
Resistors

Low Resistance Metal Alloy Power Resistors

LRMAP5930

- Resistance range $0.2m\Omega$ to $2m\Omega$
- Excellent long term stability
- High power rating up to 15W
- Current sensing for power electronics
- AEC-Q200 qualified

All parts are Pb-free and comply with EU Directive 2011/65/EU amended by (EU) 2015/863 (RoHS3)

Electrical Data

	LRMAP5930							
Alloy type			В	D	С			
Resistance value	mΩ	0.2	0.3	0.5	0.6	0.5	1	2
Power rating, P ¹ _{r140°C}	W	10	7	6	5	7	6	4
Power rating, P _{rts70°C} ²	W	15	10	8	8	10	9	7
Overload rating (5s) ¹	W	50	35	30	25	35	30	20
Continuous pulse energy	J	19	13	7.5	6	19	13	6.5
Internal thermal impedance, R _{thi}	°C/W	3	4	6	6	4	7	13
Resistance tolerance	%	1						
TCR (20 to 60°C)	ppm/°C	±100		±75			±50	
Thermal EMF	μV/°C	<2						
Inductance	nH	<3						
Ambient temperature	°C	-55 to 170						

Note 1: Mounted on FR4 board. See Thermal Data and Mounting section for details.

Note 2: Mounted on thermal substrate. See Thermal Data and Mounting section for details.

Physical Data

Dimensions in mm and weight in mg										
Туре	L ±0.3	L1 +0.2 -0.3	H +0.3 -0.2	A max	D +0.1 -1.0	в ±0.1	T1 nom	T nom	Wt. nom	
LRMAP5930B-R0002FT			-	1.0	1.0 4.2	2 0.5	1.42	1.42	1440	
LRMAP5930B-R0003FT							0.94	0.94	960	
LRMAP5930B-R0005FT							0.56	0.56	570	
LRMAP5930B-R0006FT	15.0						0.46	0.46	470	
LRMAP5930D-R0005FT		4.4					1.42	1.57	1250	
LRMAP5930C-R001FT		5.0					0.91	0.91	880	
LRMAP5930C-R002FT							0.70	0.44	610	1

Marking

The component is laser marked with "5930", alloy type, ohmic value and tolerance.

Solvent Resistance

The component is resistant to all normal industrial cleaning solvents suitable for printed circuits.

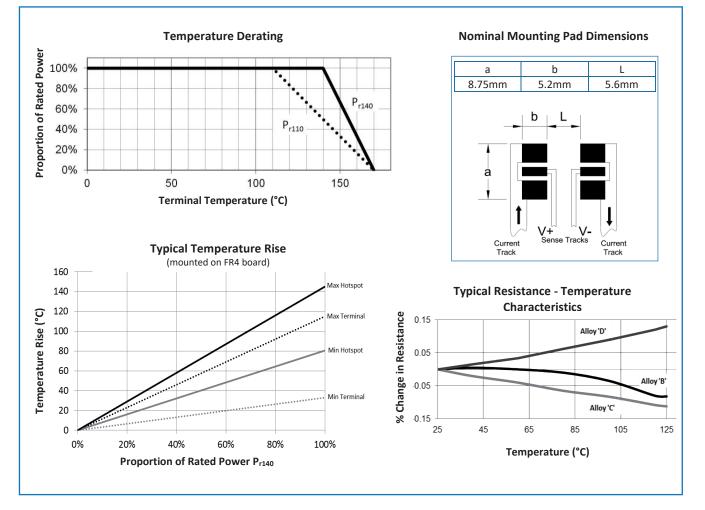
Construction

The component is formed from a continuous band of E-beam welded (EBW) precision resistive strip. Various alloys are used based on the resistance value.

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

BI Technologies IRC Welwyn

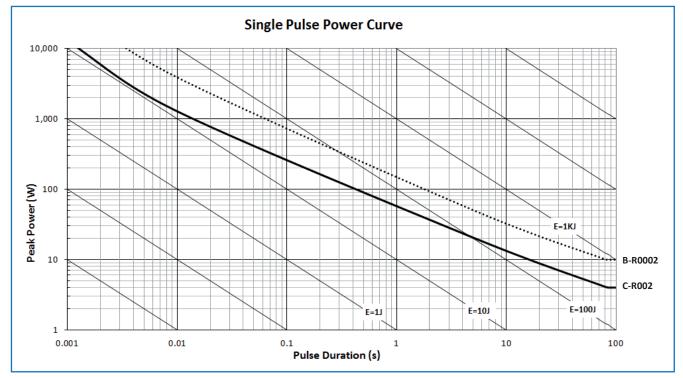


LRMAP5930

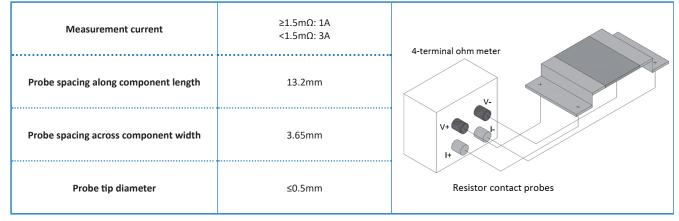
Performance Data

		±ΔR%			
Test	Method	Typical	Maximum		
Lood Life Ctability	2000 hours, rated power, Tterminal = 110°C	0.3	0.5		
Load Life Stability	2000 hours, rated power, Tterminal = 140°C	0.7	1.0		
Short Term Overload	5 seconds, 5 x rated power	0.3	1.0		
High Temperature Exposure	1000 hours, 125°C	0.4	1.0		
Mechanical Shock	MIL-STD-202 Method 213	0.1	0.2		
Bias Humidity	1000 hours, 85°C, 85%RH	0.2	0.5		
Moisture Resistance	MIL-STD-202 method 106	0.1	0.5		
Temperature Cycle	1000 cycles, -55 to +125°C, 15 minute dwell	0.1	0.5		
Resistance to Solder Heat	MIL-STD-202 Method 210	0.2	0.5		
Vibration	MIL-STD-202 Method 204	0.1	0.2		
Low Temperature Storage	1000 hours, -55°C	0.1	0.2		
Resistance to Solvents	MIL-STD-202 Method 215	no damage			
Solderability	J-STD-002	>95% coverage			

Thermal Data & Mounting


General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.


LRMAP5930

Pulse and Overload Performance

Measurement

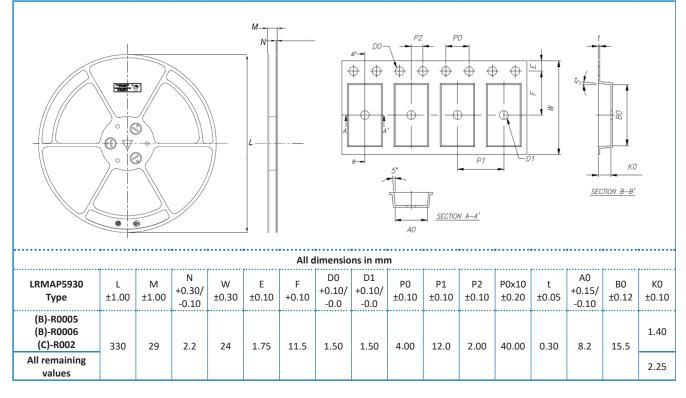
Resistance testing for the LRMAP5930 is performed on the underside of the copper contacts using the following method.

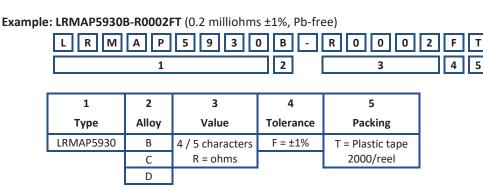
LRMAP5930 series resistors are suitable for IR reflow soldering. The recommended reflow profile for Pb-free soldering, for example using SAC387 alloy (Sn 95.5%, Ag 3.8%, Cu 0.7%), is as follows:

Pre-heat:	30s to 45s at 180°C
Soldering:	20s to 40s at 210°C
Peak:	260°C

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.


www.ttelectronics.com/resistors


LRMAP5930

Packaging

LRMAP5930 resistors are packed in 24mm tape, 2000 pieces per reel.

Ordering Procedure

© TT Electronics plc

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.