housing | Application <br> Mechanical coding | Protection class II |  | $\frac{50 \mathrm{~V}}{1,2}$ | AS-i |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
| Name |  |  |  | Connection points per pole | gray | black | brown | pebble gray |
| Connectors | 1 x cable entry | Screw <br> Spring clamp | yes | $\begin{array}{r} 1 \\ 2 \\ \hline \end{array}$ |  |  |  |  |
|  | 2 x cable entry | Screw <br> Spring clamp | yes | $\begin{aligned} & \hline 1 \\ & 2 \\ & \hline \end{aligned}$ |  |  |  |  |
| Distribution units | Distribution block 1//30 |  |  |  |  |  |  |  |
|  | RST compact distribution unit/multi-distribution unit |  |  |  | $\begin{gathered} \text { available } \\ \text { on request } \end{gathered}$ | available on request | $\begin{array}{\|c\|} \hline \text { available } \\ \text { on request } \\ \hline \end{array}$ | available on request |
|  | Individual distribution box |  |  |  | available on request | available on request | $\begin{array}{\|c\|} \hline \text { available } \\ \text { on request } \\ \hline \end{array}$ | available on request |
|  | Series distribution unit for power LEDs |  |  |  |  |  |  |  |
| Device connectors | M16 device connector, modular, straight |  |  |  |  |  |  |  |
|  | M16 device connector, modular, angled $7^{\circ}$ |  |  |  |  |  |  |  |
|  | M25 device connector, standard |  |  |  |  |  |  |  |
|  | M20 device connector, standard |  |  |  |  |  |  |  |
|  | M20 device connector, modular, angled |  |  |  |  |  |  |  |
|  | M25 device connector, modular, angled |  |  |  |  |  |  |  |
| Cable assemblies | Connection cable Male - Free end | preassembled | preassembled | preassembled |  |  |  |  |
|  | Connection cable Female - Free end |  |  |  |  |  |  |  |
|  | Extension cable Male - Female |  |  |  |  |  |  |  |
|  | Connection cable Europ. conn. SK II - Female |  |  |  |  |  |  |  |
|  | Round cable |  |  |  |  |  |  |  |
|  | AS-i profile cable |  |  |  |  |  |  |  |

## Connector

## Female connector

Unmounted with cable gland.

See the Technical Data for insulation strip lengths as well as the ferrules to be used.


| Application | Coding | Cable diameter in mm | Color | Part No. |  |  | Part No. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | with spring clamp connection |  |  | with screw connection ${ }^{1 /}$ |  |  |
|  |  |  |  | Wire | $\mathrm{mm}^{2}$ | Ferrules | Wire | $\mathrm{mm}^{2}$ |  |
|  |  |  |  | rigid | 0.5-2.5 |  | rigid | $0.75-6.0^{21}$ | without ferrules |
|  |  |  |  | fine-stranded | 0.5-1.5 | with ferrules | fine-stranded |  |  |
|  |  |  |  | stranded | 0.75-1.5 | with ferrules | stranded |  | without ferrules |
| Protection class II | $\mathrm{L}, \mathrm{~N}$ | 6-10 | gray black | $\begin{aligned} & 96.021 .0053 .0 \\ & 96.021 .0053 .1 \end{aligned}$ |  |  | $\begin{aligned} & 96.021 .4053 .0 \\ & 96.021 .4053 .1 \end{aligned}$ |  |  |
|  |  | 10-14 | gray black | 96.021 .0153 .0 |  |  | 96.021 .4153 .0 |  |  |
|  |  | Illumination cable $13.3 \times 5.3$ | black gray | 96.021 .0153 .1 |  |  | 96.021 .4153 .1 |  |  |
|  |  | $\text { H05RNH2-F2 } \times 1.5^{2}$ | black | $96.021 .0453 .1$ |  |  | 96.021.4453.1 |  |  |
| 50 V |  | 6-10 | brown | $96.021 .0051 .4$ |  |  | 96.021.4051.4 |  |  |
| 50 V |  | AS-i profile cable | brown | $96.021 .0951 .4$ |  |  | 96.021.4951.4 |  |  |
| AS-i | (89) +, - | Round cable 6-10 | pebble gray | 96.021 .0050 .8 |  |  | 96.021.4050.8 |  |  |
| AS-I | +, | AS-i profile cable | pebble gray | 96.021 .0950 .8 |  |  | 96.021.4950.8 |  |  |

## Male connector

```
Unmounted with cable gland and locking
```

device.

See the Technical Data for insulation strip lengths as well as the ferrules to be used.



## Connector, angled



[^1]
## Splitter connector



## Mounting plate <br> For splitter connectors



| Color | Part No. |  |
| ---: | ---: | :--- |
|  |  |  |

## M25 device connector, standard



## Male connector

Correct positioning guaranteed due to flattened thread. Fastening with screws from outside. With locking device.

See the Technical Data for insulation strip lengths as well as the ferrules to be used.



| Part No. |  |  | Part No. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| with spring clamp connection |  |  | with screw connection ${ }^{11}$ |  |  |
| Wire | $\mathrm{mm}^{2}$ | Ferrules | Wire | $\mathrm{mm}^{2}$ |  |
| rigid | $0.5-2.5$ |  | rigid |  |  |
| fine-stranded | 0.5-1.5 | with ferrules | fine-stranded | 0.75-6.02 | without ferrules |
| stranded | 0.75-1.5 | with ferrules | stranded |  | without ferrules |
| Term. poles | 2 |  | Term. poles | 1 |  |
| Thread | M $25 \times 1.5$ |  | Thread | M25 x 1.5 |  |
| Gland outside |  |  | Gland | outside |  |
| $\begin{aligned} & 96.022 .1053 .0 \\ & 96.022 .1053 .1 \\ & 96.022 .1051 .4 \end{aligned}$ |  |  | 96.022 .5053 .096.022 .5053 .196.022 .5051 .4 |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| 96.022.105 |  |  | 96.022.5050 |  |  |

## M 16 device connector, modular, straight



## Male connector

Correct positioning guaranteed due to flattened thread. Fastening with screws from inside. With locking device

See the Technical Data for insulation strip lengths as well as the ferrules to be used.


| Part No. |  |  |
| :---: | :---: | :---: |
| with spring clamp connection |  |  |
| Wire | $\mathrm{mm}^{2}$ | Ferrules |
| rigid | 0.5-2.5 |  |
| fine-stranded | 0.5-1.5 | with ferrules |
| stranded | 0.75-1.5 | with ferrules |
| Term. poles | 2 |  |
| Thread | M16 x 1.5 |  |
| Gland | inside |  |
| $\begin{aligned} & 96.022 .2153 .0 \\ & 96.022 .2153 .1 \\ & 96.022 .2151 .4 \end{aligned}$ |  |  |
|  |  |  |
|  |  |  |
| 96.022 .2150 .8 |  |  |


| Part No. |  |  |
| :---: | :---: | :---: |
| with screw connection ${ }^{11}$ |  |  |
| Wire | mm ${ }^{2}$ |  |
| rigid |  |  |
| fine-stranded | $0.75-6.0$ | without ferrules |
| stranded |  | without ferrules |
| Term. poles | 1 |  |
| Thread | M16 x 1.5 |  |
| Gland | inside |  |
| $\begin{aligned} & 96.022 .6153 .0 \\ & 96.022 .6153 .1 \\ & 96.022 .6151 .4 \end{aligned}$ |  |  |
|  |  |  |
|  |  |  |
| 96.022 .6150 .8 |  |  |

## M 16 device connector, modular, $7^{\circ}$ angle

## Female connector

Correct positioning guaranteed due to flattened thread. Fastening with screws from inside.
See the Technical Data for insulation strip lengths as well as the ferrules to be used.



## Male connector

Correct positioning guaranteed due to flattened thread. Fastening with screws from inside. With locking device.

See the Technical Data for insulation strip lengths as well as the ferrules to be used.



## M20 device connector, standard

| Female connector |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Correct positioning guaranteed due to flattened thread. Fastening with screws from inside. <br> See the Technical Data for insulation strip lengths as well as the ferrules to be used. |  |  |  |  | SW2B |  |
| Application Coding Color | Part No. ${ }^{\text {a }}$ Part No. |  |  |  |  |  |
|  | with spring clamp connection |  |  | with screw connection ${ }^{11}$ |  |  |
|  | Wire | mm ${ }^{2}$ | Ferrules | Wire | $\mathrm{mm}^{2}$ |  |
|  | rigid | 0.5-2.5 |  | rigid |  |  |
|  | fine-stranded | 0.5-1.5 | with ferrules | fine-stranded | 0.75-6.0 | without ferrules |
|  | stranded | 0.75-1.5 | with ferrules | stranded |  | without ferrules |
|  | Term. poles | 2 |  | Term. poles | 1 |  |
|  | Thread | M20 1.5 |  | Thread | M20 1.5 |  |
|  | Gland | inside |  | Gland | inside |  |
| Protection class II | $\begin{aligned} & 96.021 .2053 .0 \\ & 96.021 .2053 .1 \end{aligned}$ |  |  | $\begin{aligned} & 96.021 .6053 .0 \\ & 96.021 .6053 .1 \end{aligned}$ |  |  |
| 50 V (1,2 brown | 96.021.2051.4 |  |  | 96.021.6051.4 |  |  |
| AS-i (\%) +,- pebble gray |  |  |  | 96.021 .6050 .8 |  |  |



## M20 device connector, modular, angled



## Steckerteil

Correct positioning guaranteed due to flattened thread. Fastening with screws from inside. With locking device.

See the Technical Data for insulation strip lengths as well as the ferrules to be used.


| Application Coding |
| :--- |


| Part No. |  |  | Part No. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| with spring clamp connection |  |  | with screw connection ${ }^{11}$ |  |  |
| Wire | $\mathrm{mm}^{2}$ | Ferrules | Wire | $\mathrm{mm}^{2}$ |  |
| rigid | 0.5-2.5 |  | rigid |  |  |
| fine-stranded | 0.5-1.5 | with ferrules | fine-stranded | 0.75-6.0 | without ferrules |
| stranded | 0.75-1.5 | with ferrules | stranded |  | without ferrules |
| Term. poles | 2 |  | Term. poles | 1 |  |
| Thread | M20 x 1.5 |  | Thread | M20 x 1.5 |  |
| Gland inside |  |  | Gland | inside |  |
| $\begin{aligned} & 96.024 .2053 .0 \\ & 96.024 .2053 .1 \\ & 96.024 .2051 .4 \end{aligned}$ |  |  | $\begin{aligned} & 96.024 .6053 .0 \\ & 96.024 .6053 .1 \\ & 96.024 .6051 .4 \end{aligned}$ |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| 96.024.2050 |  |  | 96.024.6050. |  |  |

## M 25 device connector, modular, angled



## Male connector

Correct positioning guaranteed due to flattened thread. Fastening with screws from inside. With locking device.

See the Technical Data for insulation strip lengths as well as the ferrules to be used.


Application Coding


| Part No. |  |  |
| :--- | :---: | :--- | :--- |
| with spring clamp connection |  |  |
| Wire | $\mathrm{mm}^{2}$ | Ferrules |
| rigid | $0.5-2.5$ |  |
| fine-stranded | $0.5-1.5$ | with ferrules |
| stranded | $0.75-1.5$ | with ferrules |
| Term. poles | 2 |  |
| Thread | $\mathrm{M} 25 \times 1.5$ |  |
| Gland | inside |  |
|  |  |  |
| 96.024 .2253 .0 |  |  |
| 96.024 .2253 .1 |  |  |
| 96.024 .2251 .4 |  |  |
| 96.024 .2250 .8 |  |  |

## Part No.

| with screw connection ${ }^{11}$ |  |  |
| :---: | :---: | :---: |
| Wire | $\mathrm{mm}^{2}$ |  |
| rigid |  |  |
| fine-stranded | $0.75-6.0$ | without ferrules |
| stranded |  | without ferrules |
| Term. poles | 1 |  |
| Thread | M $25 \times 1.5$ |  |
| Gland | inside |  |
|  |  |  |
| $96.024 .6253 .1$ |  |  |
| 96.024.6251.4 |  |  |
| 96.024.6250.8 |  |  |

## Accessories - Cover pieces



## Cable assemblies $1.5 \mathrm{~mm}^{2}$, 16 A



## Cable assemblies 1.5 mm²$^{2}$, 16A



## Cable assemblies $1.5 \mathrm{~mm}^{2}, 16 \mathrm{~A}, \mathrm{AS}-\mathrm{i}$, 50 V (24V auxiliary voltage)



## Cable assemblies $2.5 \mathrm{~mm}^{2}, 20 \mathrm{~A}$, AS-i, 50 V (24V auxiliary voltage)



## Distribution unit




## Distribution unit

| RST compact distribution unit 11/30 | Name | Color | Part No. |
| :---: | :---: | :---: | :---: |
|  | RST compact distribution unit | black | on request |
|  | Detailed information about the distribution units available in section "Distribution units". |  |  |
|  | Dimensions | $104 \times$ |  |
|  | Fitted as required with | M25 | ctors 2-pole |
|  | Input | 1, RS |  |
|  | Outputs | 3, RS |  |
|  | Prewired with | 2.5 m | free) |
|  | Fastening options | yes |  |



RST 20i3


## Standard version for power applications - multi-phase systems, 250 V switching applications and low voltage

## Application example



## General

The 3 pole connectors are available in four versions: the standard version for general power applications, a version for low voltage up to 50 V with ground conductor; another version for switching applications up to 250 V , and finally a green coding for applications in multi-phase systems.
Both connectors are mechanically coded. This means that only associated pairs of male and female can be connected with the correct polarity. You therefore have the security of a clear separation of different applications without having to redo any incorrect connections.
The color of the connectors indicates the links that belong together.

Coding

|  | Description | Connection style | Strain relief housing | Application <br> Mechanical coding | Power 250 V |  | $\begin{gathered} \text { Power } \\ 250 / 400 \mathrm{~V} \\ \hline \end{gathered}$ | $\begin{gathered} \text { LV, signals } \\ \text { bus } 50 \mathrm{~V} \\ \hline \end{gathered}$ | $\begin{gathered} \begin{array}{c} \text { Switch. } \\ \text { funct. } 250 \mathrm{~V} \end{array} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | L, N, |  | 1, 2, © | 1, 2, © |  |
| Name |  |  |  | Connection points per pole | gray | black | green | brown | light blue |
| Connectors | 1 x cable entry | Screw Spring clamp | yes | 1 |  |  |  |  |  |
|  | 2 x cable entry | Screw <br> Spring clamp | yes | 2 |  |  |  |  |  |
| Distribution units | $\begin{aligned} & \hline \text { Distribution block } \\ & 11 / 30 \\ & \hline \end{aligned}$ |  |  |  |  |  |  |  |  |
|  | RST compact distribution unit/multi-distribution unit |  |  |  | available <br> on request | $\begin{array}{\|c\|} \hline \text { available } \\ \text { on request } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { available } \\ \text { on request } \end{array}$ | $\begin{array}{\|c\|} \hline \text { available } \\ \text { on request } \\ \hline \end{array}$ | available <br> on request |
|  | Individual distribution box |  |  |  | $\begin{array}{\|c\|} \hline \text { available } \\ \text { on request } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { available } \\ \text { on request } \end{array}$ | $\begin{array}{\|c\|} \hline \text { available } \\ \text { on request } \end{array}$ | $\begin{array}{\|c\|} \hline \text { available } \\ \text { on request } \\ \hline \end{array}$ | $\begin{array}{c\|} \hline \text { available } \\ \text { on request } \end{array}$ |
| Device connectors | M16 device connector, modular, straight |  |  |  |  |  |  |  |  |
|  | M16 device connector, modular, angled $7^{\circ}$ |  |  |  |  |  |  |  |  |
|  | M25 device connector, standard |  |  |  |  |  |  |  |  |
|  | M20 device connector, standard |  |  |  |  |  |  |  |  |
|  | M20 device connector, modular, angled |  |  |  |  |  |  |  |  |
|  | M25 device connector, modular, angled |  |  |  |  |  |  |  |  |
| Cable assemblies | Connection cable Male - Free end | preassembled | preassembled | preassembled |  |  |  |  |  |
|  | Connection cable Female - Free end |  |  |  |  |  |  |  |  |
|  | Extension cable Male - Female |  |  |  |  |  |  |  |  |
|  | Connection cable Female grounding conn. |  |  |  |  |  |  |  |  |

## Connector for cables of Ø 6 - 10 mm and 10 - 14 mm

| Female connector |
| :--- |
| Unmounted with cable gland. |
| See the Technical Data for insulation strip |
| lengths as well as the ferrules to be used. |



## Connector, angled for cables of Ø 6-10 mm and 10 - 14 mm



## Male connector



[^2]
## Connector for cables of Ø 13-18 mm



## Male connector

Unmounted with cable gland and with locking device.

See Technical Data for sheath and insulation strip lengths.



## Splitter connector



## Mounting plate <br> For splitter connectors



| Color | Part No. |
| :---: | :---: |
| gray black | $\begin{aligned} & 01.006 .1553 .0 \\ & 01.006 .1553 .1 \end{aligned}$ |
|  |  |

## M25 device connector, standard



## Male connector

Correct positioning guaranteed due to flattened thread. Fastening with screws from outside. With locking device.

See the Technical Data for insulation strip lengths.



## M20 device connector, modular, straight



## Male connector

Correct positioning guaranteed due to flattened thread. Fastening with screws from inside. With locking device.

See the Technical Data for insulation strip


| Application | Coding | Color | Part No. |  |  | Part No. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { vativelise 8,7.. } \\ & \text { optionci } 8,7 \text { an } \end{aligned}$ |  |  | with spring clamp connection |  |  | with screw connection |  |  |
|  |  |  | Wire | $\mathrm{mm}^{2}$ | Ferrules | Wire mm ${ }^{\text {a }}$ |  |  |
|  |  |  | rigid | $0.5-2.5$ |  | rigid | 0.75-6.0 | without ferrules |
| , |  |  | fine-stranded | 0.5-1.5 | with ferrules | fine-stranded |  |  |
|  |  |  | stranded | 0.75-1.5 | with ferrules | stranded |  | without ferrules |
|  |  |  | Term. poles | 2 |  | Term. poles | 1 |  |
|  |  |  | Thread | M20 1.5 |  | Thread | M20 x 1.5 |  |
|  |  |  | Gland | inside |  | Gland | inside |  |
| Power |  |  | 96.032.2053.0 |  |  | 96.032.6053.0 |  |  |
| 250 V | (3) ${ }^{(1)}$ | black | 96.032.2053.1 |  |  | 96.032.6053.1 |  |  |
| Power $250 / 400 \mathrm{~V}$ | 2, 1 | green | 96.032.2055.7 |  |  | 96.032.6055.7 |  |  |
| 250/400V |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & 50 \mathrm{~V} \\ & +\Theta \end{aligned}$ |  | brown | 96.032.2051.4 |  |  | 96.032.6051.4 |  |  |
| Switch. funct. $250 \mathrm{~V}$ | (b) 2,1 , | light blue | 96.032.2053.9 |  |  | 96.032.6053.9 |  |  |

## M 16 device connector, modular, straight



## Male connector

Correct positioning guaranteed due to flattened thread. Fastening with screws from inside. With locking device.

See the Technical Data for insulation strip lengths.



## M 16 device connector, modular, $7^{\circ}$ angle



## Male connector

Correct positioning guaranteed due to flattened thread. Fastening with screws from inside. With locking device.
Angled $7^{\circ}$, thread M16.

See the Technical Data for insulation strip lengths.



## M20 device connector, modular, angled

| Female connector |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Correct positioning guaranteed due to flattened thread. Fastening with screws from inside. <br> See the Technical Data for insulation strip lengths as well as the ferrules to be used. | $\mathbb{R}$ |  |  |  |  |  |
| Application Coding Color | Part No. |  |  | Part No. |  |  |
|  |  |  |  | with screw | ection |  |
|  | Wire | $\mathrm{mm}^{2}$ | Ferrules | Wire | $\mathrm{mm}^{2}$ |  |
|  | rigid | 0.5-2.5 |  | rigid |  |  |
|  | fine-stranded | 0.5-1.5 | with ferrules | fine-stranded | 0.75-6.0 | without ferrules |
|  | stranded | 0.75-1.5 | with ferrules | stranded |  | without ferrules |
|  | Term. poles | 2 |  | Term. poles | 1 |  |
|  | Thread | M20 x 1.5 |  | Thread | M20 x 1, 5 |  |
|  | Gland | inside |  | Gland | inside |  |
| Power (\%) $\mathrm{L}, \mathrm{N}, \mathrm{gray}$ | $\begin{aligned} & 96.033 .2053 .0 \\ & 96.033 .2053 .1 \end{aligned}$ |  |  | $\begin{aligned} & 96.033 .6053 .0 \\ & 96.033 .6053 .1 \end{aligned}$ |  |  |
| 250 V (-) black |  |  |  |  |  |  |
|  | 96.033.2055.7 |  |  | 96.033.6055.7 |  |  |
| 50 V (3) 1,2, brown | 96.033.2051.4 |  |  | 96.033.6051.4 |  |  |
| Swith.funct. 250 V $\mathrm{~B}_{3}^{1,2,}$ light blue | 96.033.2053.9 |  |  | 96.033.6053.9 |  |  |



## M 25 device connector, modular, angled



## Male connector

Correct positioning guaranteed due to flattened thread. Fastening with screws from inside. With locking device.

See the Technical Data for insulation strip lengths.



## Cable assemblies 1.5 mm²$^{2}$, 16A



## Cable assemblies $1.5 \mathrm{~mm}^{2}$, 16 A



## Cable assemblies $2.5 \mathrm{~mm}^{2}, 20 \mathrm{~A}$



## Cable assemblies 2.5 mm², $^{2} 20 \mathrm{~A}$



## Distribution units



## Distribution unit

| RST compact distribution unit 1//30 | Name | Color | Part No. |
| :---: | :---: | :---: | :---: |
|  | RST compact distribution unit | black | 99.906.00 |
|  | Detailed information about the distribution units available in section "Distribution units". |  |  |
|  | Dimensions ( $\mathrm{W} \times \mathrm{L} \times \mathrm{H}$ ) | $104 \times$ |  |
|  | Fitted as required with | M25 | ctors 3 pole |
|  | Input | 1, RS |  |
|  | Outputs | 3, RS |  |
|  | Prewired with | 2.5 m | free) |
|  | Fastening options | yes |  |


| Name | Color | Part No. |
| :---: | :---: | :---: |
| RST multi-distribution unit | black | 99.929.0000 |
| Detailed information about the distribution units available in section "Distribution units". |  |  |
| Dimensions (W x L x H) | $104 \times$ |  |
| Fitted as required with | M25 | ctors 3 pole |
| Input | 1, RS |  |
| Outputs | 7, RS |  |
| Prewired with | 2.5 m | free) |
| Fastening options | yes |  |

## Accessories - Cover pieces




## Solar applications for systems up to 32A for single-phase supply 3 pole

## Application example



## General

The system is specially adapted to the requirements of solar technology. The connectors can be loaded with a maximum of 32 A on two contacts ( $\mathrm{L}, \mathrm{N}$ ) and are used for single-phase supply with ENS.
Special distribution boxes are used to bundle the electrical power of up to 6 inverters and thus complete the system.
These connectors have their own mechanical coding.
This means that only associated pairs of male and female can be connected with the correct polarity. This ensures a clear separation from the connectors of

## Features:

- Fast mounting through easy handling

■ UV-resistant

- Rated current up to 32 A
- Cross-sections up to $6 \mathrm{~mm}^{2}$
- Degree of protection IP65 ... IP68 (on request)

Coding

|  |  |  |  | Application <br> Mechanical coding | $\begin{aligned} & \text { Single-phase supply } \\ & 250 \mathrm{~V}, 32 \mathrm{~A} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| Name | Description | $\begin{aligned} & \text { Connection } \\ & \text { style } \\ & \hline \end{aligned}$ | Strain relief housing | Connection points per pole | concrete gray |
| Connectors | 1 x cable entry | Screw <br> Spring clamp | yes | 1 |  |
| Distribution | Distribution box RST RAN Solar |  |  |  |  |
|  | Distribution box RST Solar |  |  |  |  |
| Device connectors | M25 device connector, standard |  |  |  |  |
| Cable assemblies | Connection cable Male - Free end | $\begin{aligned} & \text { pre- } \\ & \text { assembled } \end{aligned}$ | pre- <br> assembled | pre- <br> assembled |  |
|  | Connection cable Female - Free end |  |  |  |  |
|  | Extension cable Male - Female |  |  |  |  |

## Connectors, 32 A

| Female connector |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Application Coding Color Part No. |  |  |  |  |  | Parto. |  |  |
|  |  |  | Screw technology for cable Ø 10 -14 mm Wire wire <br> solid |  |  | Screw technology for cable Ø 13 -18 mm Wire $\quad \mathrm{mm}^{2}$ <br> solid |  |  |
|  |  |  | fine-stranded | up to $6.0^{2}$ | without ferrules | fine-stranded | up to 6.03 | without ferrules |
| Single-phase supply 250 V 250 V | $\stackrel{\text { L.N, }}{\oplus}$ | $\begin{gathered} \text { concrete } \\ \text { grayl } \\ \text { black } \end{gathered}$ | 96.031.4154.3 |  |  | 96.031.4554.3 |  |  |



## M 25 device connector, 32 A



## Distribution unit



## Cable assemblies, $4.0 \mathrm{~mm}^{2}$, 25 A



## Cable assemblies, $4.0 \mathrm{~mm}^{2}$, 25 A



RST 20i4


## 2 variations for connecting electrical drives or for laying AS-i and 24 V auxiliary voltage

## Application example



## General

The four pole connector is based on the 5 pole variation with one pole left empty.

Two codings are available: a black coding for connecting electrical drives, and a brown coding for laying ASInterface and the 24 V auxiliary voltage together.

They are mechanically coded. This means that only associated pairs of male and female can be connected with the correct polarity. This ensures a clear separation from the connectors of the other product series.

Coding

|  | Description | $\begin{aligned} & \hline \begin{array}{l} \text { Connection } \\ \text { style } \end{array} \\ & \hline \end{aligned}$ | Strain relief housing | Application | Power 250/400V |  | AS-i/24V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Mechanical coding |  |  |  |
| Name |  |  |  | Connection points per pole | gray | black | brown |
| Connectors | $1 \times$ cable entry | $\begin{aligned} & \hline \text { Screw } \\ & \text { Crimp } \\ & \hline \end{aligned}$ | yes | 1 |  |  |  |
|  | 2 x cable entry | Screw | yes | 1 |  |  |  |
| Distribution unit | RST compact distribution unit/multi-distribution unit |  |  |  |  | $\begin{array}{\|c\|} \hline \text { available } \\ \text { on request } \\ \hline \end{array}$ |  |
|  | Individual distribution box |  |  |  | $\begin{gathered} \text { available } \\ \text { on request } \end{gathered}$ | $\left.\begin{array}{\|c\|} \hline \text { available } \\ \text { on request } \end{array} \right\rvert\,$ | $\begin{array}{\|c\|} \hline \text { available } \\ \text { on request } \\ \hline \end{array}$ |
| Device connectors | M16 device connector, modular, straight |  |  |  |  |  |  |
|  | M16 device connector, modular, angled $7^{\circ}$ |  |  |  |  |  |  |
|  | M25 device connector, standard |  |  |  |  |  |  |
|  | M20 device connector, standard |  |  |  |  |  |  |
|  | M20 device connector, modular, angled |  |  |  |  |  |  |
|  | M25 device connector, modular, angled |  |  |  |  |  |  |
| Cable assemblies | Connection cable Male - Free end | pre- <br> assembled | pre- <br> assembled | pre- <br> assembled |  |  |  |
|  | Connection cable Female - Free end |  |  |  |  |  |  |
|  | Extension cable Male-Female |  |  |  |  |  |  |

## RST 20i4

## Connector for cables of Ø 6-10 mm and 10 - 14 mm



## Male connector

Unmounted with cable gland and with locking device.

Crimp contacts separately available under Accessories


| Application | Coding | Cable diameter in mm | Color | Part No. |  | Part No. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | with screw connection ${ }^{11}$ |  | with crimp connection (see Accessories) |  |
|  |  |  |  | Wire | $\mathrm{mm}^{2}$ | Wire | $\mathrm{mm}^{2}$ |
|  |  |  |  | rigid | 0.75-4.0 <br> without ferrules | rigid | 0.75-4.0 |
|  |  |  |  | fine-stranded |  | fine-stranded |  |
|  |  |  |  | stranded |  | stranded |  |
|  |  |  |  | 96.042.4053.0 |  | $\begin{aligned} & 96.142 .0053 .0 \\ & 96.142 .0053 .1 \end{aligned}$ |  |
| Power |  | 6-10 | black | 96.042.4053.1 |  |  |  |  |
| 250/400V | (@) $3,-$ | 10-14 | gray | $\begin{aligned} & 96.042 .4153 .0 \\ & 96.042 .4153 .1 \end{aligned}$ |  | 96.142.0053.1 |  |
|  |  |  |  |  |  | 96.142.0153.1 |  |
|  | (2) 1,2 , | $6-10$ <br> $1 \times$ AS-i Profile cable | brown | 96.042.4051.4 |  |  |  |
| 24 V | 3,4 | x AS-I Protile cable | brown | $\begin{aligned} & 96.042 .4951 .4 \\ & 96.042 .4851 .4 \end{aligned}$ |  |  |  |  |

## Connector, angled for cables of Ø 6-10 mm and 10 - 14 mm




## RST 20i4

## Connector for cables of Ø 13 -18 mm



## Male connector

Unmounted with cable gland and with locking device.

Crimp contacts separately available under Accessories


See Technical Data for sheath and insulation strip lengths.



## Splitter connector

| Female connector <br> Unmounted with cable gland. <br> See Technical Data for sheath and insulation strip lengths. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Applicatio | Coding | Cable diameter in mm | Color | Part No. |  |  |
|  |  |  |  | with screw <br> Wire <br> rigid <br> fine-stranded <br> stranded | $\mathrm{mm}^{2}$ $0.75-1.5$ <br> without ferrules |  |
| $\begin{array}{r} \text { Power } \\ 250 / 400 \end{array}$ | (6a) $\begin{aligned} & 1,2, \\ & 3,0\end{aligned}$ | $\begin{array}{r} 6-10 \\ 10-14 \end{array}$ | $\begin{gathered} \text { gray } \\ \text { black } \\ \text { gray } \\ \text { black } \end{gathered}$ | $\begin{aligned} & 96.041 .4253 .0 \\ & 96.041 .4233 .1 \\ & 96.041 .4353 .0 \\ & 96.041 .4353 .1 \end{aligned}$ |  |  |

Mounting plate
For splitter connectors


Color Part No.
gray
01.006.1553.0
01.006.1553.1

## M 25 device connector, standard



## Male connector

Correct positioning guaranteed due to flattened thread. Fastening with screws from outside. With locking device

Crimp contacts separately available under Accessories

See the Technical Data for insulation strip lengths.



## M20 device connector, modular, straight



## Male connector

Correct positioning guaranteed due to flattened thread. Fastening with screws from inside. With locking device.

Crimp contacts separately available under Accessories



## M 16 device connector, modular, straight



## Male connector

Correct positioning guaranteed due to flattened thread. Fastening with screws from inside. With locking device.

Crimp contacts separately available under Accessories



## M 16 device connector, modular, $7^{\circ}$ angle



## Male connector

Correct positioning guaranteed due to flattened thread. Fastening with screws from inside. Angled $7^{\circ}$, thread M16.
With locking device.

Crimp contacts separately available under Accessories


See the Technical Data for insulation strip lengths.


| Application | Coding | Color | Part No. |  | Part No. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ventreise 8,7.14 |  |  | with screw connection |  | with crimp connection (see Accessories) |  |
|  |  |  | Wire | mm² | Wire | $\mathrm{mm}^{2}$ |
| tame - 8 mn |  |  | rigid | $0.75-4.0$ <br> without ferrules | rigid | $0.75-4.0$ |
|  |  |  | fine-stranded |  | fine-stranded |  |
|  |  |  | stranded |  | stranded |  |
|  |  |  | Term. poles | 1 | Term. poles | 1 |
|  |  |  | Thread | M16 1.5 | Thread | M16 1.5 |
| 210015 |  |  | Gland | inside | Gland | inside |
|  |  |  | Locking device | yes | Locking device | yes |
| $\begin{gathered} \text { Power } \\ 250 / 400 \mathrm{~V} \end{gathered}$ | $\begin{aligned} & 1,2, \\ & 3,( \pm \end{aligned}$ | gray black | $\begin{aligned} & 96.046 .6153 .0 \\ & 96.046 .6153 .1 \end{aligned}$ |  | $\begin{aligned} & 96.146 .2153 .0 \\ & 96.146 .2153 .1 \end{aligned}$ |  |
| $\begin{aligned} & \text { AS-i/ } \\ & 24 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 1,2 \\ & 3,4 \end{aligned}$ | brown | 96.046 .6151 .4 |  |  |  |

## M20 device connector, modular, angled



## Male connector

 thread. Fastening with screws from inside. $90^{\circ}$ angle, M20 threadWith locking device.

Crimp contacts separately available under Accessories

Correct positioning guaranteed due to flattened


See the Technical Data for insulation strip lengths.


Part No.

| with crimp connection (see Accessories) |  |
| :--- | :---: |
| Wire <br> Wigid |  |
| rige-stranded | $0.75-4.0$ |
| stranded | 1 |
| Term. poles | $\mathrm{M} 20 \times 1.5$ |
| Thread | inside |
| Gland | yes |
| Locking device |  |

96.044.6053.0
96.044.6053.1
96.044.6051.4

| Power | 1,2, | gray |
| :---: | :---: | :---: | ---: |
| $250 / 400 \mathrm{~V}$ | 3, | black |
| AS-i / | 1,2, | brown |
| 24 V | 3,4 |  |

$\square$

| with screw connection |  |
| :---: | :---: |
| Wire | mm ${ }^{2}$ |
| rigid |  |
| fine-stranded | 0.75-4.0 |
| stranded | without ferrules |
| Term. poles | 1 |
| Thread | M20 $\times 1.5$ |
| Gland | inside |
| Locking device | yes |

Locking device
96.144.2053.0
96.144.2053.1

## M25 device connector, modular, angled



## Male connector

Correct positioning guaranteed due to flattened thread. Fastening with screws from inside. $90^{\circ}$ angle, M25 thread
With locking device

Crimp contacts separately available under Accessories


See the Technical Data for insulation strip lengths.


Part No.

| with crimp connection (see Accessories) |
| :--- |
| Wire |
| $\mathrm{mm}^{2}$ |


| Wire | $\mathrm{mm}^{2}$ |
| :--- | :---: |
| rigid | $0.75-4.0$ |
| fine-stranded |  |
| stranded | 1 |
| Term. poles | $\mathrm{M} 25 \times 1.5$ |
| Thread | inside |
| Gland | yes |
| Locking device |  |


| Power | 1,2, | gray |  |
| :---: | :---: | ---: | ---: |
| $250 / 400 \mathrm{~V}$ | 3, | 3 | black |
| AS-i / | 1,2, | brown |  |
| 24 V | 3,4 |  |  |

96.044.6253.0
96.044.6253.1
96.044.6251.4
96.144.2253.0
96.144.2253.1

## Cable assemblies $1.5 \mathrm{~mm}^{2}$, 16 A



## Cable assemblies 1.5 mm², $^{2}$ 16A



## Cable assemblies $2.5 \mathrm{~mm}^{2}, 20 \mathrm{~A}$



## Cable assemblies $2.5 \mathrm{~mm}^{2}, 20 \mathrm{~A}$



## Cable assemblies $1.5 \mathrm{~mm}^{2}$, 16A, power 4 pole



## Cable assemblies $2.5 \mathrm{~mm}^{2}$, 20A, AS-i 24V



## Distribution unit



## Accessories



## Accessories

| Crimp contacts* <br> Female contacts | Name | Marking (groove) $\mathrm{mm}^{2}$ |  | Part No. Units per pack |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Crimp contact | unmarked | 0.75-1.0 | 02.125.5521.8 | 100 |
|  | Crimp contact | 1 | 1.5 | 02.125.5621.8 | 100 |
|  | Crimp contact | 2 | 2.5 | 02.125.5721.8 | 100 |
|  | Crimp contact | 3 | 4.0 | 02.125.5821.8 | 100 |


| Crimp contacts* <br> Male contacts | Name | Marking (groove) $\mathrm{mm}^{2}$ |  | Part No. Units per pack |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Crimp contact | unmarked | 0.75-1.0 | 05.545.0021.8 | 100 |
|  | Crimp contact | 1 | 1.5 | 05.545.0121.8 | 100 |
|  | Crimp contact | 2 | 2.5 | 05.545.0221.8 | 100 |
|  | Crimp contact | 3 | 4.0 | 05.545.0321.8 | 100 |


| Crimping tool | Name |
| :--- | :--- |
|  | Crimping tool incl. system kit <br> Crimping die B <br> Contact positioner |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


| Unlocking tool <br> for crimp contacts | Name | Part No. |
| :--- | :--- | :--- |
|  |  |  |

## RST 20i5



## The 5 pole versions - general power applications, switching functions, power/dimming signals and low voltage

## Application example



## General

Four variations are available for the 5 pole connectors: the standard version for general power applications, another version for switching functions, a version to combine power and dimming signals, as well as a version for low-voltage applications.

All connectors are mechanically coded. This means that only associated pairs of male and female can be connected with the correct polarity. You therefore have the security of a clear separation of different applications without having to redo any incorrect connections. The color of the connectors indicates the links that belong together.

## Coding



## Connector for cables of Ø 6-10 mm and 10 - 14 mm



## Male connector

Unmounted with cable gland and with locking device.

Crimp contacts separately available under
Accessories
See Technical Data for sheath and insulation strip lengths.


| Application | Codin |  | Cable diameter in mm | Color | Part No. |  | Part No. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | with screw connection ${ }^{11}$ |  | with crimp connection (see Accessories) |  |
|  |  |  |  |  | Wire | mm ${ }^{2}$ | Wire | $\mathrm{mm}^{2}$ |
|  |  |  |  |  | rigid | $0.75-4.0$ <br> without ferrules | fine-stranded | 0.75-4.0 |
|  |  |  |  |  | fine-stranded |  | stranded |  |
|  |  |  |  |  | stranded |  | Locking device | yes |
|  |  |  |  |  | Locking device | yes |  |  |
|  |  |  |  | gray | 96.052.4053.0 |  | $\begin{aligned} & 96.152 .0053 .0 \\ & 96.152 .0053 .1 \end{aligned}$ |  |
| Power |  | ${ }_{(+)}, \mathrm{N}$, | 6-10 | black | 96.052.4053.1 |  |  |  |  |
|  |  |  | 10-14 | gray | $\begin{aligned} & 96.052 .4153 .0 \\ & 96.052 .4153 .1 \end{aligned}$ |  | $96.152 .0153 .0$ |  |
| Power 250V |  |  | 6-10 |  | $\begin{aligned} & 96.052 .4053 .6 \\ & 96.052 .4153 .6 \end{aligned}$ |  | 96.152.0153.1 |  |
| + dimming |  | D1, D2 | 10-14 | turquoise |  |  | $\begin{aligned} & 96.152 .0053 .6 \\ & 96.152 .0153 .6 \end{aligned}$ |  |
| Switch.func. |  |  | 6-10 |  |  |  | 96.152.0053.9 |  |
| 250 V |  | 3,4,5 | 10-14 | blue | $\begin{aligned} & 96.052 .4053 .9 \\ & 96.052 .4153 .9 \end{aligned}$ |  | 96.152.0153.9 |  |
| $50 \mathrm{~V}, \mathrm{LV}$, |  |  | 6-10 |  | $\begin{aligned} & 96.052 .4051 .4 \\ & 96.052 .4151 .4 \end{aligned}$ |  | $\begin{aligned} & 96.152 .0051 .4 \\ & 96.152 .0151 .4 \end{aligned}$ |  |
| bus signals |  |  | 10-14 | brown |  |  |  |  |  |  |

## Connector, angled for cables of Ø 6-10 mm and $10-14 \mathrm{~mm}$



## Connector for cables of Ø 13 -18 mm



## Male connector

Unmounted with cable gland and with locking device.

Crimp contacts separately available under
Accessories.
See Technical Data for sheath and insulation strip lengths.


| Application | Coding C | Cable diameter in mm | Color | Part No. |  | Part No. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | with screw connection ${ }^{2 /}$ |  | with crimp connection (see Accessories) |  |
|  |  |  |  | Wire | mm ${ }^{2}$ | Wire | $\mathrm{mm}^{2}$ |
|  |  |  |  | rigid |  | fine-stranded | 0.75-4.0 |
|  |  |  |  | fine-stranded | 0.75-4.0 | stranded | $0.75-4.0$ |
|  |  |  |  | stranded | without ferrules | Locking device | yes |
|  |  |  |  | Locking device | yes |  |  |
| Power 250V/400V | $\begin{aligned} & \Theta_{1}^{*}, \mathrm{~N}, \\ & 3,2,1 \end{aligned}$ | 13-18 | gray black | $\begin{aligned} & 96.052 .4553 .0 \\ & 96.052 .4553 .1 \end{aligned}$ |  | $\begin{aligned} & 96.152 .0553 .0 \\ & 96.152 .0553 .1 \end{aligned}$ |  |
| Power 250V <br> + dimming | $\begin{aligned} & \mathrm{L}, \mathrm{E}_{2}, \mathrm{~N}, \\ & \mathrm{D} 1, \mathrm{D} 2 \end{aligned}$ | 13-18 | turquoise | 96.052.4553.6 |  | 96.152.0553.6 |  |
| Switch.func. 250 V | (8) $\begin{aligned} & 1,2, \\ & 3,4,5\end{aligned}$ | 13-18 | blue | 96.052.4553.9 |  | 96.152.0553.9 |  |
| 50 V , LV, <br> bus signals | $\begin{gathered} 1,2 \\ 3,4,5 \end{gathered}$ | 13-18 | brown | 96.052.4551.4 |  | 96.152.0551.4 |  |

## Splitter connector



## Mounting plate <br> for splitter connectors




## M 25 device connector, standard



## Male connector

Correct positioning guaranteed due to flattened thread. With locking device.
Fastening with screws from outside.
Crimp contacts separately available under
Accessories
See the Technical Data for insulation strip lengths.


| Application | Coding | Color | Part No. |  | Part No. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | with screw connection |  | with crimp connection (see Accessories) |  |
|  |  |  | Wire | mm ${ }^{2}$ | Wire | $\mathrm{mm}^{2}$ |
|  |  |  | rigid |  | rigid |  |
|  |  |  | fine-stranded | 0.75-4.0 | fine-stranded | $0.75-4.0$ |
|  |  |  | stranded | without ferrules | stranded |  |
|  |  |  | Term. poles | 1 | Term. poles | 1 |
|  |  |  | Thread | M $25 \times 1.5$ | Thread | M25 x 1.5 |
|  |  |  | Gland | outside | Gland | outside |
|  |  |  | Locking device | yes | Locking device | yes |
| Power $250 \mathrm{~V} / 400 \mathrm{~V}$ | $\begin{array}{ll} \text { (ex } & \stackrel{\ominus}{*}, \mathrm{~N}, \\ 3,2,1 \end{array}$ | gray black | $96.052 .5053 .0$ |  | $\begin{aligned} & 96.152 .1053 .0 \\ & 96.152 .1053 .1 \end{aligned}$ |  |
| Power 250V | $\mathrm{L}, \mathrm{E}_{5}, \mathrm{~N},$ | turquoise | 96.052.5053.6 |  | 96.152.1053.6 |  |
| Switch.func. $250 \mathrm{~V}$ | $\begin{aligned} & 1,2 \\ & 3,4,5 \end{aligned}$ | blue | 96.052.5053.9 |  | 96.152.1053.9 |  |
| 50 V , LV, bus signals | $\begin{aligned} & 1,2, \\ & 3,4,5 \end{aligned}$ | brown | 96.052.5051.4 |  | 96.152.1051.4 |  |

## M 20 device connector, modular, straight



## Male connector

Correct positioning guaranteed due to flattened thread. With locking device.
Fastening with screws from inside.
Crimp contacts separately available under Accessories
See Technical Data for sheath and insulation strip lengths.



## M 16 device connector, modular, straight



## Male connector

Correct positioning guaranteed due to flattened thread. With locking device.
Fastening with screws from inside.
Crimp contacts separately available under
Accessories
See the Technical Data for insulation strip lengths.


| Application Coding |
| :--- |

## M 16 device connector, modular, $7^{\circ}$ angle



## Male connector

Correct positioning guaranteed due to flattened thread. With locking device.
Fastening with screws from inside.
Angled $7^{\circ}$, thread M16.
Crimp contacts separately available under Accessories
See the Technical Data for insulation strip lengths.



## M 20 device connector, modular, angled



## Male connector

Correct positioning guaranteed due to flattened thread. With locking device.
Fastening with screws from inside.
$90^{\circ}$ angle, M20 thread.
Crimp contacts separately available under
Accessories
See the Technical Data for insulation strip lengths.



## M25 device connector, modular, angled



## Male connector

Correct positioning guaranteed due to flattened thread. With locking device.
Fastening with screws from inside.
$90^{\circ}$ angle, M25 thread
Crimp contacts separately available under Accessories
See the Technical Data for insulation strip lengths.


| Application | Coding | Color | Part No. |  | Part No. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | with screw connection |  | with crimp connection (see Accessories) |  |
|  |  |  | Wire | mm ${ }^{2}$ | Wire | $\mathrm{mm}^{2}$ |
| $t_{\text {man }+6 \text { nn }}$ |  |  | rigid | 0.75-4.0 <br> without ferrules | fine-stranded | 0.75-4.0 |
|  |  |  | fine-stranded |  | stranded |  |
|  |  |  | stranded |  | Term. poles | 1 |
|  |  |  | Term. poles | 1 |  | M $25 \times 1.5$ |
|  |  |  | Thread | M $25 \times 1.5$ | Gland | inside |
|  | 18 |  | Gland | inside | Locking device | yes |
|  |  |  | Locking device | yes |  |  |
| Power $250 \mathrm{~V} / 400 \mathrm{~V}$ | $\begin{aligned} & \Theta_{1}^{*}, \mathrm{~N}, \\ & 3,2,1 \end{aligned}$ | gray black | $\begin{aligned} & 96.054 .6253 .0 \\ & 96.054 .6253 .1 \end{aligned}$ |  | $96.154 .2253 .0$ |  |
| Power 250V <br> + dimming | $\begin{aligned} & \mathrm{L}, \Theta_{\mathrm{E}}, \mathrm{~N}, \\ & \mathrm{D} 1, \mathrm{D} 2 \end{aligned}$ | turquoise | 96.054.6253.6 |  | 96.154.2253.6 |  |
| $\begin{aligned} & \text { Switch.func. } \\ & 250 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 1,2, \\ & 3,4,5 \end{aligned}$ | blue | 96.054.6253.9 |  | 96.154.2253.9 |  |
| $50 \mathrm{~V}, \mathrm{LV}$, bus signals | $\begin{array}{r} 1,2 \\ 3,4,5 \end{array}$ | brown | 96.054.6251.4 |  | 96.154.2251.4 |  |

## Cable assemblies $1.5 \mathrm{~mm}^{2}$, 16 A



## Cable assemblies 1.5 mm²$^{2}$, 16A



## Cable assemblies $2.5 \mathrm{~mm}^{2}, 20 \mathrm{~A}$



## Cable assemblies $2.5 \mathrm{~mm}^{2}, 20 \mathrm{~A}$



## Cable assemblies $4.0 \mathrm{~mm}^{2}, 20 \mathrm{~A}$



## Cable assemblies $4.0 \mathrm{~mm}^{2}, 20 \mathrm{~A}$



## Cable assemblies $2.5 \mathrm{~mm}^{2}$, 20 A, Power 5 pole



RST 20i5

## Distribution unit



## Accessories

Female connector
4 to 5 pole
Male connector
$\mathbf{4}$ to 5 pole

## Accessories

| Crimp contacts* <br> Female contacts | Name |  | roove) $\mathrm{mm}^{2}$ | Part No. Units | pack |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Crimp contact | unmarked | 0.75-1.0 | 02.125.5521.8 | 100 |
|  | Crimp contact | 1 | 1.5 | 02.125.5621.8 | 100 |
|  | Crimp contact | 2 | 2.5 | 02.125.5721.8 | 100 |
|  | Crimp contact | 3 | 4.0 | 02.125.5821.8 | 100 |


| Crimp contacts* <br> Male contacts | Name | Marking (groove) $\mathrm{mm}^{2}$ |  | Part No. Units per pack |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Crimp contact | unmarked | 0.75-1.0 | 05.545.0021.8 | 100 |
|  | Crimp contact | 1 | 1.5 | 05.545.0121.8 | 100 |
|  | Crimp contact | 2 | 2.5 | 05.545.0221.8 | 100 |
|  | Crimp contact | 3 | 4.0 | 05.545.0321.8 | 100 |


| Crimping tool | Name |
| :--- | :--- |
|  | Crimping tool incl. system kit <br> Crimping die B <br> Contact positioner |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


| Unlocking <br> tool <br> for crimp contacts | Unlocking tool | Part No. |
| :--- | :--- | :--- |
|  |  | 05.502 .3500 .0 |


(3) )

## Solar applications up to 25 A for single-phase supply with three-phase power monitoringor three-phase supply

## Application example



## General

The system is specially adapted to the requirements of solar technology. The connectors can be loaded with 25 A on two contacts (L, N). They are used for single-phase supply with three-phase monitoring.
Special distribution boxes are used to bundle the electrical power of up to 6 inverters and thus complete the system.
These connectors have their own mechanical coding.
This means that only associated pairs of male and female can be connected with the correct polarity. This ensures a clear separation from the connectors of the other product series.

## Features:

- Fast mounting through easy handling

■ UV-resistant
■ Rated current up to 25 A


- Cross-sections up to $4 \mathrm{~mm}^{2}$

■ Degree of protection IP 65 ... IP 68 (on request)

## RST $25 i 5$

## Connectors, 25 A

| Female connector |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Application | Coding | Color | Par No. |  |  | Par No. |  |  |
|  |  |  | Screw technology for cable Ø 10 -14 mm |  |  | Screw technology for cable Ø 13 -18 mm Wire |  |  |
|  |  |  | fine-stranded | up to 4.0 | $\begin{aligned} & \text { without } \\ & \text { ferrules } \end{aligned}$ | fine-stranded | up to 4.0 | without |
| $\begin{gathered} \text { 3-phase } \\ \text { supply } \\ 250 / 400 \mathrm{~V}, \\ 25 \mathrm{~A} \end{gathered}$ | $\left(\begin{array}{l}\text { (o) } \\ \text { L.N. © } 1,2\end{array}\right.$ | $\begin{gathered} \text { concrete } \\ \text { grayl } \\ \text { black } \end{gathered}$ | 96.051.4154.3 |  |  | 96.051.4554.3 |  |  |



## M 25 device connector, 25 A



## Distribution unit



## Cable assemblies 4.0 mm², $^{2} 25 \mathrm{~A}$



## Cable assemblies $4.0 \mathrm{~mm}^{2}$, 25A



Distribution units

diver

48
 In

## For use in rough environments



## General

The pluggable distribution units play a major role in power distribution. In their simplest function, they merely have to provide branches in the required locations. Practice shows, however, that the requirements may be much more complex.

Examples can be found in AC and DC wiring through distribution units with fine fuses up to boxes with integrated safety outlets or switches.
Two housing variations are the basis: a low-profile design with up to four slots, and a high-profile design with a total of up to eight slots.
Unused slots are closed during production.

# Compact and multi-distribution units Flexibility according to the modular RST principle 

## The highest level of flexibility!

Two housing variations are the basis: a flat design with up to four slots, and a high design with a total of up to eight slots. Unused slots are closed during production.
The distribution units are equipped individually using M25 device connectors.
These are available in various pole configurations, with mechanical coding and designs; they are customized using $2.5 \mathrm{~mm}^{2}$ wires. Larger cross sections are available upon request.

## Overview of the standard components:

Depending on the application, you can choose among 15 codings. Mechanically coded means that only the matching male and female connectors can be plugged together. Thus you can be sure that your different applications are clearly distinguished without having to rework incorrect connections.

The connector colors signal the matching connections. The standard power coding is an exception. Here you can select between black and gray. These are compatible with one another.

| RST 200 i |
| :---: |
| Spring clamp Screw |
| \% œ |
|  |
|  |
|  |  |
|  |
|  |
| (3) |
| LVemaleor Mate |
|  |  |
|  |
|  |
|  |
| Spring clamp |
|  |  |
|  |
| As-i |
| +, - |
| Coing: pebeble gray |



1, 2, © Coding: brown Spring clamp Screw
(3)

Switch. function 230 V
Pole designation 1, 2, 3

RST20i4ping
Screw
Female or Male
Power 250/400V
Pole designation
$\Theta_{1}, \mathbf{1 , 2 , 3}$
Coding:
black, gray
RST20i5
Spring clamp
Screw
O.

Female or Male Power 250/400V Pole designation

$$
\Theta_{\theta}, \mathbf{N}, \mathbf{3}, \mathbf{2}, 1
$$

Coding: black, gray Spring clamp Screw


LV, signals, bus, 50 V Pole designation 1, 2, 3, 4, 5 Coding: brown



Switch. function 230 V
Pole designation 1, 2, 3, 4, 5

RST 25i5


BONNECIOR


## Compact distribution units with max. 4 slots

| RST compact distribution unit | Name | Color | Part No. |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Distribution unit 5 pole | $\begin{aligned} & \text { gray } \\ & \text { black } \end{aligned}$ | aon request 96.050.0153.1 |  |
|  |  |  |  | Circuit diagram |
|  | Dimensions ( $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$ ) |  | . 2 mm |  |
|  | Input | 1 |  | $5-$ |
|  | Outputs | 3 |  |  |
|  | Routing 3 outputs 230/400V, 20A |  | g color black | - |
|  | pre-wired with |  |  |  |
|  | Fastening option | yes |  |  |
| RST compact distribution unit | Name | Color | Part No. |  |
|  | Distribution unit 5 pole | $\begin{aligned} & \text { gray } \\ & \text { alack } \end{aligned}$ | on request $96.050 .1153 .1$ |  |
|  |  |  |  | Circuit diagram |
|  | Dimensions ( $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$ ) |  | . 2 mm |  |
|  | Input | 1 |  |  |
|  | Outputs | 2 |  |  |
|  | pre-wired with |  |  |  |
|  | Fastening option | yes |  |  |
| RST compact distribution unit | Name | Color | Part No. |  |
|  | Distribution unit 5 pole | gray | on request |  |
|  |  | L1 black | 96.050.3153.1 |  |
|  |  | L2 black | 96.050 .4153 .1 |  |
|  |  | L3 black | 96.050 .5153 .1 |  |
|  |  |  |  | Circuit diagram |
|  | Dimensions ( $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$ ) | $104 \times 162 \times 57.2 \mathrm{~mm}$ |  |  |
|  | Input | $1-2$ |  |  |
|  | Outputs | RST 20i5 coding color black |  |  |
|  | Routing 1 output 230/400V, 20 A |  |  |  |
|  | Routing 2 output $230 \mathrm{~V}, 20 \mathrm{~A}$ | RST20i3 coding color black |  |  |
|  | pre-wired with | $2.5 \mathrm{~mm}^{2}$ |  |  |
|  | Fastening option | yes |  |  |
| RST compact distribution unit | Name | Color Part No. |  |  |
|  | Distribution unit 5 pole | $\begin{aligned} & \text { gray } \\ & \text { black } \end{aligned}$ | aon request 96.050 .6153 .1 |  |
|  |  |  |  | Circuit diagram |
|  | Dimensions ( $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$ ) | $104 \times 162 \times 57.2 \mathrm{~mm}$ |  |  |
|  | Input | 1 |  |  |
|  | 1 Input 230/400V, 20A | RST 20 i5 coding color black |  |  |
|  | Outputs | 3, L1, L2, L3 |  |  |
|  | 3 Outputs 230V, 20A | RST20i3 coding color black |  |  |
|  | pre-wired with | $2.5 \mathrm{~mm}^{2}$ |  |  |
|  | Fastening option | yes |  |  |

## AS-i distribution unit



## Multi-distribution units with max. 8 slots

| Multi-distribution unit 5/3 pole,1I/70, 2x L1, L2, L3 | Name | Color | Part No. |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Multi-distribution unit 5/3 pole | gray black | $\begin{aligned} & \text { on request } \\ & 96.050 .7153 .1 \end{aligned}$ | Circuit diagram |
|  |  |  |  |  |
|  | Dimensions ( $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$ ) | $104 \times 162 \times 96 \mathrm{~mm}$ |  |  |
|  | Input | 1 |  |  |
|  | Outputs | 7 |  |  |
|  | Routing 230/400V, 20A | 1, RST20i5 coding color black |  |  |
|  | 230V, 20A | 6, RST20i3 coding color black |  |  |


| Multi-distribution unit 5/3 pole 1I/30, L1, L2, L3 | Name | Color | Part No. |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Multi-distribution unit 5/3 pole | gray black | $\begin{aligned} & \text { on request } \\ & 99.902 .0000 .7 \end{aligned}$ | Circuit diagram |
|  |  |  |  |  |
|  | Dimensions ( $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$ ) | $104 \times 162 \times 96 \mathrm{~mm}$ |  |  |
|  | Input | 1 |  |  |
|  | Outputs | 4 |  |  |
|  | Routing 230/400V, 20A | 1, RST20i5 coding color black |  |  |
|  | 230V, 20A | 3, RST20i3 coding color black |  |  |


| Multi-distribution unit 5/3 pole 1I/30, L1, L2, L3 | Name | Color | Part No. |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Multi-distribution unit 5/3 pole | gray black | $\begin{aligned} & \text { on request } \\ & 99.901 .0000 .7 \end{aligned}$ | Circuit diagram |
|  |  |  |  |  |
|  | Dimensions ( $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$ ) | 104 | mm |  |
|  | Input 230/400V, 20A | 1, R | ing color black |  |
|  | Outputs |  |  |  |
|  | 230 V , with integrated fine fuse | 3, RST20i3 coding color black |  |  |
|  | holder up to 10 A |  |  |  |
|  | incl. fine fuse | 10 A |  |  |



## Distribution units

## Request for special version - please complete and return by fax to: +49-951-9326-996



No.
$\qquad$

# Multi-distribution units, <br> radio, halogen technology 

| Switching output EnOcean 4-fold | Name | Color Part No. |  |
| :---: | :---: | :---: | :---: |
|  | gesis RC RST-0/4 | black 83.020.0505.0 |  |
|  | For radio switches and transmitters, se | Accessories. |  |
|  | Dimensions ( $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$ ) | $104 \times 162 \times 96 \mathrm{~mm}$ | Circuit diagram |
|  | Input power (male connector) | 230 V AC/20A (cod. black) |  |
|  | Output power (female connector) | 230 V AC/20A (cod. black) |  |
|  | Switched outputs (female connector) | 4, separate control poss., 230V each, 6A |  |
|  | Control | e.g. EnOcean radio switch |  |
|  | Degree of protection | IP68 (all connections plugged in or closed) |  |
|  | Ambient temperature | $-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ |  |
|  | Fastening option | yes, 4 elongated holes |  |
|  | Electrical connections | pluggable with RST $20 i 2 \ldots 20 \mathrm{i} 3$ |  |



# Multi-distribution units, <br> LED technology 



24V DC


Constant current source,
350 mA DC


Constant current source,
700 mA DC


| Name | Color | Part No. |  |
| :---: | :---: | :---: | :---: |
| gesis RST PSU 12/12 LED | black | 83.020.0900.0 |  |
| For distribution units for parallel co Unused connections must be close | tion of ee Chap | s, see Chapter RS sories. |  |
| Dimensions ( $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$ ) | 104 | mm | Circuit diagram |
| Input power (male connector) | 230 V | (cod. black) |  |
| Outout power (female connector) | 230 V | (cod. black) |  |
| Output LED (female connector) | 12V DC/max. 12W (cod. brown) IP68 (all connections plugged in or closed)$-25^{\circ} \mathrm{C} \text { to }+55^{\circ} \mathrm{C}$ |  |  |
| Degree of protection |  |  |  |
| Ambient temperature |  |  |  |
| Fastening option | yes, | d holes |  |
| Electrical connections | plug | RST20i2 ... 20i3 |  |



| Name | Color | Part No. |
| :--- | :--- | :--- |
| gesis RST PSI 350/12 LED | black | 83.020 .0902 .0 |
| For |  |  |

For distribution units for serial connection of LED lamps, see Chapter RST20i2.
Unused connections must be closed, see Chapter Accessories.

Dimensions $(\mathrm{L} \times \mathrm{W} \times \mathrm{H})$
Input power (male connector)
Output power (female connector) Output LED (female connector)
Degree of protection
Ambient temperature
Fastening option
Electrical connections
$104 \times 162 \times 96 \mathrm{~mm}$
230 V AC/20A (cod. black)
230 V AC/20A (cod. black)
350 mA DC/max. 12W (cod. brown) IP68 (all connections plugged in or closed)
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
yes, 4 elongated holes
pluggable with RST 20 i 2 ... 20i3

Circuit diagram


| Name | Color | Part No. |
| :--- | :--- | :--- |
| gesis RST PSI 700/12 LED | black | 83.020 .0903 .0 |

For distribution units for serial connection of LED lamps, see Chapter RST20i2.
Unused connections must be closed, see Chapter Accessories.

Dimensions ( $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$ )
Input power (male connector)
Output power (female connector) Output LED (female connector)
Degree of protection
Ambient temperature
Fastening option
Electrical connections
$104 \times 162 \times 96 \mathrm{~mm}$
230 V AC/20A (cod. black)
230 V AC/20A (cod. black)
700 mA DC/max. 12W (cod. brown) IP68 (all connections plugged in or closed)
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
yes, 4 elongated holes
pluggable with RST 20 i 2 ... 20i3

Circuit diagram


## Accessories

## Multivendor radio switch, 2/4 channels



## Accessories

## Handheld radio transmitter, 4 channels

|  | Type | Colo | Part No. |
| :---: | :---: | :---: | :---: |
|  | Handheld radio transmitter pure white RAL 9010 F0.000.0009.1  <br> Handheld radio transmitter black RAL 9005 F0.000.0009.2 <br> Handheld radio transmitter silver finish F0.000.0009.3  <br> Handheld radio transmitter <br> - Batteryless and maintenance-free <br> - For stick-on surface mounting or as a handheld remote control. |  |  |
| Batteryless and maintenance-free 4-channel handheld transmitter for direct control of the actuators. |  |  |  |

Radio switch, 2/4 channels


Batteryless and maintenance-free radio switches with $2 / 4$ channels for direct control of the actuators. The rockers in neutral center position are marked with I/O or Up/Down ( $\triangle \boldsymbol{\nabla}$ ) symbols. Between the rockers, there is a marking field with detachable marking strips. The following combination frames fit these radio switches.

| Type | Color | Part No. | Marking |
| :---: | :---: | :---: | :---: |
| Radio switch, 2 channels | white aluminum finish white aluminum finish | F0.000.0002.1 <br> F0.000.0004.4 <br> F0.000.0002.2 <br> FO 00000004.5 | $\begin{aligned} & 1 / 0 \\ & 1 / 0 \\ & (\triangle \boldsymbol{\nabla}) \end{aligned}$ |
| Radio switch, 4 channels | white aluminum finish white aluminum finish | $\begin{aligned} & \text { FO.000.0002.3 } \\ & \text { F0.000.0004.6 } \\ & \text { F0.000.0002.4 } \\ & \text { F0.000.0004.7 } \end{aligned}$ | $\begin{aligned} & 1 / 0 \\ & 1 / 0 \\ & (\triangle \boldsymbol{V}) \\ & (\triangle \boldsymbol{\nabla}) \end{aligned}$ |

Radio switch, 2/4 channels (light) I / 0

- the rockers are imprinted with I/O symbols

Radio switch, $2 / 4$ channels (sunblind) Up / Down

- the rockers are imprinted with Up/Down $(\triangle \boldsymbol{\nabla})$ symbols

Combination frames must be ordered separately.

Combination frames for radio switches with 2/4 channels


## Accessories - Cover pieces

Female connector
$\mathbf{2}$ to 3 pole
Male connector
$\mathbf{2}$ to 3 pole
Female connector
4 to 5 pole
Male connector
$\mathbf{4}$ to 5 pole

## Accessories



## Spacer ring for M 25 device connectors, Female connector 2 to 5 poles

A spacer ring makes it possible to unlock a connection at the device connector.


## Accessories

| Crimp contacts* <br> Female contacts | Name | Marking (groove) $\mathrm{mm}^{2}$ |  | Part No. Units per pack |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Crimp contact | unmarked | 0.75-1.0 | 02.125.5521.8 | 100 |
|  | Crimp contact | 1 | 1.5 | 02.125.5621.8 | 100 |
|  | Crimp contact | 2 | 2.5 | 02.125.5721.8 | 100 |
|  | Crimp contact | 3 | 4.0 | 02.125.5821.8 | 100 |


| Crimp contacts* <br> Male contacts | Name | Marking (groove) $\mathrm{mm}^{2}$ |  | Part No. Units per pack |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Crimp contact | unmarked | 0.75-1.0 | 05.545.0021.8 | 100 |
|  | Crimp contact | 1 | 1.5 | 05.545.0121.8 | 100 |
|  | Crimp contact | 2 | 2.5 | 05.545.0221.8 | 100 |
|  | Crimp contact | 3 | 4.0 | 05.545.0321.8 | 100 |


| Crimping tool | Name |
| :--- | :--- |
|  | Crimping tool incl. system kit <br> Crimping die B <br> Contact positioner |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


| Unlocking tool <br> for crimp contacts | Name | Part No. |
| :--- | :--- | :--- |
|  |  | Unlocking tool |
|  |  |  |

## Accessories

| Screwdriver <br> acc. DIN 5264 | Pame | Part No. |
| :--- | :--- | :--- |
|  |  | Screwdriver |
|  |  |  |


| Insertion tool <br> For termination points with spring clamp technology | Name |  | Part No. |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Insertion tool |  |  | 95.101.1300.0 |
|  | Spring clamp technology <br> Ferrules $0.08-6.0 \mathrm{~mm}^{2}$, AWG 28-10 <br> Total length 174 mm |  | - Square compression <br> - Releasable latch <br> - Compression adjustable |  |



## Accessories sample kits

| RST20i3 sample kit | Name <br> RST20i3 trial kit | Part No. |
| :--- | :--- | :--- |


| RST 20i5 sample kit | Name <br> RST20i5 trial kit | Part No. |
| :--- | :--- | :--- |



| Sample illumination cable | Name | Part No. |
| :--- | :--- | :--- |
|  | Sample illumination cable |  |

## RST POWER Connectors <br> Compact, quick and strong

## Always right on site

The new RST Power connector series combines the highest degree of connectivity with the highest degree of contact density.

The 5 pole IP66/67 connectors and device connections have been designed for $250 / 400 \mathrm{~V}$ and a maximum
current of 50 A . In addition to the well-proven screw connection technology, the components are also available in crimp technology - ideal for industrial pre-assembly.

With only a few individual parts, any electrical device can be made pluggable, which makes for quick and reliable on-site installations.


## Advantages at a glance:

- High load carrying capability, up to 50 A
- Cross sections up to $16 \mathrm{~mm}^{2}$

■ For M 32 knock-outs

## Installation with a system

The housing design delivers consistently simple assembly and installation. The device, or bulkhead connectors, intended for installation inside a housing, require no more space than a standard M32 cable gland, and are mounted directly into the panel knock-out via a snap-in fitting. In cases where a knock-out has been prepared for M40 cable glands, an adapter ring ensures that the required center position is maintained.
The connectors consist of two parts and are installed with only a few flicks of the wrist. An ingenious system of locking mechanisms eliminates timeconsuming fastening with screws.
The user-friendly bayonet lock can also protect against accidental disconnection of the connector (if necessary with a lock-out cable).

## Pluggable installation from Wieland



## RST50 Connectors

## Simply reliable

## Assembly of the device connector



Tighten the counter nuts positioned inside


## Fasten or loosen

 the contact carrier
## Assembly of the connector



Insert the cable into the strain relief housing


Connect the wire using screw technology


Loosen the wires connected using crimp technology



## The new RST Power series up to 50A

## Application example



## General

The new RST Power series is particularly designed for device engineering. With a current-carrying capability of 50 A combined with an extremely compact design, the connector fits almost everywhere.

The 4 pole connector is based on the 5 pole variation, with one pole left empty.

## Coding

|  |  |  |  | Application | Power 250/400V |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 1,2,3, $¢$ |
| Name | Description | Connection style | Strain relief housing | Connection points per pole | black |
| Connectors | 1 x wire entry | Screw Spring clamp | yes | 1 |  |
| Device connectors | M32 connector, standard | Screw <br> Spring clamp | yes | 1 |  |

## Connector with strain relief




[^3]
## M32 device connector



## Male connector



| Applicatio | Coding | Fixation with bolts | Color | Part No. |  | Part No. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Drilling template for device connectors fixed in position |  |  |  | with screw connection |  | with crimp connection |  |
|  |  | Wires | $\mathrm{mm}^{2}$ | Wires | $\mathrm{mm}^{2}$ |
|  |  | solid | from 4.0 to 16.0 | flexible wires | from 4.0 to 10.0 |
|  |  | stranded | from 4.0 to 16.0 | Approvals | VDE, UL, CSA being prepared |
|  |  | flexible wires | from 4.0 to 16.0 | Pole markings | ( $)^{\text {, }}$, 1, 2, 3 |
|  |  | Approvals Pole markings | VDE, UL, CSA being prepared © ${ }^{\text {, }} 1,2,3$ | Crimp contacts | order separately; see last page of section RST50i |
| Power |  |  |  | fixed in position not fixed in position | black <br> black | $\begin{aligned} & 97.042 .5553 .1 \\ & 97.042 .5053 .1 \end{aligned}$ |  | $\begin{aligned} & 97.142 .1553 .1 \\ & 97.142 .1053 .1 \end{aligned}$ |  |



## RST 50;5

## The new RST Power series up to 50 A

## Application example



## General

The new RST Power series is particulary designed for device engineering. With a current-carrying capability of 50 A combined with an extremely compact design, the connector fits almost everywhere.

## Coding

|  |  |  |  | Application | Power 250/400V |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 1,2,3, N. $\odot$ |
| Name | Description | Connection style | Strain relief housing | Connection points per pole | black |
| Connectors | $1 \times$ wire entry | Screw Spring clamp | yes | 1 - |  |
| Device connectors | M32 connecto | Screw <br> Spring clamp | yes | 1 |  |

## Connector with strain relief




[^4]
## M32 device connector




## Accessories

Cover


| Crimping tool | Name | Color |
| :--- | :--- | :--- |
| with system kit | Part No. |  |
|  | Basic tool with system kit <br> Crimping die D <br> Contact positioner | 05.502 .2300 .0 |
|  |  | 05.502 .3700 .0 |

## Accessories

| Crimp contacts <br> Female contacts | Name | ID (gro | $\mathrm{mm}^{2}$ |  | Part No. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Crimp contact Crimp contact Crimp contact | unmarked unmarked | $\begin{array}{r} 4.0 \\ 6.0 \\ 10.0 \end{array}$ |  | $\begin{aligned} & \text { 02.126.0621.8 } \\ & 02.126 .0721 .8 \\ & 02.126 .0821 .8 \end{aligned}$ |
|  |  |  |  |  |  |
| Crimp contacts <br> Male contacts | Name | ID (groove)mm ${ }^{2}$ |  |  | Part No. |
|  | Crimp contact Crimp contact Crimp contact | unmarked unmarked | $\begin{array}{r} 4.0 \\ 6.0 \\ 10.0 \end{array}$ |  | 05.545.2821.8 05.545.2921.8 05.545 .3021 .8 |
|  |  |  |  |  |  |
| Adapter ring 40 mm | Name |  |  | Color | Part No. |
|  | Adapter ring |  |  | black | 05.568.1853.0 |
|  | For fixing the device connector inside 40 mm knock-outs |  |  |  |  |

Additional information about the complete connector range available in our brochures
0161.4 Safe and Strong
and in our eCat for direct ordering with further information, drawings, etc.


## IP protection degrees (DIN EN 60529-1)

Documentation:
Example: IP 65

IP protection degree:
foreign bodies and accidental contact

|  | Protection against <br> accidental contact | Protection against <br> foreign bodies |
| :--- | :--- | :--- |
| 0 | No protection | No protection |
| 1 | Large parts of the body <br> (e.g. the back of the hand) | Large foreign bodies <br> (diameter > 50 mm) |
| 2 | Fingers | Medium-size foreign bodies <br> (diameter > 12 mm) |
| 3 | Tools and wires <br> (> 2.5 mm in diameter) | Small foreign bodies <br> (diameter > 2.5 mm) |
| 4 | Tools and wires <br> (> 1 mm in diameter) | Grain-like particles <br> (diameter > 1 mm ) |
| 5 | Complete protection <br> against accidental contact | Dust on the surface |
| 6 | Complete protection <br> against accidental contact | Dust ingress |
| 7 |  |  |
| 8 |  |  |

IP protection degree: water

|  |  |
| :---: | :--- |
| 0 | No protection |
| 1 | Protection from vertically <br> falling water drops |
| 2 | Protection from diagonally (up to $15^{\circ}$ ) <br> falling water drops |
| 3 | Protection against spraying water <br> up to $60^{\circ}$ to the vertical |
| 4 | Protection from splashing water |
| 5 | Protection from jet spray water |
| 6 | Protection from powerful jets of water |
| 7 | Protection from temporary immersion |
| 8 | Protection from longer lasting immersion |

## gesis ${ }^{\mathrm{P}+:}$ <br> Wieland offers an innovative installation system with a complete concept for economical installation in outdoor and industrial applications.

In many applications, electrical devices and systems must work safely under difficult environmental conditions for many years. For a reliable function ingress of water or foreign particles (such as dust, oil, and soot) into production systems, parking garages or outer premises must be avoided. Even an unplanned immersion is possible with the RST system within the scope of the specified degree of protection.

The system is not designed for continuous operation in water.

It is not possible to lay the components directly into the ground.

According to VDE 0100-520 the connections must be protected mechanically in addition, and must be accessible for inspection, testing, and maintenance.

## Degree of protection achieved: <br> IP65 Jet water <br> IP66 Powerful jet water <br> IP67 Temporary submersion <br> IP68 Lasting immersion <br> (2 hours in 3 m deep water)

Also see the Installation Instructions.

## Technical data in general Degrees of protection and material resistance

## Please contact us for applications under different conditions.

| UV light (use black-colored connectors!) | + | Motor oil (SAE 20W/55) |
| :---: | :---: | :---: |
| Oil and grease resistance | + | Nickel chloride |
| Aliphatic carbon hydride | + | Paraffin and paraffin derivates |
| Aromatic hydrocarbons | + | Phosphoric ester |
| Alcohols | + | Phthalic ester |
| Ammonia, water-free | + | Polyamide resin |
| Ammonium chloride (salmiac) | + | Polyester polyoles |
| Ammonium sulfate | + | Polyether polyoles |
| Barium chloride | + | Polyglycols |
| Beer | + | Polymeric softeners |
| Butter | + | Polyurethane resins |
| Butyl alcohol | + | Mercury |
| Calcium chloride, aqueous solution, 10\% | $+$ | Castor oil |
| Citric acid, hydrous solution, 10\% | + | Salmiac |
| Ferric sulfide | + | Oxygen, RT |
| Ethyl ether | + | Lubricating oil (0-149), (not bunker oil, oil tankers) |
| Paint, varnish, not much sulfuric acid | + | Sulfur, wet |
| Fruit juice, fruit acid | + | Sulfuric acid (dilluted, RT) |
| Tannic acid | $+$ | Sulfur hexafluoride |
| Glycerin | + | Sweat |
| Glysantine, hydrous solution, 40\% | + | Sebacic acid ester |
| Potassium chloride | + | Spirits |
| Caustic potash solution, hydrous solution, 10\% | $+$ | Nitric acid (10\%) |
| Sodium, hydrous solution, 10\% | + | Hydrochloric acid (10\%) |
| Linseed oil | + | Water, RT, free from chlorine up to $80^{\circ} \mathrm{C}$ |
| Milk | + | Water: sea water resistance, artificial, $20^{\circ} \mathrm{C}$ |
| Lactic acid, $20^{\circ} \mathrm{C}$ | $+$ | Stannic chloride, $20^{\circ} \mathrm{C}$, saturated |



## RST long-term studies:

In addition to the tests required by the standard, a continuous test was performed over 14 months. During this time, the connectors were exposed to direct sunlight, frost and occasional flooding. For this purpose, the RST components were installed in an eaves gutter and monitored by a 30 mA circuit breaker with the mains voltage applied. The following tests were performed in addition to the continuous test:

- Temperature change test ( $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ )
- Installation of the connector at $-40^{\circ} \mathrm{C}$

The complete test report can be ordered from our hotline using the phone number +49 9 51/93 24-9 96.

## Electrical installations with increased degree of protection

Electrical outdoor installations are particularly tricky. Constant temperature changes, high UV radiation, high ozone values and not least mechanical wear leading to material fatigue, water ingress, and finally system failure.

What is crucial is the perfect interaction between the materials used and the very specific environmental conditions. While all connectors and distribution units are designed for continuous indoor and outdoor operation, the cables are clearly a different matter. Selection of the appropriate cable plays a major role for continuous operation of the installation.

By default, we offer the low-cost H05-VV cable, but its field of applications is restricted to indoor areas. This cable is not suitable for outdoor areas and constantly humid or wet rooms! The H05-VV cable is preferred for use indoors, where it is true that pollution occurs, but where it is normally not humid, let alone wet. Protection from foreign bodies (IP6X) is at the fore here. Temporary wetness for cleaning purposes, however, is allowed.

Outdoor installations without special demands can be implemented using H07 RN-F rubber-sheathed cables. However, it must be checked whether or not any additional action such as layout inside installation pipes is required. In this case the selection of the cable must be done in coordination with the customer.

H05VV-F PVC cable:
Use inside dry rooms, not outdoors, not directly
in the ground.
Not UV-resistant.
Minimum bending radius:
$4 \times$ outside diameter. Operating temperature: $70^{\circ} \mathrm{C}$


## Installation instructions

A horizontal installation position is preferable in order to ensure that water drains off.
In accordance with installation regulation
IEC 60364-5-52 (DIN VDE 0100-522.3) cable systems must be designed in such a way that damage caused by the ingress of water is avoided.

Cable systems must satisfy the required degree of protection. If water can accumulate or condensation of water may occur, provisions for water drainage must be made. This particularly applies to sealing points in the area of the strain relief.

If abrasion might occur (in flexible installations), wear of the pre-assembled cable must be taken into consideration and must be monitored.

Avoid bending of the cable in the area of the strain relief.

Control mechanical bending in the area of the strain relief using suitable measures (e.g. cable clamps).

Direct layout of the system components in the ground is not possible. According to VDE 0100-520, connectors must be protected using suitable additional facilities; they must be accessible for visual inspection, testing, and maintenance.

The connector system is not designed for continuous operation under water.
However, unplanned immersion is possible as foreseen by the specification.


## H07RN-F rubber-sheathed cable:

Use inside dry, humid, and wet rooms, as well as outdoors, though not directly in the ground.
UV-resistant to a limited extent.
Minimum bending radius:
$4 \times$ outside diameter.
Operating temperature: $60^{\circ} \mathrm{C}$.

## Technical data RST20i2...i5



## Wire preparation

## RST 2 /3 pole

## Insulation strip lengths and ferrules <br> all lengths indicated in mm

Screw connection:


Screwdriver PZ1
Rated torque:
$0.8-1.0 \mathrm{Nm}$

Spring clamp connection:


Connector
Connector
6-10 mm


Splitter connector
max. $2 \times 2.5 \mathrm{~mm}^{2}$ !


| Conductor cross-section | $0.75 \mathrm{~mm}^{2}$ | $1.0 \mathrm{~mm}^{2}$ | $1.5 \mathrm{~mm}^{2}$ | $2.5 \mathrm{~mm}^{2}$ | $4 \mathrm{~mm}^{2}$ | AWG 12-18 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| solid | 8 | 8 | 8 | 8 | 8 | - |
| fine-stranded | 8 | 8 | 8 | 8 | 8 | - |
| stranded | 8 | 8 | 8 | 8 | 8 | 8 |
| ultrasonically compressed | 8 | 8 | 8 | 8 | 8 | - |

Fine-stranded and stranded
wires
Ferrules required!


Insulation strip length $X=$

| Conductor cross-section | $0.5 \mathrm{~mm}^{2}$ | $0.75 \mathrm{~mm}^{2}$ | $1 \mathrm{~mm}^{2}$ | $1.5 \mathrm{~mm}^{2}$ | $2.5 \mathrm{~mm}^{2}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| solid | $14.5+1$ | $14.5+1$ | $14.5+1$ | $14.5+1$ | $14.5+1$ |
| fine-stranded | $12.0+1$ | $13.0+1$ | $13.0+1$ | $13.0+1$ |  |
| Ferrules according to DIN | $46228-\mathrm{E} 0.5-10$ | $46228-\mathrm{E} 0.75-12$ | $46228-\mathrm{E} 1.0-12$ | $46228-\mathrm{E} 1.5-12$ |  |
| stranded |  | $13.0+1$ | $13.0+1$ | $13.0+1$ |  |
| Ferrules according to DIN |  | $46228-\mathrm{E} 0.75-12$ | $46228-\mathrm{E} 1.0-12$ | $46228-\mathrm{E} 1.5-12$ |  |
| ultrasonically compressed |  |  |  | $14.5+1$ | $14.5+1$ |

RST 4 / 5 pole
all lengths indicated in mm Screw connection:


## Screwdriver

PZ1
Rated torque:
$0.5-0.7 \mathrm{Nm}$

Crimp connection:


Connector 6-10 mm 10-14 mm


Splitter connector


## Insulation strip length $X=$

| Conductor cross-section | $0.75 \mathrm{~mm}^{2}$ | $1.0 \mathrm{~mm}^{2}$ | $1.5 \mathrm{~mm}^{2}$ | $2.5 \mathrm{~mm}^{2}$ | $4 \mathrm{~mm}^{2}$ | AWG 12-18 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| solid | 8 | 8 | 8 | 8 | 8 | - |
| fine-stranded | 8 | 8 | 8 | 8 | 8 | - |
| stranded | 8 | 8 | 8 | 8 | 8 | 8 |
| ultrasonically compressed | 8 | 8 | 8 | 8 | 8 | - |


| Connector | Connector |
| :--- | :--- |
| $6-10 \mathrm{~mm}$ | $13-18 \mathrm{~mm}$ |

- 14 mm


Insulation strip length $\mathrm{X}=$

| Conductor cross-section | $0.75 \mathrm{~mm}^{2}$ | $1.0 \mathrm{~mm}^{2}$ | $1.5 \mathrm{~mm}^{2}$ | $2.5 \mathrm{~mm}^{2}$ | $4 \mathrm{~mm}^{2}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| fine-stranded | $7.0+1$ | $7.0+1$ | $7.0+1$ | $7.0+1$ | $7.0+1$ |

## Technical data RST20i3 and RST25i3. Derating curves.

RST $20 i 3$
Screw connection - spring clamp connection
Derating curve according to IEC 61984 Edition 2 dated 10/2008 paragraph 7.3.8


RST 2513
Screw connection
Derating curve according to IEC 61984 Edition 2 dated 10/2008 paragraph 7.3.8


## Technical data RST20i5 and RST $25 i 5$. Derating curves.

## RST 20i5

Screw connection - crimp connection
Derating curve according to IEC 61984 Edition 2 dated 10/2008 paragraph 7.3.8


## RST 25i5

Screw connection
Derating curve according to IEC 61984 Edition 2 dated 10/2008 paragraph 7.3.8


## Mounting instructions RST20i2...i3 <br> Connector mounting

Connect the wires ...
... and disconnect them


Close the connector ...
... and open it


Lock the housing ..

... and unlock it


How to insert the (optional) manual disconnect into the connector (only possible for the female connector)


The manual disconnect* can be used as an alternative and enables disconnecting without a tool.

## * Note:

Connections with manual disconnect are not approved according to VDE 0606 (fixed installations, for example in buildings).
The VDE 0627 regulation will still apply nevertheless.
Also see the "Installation instructions"!
The descriptions on this page merely serve as an overview.
For assembly and installation, only the installation instructions supplied together with the products are binding.

## Housing installation

Installation of a standard system,
for M20 feed-through
Dimensions in mm


## Note:

Effectiveness of the protection against twisting can only be guaranteed when the lower tolerance limit is ensured for the diameter of the hole.

Installation of a standard system,
for M 25 feed-through
Dimensions in mm



## Bending radius (for conductors)

Note the minimum bending radius for conductors $>2.5 \mathrm{~mm}^{2}$. Pull forces on the contact points can be avoided by proceeding as follows:
(1) Bend the wire as required
(2) Cut the wire to length
(3) Strip the cable and wires

## Mounting instructions RST20i4...i5 Connector mounting



Close the connector ...
. and open it


Lock the housing
and unlock it


How to insert the (optional) manual disconnect into the connector

(only possible for the female connector)
The manual disconnect* can be used as an alternative and enables disconnecting without a tool.

* Note:
Connections with manual disconnect are not approved according
to VDE 0606 (fixed installations, for example in buildings).
The VDE 0627 regulation will still apply nevertheless.
Also see the "Installation instructions"!
The descriptions on this page merely serve as an overview.
For assembly and installation only the installation instructions supplied together with the products are binding.


## Housing installation

Installation of a standard system, for M 20 feed-through

Dimensions in mm


## Note:

Effectiveness of the protection against twisting can only be guaranteed when the lower tolerance limit is ensured for the diameter of the hole.


## Bending radius (for conductors)

Note the minimum bending radius for conductors $>2.5 \mathrm{~mm}^{2}$. Pull forces on the contact points can be avoided by proceeding as follows:
(1) Bend the wire as required
(2) Cut the wire to length
(3) Strip the cable and wires

## Technical data for RST compact and multi-distribution units



| Temperature range: | $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ |
| :---: | :---: |
| Operating ambient |  |
| temperature: | under full load (20 A) $55^{\circ} \mathrm{C}$ |
| Material: | Contact parts: brass, silver-plated |
|  | Housing parts: thermoplastic material PA 66, halogen-free, V2 |
|  | Sealing material: NBR |
| Wiring: | Individual wires $2.5 \mathrm{~mm}^{2}$, halogen-free (other cross-sections on request) |
| Regulations: | DIN VDE 0606 T200; DIN EN 61984 (VDE 0627); VDE 0110 |
|  | IEC 60999 |
| Approvals: | VDE, UL, CSA being prepared |
| Degree of protection: | IP65, IP 66, IP 67, and IP68 |
|  | ( $3 \mathrm{~m} ; 2$ hours) $\hat{=} 0.3 \mathrm{bar}$ |
| IK code: | IK 7 (2 Joule) |
| Rated voltage: | $250 \mathrm{~V} / 400 \mathrm{~V}$ |
| Rated current: | 20 A (25 A) |
| Coding: | Mechanical coding symbolized by color code. |
|  | Gray and black with the same mechanical coding. |
|  | Other codings are optional. |
| Note: | Touch protection generally guaranteed even when disconnected. |
|  | Ground conductor leading. Connection to the live cable must be with a female connector according to the regulations. It is therefore not possible to create a ring circuit arrangement! |
|  | Only pluggable in the correct pole configuration; 1 pole cannot be connected. Contacts protected against strain on the cable. All components can be interlocked. |
|  | A locking device is required for IEC 6153 approval. |
|  | DINVDE0606T200 conformity does not automatically exclude the danger of confusion with third-party installation plug connector systems! |
|  | Installation plug connector systems are no substitute for national plug/ outlet systems for domestic use. |

Technical data RST 50i4...i5.


## Convincing technology.

## RST50i 4 pole/5 pole

| Rated voltage: | $250 / 400 \mathrm{~V}$ |
| :--- | :--- |
| Rated current: | 50 A |


| Rated cross-section: | rigid cables with $4.0 \mathrm{~mm}^{2}$ to $6.0 \mathrm{~mm}^{2}$ <br> for plug connectors (up to $16 \mathrm{~mm}^{2}$ with device connectors) fine-stranded cables with $4.0 \mathrm{~mm}^{2}$ to $16.0 \mathrm{~mm}^{2}$ |
| :---: | :---: |
| Number of poles: | 4 pole 5 pole |
| Pole designation: |  |
| Material: | Contact parts: brass, surface-plated <br> Housing parts: thermoplastic material PA66, halogen-free, V2 <br> Sealing material NBR, TPE |
| Degree of protection: | IP65, IP66, IP67 |
| Approvals: | VDE, UL, CSA being prepared |
| Sheath strip length: | 70 mm |
| Insulation strip length: | Screw 10 mm (crimp 11 mm ) |
| Torques: | Cable gland S34: 12 Nm ; S42: 14 Nm |



Hole pattern for M32 device connectors, alternative M40 with adapter ring (fixed in position)


Alternative fixed in position (cams on the housing)


## Mounting instructions RST50i4...i5. Connector mounting

Connect the wires ...
disconnect the crimp contacts


Secure the contact inserts ...
.. tighten the cable gland

Cable gland:
S34 cable gland: 12 Nm S42 cable gland: 14 Nm

Bayonet lock ...


## Housing installation

Mounting housing flange,
dimensions in mm


Positioning option


Latching the housing flange ...

.. securing the contact insert


| 01.006.1553.0 | RST20i2 | 44 |
| :---: | :---: | :---: |
| 01.006.1553.0 | - RST20i3 | 63 |
| 01.006.1553.0 | - RST20i4 | 87 |
| 01.006.1553.0 | - RST20i5 | 107 |
| 01.006.1553.1 | RST20i2 | 4 |
| 01.006.1553.1 | - RST20i3 | 63 |
| 01.006.1553.1 | - RST20i4 | 87 |
| 01.006.1553.1 | - RST20i5 | 107 |
| 02.125.5521.8 | - RST20i4 | 101 |
| 02.125.5521.8 | - RST20i5 | 123 |
| 02.125.5521.8 | - Accessories | 144 |
| 02.125.5621.8 | - RST20i4 | 101 |
| 02.125.5621.8 | - RST20i5 | 123 |
| 02.125.5621.8 | - Accessories | 144 |
| 02.125.5721.8 | - RST20i4 | 101 |
| 02.125.5721.8 | - RST20i5 | 123 |
| 02.125.5721.8 | - Accessories | 144 |
| 02.125.5821.8 | - RST20i4 | 101 |
| 02.125.5821.8 | RST20i5 | 123 |
| 02.125.5821.8 | $\square$ Accessories | 144 |
| 02.126.0621.8 | $\square$ Accessories | 161 |
| 02.126.0721.8 | $\square$ Accessories | 161 |
| 02.126.0821.8 | $\square$ Accessories | 161 |
| 05.502.2100.0 | - RST20i4 | 101 |
| 05.502.2100.0 | - RST20i5 | 123 |
| 05.502.2100.0 | $\square$ Accessories | 144 |
| 05.502.2300.0 | $\square$ Accessories | 160 |
| 05.502.3500.0 | - RST20i4 | 101 |
| 05.502.3500.0 | - RST20i5 | 123 |
| 05.502.3500.0 | $\square$ Accessories | 144 |
| 05.502.3600.0 | - RST20i4 | 101 |
| 05.502.3600.0 | - RST20i5 | 123 |
| 05.502.3600.0 | $\square$ Accessories | 144 |
| 05.502.3700.0 | $\square$ Accessories | 160 |
| 05.545.0021.8 | $\square \mathrm{RST} 20 \mathrm{i} 4$ | 101 |
| 05.545.0021.8 | - RST20i5 | 123 |
| 05.545.0021.8 | $\square$ Accessories | 44 |
| 05.545.0121.8 | $\square \mathrm{RST} 20 \mathrm{i} 4$ | 101 |
| 05.545.0121.8 | - RST20i5 | 123 |
| 05.545.0121.8 | $\square$ Accessories | 144 |
| 05.545.0221.8 | $\square \mathrm{RST} 20 \mathrm{i} 4$ | 101 |
| 05.545.0221.8 | - RST20i5 | 123 |
| 05.545.0221.8 | - Accessories | 144 |
| 05.545.0321.8 | $\square \mathrm{RST} 20 \mathrm{i} 4$ | 101 |
| 05.545.0321.8 | - RST20i5 | 123 |
| 05.545.0321.8 | $\square$ Accessories | 144 |
| 05.545.2821.8 | $\square$ Accessories | 61 |
| 05.545.2921.8 | $\square$ Accessories | 161 |
| 05.545.3021.8 | $\square$ Accessories | 161 |
| 05.564.4453.0 | - RST20i2 | 51 |
| 05.564.4453.0 | - RST20i3 | 75 |
| 05.564.4453.0 | $\square$ Accessories | 142 |
| 05.564.4453.1 | - RST20i2 | 51 |
| 05.564.4453.1 | - RST20i3 | 75 |
| 05.564.4453.1 | $\square$ Accessories | 142 |
| 05.564.8653.1 | $\square$ Accessories | 143 |
| 05.564.8653.3 | $\square$ Accessories | 143 |
| 05.564.8653.7 | $\square$ Accessories | 143 |
| 05.565.8653.1 | $\square$ Accessories | 143 |
| 05.565.8653.3 | $\square$ Accessories | 143 |
| 05.565.8653.7 | - Accessories | 143 |
| 05.565.9953.0 | $\square$ RST20i4 | 100 |
| 05.565.9953.0 | - RST20i5 | 122 |
| 05.565.9953.0 | - Accessories | 142 |
| 05.565.9953.1 | $\square$ RST20i4 | 100 |
| 05.565.9953.1 | - RST20i5 | 122 |
| 05.565.9953.1 | - Accessories | 142 |
| 05.566.5253.0 | $\square$ Accessories | 143 |
| 05.566.5253.1 | $\square$ Accessories | 143 |
| 05.568.1853.0 | $\square$ Accessories | 161 |
| 05.568.8853.0 | - Accessories | 143 |
| 05.568.8853.1 | $\square$ Accessories | 143 |
| 06.502.4300.0 | - Accessories | 145 |
| 06.600.3627.0 | $\square$ Accessories | 145 |
| 06.600.3727.0 | $\square$ Accessories | 145 |
| 06.600.3827.0 | - Accessories | 145 |
| 06.600.3927.0 | - Accessories | 145 |
| 83.020.0505.0 | $\square$ Distribution units | 138 |
| 83.020.0505.0 | $\square$ Distribution units | 138 |
| 83.020.0900.0 | $\square$ Distribution units | 139 |


| 83.020.0900.0 | Distribution units | 139 |
| :---: | :---: | :---: |
| 83.020.0901.0 | $\square$ Distribution units | 139 |
| 83.020.0901.0 | Distribution units | 139 |
| 83.020.0902.0 | $\square$ Distribution units | 139 |
| 83.020.0902.0 | Distribution units | 139 |
| 83.020.0903.0 | $\square$ Distribution units | 139 |
| 83.020.0903.0 | $\square$ Distribution units | 139 |
| 83.020.0904.0 | $\square$ Distribution units | 138 |
| 83.020.0904.0 | Distribution units | 138 |
| 95.101 .0800 .0 | - RST20i4 | 101 |
| 95.101 .0800 .0 | - RST20i5 | 123 |
| 95.101 .0800 .0 | $\square$ Accessories | 144 |
| 95.101 .0800 .0 | $\square$ Accessories | 160 |
| 95.101.1300.0 | $\square$ Accessories | 145 |
| 96.020.0150.8 | - RST20i2 | 56 |
| 96.020.0151.4 | - RST20i2 | 56 |
| 96.020.0153.0 | - RST20i2 | 56 |
| 96.020.0153.1 | - RST20i2 | 56 |
| 96.020.0250.8 | - RST20i2 | 56 |
| 96.020.0251.4 | - RST20i2 | 56 |
| 96.020.0253.0 | - RST20i2 | 56 |
| 96.020.0253.1 | - RST20i2 | 56 |
| 96.021.0050.8 | - RST20i2 | 42 |
| 96.021.0051.4 | - RST20i2 | 42 |
| 96.021.0053.0 | - RST20i2 | 42 |
| 96.021.0053.1 | - RST20i2 | 42 |
| 96.021.0153.0 | - RST20i2 | 42 |
| 96.021.0153.1 | - RST20i2 | 42 |
| 96.021.0251.4 | - RST20i2 | 44 |
| 96.021.0253.0 | - RST20i2 | 44 |
| 96.021.0253.1 | - RST20i2 | 44 |
| 96.021.0351.4 | - RST20i2 | 44 |
| 96.021.0353.0 | - RST20i2 | 44 |
| 96.021.0353.1 | - RST20i2 | 44 |
| 96.021.0453.0 | - RST20i2 | 42 |
| 96.021.0453.1 | - RST20i2 | 42 |
| 96.021.0950.8 | - RST20i2 | 42 |
| 96.021.0951.4 | - RST20i2 | 42 |
| 96.021.1050.8 | - RST20i2 | 45 |
| 96.021.1051.4 | - RST20i2 | 45 |
| 96.021.1053.0 | - RST20i2 | 45 |
| 96.021.1053.1 | - RST20i2 | 45 |
| 96.021.2051.4 | - RST20i2 | 48 |
| 96.021.2053.0 | - RST20i2 | 48 |
| 96.021.2053.1 | - RST20i2 | 48 |
| 96.021.2150.8 | - RST20i2 | 46 |
| 96.021.2151.4 | - RST20i2 | 46 |
| 96.021.2153.0 | - RST20i2 | 46 |
| 96.021.2153.1 | - RST20i2 | 46 |
| 96.021.4050.8 | - RST20i2 | 42 |
| 96.021.4051.4 | - RST20i2 | 42 |
| 96.021.4053.0 | - RST20i2 | 42 |
| 96.021.4053.1 | - RST20i2 | 42 |
| 96.021.4153.0 | - RST20i2 | 42 |
| 96.021.4153.1 | - RST20i2 | 42 |
| 96.021.4251.4 | - RST20i2 | 44 |
| 96.021.4253.0 | - RST20i2 | 44 |
| 96.021.4253.1 | - RST20i2 | 44 |
| 96.021.4351.4 | - RST20i2 | 44 |
| 96.021.4353.0 | - RST20i2 | 44 |
| 96.021.4353.1 | - RST20i2 | 44 |
| 96.021.4453.0 | - RST20i2 | 42 |
| 96.021.4453.1 | - RST20i2 | 42 |
| 96.021.4950.8 | - RST20i2 | 42 |
| 96.021.4951.4 | - RST20i2 | 42 |
| 96.021.5050.8 | - RST20i2 | 45 |
| 96.021.5051.4 | - RST20i2 | 45 |
| 96.021.5053.0 | - RST20i2 | 45 |
| 96.021.5053.1 | - RST20i2 | 45 |
| 96.021.6050.8 | - RST20i2 | 48 |
| 96.021.6051.4 | - RST20i2 | 48 |
| 96.021.6053.0 | - RST20i2 | 48 |
| 96.021.6053.1 | - RST20i2 | 48 |
| 96.021.6150.8 | - RST20i2 | 46 |
| 96.021.6151.4 | - RST20i2 | 46 |
| 96.021.6153.0 | - RST20i2 | 46 |
| 96.021.6153.1 | - RST20i2 | 46 |
| 96.022.0050.8 | - RST20i2 | 42 |
| 96.022.0051.4 | - RST20i2 | 42 |
| 96. | RST20i2 | 42 |


| 96.022.0053.1 | - RST20i2 | 42 |
| :---: | :---: | :---: |
| 96.022.0153.0 | - RST20i2 | 42 |
| 96.022.0153.1 | - RST20i2 | 42 |
| 96.022.0453.0 | - RST20i2 | 42 |
| 96.022.0453.1 | - RST20i2 | 42 |
| 96.022.0950.8 | - RST20i2 | 42 |
| 96.022.0951.4 | - RST20i2 | 42 |
| 96.022.1050.8 | - RST20i2 | 45 |
| 96.022.1051.4 | - RST20i2 | 45 |
| 96.022.1053.0 | - RST20i2 | 45 |
| 96.022.1053.1 | - RST20i2 | 45 |
| 96.022.2051.4 | - RST20i2 | 48 |
| 96.022.2053.0 | - RST20i2 | 48 |
| 96.022.2053.1 | - RST20i2 | 48 |
| 96.022.2150.8 | - RST20i2 | 46 |
| 96.022.2151.4 | - RST20i2 | 46 |
| 96.022.2153.0 | - RST20i2 | 46 |
| 96.022 .2153 .1 | - RST20i2 | 46 |
| 96.022.4050.8 | - RST20i2 | 42 |
| 96.022.4051.4 | - RST20i2 | 42 |
| 96.022.4053.0 | - RST20i2 | 42 |
| 96.022.4053.1 | - RST20i2 | 42 |
| 96.022.4153.0 | - RST20i2 | 42 |
| 96.022 .4153 .1 | - RST20i2 | 42 |
| 96.022.4453.0 | - RST20i2 | 42 |
| 96.022.4453.1 | - RST20i2 | 42 |
| 96.022.4950.8 | - RST20i2 | 42 |
| 96.022.4951.4 | - RST20i2 | 42 |
| 96.022.5050.8 | - RST20i2 | 45 |
| 96.022.5051.4 | - RST20i2 | 45 |
| 96.022.5053.0 | - RST20i2 | 45 |
| 96.022.5053.1 | - RST20i2 | 45 |
| 96.022.6050.8 | - RST20i2 | 48 |
| 96.022.6051.4 | - RST20i2 | 48 |
| 96.022.6053.0 | - RST20i2 | 48 |
| 96.022.6053.1 | - RST20i2 | 48 |
| 96.022.6150.8 | - RST20i2 | 46 |
| 96.022.6151.4 | - RST20i2 | 46 |
| 96.022.6153.0 | - RST20i2 | 46 |
| 96.022.6153.1 | - RST20i2 | 46 |
| 96.023.0050.8 | - RST20i2 | 43 |
| 96.023.0051.4 | - RST20i2 | 43 |
| 96.023.0053.0 | - RST20i2 | 43 |
| 96.023.0053.1 | - RST20i2 | 43 |
| 96.023.0153.0 | - RST20i2 | 43 |
| 96.023.0153.1 | - RST20i2 | 43 |
| 96.023.0453.0 | - RST20i2 | 43 |
| 96.023.0453.1 | - RST20i2 | 43 |
| 96.023.0950.8 | - RST20i2 | 43 |
| 96.023.0951.4 | - RST20i2 | 43 |
| 96.023.2050.8 | - RST20i2 | 49 |
| 96.023.2051.4 | - RST20i2 | 49 |
| 96.023.2053.0 | - RST20i2 | 49 |
| 96.023.2053.1 | - RST20i2 | 49 |
| 96.023.2250.8 | - RST20i2 | 50 |
| 96.023.2251.4 | - RST20i2 | 50 |
| 96.023.2253.0 | - RST20i2 | 50 |
| 96.023.2253.1 | - RST20i2 | 50 |
| 96.023.4050.8 | - RST20i2 | 43 |
| 96.023.4051.4 | - RST20i2 | 43 |
| 96.023.4053.0 | - RST20i2 | 43 |
| 96.023.4053.1 | - RST20i2 | 43 |
| 96.023.4153.0 | - RST20i2 | 43 |
| 96.023 .4153 .1 | - RST20i2 | 43 |
| 96.023.4453.0 | - RST20i2 | 43 |
| 96.023.4453.1 | - RST20i2 | 43 |
| 96.023.4950.8 | - RST20i2 | 43 |
| 96.023.4951.4 | - RST20i2 | 43 |
| 96.023.6050.8 | - RST20i2 | 49 |
| 96.023.6051.4 | - RST20i2 | 49 |
| 96.023.6053.0 | - RST20i2 | 49 |
| 96.023.6053.1 | - RST20i2 | 49 |
| 96.023.6250.8 | - RST20i2 | 50 |
| 96.023.6251.4 | - RST20i2 | 50 |
| 96.023.6253.0 | - RST20i2 | 50 |
| 96.023.6253.1 | - RST20i2 | 50 |
| 96.024.0050.8 | - RST20i2 | 43 |
| 96.024.0051.4 | - RST20i2 | 43 |
| 96.024.0053.0 | - RST20i2 | 43 |
| 96.024.0053.1 | - RST20i2 | 43 |


| 96.024.0153.0 | - RST20i2 | 43 |
| :---: | :---: | :---: |
| 96.024.0153.1 | - RST20i2 | 43 |
| 96.024.0453.0 | - RST20i2 | 43 |
| 96.024.0453.1 | ■ RST20i2 | 43 |
| 96.024.0950.8 | - RST20i2 | 43 |
| 96.024.0951.4 | - RST20i2 | 43 |
| 96.024.2050.8 | - RST20i2 | 49 |
| 96.024.2051.4 | - RST20i2 | 49 |
| 96.024.2053.0 | - RST20i2 | 49 |
| 96.024.2053.1 | - RST20i2 | 49 |
| 96.024.2250.8 | - RST20i2 | 50 |
| 96.024.2251.4 | - RST20i2 | 50 |
| 96.024.2253.0 | - RST20i2 | 50 |
| 96.024.2253.1 | - RST20i2 | 50 |
| 96.024.4050.8 | - RST20i2 | 43 |
| 96.024.4051.4 | - RST20i2 | 43 |
| 96.024.4053.0 | - RST20i2 | 43 |
| 96.024.4053.1 | - RST20i2 | 43 |
| 96.024.4153.0 | - RST20i2 | 43 |
| 96.024.4153.1 | - RST20i2 | 43 |
| 96.024.4453.0 | - RST20i2 | 43 |
| 96.024.4453.1 | - RST20i2 | 43 |
| 96.024.4950.8 | - RST20i2 | 43 |
| 96.024.4951.4 | - RST20i2 | 43 |
| 96.024.6050.8 | - RST20i2 | 49 |
| 96.024.6051.4 | - RST20i2 | 49 |
| 96.024.6053.0 | - RST20i2 | 49 |
| 96.024.6053.1 | - RST20i2 | 49 |
| 96.024.6250.8 | - RST20i2 | 50 |
| 96.024.6251.4 | - RST20i2 | 50 |
| 96.024.6253.0 | - RST20i2 | 50 |
| 96.024.6253.1 | - RST20i2 | 50 |
| 96.025.2151.4 | - RST20i2 | 47 |
| 96.025.2153.0 | - RST20i2 | 47 |
| 96.025 .2153 .1 | - RST20i2 | 47 |
| 96.025.6150.8 | ■ RST20i2 | 47 |
| 96.025.6151.4 | - RST20i2 | 47 |
| 96.025.6153.0 | - RST20i2 | 47 |
| 96.025.6153.1 | - RST20i2 | 47 |
| 96.026.2151.4 | - RST20i2 | 47 |
| 96.026.2153.0 | - RST20i2 | 47 |
| 96.026.2153.1 | - RST20i2 | 47 |
| 96.026.6150.8 | - RST20i2 | 47 |
| 96.026 .6151 .4 | - RST20i2 | 47 |
| 96.026.6153.0 | - RST20i2 | 47 |
| 96.026 .6153 .1 | - RST20i2 | 47 |
| 96.030 .0151 .4 | - RST20i3 | 74 |
| 96.030 .0153 .0 | ■ RST20i3 | 74 |
| 96.030 .0153 .1 | - RST20i3 | 74 |
| 96.030.0155.7 | - RST20i3 | 74 |
| 96.030.0251.4 | - RST20i3 | 74 |
| 96.030.0253.0 | - RST20i3 | 74 |
| 96.030.0253.1 | - RST20i3 | 74 |
| 96.030.0255.7 | - RST20i3 | 74 |
| 96.031.0051.4 | - RST20i3 | 60 |
| 96.031.0053.0 | ■ RST20i3 | 60 |
| 96.031.0053.1 | - RST20i3 | 60 |
| 96.031.0053.9 | ■ RST20i3 | 60 |
| 96.031.0055.7 | - RST20i3 | 60 |
| 96.031.0151.4 | ■ RST20i3 | 60 |
| 96.031.0153.0 | ■ RST20i3 | 60 |
| 96.031.0153.1 | - RST20i3 | 60 |
| 96.031.0153.9 | - RST20i3 | 60 |
| 96.031.0155.7 | - RST20i3 | 60 |
| 96.031.0253.0 | - RST20i3 | 63 |
| 96.031.0253.1 | ■ RST20i3 | 63 |
| 96.031.0255.7 | - RST20i3 | 63 |
| 96.031.0353.0 | ■ RST20i3 | 63 |
| 96.031.0353.1 | - RST20i3 | 63 |
| 96.031.0355.7 | ■ RST20i3 | 63 |
| 96.031.1051.4 | ■ RST20i3 | 64 |
| 96.031.1053.0 | - RST20i3 | 64 |
| 96.031.1053.1 | - RST20i3 | 64 |
| 96.031.1053.9 | ■ RST20i3 | 64 |
| 96.031.1055.7 | - RST20i3 | 64 |
| 96.031.2051.4 | ■ RST20i3 | 65 |
| 96.031.2053.0 | - RST20i3 | 65 |
| 96.031.2053.1 | ■ RST20i3 | 65 |
| 96.031.2053.9 | ■ RST20i3 | 65 |
| 96. | T20 | 65 |


| 96.034.4053.1 | - RST20i3 | 61 |
| :---: | :---: | :---: |
| 96.034.4053.9 | - RST20i3 | 61 |
| 96.034.4055.7 | - RST20i3 | 61 |
| 96.034.4151.4 | - RST20i3 | 61 |
| 96.034.4153.0 | - RST20i3 | 61 |
| 96.034.4153.1 | - RST20i3 | 61 |
| 96.034.4153.9 | - RST20i3 | 61 |
| 96.034.4155.7 | - RST20i3 | 61 |
| 96.034.6051.4 | - RST20i3 | 68 |
| 96.034.6053.0 | - RST20i3 | 68 |
| 96.034.6053.1 | - RST20i3 | 68 |
| 96.034.6053.9 | - RST20i3 | 68 |
| 96.034.6055.7 | - RST20i3 | 68 |
| 96.034.6251.4 | $\square \mathrm{RST} 20 \mathrm{i} 3$ | 69 |
| 96.034.6253.0 | - RST20i3 | 69 |
| 96.034.6253.1 | - RST20i3 | 69 |
| 96.034.6253.9 | - RST20i3 | 69 |
| 96.034.6255.7 | - RST20i3 | 69 |
| 96.035.2151.4 | - RST20i3 | 67 |
| 96.035.2153.0 | - RST20i3 | 67 |
| 96.035.2153.1 | - RST20i3 | 67 |
| 96.035.2153.9 | - RST20i3 | 67 |
| 96.035.2155.7 | - RST20i3 | 67 |
| 96.035.6151.4 | - RST20i3 | 67 |
| 96.035.6153.0 | - RST20i3 | 67 |
| 96.035.6153.1 | - RST20i3 | 67 |
| 96.035.6153.9 | - RST20i3 | 67 |
| 96.035.6155.7 | - RST20i3 | 67 |
| 96.036.2151.4 | - RST20i3 | 67 |
| 96.036.2153.0 | - RST20i3 | 67 |
| 96.036.2153.1 | - RST20i3 | 67 |
| 96.036.2153.9 | - RST20i3 | 67 |
| 96.036.2155.7 | - RST20i3 | 67 |
| 96.036.6151.4 | $\square \mathrm{RST} 20 \mathrm{i} 3$ | 67 |
| 96.036.6153.0 | - RST20i3 | 67 |
| 96.036.6153.1 | - RST20i3 | 67 |
| 96.036.6153.9 | - RST20i3 | 67 |
| 96.036.6155.7 | $\square \mathrm{RST} 20 \mathrm{i} 3$ | 67 |
| 96.040.0151.4 | Distribution units | 135 |
| 96.041.4051.4 | - RST20i4 | 84 |
| 96.041.4053.0 | - RST20i4 | 84 |
| 96.041.4053.1 | - RST20i4 | 84 |
| 96.041.4153.0 | - RST20i4 | 84 |
| 96.041.4153.1 | - RST20i4 | 84 |
| 96.041.4253.0 | - RST20i4 | 87 |
| 96.041.4253.1 | - RST20i4 | 87 |
| 96.041.4353.0 | - RST20i4 | 87 |
| 96.041.4353.1 | - RST20i4 | 87 |
| 96.041.4553.0 | - RST20i4 | 86 |
| 96.041.4553.1 | - RST20i4 | 86 |
| 96.041.4851.4 | - RST20i4 | 84 |
| 96.041.4951.4 | - RST20i4 | 84 |
| 96.041.5051.4 | - RST20i4 | 88 |
| 96.041.5053.0 | - RST20i4 | 88 |
| 96.041.5053.1 | - RST20i4 | 88 |
| 96.041.6051.4 | - RST20i4 | 89 |
| 96.041 .6053 .0 | - RST20i4 | 89 |
| 96.041.6053.1 | - RST20i4 | 89 |
| 96.041.6151.4 | - RST20i4 | 90 |
| 96.041.6153.0 | - RST20i4 | 90 |
| 96.041.6153.1 | - RST20i4 | 90 |
| 96.042.4051.4 | - RST20i4 | 84 |
| 96.042.4053.0 | - RST20i4 | 84 |
| 96.042.4053.1 | - RST20i4 | 84 |
| 96.042.4153.0 | - RST20i4 | 84 |
| 96.042 .4153 .1 | - RST20i4 | 84 |
| 96.042 .4553 .0 | - RST20i4 | 86 |
| 96.042.4553.1 | - RST20i4 | 86 |
| 96.042.4851.4 | $\square \mathrm{RST} 20 \mathrm{i} 4$ | 84 |
| 96.042.4951.4 | - RST20i4 | 84 |
| 96.042.5051.4 | - RST20i4 | 88 |
| 96.042.5053.0 | - RST20i4 | 88 |
| 96.042.5053.1 | - RST20i4 | 88 |
| 96.042.6051.4 | - RST20i4 | 89 |
| 96.042.6053.0 | - RST20i4 | 89 |
| 96.042.6053.1 | - RST20i4 | 89 |
| 96.042.6151.4 | - RST20i4 | 90 |
| 96.042.6153.0 | - RST20i4 | 90 |
| 96.042.6153.1 | - RST20i4 | 90 |
| 96.043.4051.4 | ■ RST20i4 | 85 |


| 96.043 .4053 .0 | - RST20i4 | 85 |
| :---: | :---: | :---: |
| 96.043.4053.1 | - RST20i4 | 85 |
| 96.043 .4153 .0 | - RST20i4 | 85 |
| 96.043.4153.1 | ■ RST20i4 | 85 |
| 96.043.4851.4 | - RST20i4 | 85 |
| 96.043.4951.4 | - RST20i4 | 85 |
| 96.043.6051.4 | - RST20i4 | 92 |
| 96.043.6053.0 | - RST20i4 | 92 |
| 96.043.6053.1 | - RST20i4 | 92 |
| 96.043.6251.4 | ■ RST20i4 | 93 |
| 96.043.6253.0 | - RST20i4 | 93 |
| 96.043.6253.1 | ■ RST20i4 | 93 |
| 96.044.4051.4 | - RST20i4 | 85 |
| 96.044.4053.0 | - RST20i4 | 85 |
| 96.044.4053.1 | - RST20i4 | 85 |
| 96.044.4153.0 | ■ RST20i4 | 85 |
| 96.044.4153.1 | - RST20i4 | 85 |
| 96.044.4851.4 | - RST20i4 | 85 |
| 96.044.4951.4 | - RST20i4 | 85 |
| 96.044.6051.4 | ■ RST20i4 | 92 |
| 96.044.6053.0 | - RST20i4 | 92 |
| 96.044.6053.1 | ■ RST20i4 | 92 |
| 96.044.6251.4 | - RST20i4 | 93 |
| 96.044.6253.0 | ■ RST20i4 | 93 |
| 96.044.6253.1 | - RST20i4 | 93 |
| 96.045.6151.4 | ■ RST20i4 | 91 |
| 96.045.6153.0 | - RST20i4 | 91 |
| 96.045.6153.1 | ■ RST20i4 | 91 |
| 96.046.6151.4 | - RST20i4 | 91 |
| 96.046.6153.0 | ■ RST20i4 | 91 |
| 96.046.6153.1 | ■ RST20i4 | 91 |
| 96.050.0153.1 | - RST20i5 | 122 |
| 96.050.0153.1 | Distribution units | 134 |
| 96.050.1153.1 | $\square$ Distribution units | 134 |
| 96.050.3153.1 | Distribution units | 134 |
| 96.050.4153.1 | $\square$ Distribution units | 134 |
| 96.050.5153.1 | Distribution units | 134 |
| 96.050.6153.1 | $\square$ Distribution units | 134 |
| 96.050.7153.1 | Distribution units | 136 |
| 96.051.4051.4 | - RST20i5 | 104 |
| 96.051.4053.0 | - RST20i5 | 104 |
| 96.051.4053.1 | - RST20i5 | 104 |
| 96.051.4053.6 | - RST20i5 | 104 |
| 96.051.4053.9 | - RST20i5 | 104 |
| 96.051.4151.4 | - RST20i5 | 104 |
| 96.051.4153.0 | - RST20i5 | 104 |
| 96.051.4153.1 | - RST20i5 | 104 |
| 96.051.4153.6 | - RST20i5 | 104 |
| 96.051.4153.9 | - RST20i5 | 104 |
| 96.051.4154.3 | - RST25i5 | 126 |
| 96.051.4251.4 | - RST20i5 | 107 |
| 96.051.4253.0 | - RST20i5 | 107 |
| 96.051.4253.1 | - RST20i5 | 107 |
| 96.051.4253.6 | - RST20i5 | 107 |
| 96.051.4351.4 | - RST20i5 | 107 |
| 96.051.4353.0 | - RST20i5 | 107 |
| 96.051.4353.1 | - RST20i5 | 107 |
| 96.051.4353.6 | - RST20i5 | 107 |
| 96.051.4551.4 | - RST20i5 | 106 |
| 96.051.4553.0 | - RST20i5 | 106 |
| 96.051.4553.1 | - RST20i5 | 106 |
| 96.051.4553.6 | - RST20i5 | 106 |
| 96.051.4553.9 | - RST20i5 | 106 |
| 96.051.4554.3 | - RST25i5 | 126 |
| 96.051.5051.4 | - RST20i5 | 108 |
| 96.051.5053.0 | - RST20i5 | 108 |
| 96.051.5053.1 | - RST20i5 | 108 |
| 96.051.5053.6 | - RST20i5 | 108 |
| 96.051.5053.9 | - RST20i5 | 108 |
| 96.051.5054.3 | - RST25i5 | 127 |
| 96.051.6051.4 | - RST20i5 | 109 |
| 96.051.6053.0 | - RST20i5 | 109 |
| 96.051.6053.1 | - RST20i5 | 109 |
| 96.051.6053.6 | - RST20i5 | 109 |
| 96.051.6053.9 | - RST20i5 | 109 |
| 96.051.6151.4 | - RST20i5 | 110 |
| 96.051.6153.0 | - RST20i5 | 110 |
| 96.051.6153.1 | - RST20i5 | 110 |
| 96.051.6153.6 | - RST20i5 | 110 |
| 96.051.6153.9 | - RST20i5 | 110 |


| 96.052.4051.4 | - RST20i5 | 104 |
| :---: | :---: | :---: |
| 96.052.4053.0 | - RST20i5 | 104 |
| 96.052.4053.1 | - RST20i5 | 104 |
| 96.052.4053.6 | - RST20i5 | 104 |
| 96.052.4053.9 | - RST20i5 | 104 |
| 96.052.4151.4 | - RST20i5 | 104 |
| 96.052.4153.0 | - RST20i5 | 104 |
| 96.052.4153.1 | - RST20i5 | 104 |
| 96.052.4153.6 | - RST20i5 | 104 |
| 96.052.4153.9 | - RST20i5 | 104 |
| 96.052.4154.3 | - RST25i5 | 126 |
| 96.052.4551.4 | - RST20i5 | 106 |
| 96.052.4553.0 | - RST20i5 | 106 |
| 96.052.4553.1 | - RST20i5 | 106 |
| 96.052.4553.6 | - RST20i5 | 106 |
| 96.052.4553.9 | - RST20i5 | 106 |
| 96.052.4554.3 | - RST25i5 | 126 |
| 96.052.5051.4 | - RST20i5 | 108 |
| 96.052.5053.0 | - RST20i5 | 108 |
| 96.052.5053.1 | $\square \mathrm{RST20i5}$ | 108 |
| 96.052.5053.6 | - RST20i5 | 108 |
| 96.052.5053.9 | - RST20i5 | 108 |
| 96.052.5054.3 | - RST25i5 | 127 |
| 96.052.6051.4 | - RST20i5 | 109 |
| 96.052.6053.0 | - RST20i5 | 109 |
| 96.052.6053.1 | - RST20i5 | 109 |
| 96.052.6053.6 | - RST20i5 | 109 |
| 96.052.6053.9 | - RST20i5 | 109 |
| 96.052.6151.4 | - RST20i5 | 110 |
| 96.052.6153.0 | - RST20i5 | 110 |
| 96.052 .6153 .1 | - RST20i5 | 110 |
| 96.052.6153.6 | - RST20i5 | 110 |
| 96.052.6153.9 | - RST20i5 | 110 |
| 96.053.4051.4 | - RST20i5 | 105 |
| 96.053.4053.0 | - RST20i5 | 105 |
| 96.053 .4053 .1 | - RST20i5 | 105 |
| 96.053.4053.6 | - RST20i5 | 105 |
| 96.053.4053.9 | - RST20i5 | 105 |
| 96.053.4151.4 | - RST20i5 | 105 |
| 96.053.4153.0 | - RST20i5 | 105 |
| 96.053 .4153 .1 | - RST20i5 | 105 |
| 96.053.4153.6 | - RST20i5 | 105 |
| 96.053 .4153 .9 | - RST20i5 | 105 |
| 96.053.6051.4 | - RST20i5 | 112 |
| 96.053.6053.0 | - RST20i5 | 112 |
| 96.053 .6053 .1 | - RST20i5 | 112 |
| 96.053.6053.6 | - RST20i5 | 112 |
| 96.053.6053.9 | - RST20i5 | 112 |
| 96.053.6251.4 | - RST20i5 | 113 |
| 96.053.6253.0 | - RST20i5 | 113 |
| 96.053 .6253 .1 | - RST20i5 | 113 |
| 96.053.6253.6 | - RST20i5 | 113 |
| 96.053 .6253 .9 | - RST20i5 | 113 |
| 96.054.4051.4 | - RST20i5 | 105 |
| 96.054.4053.0 | - RST20i5 | 105 |
| 96.054.4053.1 | - RST20i5 | 105 |
| 96.054.4053.6 | - RST20i5 | 105 |
| 96.054.4053.9 | - RST20i5 | 105 |
| 96.054.4151.4 | - RST20i5 | 105 |
| 96.054 .4153 .0 | - RST20i5 | 105 |
| 96.054.4153.1 | - RST20i5 | 105 |
| 96.054.4153.6 | - RST20i5 | 105 |
| 96.054.4153.9 | - RST20i5 | 105 |
| 96.054.6051.4 | - RST20i5 | 112 |
| 96.054.6053.0 | - RST20i5 | 112 |
| 96.054.6053.1 | - RST20i5 | 112 |
| 96.054.6053.6 | - RST20i5 | 112 |
| 96.054.6053.9 | - RST20i5 | 112 |
| 96.054.6251.4 | - RST20i5 | 113 |
| 96.054.6253.0 | - RST20i5 | 113 |
| 96.054 .6253 .1 | - RST20i5 | 113 |
| 96.054.6253.6 | - RST20i5 | 113 |
| 96.054.6253.9 | - RST20i5 | 113 |
| 96.055.6153.6 | - RST20i5 | 111 |
| 96.055 .6151 .4 | - RST20i5 | 111 |
| 96.055.6153.0 | - RST20i5 | 111 |
| 96.055.6153.1 | - RST20i5 | 111 |
| 96.055.6153.9 | - RST20i5 | 111 |
| 96.056.6153.6 | - RST20i5 | 111 |
| 96.056.6151.4 | - RST20i5 | 111 |


| 96.056.6153.0 | - RST20i5 | 111 |
| :---: | :---: | :---: |
| 96.056.6153.1 | - RST20i5 | 111 |
| 96.056.6153.9 | - RST20i5 | 111 |
| 96.141.0053.0 | ■ RST20i4 | 84 |
| 96.141 .0053 .1 | - RST20i4 | 84 |
| 96.141.0153.0 | ■ RST20i4 | 84 |
| 96.141.0153.1 | - RST20i4 | 84 |
| 96.141.0553.0 | - RST20i4 | 86 |
| 96.141.0553.1 | - RST20i4 | 86 |
| 96.141.1053.0 | ■ RST20i4 | 88 |
| 96.141 .1053 .1 | - RST20i4 | 88 |
| 96.141.2053.0 | ■ RST20i4 | 89 |
| 96.141 .2053 .1 | ■ RST20i4 | 89 |
| 96.141.2153.0 | ■ RST20i4 | 90 |
| 96.141 .2153 .1 | ■ RST20i4 | 90 |
| 96.142.0053.0 | ■ RST20i4 | 84 |
| 96.142 .0053 .1 | - RST20i4 | 84 |
| 96.142.0153.0 | ■ RST20i4 | 84 |
| 96.142.0153.1 | - RST20i4 | 84 |
| 96.142.0553.0 | - RST20i4 | 86 |
| 96.142 .0553 .1 | ■ RST20i4 | 86 |
| 96.142.1053.0 | ■ RST20i4 | 88 |
| 96.142.1053.1 | - RST20i4 | 88 |
| 96.142.2053.0 | - RST20i4 | 89 |
| 96.142 .2053 .1 | - RST20i4 | 89 |
| 96.142.2153.0 | ■ RST20i4 | 90 |
| 96.142.2153.1 | - RST20i4 | 90 |
| 96.143.0053.0 | ■ RST20i4 | 85 |
| 96.143 .0053 .1 | ■ RST20i4 | 85 |
| 96.143.0153.0 | ■ RST20i4 | 85 |
| 96.143.0153.1 | - RST20i4 | 85 |
| 96.143.2053.0 | ■ RST20i4 | 92 |
| 96.143.2053.1 | ■ RST20i4 | 92 |
| 96.143.2253.0 | ■ RST20i4 | 93 |
| 96.143 .2253 .1 | - RST20i4 | 93 |
| 96.144.0053.0 | - RST20i4 | 85 |
| 96.144.0053.1 | - RST20i4 | 85 |
| 96.144.0153.0 | ■ RST20i4 | 85 |
| 96.144.0153.1 | ■ RST20i4 | 85 |
| 96.144.2053.0 | ■ RST20i4 | 92 |
| 96.144.2053.1 | - RST20i4 | 92 |
| 96.144.2253.0 | ■ RST20i4 | 93 |
| 96.144 .2253 .1 | - RST20i4 | 93 |
| 96.145.2153.0 | ■ RST20i4 | 91 |
| 96.145 .2153 .1 | - RST20i4 | 91 |
| 96.146.2153.0 | ■ RST20i4 | 91 |
| 96.146 .2153 .1 | ■ RST20i4 | 91 |
| 96.151.0051.4 | - RST20i5 | 104 |
| 96.151.0053.0 | - RST20i5 | 104 |
| 96.151.0053.1 | - RST20i5 | 104 |
| 96.151.0053.6 | - RST20i5 | 104 |
| 96.151.0053.9 | - RST20i5 | 104 |
| 96.151.0151.4 | - RST20i5 | 104 |
| 96.151.0153.0 | - RST20i5 | 104 |
| 96.151.0153.1 | - RST20i5 | 104 |
| 96.151.0153.6 | - RST20i5 | 104 |
| 96.151.0153.9 | - RST20i5 | 104 |
| 96.151.0551.4 | - RST20i5 | 106 |
| 96.151.0553.0 | - RST20i5 | 106 |
| 96.151.0553.1 | - RST20i5 | 106 |
| 96.151.0553.6 | - RST20i5 | 106 |
| 96.151.0553.9 | - RST20i5 | 106 |
| 96.151.1051.4 | - RST20i5 | 108 |
| 96.151.1053.0 | - RST20i5 | 108 |
| 96.151.1053.1 | - RST20i5 | 108 |
| 96.151.1053.6 | - RST20i5 | 108 |
| 96.151.1053.9 | - RST20i5 | 108 |
| 96.151.2051.4 | - RST20i5 | 109 |
| 96.151.2053.0 | - RST20i5 | 109 |
| 96.151.2053.1 | - RST20i5 | 109 |
| 96.151.2053.6 | - RST20i5 | 109 |
| 96.151.2053.9 | - RST20i5 | 109 |
| 96.151.2151.4 | - RST20i5 | 110 |
| 96.151.2153.0 | - RST20i5 | 110 |
| 96.151.2153.1 | - RST20i5 | 110 |
| 96.151.2153.6 | - RST20i5 | 110 |
| 96.151.2153.9 | - RST20i5 | 110 |
| 96.152.0051.4 | - RST20i5 | 104 |
| 96.152.0053.0 | - RST20i5 | 104 |
| 96.152.0053.1 | - RST20i5 | 104 |


| 96.222.5038.4 | - RST20i2 | 53 |
| :---: | :---: | :---: |
| 96.222.5092.4 | - RST20i2 | 54 |
| 96.222.5092.8 | - RST20i2 | 54 |
| 96.222.5097.4 | - RST20i2 | 54 |
| 96.222.5097.8 | - RST20i2 | 54 |
| 96.222.5098.4 | - RST20i2 | 54 |
| 96.222.5098.8 | - RST20i2 | 54 |
| 96.222.6000.1 | - RST20i2 | 52 |
| 96.222.6002.4 | - RST20i2 | 52 |
| 96.222.6003.1 | - RST20i2 | 52 |
| 96.222.6004.1 | - RST20i2 | 52 |
| 96.222.6007.4 | - RST20i2 | 52 |
| 96.222.6008.4 | - RST20i2 | 52 |
| 96.222.6030.1 | - RST20i2 | 53 |
| 96.222.6032.4 | - RST20i2 | 53 |
| 96.222.6033.1 | - RST20i2 | 53 |
| 96.222.6034.1 | - RST20i2 | 53 |
| 96.222.6037.4 | - RST20i2 | 53 |
| 96.222.6038.4 | - RST20i2 | 53 |
| 96.222.6092.4 | - RST20i2 | 54 |
| 96.222.6092.8 | - RST20i2 | 54 |
| 96.222.6097.4 | - RST20i2 | 54 |
| 96.222.6097.8 | - RST20i2 | 54 |
| 96.222.6098.4 | - RST20i2 | 54 |
| 96.222.6098.8 | - RST20i2 | 54 |
| 96.222.7000.1 | - RST20i2 | 52 |
| 96.222.7002.4 | - RST20i2 | 52 |
| 96.222.7003.1 | - RST20i2 | 52 |
| 96.222.7004.1 | - RST20i2 | 52 |
| 96.222.7007.4 | - RST20i2 | 52 |
| 96.222.7008.4 | - RST20i2 | 52 |
| 96.222.7030.1 | - RST20i2 | 53 |
| 96.222.7032.4 | - RST20i2 | 53 |
| 96.222.7033.1 | - RST20i2 | 53 |
| 96.222.7034.1 | - RST20i2 | 53 |
| 96.222.7037.4 | - RST20i2 | 53 |
| 96.222.7038.4 | - RST20i2 | 53 |
| 96.222.7092.4 | - RST20i2 | 54 |
| 96.222.7092.8 | - RST20i2 | 54 |
| 96.222.7097.4 | - RST20i2 | 54 |
| 96.222.7097.8 | - RST20i2 | 54 |
| 96.222.7098.4 | - RST20i2 | 54 |
| 96.222.7098.8 | - RST20i2 | 54 |
| 96.222.8000.1 | - RST20i2 | 52 |
| 96.222.8002.4 | - RST20i2 | 52 |
| 96.222.8003.1 | - RST20i2 | 52 |
| 96.222.8004.1 | - RST20i2 | 52 |
| 96.222.8007.4 | - RST20i2 | 52 |
| 96.222.8008.4 | - RST20i2 | 52 |
| 96.222.8030.1 | - RST20i2 | 53 |
| 96.222.8032.4 | - RST20i2 | 53 |
| 96.222.8033.1 | - RST20i2 | 53 |
| 96.222.8034.1 | - RST20i2 | 53 |
| 96.222.8037.4 | - RST20i2 | 53 |
| 96.222.8038.4 | - RST20i2 | 53 |
| 96.222.8092.4 | - RST20i2 | 54 |
| 96.222.8092.8 | - RST20i2 | 54 |
| 96.222.8097.4 | - RST20i2 | 54 |
| 96.222.8097.8 | - RST20i2 | 54 |
| 96.222.8098.4 | - RST20i2 | 54 |
| 96.222.8098.8 | - RST20i2 | 54 |
| 96.223.1092.4 | - RST20i2 | 55 |
| 96.223.1092.8 | - RST20i2 | 55 |
| 96.223.1097.4 | - RST20i2 | 55 |
| 96.223.1097.8 | - RST20i2 | 55 |
| 96.223.1098.4 | - RST20i2 | 55 |
| 96.223.1098.8 | - RST20i2 | 55 |
| 96.223.2092.4 | - RST20i2 | 55 |
| 96.223.2092.8 | - RST20i2 | 55 |
| 96.223.2097.4 | - RST20i2 | 55 |
| 96.223.2097.8 | - RST20i2 | 55 |
| 96.223.2098.4 | - RST20i2 | 55 |
| 96.223.2098.8 | - RST20i2 | 55 |
| 96.223.3092.4 | - RST20i2 | 55 |
| 96.223.3092.8 | - RST20i2 | 55 |
| 96.223.3097.4 | - RST20i2 | 55 |
| 96.223.3097.8 | - RST20i2 | 55 |
| 96.223.3098.4 | - RST20i2 | 55 |
| 96.223.3098.8 | - RST20i2 | 55 |
| 96.223.4092.4 | - RST20i2 | 55 |


| 96.223.4092.8 | - RST20i2 | 55 |
| :---: | :---: | :---: |
| 96.223.4097.4 | - RST20i2 | 55 |
| 96.223.4097.8 | - RST20i2 | 55 |
| 96.223.4098.4 | - RST20i2 | 55 |
| 96.223.4098.8 | - RST20i2 | 55 |
| 96.223.5092.4 | - RST20i2 | 55 |
| 96.223.5092.8 | - RST20i2 | 55 |
| 96.223.5097.4 | - RST20i2 | 55 |
| 96.223.5097.8 | - RST20i2 | 55 |
| 96.223.5098.4 | - RST20i2 | 55 |
| 96.223.5098.8 | - RST20i2 | 55 |
| 96.223.6092.4 | - RST20i2 | 55 |
| 96.223.6092.8 | - RST20i2 | 55 |
| 96.223.6097.4 | - RST20i2 | 55 |
| 96.223.6097.8 | - RST20i2 | 55 |
| 96.223.6098.4 | - RST20i2 | 55 |
| 96.223.6098.8 | - RST20i2 | 55 |
| 96.223.7092.4 | - RST20i2 | 55 |
| 96.223.7092.8 | - RST20i2 | 55 |
| 96.223.7097.4 | - RST20i2 | 55 |
| 96.223.7097.8 | - RST20i2 | 55 |
| 96.223.7098.4 | - RST20i2 | 55 |
| 96.223.7098.8 | - RST20i2 | 55 |
| 96.223.8092.4 | - RST20i2 | 55 |
| 96.223.8092.8 | - RST20i2 | 55 |
| 96.223.8097.4 | - RST20i2 | 55 |
| 96.223.8097.8 | - RST20i2 | 55 |
| 96.223.8098.4 | - RST20i2 | 55 |
| 96.223.8098.8 | - RST20i2 | 55 |
| 96.232.1000.1 | - RST20i3 | 70 |
| 96.232.1001.7 | - RST20i3 | 70 |
| 96.232.1003.1 | - RST20i3 | 70 |
| 96.232.1004.1 | - RST20i3 | 70 |
| 96.232.1005.7 | - RST20i3 | 70 |
| 96.232 .1006 .7 | - RST20i3 | 70 |
| 96.232.1030.1 | $\square \mathrm{RST} 20 \mathrm{i} 3$ | 71 |
| 96.232.1031.7 | - RST20i3 | 71 |
| 96.232.1033.1 | - RST20i3 | 71 |
| 96.232.1034.1 | - RST20i3 | 71 |
| 96.232.1035.7 | - RST20i3 | 71 |
| 96.232.1036.7 | - RST20i3 | 71 |
| 96.232.2000.1 | $\square \mathrm{RST} 20 \mathrm{i} 3$ | 70 |
| 96.232.2001.7 | - RST20i3 | 70 |
| 96.232.2003.1 | - RST20i3 | 70 |
| 96.232.2004.1 | - RST20i3 | 70 |
| 96.232.2005.7 | - RST20i3 | 70 |
| 96.232.2006.7 | - RST20i3 | 70 |
| 96.232.2030.1 | - RST20i3 | 71 |
| 96.232.2031.7 | - RST20i3 | 71 |
| 96.232.2033.1 | - RST20i3 | 71 |
| 96.232.2034.1 | - RST20i3 | 71 |
| 96.232.2035.7 | - RST20i3 | 71 |
| 96.232.2036.7 | - RST20i3 | 71 |
| 96.232.3000.1 | - RST20i3 | 70 |
| 96.232.3001.7 | - RST20i3 | 70 |
| 96.232.3003.1 | - RST20i3 | 70 |
| 96.232.3004.1 | - RST20i3 | 70 |
| 96.232.3005.7 | - RST20i3 | 70 |
| 96.232.3006.7 | - RST20i3 | 70 |
| 96.232.3030.1 | - RST20i3 | 71 |
| 96.232.3031.7 | - RST20i3 | 71 |
| 96.232.3033.1 | - RST20i3 | 71 |
| 96.232.3034.1 | - RST20i3 | 71 |
| 96.232.3035.7 | - RST20i3 | 71 |
| 96.232.3036.7 | - RST20i3 | 71 |
| 96.232.4000.1 | $\square$ RST20i3 | 70 |
| 96.232.4001.7 | - RST20i3 | 70 |
| 96.232.4003.1 | - RST20i3 | 70 |
| 96.232.4004.1 | - RST20i3 | 70 |
| 96.232.4005.7 | - RST20i3 | 70 |
| 96.232.4006.7 | - RST20i3 | 70 |
| 96.232.4030.1 | - RST20i3 | 71 |
| 96.232.4031.7 | - RST20i3 | 71 |
| 96.232.4033.1 | - RST20i3 | 71 |
| 96.232.4034.1 | - RST20i3 | 71 |
| 96.232.4035.7 | - RST20i3 | 71 |
| 96.232.4036.7 | $\square$ RST20i3 | 71 |
| 96.232.5000.1 | - RST20i3 | 70 |
| 96.232.5001.7 | - RST20i3 | 70 |
| 96.232.5003.1 | T20i | 70 |


| 96.232.5004.1 | - RST20i3 | 70 |
| :---: | :---: | :---: |
| 96.232.5005.7 | - RST20i3 | 70 |
| 96.232 .5006 .7 | - RST20i3 | 70 |
| 96.232.5030.1 | - RST20i3 | 71 |
| 96.232.5031.7 | - RST20i3 | 71 |
| 96.232.5033.1 | - RST20i3 | 71 |
| 96.232 .5034 .1 | - RST20i3 | 71 |
| 96.232.5035.7 | - RST20i3 | 71 |
| 96.232.5036.7 | - RST20i3 | 71 |
| 96.232.6000.1 | - RST20i3 | 70 |
| 96.232 .6001 .7 | - RST20i3 | 70 |
| 96.232.6003.1 | - RST20i3 | 70 |
| 96.232.6004.1 | - RST20i3 | 70 |
| 96.232.6005.7 | ■ RST20i3 | 70 |
| 96.232.6006.7 | - RST20i3 | 70 |
| 96.232.6030.1 | - RST20i3 | 71 |
| 96.232.6031.7 | - RST20i3 | 71 |
| 96.232.6033.1 | - RST20i3 | 71 |
| 96.232.6034.1 | $\square$ RST20i3 | 71 |
| 96.232.6035.7 | - RST20i3 | 71 |
| 96.232.6036.7 | - RST20i3 | 71 |
| 96.232.7000.1 | - RST20i3 | 70 |
| 96.232.7001.7 | - RST20i3 | 70 |
| 96.232.7003.1 | ■ RST20i3 | 70 |
| 96.232.7004.1 | - RST20i3 | 70 |
| 96.232.7005.7 | - RST20i3 | 70 |
| 96.232 .7006 .7 | - RST20i3 | 70 |
| 96.232.7030.1 | - RST20i3 | 71 |
| 96.232.7031.7 | $\square \mathrm{RST} 20 \mathrm{i} 3$ | 71 |
| 96.232.7033.1 | - RST20i3 | 71 |
| 96.232.7034.1 | - RST20i3 | 71 |
| 96.232.7035.7 | - RST20i3 | 71 |
| 96.232.7036.7 | - RST20i3 | 71 |
| 96.232.8000.1 | ■ RST20i3 | 70 |
| 96.232 .8001 .7 | - RST20i3 | 70 |
| 96.232 .8003 .1 | - RST20i3 | 70 |
| 96.232.8004.1 | - RST20i3 | 70 |
| 96.232.8005.7 | - RST20i3 | 70 |
| 96.232 .8006 .7 | - RST20i3 | 70 |
| 96.232.8030.1 | - RST20i3 | 71 |
| 96.232.8031.7 | - RST20i3 | 71 |
| 96.232.8033.1 | - RST20i3 | 71 |
| 96.232 .8034 .1 | - RST20i3 | 71 |
| 96.232.8035.7 | - RST20i3 | 71 |
| 96.232.8036.7 | - RST20i3 | 71 |
| 96.233.1000.1 | - RST20i3 | 72 |
| 96.233 .1001 .7 | - RST20i3 | 72 |
| 96.233.1003.1 | - RST20i3 | 72 |
| 96.233.1004.1 | - RST20i3 | 72 |
| 96.233.1005.7 | - RST20i3 | 72 |
| 96.233.1006.7 | - RST20i3 | 72 |
| 96.233.1030.1 | - RST20i3 | 73 |
| 96.233.1031.7 | - RST20i3 | 73 |
| 96.233.1033.1 | - RST20i3 | 73 |
| 96.233.1034.1 | - RST20i3 | 73 |
| 96.233.1035.7 | ■ RST20i3 | 73 |
| 96.233.1036.7 | - RST20i3 | 73 |
| 96.233.2000.1 | - RST20i3 | 72 |
| 96.233 .2001 .7 | - RST20i3 | 72 |
| 96.233.2003.1 | - RST20i3 | 72 |
| 96.233.2004.1 | - RST20i3 | 72 |
| 96.233.2005.7 | - RST20i3 | 72 |
| 96.233.2006.7 | - RST20i3 | 72 |
| 96.233.2030.1 | - RST20i3 | 73 |
| 96.233.2031.7 | - RST20i3 | 73 |
| 96.233.2033.1 | - RST20i3 | 73 |
| 96.233.2034.1 | - RST20i3 | 73 |
| 96.233.2035.7 | - RST20i3 | 73 |
| 96.233 .2036 .7 | - RST20i3 | 73 |
| 96.233 .3000 .1 | - RST20i3 | 72 |
| 96.233.3001.7 | - RST20i3 | 72 |
| 96.233.3003.1 | - RST20i3 | 72 |
| 96.233.3004.1 | - RST20i3 | 72 |
| 96.233.3005.7 | - RST20i3 | 72 |
| 96.233.3006.7 | - RST20i3 | 72 |
| 96.233.3030.1 | - RST20i3 | 73 |
| 96.233.3031.7 | - RST20i3 | 73 |
| 96.233.3033.1 | - RST20i3 | 73 |
| 96.233.3034.1 | - RST20i3 | 73 |
| 96.233.3035.7 | - RST20i3 | 73 |


| 96.233.3036.7 | - RST20i3 | 73 |
| :---: | :---: | :---: |
| 96.233.4000.1 | - RST20i3 | 72 |
| 96.233.4001.7 | - RST20i3 | 72 |
| 96.233.4003.1 | ■ RST20i3 | 72 |
| 96.233.4004.1 | - RST20i3 | 72 |
| 96.233.4005.7 | ■ RST20i3 | 72 |
| 96.233.4006.7 | - RST20i3 | 72 |
| 96.233.4030.1 | ■ RST20i3 | 73 |
| 96.233.4031.7 | - RST20i3 | 73 |
| 96.233.4033.1 | ■ RST20i3 | 73 |
| 96.233.4034.1 | - RST20i3 | 73 |
| 96.233.4035.7 | - RST20i3 | 73 |
| 96.233.4036.7 | - RST20i3 | 73 |
| 96.233.5000.1 | - RST20i3 | 72 |
| 96.233.5001.7 | - RST20i3 | 72 |
| 96.233.5003.1 | ■ RST20i3 | 72 |
| 96.233.5004.1 | - RST20i3 | 72 |
| 96.233.5005.7 | ■ RST20i3 | 72 |
| 96.233.5006.7 | - RST20i3 | 72 |
| 96.233.5030.1 | ■ RST20i3 | 73 |
| 96.233.5031.7 | ■ RST20i3 | 73 |
| 96.233.5033.1 | - RST20i3 | 73 |
| 96.233.5034.1 | - RST20i3 | 73 |
| 96.233.5035.7 | ■ RST20i3 | 73 |
| 96.233.5036.7 | - RST20i3 | 73 |
| 96.233.6000.1 | ■ RST20i3 | 72 |
| 96.233.6001.7 | - RST20i3 | 72 |
| 96.233.6003.1 | ■ RST20i3 | 72 |
| 96.233.6004.1 | - RST20i3 | 72 |
| 96.233.6005.7 | ■ RST20i3 | 72 |
| 96.233.6006.7 | - RST20i3 | 72 |
| 96.233.6030.1 | ■ RST20i3 | 73 |
| 96.233.6031.7 | $\square$ RST20i3 | 73 |
| 96.233.6033.1 | ■ RST20i3 | 73 |
| 96.233.6034.1 | - RST20i3 | 73 |
| 96.233.6035.7 | ■ RST20i3 | 73 |
| 96.233 .6036 .7 | - RST20i3 | 73 |
| 96.233.7000.1 | ■ RST20i3 | 72 |
| 96.233.7001.7 | - RST20i3 | 72 |
| 96.233.7003.1 | - RST20i3 | 72 |
| 96.233.7004.1 | - RST20i3 | 72 |
| 96.233.7005.7 | $\square$ RST20i3 | 72 |
| 96.233.7006.7 | $\square$ RST20i3 | 72 |
| 96.233.7030.1 | ■ RST20i3 | 73 |
| 96.233.7031.7 | - RST20i3 | 73 |
| 96.233.7033.1 | - RST20i3 | 73 |
| 96.233.7034.1 | - RST20i3 | 73 |
| 96.233.7035.7 | ■ RST20i3 | 73 |
| 96.233.7036.7 | - RST20i3 | 73 |
| 96.233.8000.1 | ■ RST20i3 | 72 |
| 96.233.8001.7 | - RST20i3 | 72 |
| 96.233.8003.1 | ■ RST20i3 | 72 |
| 96.233.8004.1 | - RST20i3 | 72 |
| 96.233.8005.7 | - RST20i3 | 72 |
| 96.233.8006.7 | - RST20i3 | 72 |
| 96.233.8030.1 | ■ RST20i3 | 73 |
| 96.233 .8031 .7 | - RST20i3 | 73 |
| 96.233.8033.1 | ■ RST20i3 | 73 |
| 96.233.8034.1 | - RST20i3 | 73 |
| 96.233.8035.7 | ■ RST20i3 | 73 |
| 96.233.8036.7 | - RST20i3 | 73 |
| 96.442.1000.1 | ■ RST20i4 | 94 |
| 96.442 .1003 .1 | - RST20i4 | 94 |
| 96.442.1004.1 | ■ RST20i4 | 94 |
| 96.442 .1030 .1 | ■ RST20i4 | 95 |
| 96.442 .1033 .1 | ■ RST20i4 | 95 |
| 96.442.1034.1 | ■ RST20i4 | 95 |
| 96.442.1080.1 | ■ RST20i4 | 98 |
| 96.442 .1083 .1 | ■ RST20i4 | 98 |
| 96.442.1084.1 | ■ RST20i4 | 98 |
| 96.442.2000.1 | - RST20i4 | 94 |
| 96.442.2003.1 | ■ RST20i4 | 94 |
| 96.442.2004.1 | - RST20i4 | 94 |
| 96.442.2030.1 | ■ RST20i4 | 95 |
| 96.442.2033.1 | ■ RST20i4 | 95 |
| 96.442.2034.1 | - RST20i4 | 95 |
| 96.442.2080.1 | ■ RST20i4 | 98 |
| 96.442.2083.1 | - RST20i4 | 98 |
| 96.442.2084.1 | - RST20i4 | 98 |
| 96.442.3000.1 | - RST20i4 | 94 |


| 96.452.5034.1 | - RST20i5 | 115 |
| :---: | :---: | :---: |
| 96.452.5034.6 | - RST20i5 | 115 |
| 96.452.6000.1 | - RST20i5 | 114 |
| 96.452.6000.6 | - RST20i5 | 14 |
| 96.452.6003.1 | - RST20i5 | 114 |
| 96.452.6003.6 | - RST20i5 | 14 |
| 96.452.6004.1 | - RST20i5 | 114 |
| 96.452.6004.6 | - RST20i5 | 14 |
| 96.452.6030.1 | - RST20i5 | 115 |
| 96.452.6030.6 | - RST20i5 | 115 |
| 96.452.6033.1 | - RST20i5 | 115 |
| 96.452.6033.6 | - RST20i5 | 115 |
| 96.452.6034.1 | - RST20i5 | 115 |
| 96.452.6034.6 | - RST20i5 | 115 |
| 96.452 .7000 .1 | - RST20i5 | 114 |
| 96.452.7000.6 | - RST20i5 | 114 |
| 96.452.7003.1 | - RST20i5 | 114 |
| 96.452.7003.6 | - RST20i5 | 14 |
| 96.452.7004.1 | - RST20i5 | 114 |
| 96.452.7004.6 | - RST20i5 | 14 |
| 96.452.7030.1 | - RST20i5 | 115 |
| 96.452.7030.6 | - RST20i5 | 115 |
| 96.452.7033.1 | - RST20i5 | 115 |
| 96.452.7033.6 | - RST20i5 | 115 |
| 96.452.7034.1 | - RST20i5 | 115 |
| 96.452.7034.6 | - RST20i5 | 115 |
| 96.452 .8000 .1 | - RST20i5 | 114 |
| 96.452.8000.6 | - RST20i5 | 14 |
| 96.452.8003.1 | - RST20i5 | 114 |
| 96.452.8003.6 | - RST20i5 | 114 |
| 96.452.8004.1 | - RST20i5 | 114 |
| 96.452.8004.6 | - RST20i5 | 114 |
| 96.452.8030.1 | - RST20i5 | 115 |
| 96.452.8030.6 | - RST20i5 | 115 |
| 96.452.8033.1 | - RST20i5 | 115 |
| 96.452.8033.6 | - RST20i5 | 115 |
| 96.452.8034.1 | - RST20i5 | 115 |
| 96.452.8034.6 | - RST20i5 | 115 |
| 96.453.1000.1 | - RST20i5 | 116 |
| 96.453.1000.6 | - RST20i5 | 116 |
| 96.453.1003.1 | - RST20i5 | 116 |
| 96.453.1003.6 | - RST20i5 | 116 |
| 96.453.1004.1 | - RST20i5 | 116 |
| 96.453.1004.6 | - RST20i5 | 116 |
| 96.453.1030.1 | - RST20i5 | 117 |
| 96.453.1030.6 | - RST20i5 | 117 |
| 96.453.1033.1 | - RST20i5 | 117 |
| 96.453.1033.6 | - RST20i5 | 117 |
| 96.453.1034.1 | - RST20i5 | 117 |
| 96.453.1034.6 | - RST20i5 | 117 |
| 96.453.1080.1 | - RST20i5 | 120 |
| 96.453.1083.1 | - RST20i5 | 120 |
| 96.453.1084.1 | - RST20i5 | 120 |
| 96.453.2000.1 | - RST20i5 | 116 |
| 96.453.2000.6 | - RST20i5 | 116 |
| 96.453.2003.1 | - RST20i5 | 116 |
| 96.453.2003.6 | - RST20i5 | 116 |
| 96.453.2004.1 | - RST20i5 | 116 |
| 96.453.2004.6 | - RST20i5 | 116 |
| 96.453.2030.1 | - RST20i5 | 117 |
| 96.453.2030.6 | - RST20i5 | 117 |
| 96.453.2033.1 | - RST20i5 | 117 |
| 96.453.2033.6 | - RST20i5 | 117 |
| 96.453.2034.1 | - RST20i5 | 117 |
| 96.453.2034.6 | - RST20i5 | 117 |
| 96.453.2080.1 | - RST20i5 | 120 |
| 96.453.2083.1 | - RST20i5 | 120 |
| 96.453.2084.1 | - RST20i5 | 120 |
| 96.453.3000.1 | - RST20i5 | 116 |
| 96.453.3000.6 | - RST20i5 | 116 |
| 96.453.3003.1 | - RST20i5 | 116 |
| 96.453.3003.6 | - RST20i5 | 116 |
| 96.453.3004.1 | - RST20i5 | 116 |
| 96.453.3030.1 | - RST20i5 | 117 |
| 96.453.3030.6 | - RST20i5 | 117 |
| 96.453.3033.1 | - RST20i5 | 117 |
| 96.453.3033.6 | - RST20i5 | 117 |
| 96.453.3034.1 | - RST20i5 | 117 |
| 96.453.3034.6 | - RST20i5 | 117 |
| 96.453.3080.1 | - RST20i5 | 120 |


| 96.453.3083.1 | - RST20i5 | 120 |
| :---: | :---: | :---: |
| 96.453.3084.1 | - RST20i5 | 120 |
| 96.453.4000.1 | - RST20i5 | 116 |
| 96.453.4000.6 | - RST20i5 | 116 |
| 96.453.4003.1 | - RST20i5 | 116 |
| 96.453.4003.6 | - RST20i5 | 116 |
| 96.453.4004.1 | - RST20i5 | 116 |
| 96.453.4004.6 | - RST20i5 | 116 |
| 96.453.4030.1 | - RST20i5 | 117 |
| 96.453.4030.6 | - RST20i5 | 117 |
| 96.453.4033.1 | - RST20i5 | 117 |
| 96.453.4033.6 | - RST20i5 | 117 |
| 96.453.4034.1 | - RST20i5 | 117 |
| 96.453.4034.6 | - RST20i5 | 117 |
| 96.453.4080.1 | - RST20i5 | 120 |
| 96.453.4083.1 | - RST20i5 | 120 |
| 96.453.4084.1 | - RST20i5 | 120 |
| 96.453.5000.1 | - RST20i5 | 116 |
| 96.453.5000.6 | - RST20i5 | 116 |
| 96.453.5003.1 | - RST20i5 | 116 |
| 96.453.5003.6 | - RST20i5 | 116 |
| 96.453.5004.1 | - RST20i5 | 116 |
| 96.453.5004.6 | - RST20i5 | 116 |
| 96.453.5030.1 | - RST20i5 | 117 |
| 96.453.5030.6 | - RST20i5 | 117 |
| 96.453.5033.1 | - RST20i5 | 117 |
| 96.453.5033.6 | - RST20i5 | 117 |
| 96.453.5034.1 | - RST20i5 | 117 |
| 96.453.5034.6 | - RST20i5 | 117 |
| 96.453.5080.1 | - RST20i5 | 120 |
| 96.453.5083.1 | - RST20i5 | 120 |
| 96.453.5084.1 | - RST20i5 | 120 |
| 96.453.6000.1 | - RST20i5 | 116 |
| 96.453.6000.6 | - RST20i5 | 116 |
| 96.453.6003.1 | - RST20i5 | 116 |
| 96.453.6003.6 | - RST20i5 | 116 |
| 96.453.6004.1 | - RST20i5 | 116 |
| 96.453.6004.6 | - RST20i5 | 116 |
| 96.453.6030.1 | - RST20i5 | 117 |
| 96.453.6030.6 | - RST20i5 | 117 |
| 96.453.6033.1 | - RST20i5 | 117 |
| 96.453.6033.6 | - RST20i5 | 117 |
| 96.453.6034.1 | - RST20i5 | 117 |
| 96.453.6034.6 | - RST20i5 | 117 |
| 96.453.6080.1 | - RST20i5 | 120 |
| 96.453.6083.1 | - RST20i5 | 120 |
| 96.453.6084.1 | - RST20i5 | 120 |
| 96.453.7000.1 | - RST20i5 | 116 |
| 96.453.7000.6 | - RST20i5 | 116 |
| 96.453.7003.1 | - RST20i5 | 116 |
| 96.453.7003.6 | - RST20i5 | 116 |
| 96.453.7004.1 | - RST20i5 | 116 |
| 96.453.7004.6 | - RST20i5 | 116 |
| 96.453.7030.1 | - RST20i5 | 117 |
| 96.453.7030.6 | - RST20i5 | 117 |
| 96.453.7033.1 | - RST20i5 | 117 |
| 96.453.7033.6 | - RST20i5 | 117 |
| 96.453.7034.1 | - RST20i5 | 117 |
| 96.453.7034.6 | - RST20i5 | 117 |
| 96.453.7080.1 | - RST20i5 | 120 |
| 96.453.7083.1 | $\square$ RST20i5 | 120 |
| 96.453.7084.1 | - RST20i5 | 120 |
| 96.453.8000.1 | - RST20i5 | 116 |
| 96.453.8000.6 | - RST20i5 | 116 |
| 96.453.8003.1 | - RST20i5 | 116 |
| 96.453.8003.6 | - RST20i5 | 116 |
| 96.453.8004.1 | - RST20i5 | 116 |
| 96.453.8004.6 | - RST20i5 | 116 |
| 96.453.8030.1 | - RST20i5 | 117 |
| 96.453.8030.6 | - RST20i5 | 117 |
| 96.453.8033.1 | - RST20i5 | 117 |
| 96.453.8033.6 | - RST20i5 | 117 |
| 96.453.8034.1 | - RST20i5 | 117 |
| 96.453.8034.6 | - RST20i5 | 117 |
| 96.453.8080.1 | - RST20i5 | 120 |
| 96.453.8083.1 | - RST20i5 | 120 |
| 96.453.8084.1 | - RST20i5 | 120 |
| 96.454.1000.1 | - RST20i5 | 118 |
| 96.454.1000.6 | - RST20i5 | 118 |
| 96.454.1003.1 | RST20i5 | 118 |


| 96.454.1003.6 | - RST20i5 | 118 |
| :---: | :---: | :---: |
| 96.454.1004.1 | - RST20i5 | 118 |
| 96.454.1004.6 | - RST20i5 | 118 |
| 96.454.1030.1 | - RST20i5 | 119 |
| 96.454.1030.6 | - RST20i5 | 119 |
| 96.454.1033.1 | - RST20i5 | 119 |
| 96.454.1033.6 | - RST20i5 | 119 |
| 96.454.1034.1 | - RST20i5 | 119 |
| 96.454.1034.6 | - RST20i5 | 119 |
| 96.454.2000.1 | - RST20i5 | 118 |
| 96.454.2000.6 | - RST20i5 | 118 |
| 96.454.2003.1 | - RST20i5 | 118 |
| 96.454.2003.6 | - RST20i5 | 118 |
| 96.454.2004.1 | - RST20i5 | 118 |
| 96.454.2004.6 | - RST20i5 | 118 |
| 96.454.2030.1 | - RST20i5 | 119 |
| 96.454.2030.6 | - RST20i5 | 119 |
| 96.454.2033.1 | - RST20i5 | 119 |
| 96.454.2033.6 | - RST20i5 | 119 |
| 96.454.2034.1 | - RST20i5 | 119 |
| 96.454.2034.6 | - RST20i5 | 119 |
| 96.454.3000.1 | - RST20i5 | 118 |
| 96.454.3000.6 | - RST20i5 | 118 |
| 96.454.3003.1 | - RST20i5 | 118 |
| 96.454.3003.6 | - RST20i5 | 118 |
| 96.454.3004.1 | - RST20i5 | 118 |
| 96.454.3004.6 | - RST20i5 | 118 |
| 96.454.3030.1 | - RST20i5 | 119 |
| 96.454.3030.6 | - RST20i5 | 119 |
| 96.454 .3033 .1 | - RST20i5 | 119 |
| 96.454.3033.6 | - RST20i5 | 119 |
| 96.454.3034.1 | - RST20i5 | 119 |
| 96.454.3034.6 | - RST20i5 | 119 |
| 96.454.4000.1 | - RST20i5 | 118 |
| 96.454.4000.6 | - RST20i5 | 118 |
| 96.454.4003.1 | - RST20i5 | 118 |
| 96.454.4003.6 | - RST20i5 | 118 |
| 96.454.4004.1 | - RST20i5 | 118 |
| 96.454.4004.6 | - RST20i5 | 118 |
| 96.454.4030.1 | - RST20i5 | 119 |
| 96.454.4030.6 | - RST20i5 | 119 |
| 96.454.4033.1 | - RST20i5 | 119 |
| 96.454.4033.6 | - RST20i5 | 119 |
| 96.454.4034.1 | - RST20i5 | 119 |
| 96.454.4034.6 | - RST20i5 | 119 |
| 96.454.5000.1 | - RST20i5 | 118 |
| 96.454.5000.6 | - RST20i5 | 118 |
| 96.454.5003.1 | - RST20i5 | 118 |
| 96.454.5003.6 | - RST20i5 | 118 |
| 96.454.5004.1 | - RST20i5 | 118 |
| 96.454.5004.6 | - RST20i5 | 118 |
| 96.454.5030.1 | - RST20i5 | 119 |
| 96.454.5030.6 | - RST20i5 | 119 |
| 96.454.5033.1 | - RST20i5 | 119 |
| 96.454.5033.6 | - RST20i5 | 119 |
| 96.454.5034.1 | - RST20i5 | 119 |
| 96.454.5034.6 | - RST20i5 | 119 |
| 96.454.6000.1 | - RST20i5 | 118 |
| 96.454.6000.6 | - RST20i5 | 118 |
| 96.454.6003.1 | - RST20i5 | 118 |
| 96.454.6003.6 | - RST20i5 | 118 |
| 96.454.6004.1 | - RST20i5 | 118 |
| 96.454.6004.6 | - RST20i5 | 118 |
| 96.454.6030.1 | - RST20i5 | 119 |
| 96.454.6030.6 | - RST20i5 | 119 |
| 96.454.6033.1 | - RST20i5 | 119 |
| 96.454.6033.6 | - RST20i5 | 119 |
| 96.454 .6034 .1 | - RST20i5 | 119 |
| 96.454.6034.6 | - RST20i5 | 119 |
| 96.454.7000.1 | - RST20i5 | 118 |
| 96.454.7000.6 | - RST20i5 | 118 |
| 96.454.7003.1 | - RST20i5 | 118 |
| 96.454.7003.6 | - RST20i5 | 118 |
| 96.454.7004.1 | - RST20i5 | 118 |
| 96.454.7004.6 | - RST20i5 | 118 |
| 96.454.7030.1 | - RST20i5 | 119 |
| 96.454.7030.6 | $\square$ RST20i5 | 119 |
| 96.454.7033.1 | - RST20i5 | 119 |
| 96.454.7033.6 | - RST20i5 | 119 |
| 96.454.7034.1 | - RST20i5 | 119 |


| 96.454.7034.6 | $\square$ RST20i5 | 119 |
| :---: | :---: | :---: |
| 96.454.8000.1 | - RST20i5 | 118 |
| 96.454.8000.6 | - RST20i5 | 118 |
| 96.454.8003.1 | - RST20i5 | 118 |
| 96.454.8003.6 | - RST20i5 | 118 |
| 96.454.8004.1 | - RST20i5 | 118 |
| 96.454.8004.6 | - RST20i5 | 118 |
| 96.454.8030.1 | - RST20i5 | 119 |
| 96.454.8030.6 | - RST20i5 | 119 |
| 96.454.8033.1 | - RST20i5 | 119 |
| 96.454.8033.6 | - RST20i5 | 119 |
| 96.454.8034.1 | - RST20i5 | 119 |
| 96.454.8034.6 | - RST20i5 | 119 |
| 96.834.1000.3 | - RST25i3 | 80 |
| 96.834.1003.3 | - RST25i3 | 80 |
| 96.834.1004.3 | ■ RST25i3 | 80 |
| 96.834 .1030 .3 | - RST25i3 | 81 |
| 96.834.1033.3 | ■ RST25i3 | 81 |
| 96.834.1034.3 | - RST25i3 | 81 |
| 96.834.1500.3 | ■ RST25i3 | 80 |
| 96.834.1503.3 | - RST25i3 | 80 |
| 96.834.1504.3 | - RST25i3 | 80 |
| 96.834.1530.3 | - RST25i3 | 81 |
| 96.834.1533.3 | - RST25i3 | 81 |
| 96.834.1534.3 | - RST25i3 | 81 |
| 96.834.2000.3 | - RST25i3 | 80 |
| 96.834.2003.3 | - RST25i3 | 80 |
| 96.834.2004.3 | ■ RST25i3 | 80 |
| 96.834.2030.3 | - RST25i3 | 81 |
| 96.834.2033.3 | - RST25i3 | 81 |
| 96.834.2034.3 | - RST25i3 | 81 |
| 96.834.2500.3 | - RST25i3 | 80 |
| 96.834.2503.3 | ■ RST25i3 | 80 |
| 96.834.2504.3 | - RST25i3 | 80 |
| 96.834.2530.3 | - RST25i3 | 81 |
| 96.834.2533.3 | ■ RST25i3 | 81 |
| 96.834.2534.3 | - RST25i3 | 81 |
| 96.834.3000.3 | - RST25i3 | 80 |
| 96.834.3003.3 | - RST25i3 | 80 |
| 96.834.3004.3 | - RST25i3 | 80 |
| 96.834.3030.3 | - RST25i3 | 81 |
| 96.834.3033.3 | - RST25i3 | 81 |
| 96.834.3034.3 | - RST25i3 | 81 |
| 96.834.3500.3 | ■ RST25i3 | 80 |
| 96.834.3503.3 | - RST25i3 | 80 |
| 96.834.3504.3 | - RST25i3 | 80 |
| 96.834.3530.3 | - RST25i3 | 81 |
| 96.834.3533.3 | ■ RST25i3 | 81 |
| 96.834.3534.3 | - RST25i3 | 81 |
| 96.834.4000.3 | - RST25i3 | 80 |
| 96.834.4003.3 | - RST25i3 | 80 |
| 96.834.4004.3 | - RST25i3 | 80 |
| 96.834.4030.3 | - RST25i3 | 81 |
| 96.834.4033.3 | - RST25i3 | 81 |
| 96.834.4034.3 | - RST25i3 | 81 |
| 96.854.1000.3 | - RST25i5 | 128 |
| 96.854.1003.3 | - RST25i5 | 128 |
| 96.854.1004.3 | - RST25i5 | 128 |
| 96.854.1030.3 | - RST25i5 | 129 |
| 96.854.1033.3 | - RST25i5 | 129 |
| 96.854.1034.3 | - RST25i5 | 129 |
| 96.854.1500.3 | - RST25i5 | 128 |
| 96.854.1503.3 | - RST25i5 | 128 |
| 96.854.1504.3 | - RST25i5 | 128 |
| 96.854.1530.3 | - RST25i5 | 129 |
| 96.854.1533.3 | - RST25i5 | 129 |
| 96.854.1534.3 | - RST25i5 | 129 |
| 96.854.2000.3 | - RST25i5 | 128 |
| 96.854.2003.3 | - RST25i5 | 128 |
| 96.854.2004.3 | - RST25i5 | 128 |
| 96.854.2030.3 | - RST25i5 | 129 |
| 96.854.2033.3 | ■ RST25i5 | 129 |
| 96.854.2034.3 | - RST25i5 | 129 |
| 96.854.2500.3 | - RST25i5 | 128 |
| 96.854 .2503 .3 | - RST25i5 | 128 |
| 96.854.2504.3 | - RST25i5 | 128 |
| 96.854.2530.3 | - RST25i5 | 129 |
| 96.854.2533.3 | - RST25i5 | 129 |
| 96.854.2534.3 | - RST25i5 | 129 |
| 96.854.3000.3 | - RST25i5 | 128 |

## Spanning various industries and products.

 wind energy systems"

0124.0 ,,fasis DIN rail terminal blocks with tension spring connection"


0164.0 , gesis SOLAR

Eletrical installation technology for photovoltaics"

0008.6 "Environmental statement Bamberg"

0009.0 "Wieland apprenticeship greeenhorns to the foreront."

0003.1 "The system partner in automation technology and in building automation technology"

0403.1 „Safe solutions for the packaging sector"

## 

0404.1 "Decentralized building automation with plug \& play" Educational facilities

## Automation technology

Further documents and brochures can be downloaded quickly and easily via the Download Center on our homepage.

0165.0 , gesis Pluggable electrical installation and building automation for indoor and outdoor applications"

## Wieland connects.

## Wieland - 100 years in Bamberg.

Wieland is one of the most important employers in Bamberg and the

# 100 years young <br> and full of innovative energy 





WWWiHisland-bleotilo.00m

## In all areas

Solutions for the future

## Information on the Internet

Interesting applications, informative product news,



## Pluggable installation solutions from Wieland <br> Additional information

## Technical support

Automation technology:

- DIN rail terminal blocks fasis, selos, taris ${ }^{\ominus}$

Phone: +49-9 5193 24-991
■ Safety technology safety
Phone: +49-9 5193 24-999

- Remote I/O ricos

Phone: +49-9 5193 24-995

- Power supply, surge protection, measuring and monitoring relays, timer relays, coupling relays, analog modules, passive interfaces interface Phone: +49-9 5193 24-995
- Remote power distribution podis ${ }^{\bullet}$

Phone: +49-9 5193 24-998

- Industrial multipole connectors revos

Phone: +49-9 5193 24-997

- Appliance terminals, European terminal strips

Phone: +49-9 5193 24-993

- Housings for electronic components, PCB terminals and connectors wiecon
Phone: +49-9 5193 24-994

Fax: +49-9 5193 26-991
E-mail: AT.TS@wieland-electric.com

## Sales hotline numbers:

■ Questions for Sales on availability, delivery schedules, and pricing

Phone: +49-951 9324-990

## Technical support

## Building services engineering:

- System connectors for building installation gesis ${ }^{\oplus}$, gesis ${ }^{\oplus}$ RAN, gesis ${ }^{\oplus}$ ELECTRONIC Phone: +49-9 5193 24-996
- Photovoltaics gesis ${ }^{\text {® }}$ SOLAR Phone: +49-9 5193 24-972
- DIN rail terminal blocks fasis BIT, selos BIT Phone: +49-9 5193 24-992

Fax: +49-9 5193 26-996
E-mail: BIT.TS@wieland-electric.com

## Additional information

 zum Thema steckbare Installation:Best of gesis
Part No. 0165.0
Dezentrale Elektronik-Verteiler:
gesis ELECTRONIC
Everything follows a system Part No. 0160.8
gesis RAN
Part No. 0160.9
for solar technology
gesis SOLAR flyer
Part No. 0162.3
gesis SOLAR catalog
Part No. 0164.0

## Information about <br> Wieland products in general:

## Wieland Product Overview Part No. 0003.1

General information and news:
www.wieland-electric.com
Visit our eCatalog at wieland-electric.com


## Our subsidiaries

... and the addresses of our representations worldwide are available at: www.wieland-electric.com


Wieland Electric Inc.
49 International Road
Burgaw, N.C. 28425
Phone +1-910-259 5050
Fax +1-910-259 3691
sales@wielandinc.com


FRANCE
Wieland Electric SARL.
103, Chemin de Ronde F-78290 Croissy-sur-Seine Phone +33-1-30 150707
Fax +33-1-30 150714
infos@wieland-electric.fr


POLAND
Wieland Electric Sp. Zo.o.
Poznań Swadzim
ul. Św. Antoniego 8
62-080 Tarnowo Podgórne
Phone +48-61 84 09-101
Fax $\quad+48-6184$ 07-166
office@wieland-electric.pl


DENMARK
Wieland Electric A/S
Vallørækken 26
DK-4600 Køge
Phone +45-70-26 6635
Fax +45-70-26 6637
sales@wieland-electric.dk


CANADA
Wieland Electric Inc.
2889 Brighton Road
Oakville, Ontario L6H 6C9
Phone +1-905-829 8414
Fax +1-905-829 8413
info@wieland-electric.ca


SPAIN
Wieland Electric S.L.
C/ Maria Auxiliadora 2 bajos
E-08017 Barcelona


Phone +34-93-252 3820
Fax +34-93-252 3825
ventas@wieland.es


CHINA
Wieland Electric Trading
Unit 2703
International Soho City
889 Renmin Rd., Huang Pu District
PRC- Shanghai 200010
Phone +86-21-63 555833


CZECH REPUBLIC
(Production)
Wieland Electric s.r.o.
Nadražni 1557
35601 Sokolov
Phone +420-352 302011
Fax +420-352 302027
wieland

Headquarters:
Wieland Electric GmbH Brennerstraße 10-14 D-96052 Bamberg
Sales and Marketing Center: Wieland Electric GmbH
Benzstraße 9
D-96052 Bamberg
Phone +49-951-9324-0
Fax +49-951-9324-198
www.wieland-electric.com
www.gesis.com
info@wieland-electric.com

## Industrial technology

Solutions for the control cabinet

- DIN rail terminal blocks
- Screw, spring clamp or IDC connection technology
- Wire cross sections up to $240 \mathrm{~mm}^{2}$
- Numerous special functions
- Software solutions interfacing to CAE systems
- Safety
- Safety sensors
- Safety relays
- Modular safety systems with fieldbus link
- PLC and fieldbus components
- Standard applications in IP 20
- Increased environmental conditions with railroad and ship approvals
- Interface
- Coupling relays, semiconductor switches
- Measuring and monitoring relays
- Timer and switching relays
- Analog modules
- Passive interfaces
- Power supply units
- Overvoltage protection

Solutions for field applications

- Remote automation technology
- Power distribution
- Fieldbus interfaces and motor starters
- Connectors for industrial applications
- Square and round connectors
- Aluminum or plastic housings
- Degree of protection up to IP 68
- Current-carrying capacity up to 100 A
- Connectors for hazardous areas
- Modular, application specific technology

PC board terminals and connectors

- Screw or spring clamp connection technology
- Spacings: 3.5 mm to 10.16 mm
- Reflow or wave soldering process


## Building and installation technology

- Building installation systems
- Main power supply connectors IP 20/IP 65 ... IP 68
- Bus connectors
- Combined connectors
- Low-voltage connectors
- Power distribution system with flat cables
- Distribution systems
- Bus systems in KNX, LON and radio technology
- DIN rail terminal blocks for electrical installations
- Overvoltage protection


## Product Range


[^0]:    Also see:
    RST20i2 Protection class II, low voltage
    RST20i3 Power 3 pole
    RST20i5 Power 5 pole

[^1]:    ${ }^{1)}$ With wire protection available on request
    2) With $6.0 \mathrm{~mm}^{2}$ wires, the pull and bending forces at the connector must be taken into consideration and compensated using suitable measures if required.

[^2]:    With wire protection available on request
    With $6.0 \mathrm{~mm}^{2}$ wires, the pull and bending forces at the connector must be taken into consideration and compensated by suitable measures if required

[^3]:    *) Solid and stranded wires $>6.0 \mathrm{~mm}^{2}$ cannot be connected in the available space due to their rigidity.

[^4]:    *) Solid and stranded wires $>6,0 \mathrm{~mm}^{2}$ cannot be connected in the available space due to their rigidity

