
MOSFET - Power, Single N-Channel 40 V, 5.3 mΩ, 71 A

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- LFPAK4 Package, Industry Standard
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State	$R_{\theta JC}$	3.0	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	40	

1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.

3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

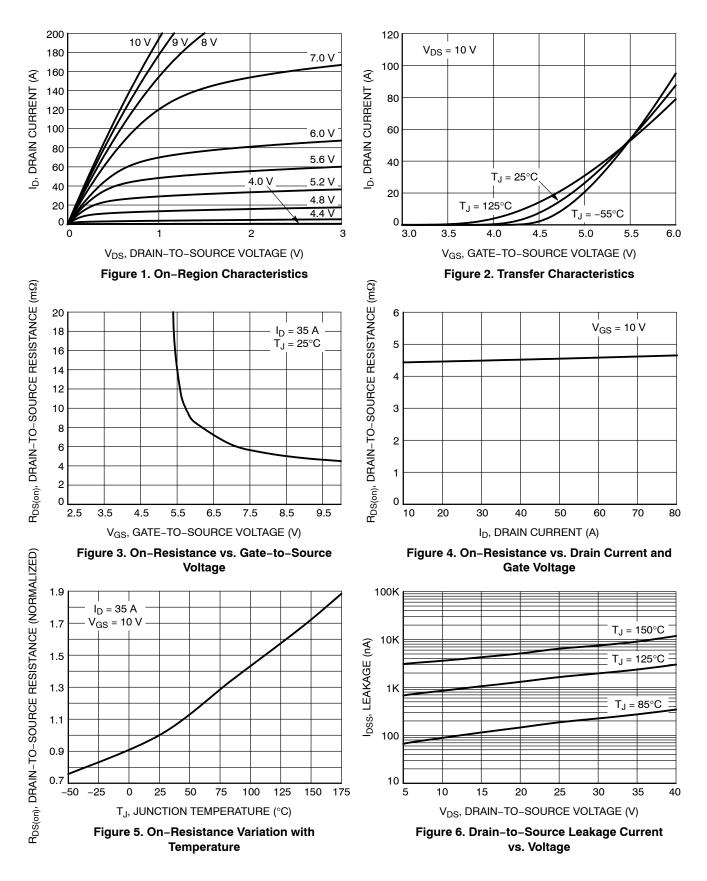
ON Semiconductor®

www.onsemi.com

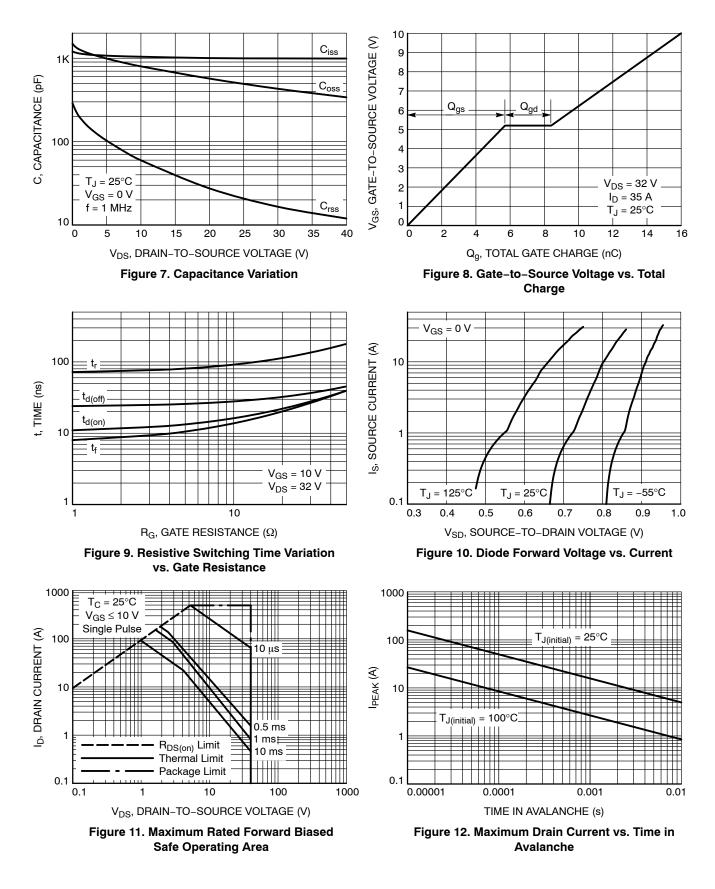
V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
40 V	5.3 m Ω @ 10 V	71 A

ORDERING INFORMATION

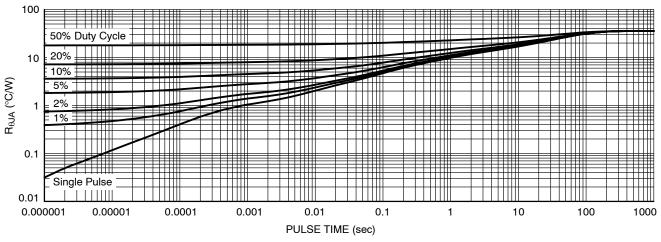
See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.


ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
$\begin{array}{ c c c c c c } \hline Drain-to-Source Breakdown Voltage Temperature Coefficient $V_{IBRJDSS}'_{IJ}$ & $V_{ISB} = 0 V, $V_{IS} = 0$	OFF CHARACTERISTICS							•
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μ A		40			V
$ \begin{array}{ c c c c c } \hline V_{DS} = 40 \ V & \hline T_{J} = 125^{\circ} C & I & 250 \\ \hline T_{J} = 125^{\circ} C & I & 250 \\ \hline T_{J} = 125^{\circ} C & I & 100 & nA \\ \hline \\ $						22		mV/°C
$ \begin{array}{ c c c c } \hline T_{1} = 125^{\circ} C & 250 \\ T_{1} = 125^{\circ} C & 100 \\ \hline 100 & nA \\ \hline 0N CHARACTERISTICS (Note 4) \\ \hline ON CHARACTERISTICS (Note 4) \\ \hline OA CHARACTERISTICS (Note 4) \\ \hline Cate Threshold Voltage & V_{GS}(TH) \\ \hline V_{GS} = V_{DS}, I_{D} = 40 \ \mu A & 2.5 & 3.5 \\ \hline V_{Threshold Temperature Coefficient & V_{GS}(TH)_{TJ} \\ \hline Threshold Temperature Coefficient & V_{GS}(TH)_{TJ} \\ \hline Threshold Temperature Coefficient & V_{GS}(TH)_{TJ} \\ \hline Threshold Temperature Coefficient & V_{GS}(TH)_{TJ} \\ \hline Drain-to-Source On Resistance & R_{DS}(n) \\ \hline V_{GS} = 10 \ V & I_{D} = 35 \ A & 4.4 & 5.3 \\ \hline Tore Aracteristic S (APACITANCES & GATE RESISTANCE \\ \hline Input Capacitance & C_{GS} \\ \hline Output Capacitance & C_{GS} \\ \hline Output Capacitance & C_{GS} \\ \hline Total Gate Charge & Q_{G}(TH) \\ \hline Threshold Gate Charge & Q_{GG} \\ \hline Cate to-Source Charge & Q_{GG} \\ \hline Reverse Transfer Capacitance & C_{GS} \\ \hline Cate to-Source Charge & Q_{GG} \\ \hline Cate to-Source Charge & Q_{GG} \\ \hline Cate to-Source Charge & Q_{GG} \\ \hline Plateau Voltage & V_{GP} \\ \hline Turn-On Delay Time & t_{d}(OFF) \\ \hline Turn-On Delay Time & t_{d}(OFF) \\ \hline Turn-On Delay Time & t_{d}(OFF) \\ \hline Fail Time & t_{T} \\ \hline Turn-Off Delay Time & t_{d}(OFF) \\ \hline Fail Time & t_{T} \\ \hline Drain-Source Diode CHARACTERISTICS \\ \hline Forward Diode Voltage & V_{SD} \\ \hline Proverd Diode Voltage & t_{RR} \\ \hline Charge Time & t_{h} \\ \hline Discharge Time & t_{h$	Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V, T_{J} = 25 °C$	T _J = 25 °C			10	
		$V_{DS} = 40 V$ $T_{J} = 125'$	T _J = 125°C			250	μA	
$ \begin{array}{ c c c c c } \hline Gate Threshold Voltage & V_{GS}(TH) & V_{GS} = V_{DS}, I_D = 40 \ \mu A & 2.5 & 3.5 & V \\ \hline Threshold Temperature Coefficient & V_{GS}(TH) / T_J & -8.0 & mV/^{C} \\ \hline Threshold Temperature Coefficient & V_{GS}(TH) / T_J & I_D = 35 \ A & 4.4 & 5.3 & m\Omega \\ \hline Threshold Temperature Coefficient & Q_{GS}(TH) & V_{GS} = 10 \ V & I_D = 35 \ A & 5.3 & 5. & MV/^{C} \\ \hline Threshold Transconductance & Q_{FS} & $V_{DS} = 15 \ V, I_D = 35 \ A & 5.3 & S \\ \hline CHARGES, CAPACITANCES & GATE RESISTANCE & 1000 & 0 \\ \hline Input Capacitance & C_{ISS} & $V_{GS} = 0 \ V, \ f = 1 \ MHz, \ V_{DS} = 25 \ V & 530 & 0 \\ \hline Cutput Capacitance & C_{RSS} & $V_{GS} = 0 \ V, \ f = 1 \ MHz, \ V_{DS} = 25 \ V & 530 & 0 \\ \hline Cate - Charge & $Q_{G}(Th) \ Threshold Gate Charge & $Q_{G}(Th) \ Threshold Gate Charge & $Q_{G}(Th) \ Threshold Gate Charge & Q_{GS} \\ \hline Cate - D-Drain Charge & $Q_{G}(Th) \ Threshold Gate Charge & Q_{GD} \\ \hline Plateau \ Votage & V_{QP} & $V_{GS} = 10 \ V, \ V_{DS} = 32 \ V; \ I_D = 35 \ A & 5.7 \ D & $0 \ V \ SWITCHING CHARACTERISTICS \ (Note 5) \\ \hline Turn-On Delay Time & $t_{d}(ON) \ Turn-On Delay Time & $t_{d}(ON) \ Turn-Of Delay Time & $t_{d}(OF)$ \\ \hline Fall Time & $t_{T} \ Turn-Off Delay Time & $t_{d}(OF)$ \\ \hline Fall Time & $t_{T} \ Suppose \ Su$	Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{G}	_S = 20 V			100	nA
$\begin{array}{ c c c c c } \hline Threshold Temperature Coefficient & V_{GS(TH)}/T_J & & & & & & & & & & & & & & & & & & &$	ON CHARACTERISTICS (Note 4)							
$ \begin{array}{ c c c } \hline \mbox{Drain-to-Source On Resistance} & \mbox{R}_{DS(on)} & \mbox{V}_{GS} = 10 \ V & \mbox{I}_{D} = 35 \ A & \mbox{I}_{A} & \mbox{5.3} & \mbox{M} & \mbox{S} \\ \hline \mbox{Forward Transconductance} & \mbox{g}_{FS} & \mbox{V}_{DS} = 15 \ V, \ \mbox{I}_{D} = 35 \ A & \mbox{S} & \mbox{S} & \mbox{S} \\ \hline \mbox{CHARGES, CAPACITANCES & GATE RESISTANCE} & \mbox{V}_{DS} = 15 \ V, \ \mbox{I}_{D} = 35 \ A & \mbox{S} & \mbox{S} & \mbox{S} & \mbox{S} \\ \hline \mbox{ChargeActance} & \mbox{C}(SS) & \mbox{V}_{QS} = 0 \ V, \ \mbox{f} = 1 \ \mbox{MH}_{Z}, \ \mbox{V}_{DS} = 25 \ V & \mbox{S} & \mbox{ChargeActance} & \mbox{C}(SS) & \mbox{C} & \mbox{S} & \m$	Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D}$	e = 40 μA	2.5		3.5	V
$ \begin{array}{ c c c c } \hline Forward Transconductance & G_{FS} & V_{DS} = 15 \ V, \ I_{D} = 35 \ A & 53 & S \\ \hline \mbox{CHARGES, CAPACITANCES & GATE RESISTANCE} \\ \hline \mbox{Input Capacitance} & C_{ISS} & & V_{GS} = 0 \ V, \ f = 1 \ MHz, \ V_{DS} = 25 \ V & 530 & M \\ \hline \mbox{Cuput Capacitance} & C_{RSS} & & V_{GS} = 0 \ V, \ f = 1 \ MHz, \ V_{DS} = 25 \ V & 530 & M \\ \hline \mbox{Cata charge} & C_{RSS} & & & & & & & & & & & & & & & & & & $	Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-8.0		mV/°C
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 35 A		4.4	5.3	mΩ
$\begin{array}{ c c c c c c } \hline Input Capacitance & C_{ISS} \\ \hline Output Capacitance & C_{OSS} \\ \hline Output Capacitance & C_{OSS} \\ \hline Reverse Transfer Capacitance & C_{RSS} \\ \hline Total Gate Charge & Q_{G(TOT)} \\ \hline Threshold Gate Charge & Q_{GS} \\ \hline Gate-to-Source Charge & Q_{GS} \\ \hline Gate-to-Drain Charge & Q_{GD} \\ \hline Plateau Voltage & V_{GP} \\ \hline \\ \hline Subtree & V_{GS} = 10 V, V_{DS} = 32 V; I_D = 35 A \\ \hline \\ Subtree & Subtr$	Forward Transconductance	9 _{FS}	V _{DS} =15 V, I _D = 35 A			53		S
$ \begin{array}{ c c c c c } \hline Output Capacitance & C_{OSS} \\ \hline PF \\ \hline Reverse Transfer Capacitance & C_{RSS} \\ \hline Total Gate Charge & Q_{G(TOT)} \\ \hline Threshold Gate Charge & Q_{G(TH)} \\ \hline Gate-to-Source Charge & Q_{GS} \\ \hline Gate-to-Drain Charge & Q_{GD} \\ \hline Plateau Voltage & V_{GP} \\ \hline \\ \hline SWITCHING CHARACTERISTICS (Note 5) \\ \hline \\ \hline Turn-On Delay Time & t_{d(ON)} \\ \hline Rise Time & t_{f} \\ \hline \\ Fall Time & t_{f} \\ \hline \\ Fall Time & t_{f} \\ \hline \\ \hline \\ Fall Time & t_{f} \\ \hline \\ $	CHARGES, CAPACITANCES & GATE RE	SISTANCE			-			
$ \begin{array}{ c c c c c } \hline Reverse Transfer Capacitance & C_{RSS} & & & & & & & & & & & & & & & & & & $	Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 25 V			1000		pF
$ \begin{array}{ c c c c } \hline Total Gate Charge & $Q_{G}(TOT)$ \\ \hline Threshold Gate Charge & $Q_{G}(TH)$ \\ \hline Gate-to-Source Charge & Q_{GB} \\ \hline Gate-to-Drain Charge & Q_{GD} \\ \hline Plateau Voltage & V_{GP} \\ \hline \\ $	Output Capacitance	C _{OSS}				530		
$ \begin{array}{ c c c c c } \hline Threshold Gate Charge & Q_{G(TH)} \\ \hline Gate-to-Source Charge & Q_{GS} \\ \hline Gate-to-Drain Charge & Q_{GD} \\ \hline Plateau Voltage & V_{GP} \\ \hline \\ \hline Plateau Voltage & V_{GP} \\ \hline \\ $	Reverse Transfer Capacitance	C _{RSS}				22		
$ \begin{array}{ c c c c c } \hline Gate-to-Source Charge & Q_{GS} \\ \hline Gate-to-Drain Charge & Q_{GD} \\ \hline Plateau Voltage & V_{GP} \\ \hline \\ $	Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 32 V; I _D = 35 A			16		nC
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Threshold Gate Charge	Q _{G(TH)}				3.2		
$ \begin{array}{c c c c c c c c c } \hline Plateau Voltage & V_{GP} & & & & & & & & & & & & & & & & & & &$	Gate-to-Source Charge	Q _{GS}				5.7		
$\begin{tabular}{ c c c c c c } \hline Turn-On Delay Time & t_{d(ON)} \\ \hline Turn-On Delay Time & t_r \\ \hline Turn-Off Delay Time & t_d(OFF) \\ \hline Fall Time & t_f \\ \hline Tall Time & t_f \\ \hline Turn-Off Delay Time & t_d(OFF) \\ \hline Fall Time & t_f \\ \hline DRAIN-SOURCE DIODE CHARACTERISTICS \\ \hline Forward Diode Voltage & V_{SD} & V_{GS} = 0 V, \\ \hline I_S = 35 A, \\ \hline$	Gate-to-Drain Charge	Q _{GD}				2.7		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Plateau Voltage	V _{GP}				5.2		V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SWITCHING CHARACTERISTICS (Note 5	5)						•
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-On Delay Time	t _{d(ON)}	V_{GS} = 10 V, V_{DS} = 32 V, I_{D} = 35 A, R_{G} = 1 Ω			11		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise Time	tr				72		ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-Off Delay Time	t _{d(OFF)}				24		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Fall Time	t _f				8.0		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	DRAIN-SOURCE DIODE CHARACTERIS	TICS				-		•
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Forward Diode Voltage	V _{SD}	V_{SD} $V_{CS} = 0 V.$	$T_J = 25^{\circ}C$		0.87	1.2	
Charge Time t_a $V_{GS} = 0 V$, $dIs/dt = 100 A/\mu s$,17nsDischarge Time t_b $I_S = 35 A$ 18		I _S = 35 A	T _J = 125°C		0.75			
Discharge Time t_b $I_S = 35 \text{ A}$ 18	Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dls/dt = 100 A/µs, I _S = 35 A			36		ns
Discharge Time t _b I _S = 35 A 18	Charge Time	ta				17		
Reverse Recovery Charge Q _{RR} 16 nC	Discharge Time	t _b				18		
	Reverse Recovery Charge	Q _{RR}				16		nC


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Pulse Test: pulse width $\leq 300 \ \mu$ s, duty cycle $\leq 2\%$.

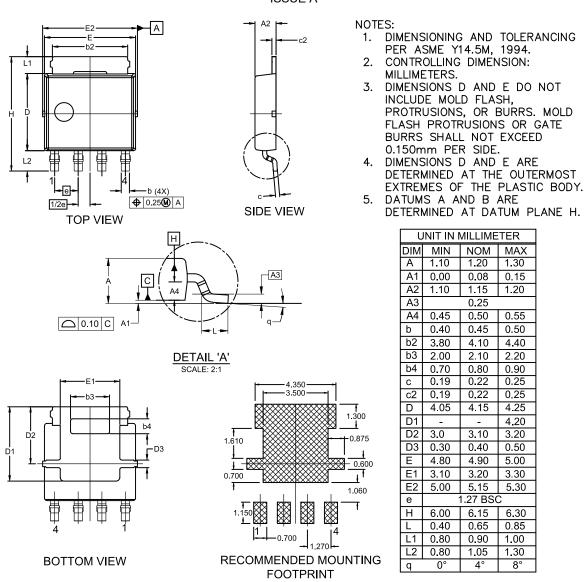
5. Switching characteristics are independent of operating junction temperatures.


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

Figure 13. Thermal Characteristics


DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NTMYS5D3N04CTWG	5D3N04C	LFPAK4 (Pb–Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

LFPAK4 5x6 CASE 760AB ISSUE A

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor dates sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly ori indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative