

DATA SHEET

SURFACE MOUNT MULTILAYER CERAMIC CAPACITORS High Frequency Automotive Grade

NPO 16 V TO 50 V 0.1 pF to 100 pF

0.1 pF to 100 pF RoHS compliant & Halogen Free

YAGEO

YAGEO

Surface-Mount Ceramic Multilayer Capacitors High Frequency Automotive grade 2

15

<u>SCOPE</u>

This specification describes Automotive grade NPO series chip capacitors with lead-free terminations and used for automotive equipments.

APPLICATIONS

All general purpose applications Entertainment applications Comfort / security applications Information applications

<u>FEATURES</u>

- AEC-Q200 qualified
- MSL class: MSL I
- AQ series soldering is compliant with J-STD-020D
- Halogen free epoxy
- RoHS compliant
- Reduce environmentally hazardous waste
- High component and equipment reliability
- The capacitors are 100% performed by automatic optical inspection prior to taping.

ORDERING INFORMATION - GLOBAL PART NUMBER

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value.

NP0

GLOBAL PART NUMBER

AQ	<u>xxxx</u>	<u>x</u>	<u>x</u>	<u>xxx</u>	<u>x</u>	В	<u>x</u>	<u>xxx</u>
	(1)	(2)	(3)	(4)	(5)		(6)	(7)

(I) SIZE – INCH BASED (METRIC)

0603 (1608)

(2) TOLERANCE

- $J = \pm 5\%$
- (3) PACKING STYLE
 - R = Paper/PE taping reel; Reel 7 inch
 - P = Paper/PE taping reel; Reel 13 inch

(4) TC MATERIAL

NPO

(5) RATED VOLTAGE

7	=	I	6	V
/			U	۷

- 8 = 25 V
- 9 = 50 V

(6) PROCESS

N = NP0

(7) CAPACITANCE VALUE

2 significant digits+number of zeros

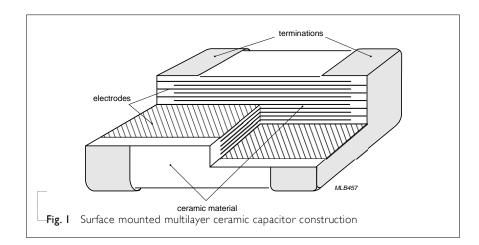
The 3rd digit signifies the multiplying factor, and letter R is decimal point

Example: $|2| = |2 \times |0| = |20 \text{ pF}$

З

15

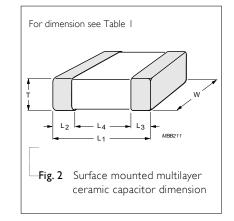
Surface-Mount Ceramic Multilayer Capacitors High Frequency Automotive grade


CONSTRUCTION

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (Matte Sn). The terminations are leadfree. A cross section of the structure is shown in Fig.1.

DIMENSION


Table I For outlines see fig. 2

L₂ / L₃ (mm) L₄ (mm) W (mm) TYPE L_1 (mm) T (MM) min. max. min. 0402 1.0 ±0.05 0.5 ±0.05 0.5 ±0.05 0.15 0.35 0.40 0603 1.6 ±0.10 0.8 ±0.10 0.8 ±0.10 0.20 0.60 0.40

OUTLINES

NP0

NP0

4 15

CAPACITANCE RANGE & THICKNESS FOR NPO

Table 2 Sizes	0402 to 0603				
CAP.	0402	0603	CAP.	0402	0603
	50V	50 V		50 V	50 V
0.1 pF	0.5±0.05		2.6 pF	0.5±0.05	0.8±0.1
0.2 pF	0.5±0.05	0.8±0.1	2.7 pF	0.5±0.05	0.8±0.1
0.3 pF	0.5±0.05	0.8±0.1	2.8 pF	0.5±0.05	0.8±0.1
0.4 pF	0.5±0.05	0.8±0.1	2.9 pF	0.5±0.05	0.8±0.1
0.5 pF	0.5±0.05	0.8±0.1	3.0 pF	0.5±0.05	0.8±0.1
0.6 pF	0.5±0.05	0.8±0.1	3.1 pF	0.5±0.05	0.8±0.1
0.7 pF	0.5±0.05	0.8±0.1	3.2 pF	0.5±0.05	0.8±0.1
0.8 pF	0.5±0.05	0.8±0.1	3.3 pF	0.5±0.05	0.8±0.1
0.9 pF	0.5±0.05	0.8±0.1	3.4 pF	0.5±0.05	0.8±0.1
I.0 pF	0.5±0.05	0.8±0.1	3.5 pF	0.5±0.05	0.8±0.1
I.I pF	0.5±0.05	0.8±0.1	3.6 pF	0.5±0.05	0.8±0.1
I.2 pF	0.5±0.05	0.8±0.1	3.7 pF	0.5±0.05	0.8±0.1
1.3 pF	0.5±0.05	0.8±0.1	3.8 pF	0.5±0.05	0.8±0.1
I.4 pF	0.5±0.05	0.8±0.1	3.9 pF	0.5±0.05	0.8±0.1
1.5 pF	0.5±0.05	0.8±0.1	4.0 pF	0.5±0.05	0.8±0.1
1.6 pF	0.5±0.05	0.8±0.1	4.1 pF	0.5±0.05	0.8±0.1
1.7 pF	0.5±0.05	0.8±0.1	4.2 pF	0.5±0.05	0.8±0.1
I.8 pF	0.5±0.05	0.8±0.1	4.3 pF	0.5±0.05	0.8±0.1
1.9 pF	0.5±0.05	0.8±0.1	4.4 pF	0.5±0.05	0.8±0.1
2.0 pF	0.5±0.05	0.8±0.1	4.5 pF	0.5±0.05	0.8±0.1
2.1 pF	0.5±0.05	0.8±0.1	4.6 pF	0.5±0.05	0.8±0.1
2.2 pF	0.5±0.05	0.8±0.1	4.7 pF	0.5±0.05	0.8±0.1
2.3 pF	0.5±0.05	0.8±0.1	4.8 pF	0.5±0.05	0.8±0.1
2.4 pF	0.5±0.05	0.8±0.1	4.9 pF	0.5±0.05	0.8±0.1
2.5 pF	0.5±0.05	0.8±0.1	5.0 pF	0.5±0.05	0.8±0.1

ΝΟΤΕ

I. Values in shaded cells indicate thickness class in mm

2. Capacitance value of non E-12 series is on request

NP0

0603

50 V

0.8±0.1

0.8±0.1

0.8±0.1

0.8±0.1

0.8±0.1

0.8±0.1

0.8±0.1

0.8±0.1

0.8±0.1

0.8±0.1

0.8±0.1

0.8±0.1

0.8±0.1

0.8±0.1

0.8±0.1

0.8±0.1

0.8±0.1

0.8±0.1

0.8±0.1

0.8±0.1

0.8±0.1

0.8±0.1

0.8±0.1

0.8±0.1

0.8±0.1

0.8±0.1

0.8±0.1

0.8±0.1

0.8±0.1

0.8±0.1

0402

50 V

0.5±0.05

0.5±0.05

0.5±0.05

0.5±0.05

0.5±0.05 0.5±0.05

0.5±0.05

 0.5 ± 0.05

0.5±0.05

0.5±0.05

0.5±0.05

0.5±0.05

0.5±0.05

0.5±0.05

0.5±0.05

0.5±0.05

 0.5 ± 0.05

 0.5 ± 0.05

0.5±0.05

 0.5 ± 0.05

0.5±0.05

 0.5 ± 0.05

0.5±0.05

0.5±0.05

0.5±0.05

0.5±0.05

0.5±0.05

0.5±0.05

 0.5 ± 0.05

 0.5 ± 0.05

 0.5 ± 0.05

$\frac{5}{15}$

CAPACITANCE RANGE & THICKNESS FOR NPO

Table 3 Sizes	<u>.e RANGE & 1</u> 0402 to 0603	HICKNESS R	<u>JK Nru</u>
CAP.	0402 50∨	0603 50 ∨	CAP.
5.1 pF	0.5±0.05	0.8±0.1	8.2 pF
5.2 pF	0.5±0.05	0.8±0.1	8.3 pF
5.3 pF	0.5±0.05	0.8±0.1	8.4 pF
5.4 pF	0.5±0.05	0.8±0.1	8.5 pF
5.5 pF	0.5±0.05	0.8±0.1	8.6 pF
5.6 pF	0.5±0.05	0.8±0.1	8.7 pF
5.7 pF	0.5±0.05	0.8±0.1	8.8 pF
5.8 pF	0.5±0.05	0.8±0.1	8.9 pF
5.9 pF	0.5±0.05	0.8±0.1	9.0 pF
6.0 pF	0.5±0.05	0.8±0.1	9.1 pF
6.1 pF	0.5±0.05	0.8±0.1	9.2 pF
6.2 pF	0.5±0.05	0.8±0.1	9.3 pF
6.3 pF	0.5±0.05	0.8±0.1	9.4 pF
6.4 pF	0.5±0.05	0.8±0.1	9.5 pF
6.5 pF	0.5±0.05	0.8±0.1	9.6 pF
6.6 pF	0.5±0.05	0.8±0.1	9.7 pF
6.7 pF	0.5±0.05	0.8±0.1	9.8 pF
6.8 pF	0.5±0.05	0.8±0.1	9.9 pF
6.9 pF	0.5±0.05	0.8±0.1	10 pF
7.0 pF	0.5±0.05	0.8±0.1	I2 pF
7.1 pF	0.5±0.05	0.8±0.1	I5 pF
7.2 pF	0.5±0.05	0.8±0.1	18 pF
7.3 pF	0.5±0.05	0.8±0.1	22 pF
7.4 pF	0.5±0.05	0.8±0.1	27 pF
7.5 pF	0.5±0.05	0.8±0.1	33 pF
7.6 pF	0.5±0.05	0.8±0.1	39 pF
7.7 pF	0.5±0.05	0.8±0.1	47 pF
7.8 pF	0.5±0.05	0.8±0.1	56 pF
7.9 pF	0.5±0.05	0.8±0.1	68 pF
8.0 pF	0.5±0.05	0.8±0.1	82 pF
8.1 pF	0.5±0.05	0.8±0.1	100 pF

ΝΟΤΕ

I. Values in shaded cells indicate thickness class in mm

2. Capacitance value of non E-12 series is on request

T 1 1 4

Surface-Mount Ceramic Multilayer Capacitors High Frequency Automotive grade

THICKNESS CLASSES AND PACKING QUANTITY

lable 4						
SIZE	THICKNESS	Ø 180 MM / 7 INCH Ø 330 MM / 13				
CODE	CLASSIFICATION	TAPE WIDTH QUANTITY PER REEL	Paper	Blister	Paper	Blister
0402	0.5 ±0.05 mm	8 mm	10,000		50,000	
0603	0.8 ±0.1 mm	8 mm	4,000		15,000	

ELECTRICAL CHARACTERISTICS

NP0 DIELECTRIC CAPACITORS; NI/SIN TERMINATIONS

Unless otherwise specified, all test and measurements shall be made under standard atmospheric conditions for testing as given in 5.3 of IEC 60068-1:

- Temperature: 15 °C to 35 °C
- Relative humidity: 25% to 75%
- Air pressure: 86 kPa to 106 kPa

Before the measurements are made, the capacitor shall be stored at the measuring temperature for a time sufficient to allow the entire capacitor to reach this temperature.

The period as prescribed for recovery at the end of a test is normally sufficient for this purpose.

Table 5	
DESCRIPTION	VALUE
Capacitance range	0.1 pF to 100 pF
Capacitance tolerance	
NP0 $C < 10 \text{ pF}$	±0.05 pF, ±0.1 pF, ±0.25 pF, ±0.5 pF
C ≥ 10 pF	±1%, ±2%, ±5%
Dissipation factor (D.F.)	
NP0 C < 30 pF	≤ I / (400 + 20C)
C ≥ 30 pF	≤ 0.1 %
Insulation resistance after 1 minute at U_r (DC)	$IR \ge 10 G\Omega$
Maximum capacitance change as a function of temperature (temperature characteristic/coefficient):	
NP0	±30 ppm/°C
Operating temperature range:	
NP0	−55 °C to +125 °C

Surface-Mount Ceramic Multilayer Capacitors High Frequency Automotive grade

SOLDERING RECOMMENDATION

Table 6					
SOLDERING	SIZE				
METHOD	0402	0603	0805	1206	≥ 1210
Reflow	≥ 0.1 µF	≥ I.0 µF	≥ 2.2 µF	≥ 4.7 µF	Reflow only
Reflow/Wave	< 0.1 µF	< 1.0 µF	< 2.2 µF	< 4.7 µF	

SOLDERING CONDITIONS

The lead free MLCCs are able to stand the reflow soldering conditions as below:

- Temperature: above 220 °C
- Endurance: 95 to 120 seconds
- Cycles: 3 times

TESTS AND REQUIREMENTS

The test of "soldering heat resistance" is carried out in accordance with the schedule of "MIL-STD-202G-method 210F", "The robust construction of chip capacitors allows them to be completely immersed in a solder bath of 260 °C for 10 seconds". Therefore, it is possible to mount MLCCs on one side of a PCB and other discrete components on the reverse (mixed PCBs). Surface Mount Capacitors are tested for solderability at 245 °C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds.

 Table 7
 Test procedures and requirements

TEST	TEST METH	IOD	PROCEDURE	REQUIREMENTS	
Mounting	IEC 60384- 21/22	4.3	The capacitors may be mounted on printed-circuit boards or ceramic substrates	No visible damage	
Capacitance	IEC 60384- 21/22	4.5.1	Class I: At 20 °C, 24 hours after annealing $f = 1 \text{ MHz}$ for $C \le InF$, measuring at voltage 1 V _{rms} at 20 °C f = 1 KHz for $C > InF$, measuring at voltage 1 V _{rms} at 20 °C	Within specified tolerance	
Dissipation Factor (D.F.)	IEC 60384- 21/22	4.5.2	Class I: At 20 °C, 24 hours after annealing $f = I MHz$ for $C \le InF$, measuring at voltage I V _{rms} at 20 °C f = I KHz for $C > InF$, measuring at voltage I V _{rms} at 20 °C	In accordance with specification	
Insulation Resistance	IEC 60384- 21/22	4.5.3	At U _r (DC) for 1 minute	In accordance with specification	

NP0

TEST	TEST METH	HOD	PROCEDURE	REQUIREMENTS
Temperature coefficient		4.6	Capacitance shall be measured by the steps shown in the following table. The capacitance change should be measured after 5	<general purpose="" series=""> Class1: ∆ C/C: ±30ppm</general>
			min at each specified temperature stage.	
			Step Temperature(°C)	
			a 25±2	
			b Lower temperature±3°C	
			c 25±2	
			d Upper Temperature±2°C	
			$\begin{array}{c c} e & 25\pm2 \\ \hline \end{array}$	
			 (I) Class I Temperature Coefficient shall be calculated from the 	
			formula as below	
			Temp, Coefficient = $\frac{C2 - C1}{C1 \times \Delta T} \times 10^6 \text{ [ppm/°C]}$	
			CI: Capacitance at step c	
			C2: Capacitance at 125° C	
			ΔT: 100° C (=125° C -25° C)	
			(2) Class II	
			Capacitance Change shall be calculated from the	
			formula as below	
			$\Delta C = \frac{C2 - C1}{C1} \times 100\%$	
			CI: Capacitance at step c	
			C2: Capacitance at step b or d	
High -	AEC-Q200	3	Unpowered ; 1000hours @ T=150°C	No visual damage
Temperature Exposure			Measurement at 24±2 hours after test conclusion.	Δ C/C :
Exposure				Class I :
				NP0: within ±0.5% or 0.5 pF
				whichever is greater
Temperature Cycling	AEC-Q200	4	Preconditioning; 150 +0/–10 °C for 1 hour, then keep for	No visual damage
			24 \pm 1 hours at room temperature	ΔC/C
			1000 cycles with following detail:	Class I :
			30 minutes at lower category temperature 30 minutes at upper category temperature	NP0: Within $\pm 1\%$ or 0.5pF, whichever is greater.
			Recovery time 24 ±2 hours	D.F. meet initial specified value IR meet initial specified value
Destructive	AEC-Q200	5	Note: Only applies to SMD ceramics.	

Surface-Mount Ceramic Multilayer Capacitors High Frequency Automotive grade

Product specification

NP0

9 15

TEST	TEST METH	HOD	PROCEDURE	REQUIREMENTS
Moisture Resistance	AEC-Q200	AEC-Q200 6 $T=24$ hrs/per cycle; 10 continuous cycles unpowerer Measurement at 24 ±2 hours after test condition.		No visual damage
				$\Delta C/C$ NP0: Within ±3% or 3 pF, whichever is greater
				D.F. Within initial specified value IR NP0: \geq 10,000 M Ω
Fig. 3 Moist	ure resistant	60 A 55 - 50 - 50 - 40 - 40 - 33 - 25 - 20 - 10 - 5 - -5 - -10 -		
Biased Humidity	AEC-Q200	7	 Preconditioning, class 2 only: 150 +0/-10 °C /1 hour, then keep for 24 ±1 hour at room temp Initial measure: Parameter: IR Measuring voltage: 1.5V ± 0.1 VDC Note: Series with 100 KΩ Test condition: 85 °C, 85% R.H. connected with 100 KΩ resistor, applied 1.5V/U_r for 1,000 hours. Recovery: Class I: 6 to 24 hours Class2: 24 ±2 hours 	No visual damage after recovery Initial requirement: Class I: - Connected to 100 K Ω : C \leq 10 nF: I.R \geq 10,000 M Ω or C \geq 10 nF: (I.R-100 K Ω) \times C \geq 100: Final measurement: The insulation resistance shall be greater than 0.1 time initial value.

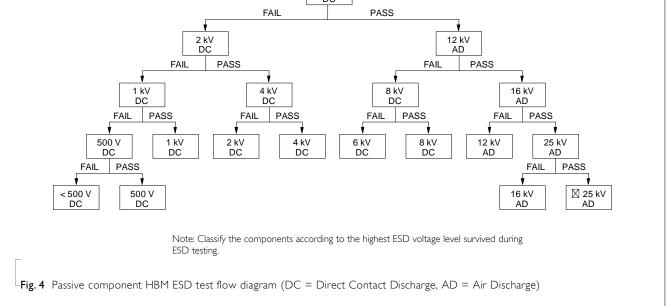
Surface-Mount Ceramic Multilayer Capacitors High Frequency Automotive grade

NP0

10

15

TEST TEST METHOD PROCEDURE REQUIREMENTS **Operational Life** AEC-Q200 8 No visual damage I. Initial measure: Spec: refer to initial spec C, D, IR $\Delta C/C$ 2. Endurance test: NPO: Within ±2% or 1 pF, whichever Specified stress voltage applied for 1,000 hours: is greater Applied 2.0 \times U_r for general products D.F. 3. Recovery time: 24 ±2 hours NP0: $\leq 2 \times$ specified value. 4. Final measure: C, D, IR Note: If the capacitance value is less than the minimum NP0: \geq 4,000 M Ω or IR \times C_r \geq 40s value permitted, then after the other measurements whichever is less have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirement shall be met. **External Visual** AEC-Q200 9 Any applicable method using × 10 magnification In accordance with specification Physical AEC-Q200 10 Verify physical dimensions to the applicable device In accordance with specification Dimension specification. Mechanical AEC-Q200 13 $\Delta C/C$ Three shocks in each direction shall be applied along Shock NP0: Within ±0.5% or 0.5 pF, the three mutually perpendicular axes of the test whichever is greater specimen (18 shocks) Peak value: 1,500 g's Duration: 0.5 ms DF Velocity change: 15.4 ft/s Within initial specified value Waveform: Half-sin IR Within initial specified value Vibration AEC-Q200 14 $\Lambda C/C$ 5 g's for 20 minutes, 12 cycles each of 3 orientations. NP0: Within ±0.5% or 0.5 pF, Note: whichever is greater Use 8" x 5" PCB. 0.31" thick 7 secure points on one long side and 2 secure points at corners of opposite sides. Parts mounted within 2" from any secure point. D.F: meet initial specified value Test from 10-2000 Hz. IR meet initial specified value Resistance to AEC-Q200 15 Precondition: 150 +0/-10 °C for 1 hour, then keep for Dissolution of the end face plating Soldering Heat 24 ±1 hours at room temperature shall not exceed 25% of the length of the edge concerned Preheating: for size ≤ 1206: 120 °C to 150 °C for 1 minute $\Delta C/C$ Preheating: for size >1206: 100 °C to 120 °C for 1 Class I: minute and 170 °C to 200 °C for 1 minute NPO: Within ±1% or 0.5 pF, Solder bath temperature: 260 ±5 °C whichever is greater. Dipping time: 10 ±0.5 seconds Recovery time: 24 ±2 hours D.F. within initial specified value IR within initial specified value


Surface-Mount Ceramic Multilayer Capacitors High Frequency Automotive grade

Product specification 11 16 V to 50 V

NP0

15

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Thermal Shock	AEC-Q200 16	 Preconditioning, class 2 only: 150 +0/-10 °C /1 hour, then keep for 24 ±1 hour at room temp Initial measure: Spec: refer to initial spec C, D, IR Rapid change of temperature test: 	No visual damage Δ C/C NP0: Within ±1% or 1 pF, whichever is greater
		 NP0: -55 °C to +125 °C; 300 cycles 15 minutes at lower category temperature; 15 minutes at upper category temperature. 4. Recovery time: Class I: 6 to 24 hours Class 2: 24 ±2 hours 5. Final measure: C, D, IR 	D.F: meet initial specified value IR meet initial specified value
ESD	AEC-Q200 17	Per AEC-Q200-002	A component passes a voltage level if all components stressed at that voltage level pass.
		FAIL PASS	YNM0053-1

Surface-Mount Ceramic Multilayer Capacitors High Frequency Automotive grade NPO

TEST	TEST METH	IOD	PROCEDURE	REQUIREMENTS				
Solderability	AEC-Q200	18	Preheated to a temperature of 80 °C to 140 °C and maintained for 30 seconds to 60 seconds.		The solder should cover over 95% of the critical area of each termination.			
			Test conditions for lead containing solder alloy Temperature: 235 ±5 °C Dipping time: 2 ±0.2 seconds Depth of immersion: 10 mm Alloy Composition: 60/40 Sn/Pb Number of immersions: 1					
			Test conditions for lead-free containing solder alloy Temperature: 245 ±5 °C Dipping time: 3 ±0.3 seconds Depth of immersion: 10 mm Alloy Composition: SAC305 Number of immersions: 1					
Electrical Characterization	AEC-Q200	19	Parametrically test per lot and sample size requirements, summary to show Min, Max, Mean and Standard deviation at room as well as Min and Max operating temperatures.		ΔC/C Class 1: NP0: ±30 ppm/°C			
Class 1: NP0: -55 °C to +125 °C Normal temperature: 20 °C		NP0: -55 °C to +125 °C	-					
which is 1.6 \pm 0.2 mm thick and has a layer-thickned μ m \pm 10 μ m. Part should be mounted using the following solder reflow profile. Conditions: Class I:		Part should be mounted using the following soldering reflow profile. Conditions:	No visible damage $\Delta C/C$ Class I: NP0: Within $\pm 1\%$ or 0.5 pF, whichever is greater					
			Test Substrate:		Dimen	sion(m	m)	
			<mark> ↔ </mark>	Туре	а	b	с	
				0201	0.3	0.9	0.3	
				0402	0.4	1.5	0.5	
				0603	1.0	3.0	1.2	
				0805	1.2	4.0	1.65	
			100	1206	2.2	5.0	1.65	
			l ∢ unit: mm	1210	2.2	5.0	2.0	
			unic mm	1808	3.5	7.0	3.7	

YAGEO

Surface-Mount Ceramic Multilayer Capacitors High Frequency Automotive grade NP0 16

Product specification 13 16 V to 50 V

TEST	TEST METHOD		PROCEDURE	REQUIREMENTS		
Terminal Strength	AEC-Q200 22		With the component mounted on a PCB obtained with the device to be tested, apply a 17.7N (1.8Kg) force to the side of a device being tested. This force shall be applied for 60+1 seconds. Also the force shall be applied gradually as not to apply a shock to the component being tested. * Apply 2N force for 0402 size.	Magnification of 20X or greater may be employed for inspection of the mechanical integrity of the device body, terminals and body/terminal junction. Before, during and after the test, the device shall comply with all electrical requirements stated in this specification.		
Beam Load Test	AEC-Q200	23	Place the part in the beam load fixture. Apply a force until the part breaks or the minimum acceptable force level required in the user specification(s) is attained.	≤ 0805 Thickness > 0.5mm: 20N Thickness ≤ 0.5mm: 8N ≥ 1206 Thickness ≥1.25 mm: 54N Thickness < 1.25 mm: 15N		
Voltage Proof			 Specified stress voltage applied for 1~5 seconds Ur ≤ 100 V: series applied 2.5 Ur 100 V < Ur ≤ 200 V series applied (1.5 Ur + 100) 200 V < Ur ≤ 500 V series applied (1.3 Ur + 100) Ur > 500 V: 1.3 Ur Ur ≥ 1000 V: 1.2 Ur Charge/Discharge current is less than 50 mA 	No breakdown or flashover		
ESR			Measuring frequency: 1 \pm 0.2GHz at room temperature.	$0.1 \text{pF} \leq C \leq 1 \text{pF} : 350 \text{m}\Omega / C \text{max}$ $1 \text{pF} < C \leq 5 \text{pF} : 300 \text{m}\Omega \text{max}$ $5 \text{pF} < C \leq 10 \text{pF} : 250 \text{m}\Omega \text{max}$ C : Nominal cap (pF)		
-			Measuring frequency: 500 \pm 50MHz at room temperature.	$10pF < C \leq 100pF$:400m Ω max		

YAGEO	1		Product specification	14
		ligh Frequency NP0	16 V to 50 V	15

<u>REVISION HISTORY</u>

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version I	Feb. 08, 2021	-	- Add 0402 / 0.1 pf~100pF
Version 0	Dec. 14, 2018	-	- New

Surface-Mount Ceramic Multilayer Capacitors

LEGAL DISCLAIMER

YAGEO, its distributors and agents (collectively, "YAGEO"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. YAGEO may make changes, modifications and/or improvements to product related information at any time and without notice.

YAGEO makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, YAGEO disclaims (i) any and all liability arising out of the application or use of any YAGEO product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non -infringement and merchantability.

YAGEO products are designed for general purpose applications under normal operation and usage conditions. Please contact YAGEO for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property: Aerospace equipment (artificial satellite, rocket, etc.), Atomic energy-related equipment, Aviation equipment, Disaster prevention equipment, crime prevention equipment, Electric heating apparatus, burning equipment, Highly public information network equipment, data-processing equipment, Medical devices, Military equipment, Power generation control equipment, Safety equipment, Traffic signal equipment, Transportation equipment and Undersea equipment, or for any other application or use in which the failure of YAGEO products could result in personal injury or death, or serious property damage. Particularly **YAGEO Corporation and its affiliates do not recommend the use of commercial or automotive grade products for high reliability applications or manned space flight.**

Information provided here is intended to indicate product specifications only. YAGEO reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.