MDE0213B1S-BW	122×25	3-Wire SPI Interface	E-Ink Module
(MDE0213A122250BW) Specification			
Version: 1		Date: 23/01/2021	
Revision			
1	26/01/2021	ssue.	

Display Features	
Display Size	$2.13^{\prime \prime}$
Resolution	122×250
Orientation	Portrait
Appearance	Black, White
Logic Voltage	3.3 V
Interface	SPI
Touchscreen	N / A
Module Size	$29.20 \times 59.20 \times 0.90 \mathrm{~mm}$
Operating Temperature	$0^{\circ} \mathrm{C} \sim+50^{\circ} \mathrm{C}$
Pinout	$24-$ Way FFC
Pitch	0.5 mm

* - For full design functionality, please use this specification in conjunction with the SSD1680 specification.(Provided Separately)

Display Accessories	
Part Number	Description

Optional Variants	
Appearances	Voltage
Black, White and Red Black, White and Yellow	

1.General Description

MDE0213B1S-BW is an Active Matrix Electrophoretic Display (AMEPD), with interface and a reference system design. The 2.13 " active area contains 122×250 pixels, and has 1 -bit B/W full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC, SRAM, LUT, VCOM and border are supplied with each panel.

2.Features

- 122×250 pixels display
- High contrast
- High reflectance
- Ultra wide viewing angle
- Ultra low power consumption
- Pure reflective mode
- Bi-stable display
- Commercial temperature range
- Landscape, portrait modes
- Hard-coat antiglare display surface
- Ultra Low current deep sleep mode
- On chip display RAM
- Low voltage detect for supply voltage
- High voltage ready detect for driving voltage
- Internal temperature sensor
- 10-byte OTP space for module identification
- Waveform stored in On-chip OTP
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- I2C signal master interface to read external temperature sensor/ built-in temperature sensor

3.Application

Electronic Shelf Label System

4.Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	2.13	Inch	
Display Resolution	$122(\mathrm{H}) \times 250(\mathrm{~V})$	Pixel	Dpi:130
Active Area	$23.7(\mathrm{H}) \times 48.55(\mathrm{~V})$	mm	
Pixel Pitch	0.194×0.194	mm	
Pixel Configuration	Rectangle		
Outline Dimension	$29.2(\mathrm{H}) \times 59.2(\mathrm{~V}) \times 0.9(\mathrm{D})$	mm	Without masking film
Weight	3 ± 0.5	g	

5. Mechanical Drawing of EPD module

6.Input/Output Terminals

Pin \#	Single	Description	Remark
1	NC	No connection and do not connect with other NC pins	Keep Open
2	GDR	N-Channel MOSFET Gate Drive Control	
3	RESE	Current Sense Input for the Control Loop	
4	NC	No connection and do not connect with other NC pins	Keep Open
5	VSH2	Positive Source driving voltage	
6	TSCL	$\mathrm{I}^{2} \mathrm{C}$ Interface to digital temperature sensor Clock pin	
7	TSDA	$\mathrm{I}^{2} \mathrm{C}$ Interface to digital temperature sensor Data pin.	
8	BS1	Bus selection pin	Note 6-5
9	BUSY	Busy state output pin	Note 6-4
10	RES \#	Reset signal input.	Note 6-3
11	D/C \#	Data /Command control pin	Note 6-2
12	CS \#	The chip select input connecting to the MCU.	Note 6-1
13	SCL	Serial clock pin for interface.	
14	SDA	Serial data pin for interface.	
15	VDDIO	Power input pin for the Interface.	
16	VCI	Power Supply pin for the chip	
17	VSS	Ground (Digital)	
18	VDD	Core logic power pin	
19	VPP	Power Supply for OTP Programming	
20	VSH1	Positive Source driving voltage	
21	VGH	Power Supply pin for Positive Gate driving voltage and VSH	
22	VSL	Negative Source driving voltage	
23	VGL	Power Supply pin for Negative Gate driving voltage, VCOM and VSL	
24	VCOM	VCOM driving voltage	

Note 6-1: This pin (CS\#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication: only when CS\# is pulled LOW.
Note 6-2: This pin (D/C\#) is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH, the data will be interpreted as data. When the pin is pulled LOW, the data will be interpreted as command.

Note 6-3: This pin (RES\#) is reset signal input. The Reset is active low.
Note 6-4: This pin (BUSY) is Busy state output pin. When Busy is High ,the operation of chip should not be interrupted and any commands should not be issued to the module. The driver IC will put Busy pin High when the driver IC is working such as:

- Outputting display waveform;
- Communicating with digital temperature sensor

Note 6-5: This pin (BS1) is for 3-line SPI or 4-line SPI selection. When it is "Low", 4-line SPI is selected. When it is "High", 3-line SPI (9 bits SPI) is selected.

7.MCU Interface

7.1 MCU interface selection

The MDE0213B1S-BW can support 3-wire/4-wire serial peripheral interface. In the Module, the MCU interface is pin selectable by BS1 pins shown in table 7-1.

Table 7-1: Interface pin assignment for different MCU interfaces

	Pin name					
MCU Interface	BS1	RES\#	CS\#	D/C\#	SCL	SDA
4-wire serial peripheral interface (SPI)	L	RES\#	CS\#	D/C\#	SCL	SDI
3-wire serial peripheral interface (SPI) - 9 bits SPI	H	RES\#	CS\#	L	SCL	SDI

Note:
(1) L is connected to VSS H is connected to VDDIO

7.2 MCU Serial Peripheral Interface (4-wire SPI)

The 4 -wire SPI consists of serial clock SCL, serial data SDA, D/C\# and CS\#. The control pins status in 4-wire SPI in writing command/data is shown in Table 7-2 and the write procedure 4-wire SPI is shown in table 7-2.

Table 7-2 : Control pins status of 4-wire SPI

Function	SCL pin	SDA pin	D/C\# pin	CS\# pin
Write command	\uparrow	Command bit	L	L
Write data	\uparrow	Data bit	H	L

Note:

(1) L is connected to VSS and H is connected to VDDIO
(2) \uparrow stands for rising edge of signal
(3) SDA (Write Mode) is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ...D0. The level of D/C\# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C\# pin.

Figure 7-1 Write procedure in 4-wire SPI mode

In the read operation (Command $0 \times 1 \mathrm{~B}, 0 \times 27,0 \times 2 \mathrm{D}, 0 \times 2 \mathrm{E}, 0 \times 2 \mathrm{~F}, 0 \times 35$). After CS\# is pulled low, the first byte sent is command byte, $\mathrm{D} / \mathrm{C} \#$ is pulled low. After command byte sent, the following byte(s) read are data byte(s), so D/C\# bit is then pulled high. An 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-2 shows the read procedure in 4-wire SPI.

SDA (Read Mos

Figure 7-2 Read procedure in 4-wire SPI mode

7.3MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS\#. The operation is similar to 4-wire SPI while D/C\# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 6-3. In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C\# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C\# bit which determines the following byte is command or data. When D/C\# bit is 0 , the following byte is command. When $\mathrm{D} / \mathrm{C} \#$ bit is 1 , the following byte is data. Table 6-3 shows the write procedure in 3-wire SPI

Table 7-3 : Control pins status of 3-wire SPI

Function	SCL pin	SDI pin	D/C\# pin	CS\# pin
Write command	\uparrow	Command bit	Tie LOW	L
Write data	\uparrow	Data bit	Tie LOW	L

Note:

(1) L is connected to V_{SS} and H is connected to $\mathrm{V}_{\text {DDIO }}$
(2) \uparrow stands for rising edge of signal

Figure 7-3 Write procedure in 3-wire SPI mode

In the read operation (command $0 \mathrm{x} 1 \mathrm{~B}, 0 \mathrm{x} 27,0 \mathrm{x} 2 \mathrm{D}, 0 \mathrm{x} 2 \mathrm{E}, 0 \mathrm{x} 2 \mathrm{~F}, 0 \mathrm{x} 35$). SDA data are transferred in the unit of 9 bits. After CS\# pull low, the first byte is command byte, the $\mathrm{D} / \mathrm{C} \#$ bit is as 0 and following with the register byte. After command byte send, the following byte(s) are data byte(s), with $\mathrm{D} / \mathrm{C} \#$ bit is 1 . After $\mathrm{D} / \mathrm{C} \#$ bit sending from MCU, an 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-4 shows the read procedure in 3-wire SPI.

Figure 7-4 Read procedure in 3-wire SPI mode

8. Temperature sensor operation

Following is the way of how to sense the ambient temperature of the module. First, use an external temperature sensor to get the temperature value and converted it into HEX format with below mapping table, then send command $0 \times 1 \mathrm{~A}$ with the HEX temperature value to the module thru the SPI interface.

The temperature value to HEX conversion is as follow:

1. If the Temperature value MSByte bit $\mathrm{D} 11=0$, then

The temperature is positive and value $(\mathrm{DegC})=+($ Temperature value $) / 16$
2. If the Temperature value MSByte bit $\mathrm{D} 11=1$, then

The temperature is negative and value (DegC) $=\sim(2$'s complement of Temperature value) /16

Table 8-1 : Example of 12-bit binary temperature settings for temperature ranges

12-bit binary (2's complement)	Hexadecimal Value	TR Value [DegC]
011111111111	7 FF	128
011111111111	7 FF	127.9
011001000000	640	100
010100000000	500	80
010010110000	4 B 0	75
001100100000	320	50
000110010000	190	25
000000000100	004	0.25
000000000000	000	0
111111111100	FFC	-0.25
111001110000	E70	-25
110010010000	C90	-55

9.COMMAND TABLE

Command Table																			
R/W\#	D/C\#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description							
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setting A[8:0]= 127h [POR], 296 MUX MUX Gate lines setting as (A[8:0] + 1).							
0	1		A_{7}	A_{6}	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	Ao									
0	1		0	0	0	0	0	0	0	A_{8}									
0	1		0	0	0	0	0	B2	B1	Bo		$\mathrm{B}[2: 0]=000[\mathrm{POR}] .$ Gate scanning sequence and direction							
												B[2]: GD Selects the 1st output Gate GD=0 [POR], G0 is the 1st gate output channel, gate output sequence is G0,G1, G2, G3, \cdots $G D=1$, G1 is the 1st gate output channel, gate output sequence is G1, G0, G3, G2, \cdots B[1]: SM Change scanning order of gate driver. SM=0 [POR], G0, G1, G2, G3 $\cdots 295$ (left and right gate interlaced) SM=1, G0, G2, G4 \cdots G294, G1, G3, \cdots G295 B[0]: TB $T B=0[P O R]$, scan from G0 to G295 TB = 1, scan from G295 to G0.							
0	0	03	0	0	0	0	0	0	1	1 Gate Driving voltage	Gate Driving voltage Set Gate driving voltage Control $\mathrm{A}[4: 0]=00 \mathrm{~h}[\mathrm{POR}]$ VGH setting from 10V to 20 V								
0	1		0	0	0	A_{4}	A_{3}	A_{2}	A_{1}										
												A[4:0]	VGH	A[4:0]	VGH				
												00h	20	0Dh	15				
												03h	10	OEh	15.5				
												04h	10.5	OFh	16				
												05h	11	10h	16.5				
												06h	11.5	11h	17				
												07h	12	12h	17.5				
												08h	12.5	13h	18				
												07h	12	14h	18.5				
												08h	12.5	15h	19				
												09h	13	16h	19.5				
												OAh	13.5	17h	20				
												OBh	14	Other	NA				
												0Ch	14.5						

R/W\#	D/C	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection

0	0	15	0	0	0	1	0	1	0	1	VCI Detection
0	1		0	0	0	0	0	A_{2}	A_{1}	A_{0}	

Description

HV ready detection
A[7:0] = 00h [POR]
The command required CLKEN=1 and ANALOGEN=1.
Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts.
BUSY pad will output high during detection.
The detection result can be read from the Status Bit Read (Command 0x2F).
A[6:4]=n for cool down duration:
$10 \mathrm{~ms} \times(\mathrm{n}+1)$
A[2:0]=m for number of Cool Down Loop to detect.
The max HV ready duration is
$10 \mathrm{~ms} \times(\mathrm{n}+1) \times(\mathrm{m})$
HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready.
For 1 shot HV ready detection, A[7:0] can be set as 00h.

R/W\#	D/C\#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command
0	0	1 B	0	0	0	1	1	0	1	1	Temperature Sensor
1	1		$\mathrm{~A}_{11}$	$\mathrm{~A}_{10}$	$\mathrm{~A}_{9}$	$\mathrm{~A}_{8}$	$\mathrm{~A}_{7}$	$\mathrm{~A}_{6}$	$\mathrm{~A}_{5}$	$\mathrm{~A}_{4}$	Control (Read from
1	1		$\mathrm{~A}_{3}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{0}$	0	0	0	0	temperature register)

Description

Read from temperature register.

0	0	1 C	0	0	0	1	1	1	0	0	Temperature Sensor	
0	1		$\mathrm{~A}_{7}$	$\mathrm{~A}_{6}$	$\mathrm{~A}_{5}$	$\mathrm{~A}_{4}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{0}$	Control (Write Command	
0	1		$\mathrm{~B}_{7}$	$\mathrm{~B}_{6}$	$\mathrm{~B}_{5}$	$\mathrm{~B}_{4}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{0}$	to External temperature	
0	1		C_{7}	C_{6}	C_{5}	C_{4}	C_{3}	C_{2}	C_{1}	C_{0}	sensor)	

Write Command to External temperature sensor.
A[7:0] = 00h [POR],
$\mathrm{B}[7: 0]=00 \mathrm{~h}[\mathrm{POR}]$,
$\mathrm{C}[7: 0]=00 \mathrm{~h}[\mathrm{POR}]$,
A[7:6]

A[7:6]	Select no of byte to be sent
00	Address + pointer
	Address + pointer + 1st parameter
10	Address + pointer + 1st parameter + 2nd pointer
11	Address

A[5:0 - Pointer Setting
$\mathrm{B}[7: 0]-1^{\mathrm{st}}$ parameter
C[7:0] - 2^{114} parameter
The command required ENABLE CLOCK
SIGNAL..
Refer to Register 0x22 for detail.
After this command initiated, Write
Command to external temperature sensor starts. BUSY pad will output high during operation.

0	0	20	0	0	1	0	0	0	0	0	Master Activation	Act

0	0	21	0	0	1	0	0	0	0	1	Display Update Control 1	RAM content option for Display Update	
0	1		A_{7}	A_{6}	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	Ao		$\begin{aligned} & \mathrm{A}[7: 0]=00 \mathrm{~h}[\mathrm{POR}] \\ & \mathrm{B}[7: 0]=00 \mathrm{~h}[\mathrm{POR}] \end{aligned}$	
0	1		B_{7}	0	0	0	0	0	0	0		A[7:4] RED RAM option	
												0000	Normal
												0100	Bypass RAM content as 0
												1000	Inverse RAM content
												A[3:0] BW RAM option	
												0000	Normal
												0100	Bypass RAM content as 0
												1000	Inverse RAM content
												B[7] Sour	Output Mode
												0 A	ble Source from S0 to S175
												1 A	ble Source from S8 to S167

R/W\#	D/C\#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly. For RED pixel: Content of Write RAM0x26 = 1 For non- RED pixel [Black or White]: Content of Write RAM0x26 $=0$
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly. The $1^{\text {st }}$ byte of data read is dummy data.
0	0	28	0	0	1 	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in command 0×29 before reading VCOM value. The sensed VCOM voltage is stored in register The command required ENABLE CLOCK SIGNAL and ENABLE ANALOG. Refer to Register 0x22 for detail. BUSY pad will output high during operation.

0	0	$2 A$	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP The command required ENABLE CLOCK SIGNAL. Refer to Register 0x22 for detail.
BUSY pad will output high during												
operation.												

R/W\#	D/C\#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descrip			
0	0	2 C	0	0	1	0	1	1	0	0	Write VCOM register	Write VCOM register from MCU interface $\mathrm{A}[7: 0]=00 \mathrm{~h}[\mathrm{POR}]$			
0	1		A_{7}	A_{6}	A_{5}	A_{4}	А	A_{2}	A_{1}	Ao					
												A[7:0]	VCOM	A[7:0]	VCOM
												08h	-0.2	44h	-1.7
												0Ch	-0.3	48h	-1.8
												10h	-0.4	4Ch	-1.9
												14h	-0.5	50h	-2
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	-0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
												34h	-1.3	70h	-2.8
												38h	-1.4	74h	-2.9
												3Ch	-1.5	78h	-3
												40h	-1.6	Other	NA

0	0	2 D	0	0	1	0	1	1	0	1	OTP Register Read for
1	1		$\mathrm{~A}_{7}$	$\mathrm{~A}_{6}$	$\mathrm{~A}_{5}$	$\mathrm{~A}_{4}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{0}$	
Display Option											
1	1		$\mathrm{~B}_{7}$	$\mathrm{~B}_{6}$	$\mathrm{~B}_{5}$	$\mathrm{~B}_{4}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{0}$	
1	1		C_{7}	C_{6}	C_{5}	C_{4}	C_{3}	C_{2}	C_{1}	C_{0}	
1	1		D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	
1	1		E_{7}	E_{6}	E_{5}	E_{4}	E_{3}	E_{2}	E_{1}	E_{0}	
1	1		$\mathrm{~F}_{7}$	$\mathrm{~F}_{6}$	$\mathrm{~F}_{5}$	$\mathrm{~F}_{4}$	$\mathrm{~F}_{3}$	$\mathrm{~F}_{2}$	$\mathrm{~F}_{1}$	$\mathrm{~F}_{0}$	
1	1		G_{7}	G_{6}	G_{5}	G_{4}	G_{3}	G_{2}	G_{1}	G_{0}	
1	1		H_{7}	H_{6}	H_{5}	H_{4}	H_{3}	H_{2}	H_{1}	H_{0}	
1	1		I_{7}	I_{6}	I_{5}	I_{4}	I_{3}	I_{2}	I_{1}	I_{0}	
1	1		$\mathrm{~J}_{7}$	$\mathrm{~J}_{6}$	$\mathrm{~J}_{5}$	$\mathrm{~J}_{4}$	$\mathrm{~J}_{3}$	$\mathrm{~J}_{2}$	$\mathrm{~J}_{1}$	$\mathrm{~J}_{0}$	
1	1		$\mathrm{~K}_{7}$	$\mathrm{~K}_{6}$	$\mathrm{~K}_{5}$	$\mathrm{~K}_{4}$	$\mathrm{~K}_{3}$	$\mathrm{~K}_{2}$	$\mathrm{~K}_{1}$	$\mathrm{~K}_{0}$	

Read Register for Display Option:
A[7:0]: VCOM OTP Selection
(Command 0x37, Byte A)
B[7:0]: VCOM Register
(Command 0x2C)
C[7:0]~G[7:0]: Display Mode
(Command 0x37, Byte B to Byte F) [5 bytes]

H[7:0]~K[7:0]: Waveform Version (Command 0x37, Byte G to Byte J)
[4 bytes]

0	0	2 E	0	0	1	0	1	1	1	0	User ID Read
1	1		$\mathrm{~A}_{7}$	$\mathrm{~A}_{6}$	$\mathrm{~A}_{5}$	$\mathrm{~A}_{4}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{0}$	
1	1		$\mathrm{~B}_{7}$	$\mathrm{~B}_{6}$	$\mathrm{~B}_{5}$	$\mathrm{~B}_{4}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{0}$	
1	1		C_{7}	C_{6}	C_{5}	C_{4}	C_{3}	C_{2}	C_{1}	C_{0}	
1	1		D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	
1	1		E_{7}	E_{6}	E_{5}	E_{4}	E_{3}	E_{2}	E_{1}	E_{0}	
1	1		$\mathrm{~F}_{7}$	$\mathrm{~F}_{6}$	$\mathrm{~F}_{5}$	$\mathrm{~F}_{4}$	$\mathrm{~F}_{3}$	$\mathrm{~F}_{2}$	$\mathrm{~F}_{1}$	$\mathrm{~F}_{0}$	
1	1		G_{7}	G_{6}	G_{5}	G_{4}	G_{3}	G_{2}	G_{1}	G_{0}	
1	1		H_{7}	H_{6}	H_{5}	H_{4}	H_{3}	H_{2}	H_{1}	H_{0}	
1	1		I_{7}	I_{6}	I_{5}	I_{4}	I_{3}	I_{2}	I_{1}	I_{0}	
1	1		$\mathrm{~J}_{7}$	$\mathrm{~J}_{6}$	$\mathrm{~J}_{5}$	$\mathrm{~J}_{4}$	$\mathrm{~J}_{3}$	$\mathrm{~J}_{2}$	$\mathrm{~J}_{1}$	$\mathrm{~J}_{0}$	

Read 10 Byte User ID stored in OTP: A[7:0]] \sim [7:0]: UserID (R38, Byte A and Byte J) [10 bytes]

R/W\#	D/C\#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description

0	0	37	0	0	1	1	0	1	1	1
0	1		$\mathrm{~A}_{7}$	0	0	0	0	0	0	0
0	1		$\mathrm{~B}_{7}$	$\mathrm{~B}_{6}$	$\mathrm{~B}_{5}$	$\mathrm{~B}_{4}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{0}$
0	1		C_{7}	C_{6}	C_{5}	C_{4}	C_{3}	C_{2}	C_{1}	C_{0}
0	1		D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
0	1		E_{7}	E_{6}	E_{5}	E_{4}	E_{3}	E_{2}	E_{1}	E_{0}
0	1		0	$\mathrm{~F}_{6}$	0	0	$\mathrm{~F}_{3}$	$\mathrm{~F}_{2}$	$\mathrm{~F}_{1}$	$\mathrm{~F}_{0}$
0	1		G_{7}	G_{6}	G_{5}	G_{4}	G_{3}	G_{2}	G_{1}	G_{0}
0	1		H_{7}	H_{6}	H_{5}	H_{4}	H_{3}	H_{2}	H_{1}	H_{0}
0	1		I_{7}	I_{6}	I_{5}	I_{4}	I_{3}	I_{2}	I_{1}	I_{0}
0	1		$\mathrm{~J}_{7}$	$\mathrm{~J}_{6}$	$\mathrm{~J}_{5}$	$\mathrm{~J}_{4}$	$\mathrm{~J}_{3}$	$\mathrm{~J}_{2}$	$\mathrm{~J}_{1}$	$\mathrm{~J}_{0}$

A[7] Spare VCOM OTP selection
0: Default [POR]
1: Spare

B[7:0] Display Mode for WS[7:0]
C[7:0] Display Mode for WS[15:8]
D[7:0] Display Mode for WS[23:16]
E[7:0] Display Mode for WS[31:24]
F[3:0 Display Mode for WS[35:32]
0: Display Mode 1
1: Display Mode 2
F[6]: PingPong for Display Mode 2
0: RAM Ping-Pong disable [POR]
1: RAM Ping-Pong enable

G[7:0]~J[7:0] module ID /waveform version.

Remarks:

1) $A[7: 0] \sim J[7: 0]$ can be stored in OTP
2) RAM Ping-Pong function is not support for Display Mode 1

0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID	Write Register for User ID A[7:0]] J[7:0]: UserID [10 bytes] Remarks: A[7:0]~J[7:0] can be stored in OTP by command 0×36
0	1		A_{7}	A6	A5	A 4	A_{3}	A_{2}	A_{1}	Ao		
0	1		B_{7}	B_{6}	B5	B_{4}	B_{3}	B_{2}	B_{1}	Bo		
0	1		C_{7}	C_{6}	C_{5}	C_{4}	C_{3}	C_{2}	C_{1}	C_{0}		
0	1		D_{7}	D	D5	D4	D3	D_{2}	D1	Do		
0	1		E_{7}	E_{6}	E5	E_{4}	E_{3}	E_{2}	E_{1}	Eo		
0	1		F_{7}	F_{6}	F_{5}	F_{4}	F_{3}	F_{2}	F_{1}	F_{0}		
0	1		G_{7}	G_{6}	G5	G_{4}	G3	G_{2}	G_{1}	G_{0}		

0	0	41	0	1	0	0	0	0	0	1	Read RAM Option
0	1		0	0	0	0	0	0	0	A_{0}	

Read RAM Option
$A[0]=0$ [POR]
0 : Read RAM corresponding to RAM0x24
1 : Read RAM corresponding to RAM0x26

0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address
0	1		0	0	$\mathrm{~A}_{5}$	$\mathrm{~A}_{4}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{0}$	Start / End position
0	1		0	0	$\mathrm{~B}_{5}$	$\mathrm{~B}_{4}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{0}$	

Specify the start/end positions of the window address in the X direction by an address unit for RAM

A[5:0]: XSA[5:0], XStart, POR $=00 \mathrm{~h}$
B[5:0]: XEA[5:0], XEnd, POR $=15 \mathrm{~h}$

0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address
0	1		$\mathrm{~A}_{7}$	$\mathrm{~A}_{6}$	$\mathrm{~A}_{5}$	$\mathrm{~A}_{4}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{0}$	Start / End position
0	1		0	0	0	0	0	0	0	$\mathrm{~A}_{8}$	
0	1		$\mathrm{~B}_{7}$	$\mathrm{~B}_{6}$	$\mathrm{~B}_{5}$	$\mathrm{~B}_{4}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{0}$	
0	1		0	0	0	0	0	0	0	$\mathrm{~B}_{8}$	

Specify the start/end positions of the window address in the Y direction by an address unit for RAM

A[8:0]: YSA[8:0], YStart, POR $=000 \mathrm{~h}$
$B[8: 0]: Y E A[8: 0]$, YEnd, $P O R=127 \mathrm{~h}$

R/W\#	D/C\#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	4 E	0	1	0	0	1	1	1	0	Set RAM X address	Make initial settings for the RAM X address in the address counter (AC) A[5:0]: 00h [POR].
0	1		0	0	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}	counter	

0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address counter	Make initial settings for the RAM Y address in the address counter (AC) A[8:0]: 000h [POR].
0	1		A_{7}	A_{6}	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	Ao		
0	1		0	0	0	0	0	0	0	A8		

| 0 | 0 | $7 F$ | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | NOP | This command is an empty command; it
 does not have any effect on the display
 module.
 However it can be used to terminate
 Frame Memory Write or Read
 Commands. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

10.Data Entry Mode Setting (11h)

This command has multiple configurations and each bit setting is described as follows:

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1						AM	ID1	IDO
POR		0	0	0	0	0	0	1	1

ID[1:0]: The address counter is automatically incremented by 1 , after data is written to the RAM when ID[1:0] = " 01 ". The address counter is automatically decremented by 1 , after data is written to the RAM when $\operatorname{ID}[1: 0]=$ " 00 ". The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. The direction of the address when data is written to the RAM is set by AM bits.

AM: Set the direction in which the address counter is updated automatically after data are written to the RAM. When AM = " 0 ", the address counter is updated in the X direction. When $\mathrm{AM}=$ " 1 ", the address counter is updated in the Y direction. When window addresses are selected, data are written to the RAM area specified by the window addresses in the manner specified with ID[1:0] and AM bits.

	ID [1:0]="00" X: decrement Y: decrement	ID [1:0]="01" X : increment Y : decrement	ID [1:0]="10" X: decrement Y: increment	ID [1:0]=" $11 "$ X: increment Y: increment
$\begin{aligned} & \text { AM="0" } \\ & \text { X-mode } \end{aligned}$				
$\begin{aligned} & \text { AM="1" } \\ & \text { Y-mode } \end{aligned}$	00.00h		$15,127 \mathrm{~h}$	

The pixel sequence is defined by the ID [0],

	ID [1:0]="00" X: decrement Y: decrement	$\begin{aligned} & \mathrm{D}[1: 0]=" 01 " \\ & \text { X: increment } \\ & \text { Y: decrement } \end{aligned}$
$\begin{gathered} \text { AM="0" } \\ \text { X-mode } \end{gathered}$		$00,0 \mathrm{~h}$

11. Reference Circuit

Figure. 11-1

Figure. 11-2

Part Name	Value /requirement/Reference Part
C1-C9	1uF/0603;X5R;Voltage Rating: 25V
C10	1uF/0603;X7R;Voltage Rating: 25V
D1-D3	MBR0530 1) Reverse DC voltage $\geqslant 30 \mathrm{~V}$ 2) Forward current $\geqslant 500 \mathrm{~mA}$ 3)Forward voltage $\leqslant 430 \mathrm{mV}$
R2	$2.2 \Omega / 0603: 1 \%$ variation
Q1	NMOS:Si1304BDL/NX3008NBK 1) Drain-Source breakdown voltage $\geqslant 30 \mathrm{~V}$ 2) $\mathrm{Vgs}($ th $)=0.9$ (Typ) , 1.3 V (Max) 3) Rds on $\leqslant 2.1 \Omega$ @ Vgs=2.5V
L1	47uH/NRH3010T470MN Maximum DC current $\sim 420 \mathrm{~mA}$ Maximum DC resistance $\sim 650 \mathrm{~m} \Omega$
CON24Pin	0.5 mm ZIF Socket 24Pins, 0.5 mm pitch

12. ABSOLUTE MAXIMUM RATING

Table 12-1: Maximum Ratings

Symbol	Parameter	Rating	Unit	Humidity	Unit	Note
V_{CI}	Logic supply voltage	-0.5 to +6.0	V	-	-	
$\mathrm{T}_{\mathrm{OPR}}$	Operation temperature range	0 to 50	${ }^{\circ} \mathrm{C}$	35 to70	$\%$	
Tttg	Transportation temperature range	-25 to 60	${ }^{\circ} \mathrm{C}$	-	-	
Tstg	Storage condition	0 to 40	${ }^{\circ} \mathrm{C}$	35 to 70	$\%$	Maximum storage time: 5 years

Note 12-1:Maximum ratings are those values beyond which damages to the device may occur.
Functional operation should be restricted to the limits in the Electrical Characteristics chapter.
Note12-2: Tttg is the transportation condition, the transport time is within 10 days for $-25^{\circ} \mathrm{C} \sim 0^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C} \sim 60^{\circ} \mathrm{C}$

13.DC CHARACTERISTICS

The following specifications apply for: VSS $=0 \mathrm{~V}, \mathrm{VCI}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{OPR}}=25^{\circ} \mathrm{C}$.
Table 13-1: DC Characteristics

Symbol	Parameter	Test Condition	Applicable pin	Min.	Typ.	Max.	Unit
VCI	VCI operation voltage		VCI	2.5	3	3.7	V
VIH	High level input voltage		SDA, SCL, CS\#, D/C\#, RES\#, BS1	0.8 VDDIO			V
VIL	Low level input voltage					0.2 VDDI O	V
VOH	High level output voltage	IOH = -100uA	BUSY	$0.9 V D D I O$			V
VOL	Low level output voltage	IOL = 100uA				0.1 VDDI O	V
Iupdate	Module operating current			-	3	-	mA
Isleep	Deep sleep mode	VCI=3.3V		-	-	3	uA

The Typical power consumption is measured using associated $25^{\circ} \mathrm{C}$ waveform with following pattern transition: from horizontal scan pattern to vertical scan pattern. (Note 13-1)

- The listed electrical/optical characteristics are only guaranteed under the controller \& waveform provided by Midas Displays.
- Vcom value will be OTP before in factory or present on the label sticker.

Note 13-1

The Typical power consumption

14. Serial Peripheral Interface Timing

The following specifications apply for: $\mathrm{VSS}=0 \mathrm{~V}, \mathrm{VCI}=2.5 \mathrm{~V}$ to $3.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{OPR}}=25^{\circ} \mathrm{C}, \mathrm{CL}=20 \mathrm{pF}$
Write mode

Symbol	Parameter	Min	Typ	Max	Unit
fSCL	SCL frequency (Write Mode)			20	MHz
tCSSU	Time CS\# has to be low before the first rising edge of SCLK	60			ns
tCSHLD	Time CS\# has to remain low after the last falling edge of SCLK	65			ns
tCSHIGH	Time CS\# has to remain high between two transfers	100			ns
tSCLHIGH	Part of the clock period where SCL has to remain high	25			ns
tSCLLOW	Part of the clock period where SCL has to remain low	25			ns
tSISU	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
tSIHLD	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40		ns	

Read mode

Symbol	Parameter	Min	Typ	Max	Unit
fSCL	SCL frequency (Read Mode)			2.5	MHz
tCSSU	Time CS\# has to be low before the first rising edge of SCLK	100			ns
tCSHLD	Time CS\# has to remain low after the last falling edge of SCLK	50			ns
tCSHIGH	Time CS\# has to remain high between two transfers	250			ns
tSCLHIGH	Part of the clock period where SCL has to remain high	180			ns
tSCLLOW	Part of the clock period where SCL has to remain low	180			ns
tSOSU	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50		ns
tSOHLD	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL		0	ns	

Note: All timings are based on $\mathbf{2 0 \%}$ to $\mathbf{8 0 \%}$ of VDDIO-VSS

Figure 14-1: SPI timing diagram

15. Power Consumption

Parameter	Symbol	Conditions	TYP	Max	Unit	Remark
Panel power consumption during update	-	$25^{\circ} \mathrm{C}$	-	20	mAs	-
Deep sleep mode	-	$25^{\circ} \mathrm{C}$	-	3	uA	-

MAS=update average current \times update time

16.Typical Operating Sequence

16.1 Normal Operation Flow

1. Power On

- Supply VCI
- Wait 10 ms

2. Set Initial Configuration

- Define SPI interface to communicate with MCU
- HN Reset
- SW Resat by Command Ox12
- Wait 10 ms

3. Send Initialization Code

Set gate driver output by Command 0x01

- Set display RAM size by Command 0x11, 0x44. 0×45
- Set panel border by Command $0 \times 3 \mathrm{C}$

4. Load Waveform LUT

- Sense temperature by int/ext TS by Command 0x18
- Load waveform LUT from OTP by Command 0x22. 0×20 or by MCU
- Wait BUSY Low

5. Write Image and Drive Display Panel

- Write image data in RAM by Command $0 \times 4 \mathrm{E}, 0 \times 4 \mathrm{~F}$, $0 \times 24,0 \times 26$
- Set softstart setting by Command OxOC
- Drive display panel by Command 0x22, 0x20
- Wait BUSY Low

6. Power Off

- Deep sleep by Command 0x10
- Power OFF

17.Optical characteristics

17.1 Specifications

Measurements are made with that the illumination is under an angle of 45 degrees, the detection is perpendicular unless otherwise specified.
$\mathrm{T}=25 \pm 3^{\circ} \mathrm{C}, \quad \mathrm{VCI}=3.0 \mathrm{~V}$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNIT	Note
R	Reflectance	White	30	35	-	$\%$	Note 17-1
Gn	2Grey Level	-	-	KS+(WS-KS) $\times n(\mathrm{~m}-1)$	-	L^{*}	-
CR	Contrast Ratio	-	-	10	-	-	-
KS	Black State L* value	-	-	18	-	-	Note 17-1
	Black State a* value	-	-	0.2	-	-	Note 17-1
Panel	White State L* value	-	-	67	-	-	Note $17-1$
	Image Update	Storage and transportation	-	Update the white screen	-	-	-

WS : White state, KS : Black State,
Note 17-1 : Luminance meter : i - One Pro Spectrophotometer
Note 17-2: We guarantee display quality from $0^{\circ} \mathrm{C} \sim 30^{\circ} \mathrm{C}$ generally, If operation ambient temperature from $0^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$, will offer special waveform by Midas Displays.

17.2 Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (R1) and the reflectance in a dark area (Rd)() :

R1: white reflectance \quad Rd: dark reflectance
CR = R1/Rd

17.3 Reflection Ratio

The reflection ratio is expressed as:
$\mathrm{R}=$ Reflectance Factor white board $\quad \mathrm{x}\left(\mathrm{L}_{\text {center }} / \mathrm{L}_{\text {white board }}\right)$
$L_{\text {center }}$ is the luminance measured at center in a white area $(R=G=B=1)$. $L_{\text {white board }}$ is the luminance of a standard white board. Both are measured with equivalent illumination source. The viewing angle shall be no more than 2 degrees.

18. HANDLING, SAFETY AND ENVIROMENTAL REQUIREMENTS

WARNING
The display module should be kept flat or fixed to a rigid, curved support with limited bending along the long axis. It should not be used for continual flexing and bending. Handle with care. Should the display break do not touch any material that leaks out. In case of contact with the leaked material then wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.
IPA solvent can only be applied on active area and the back of a glass. For the rest part, it is not allowed.
Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Mounting Precautions

(1) It's recommended that you consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module.
(2) It's recommended that you attach a transparent protective plate to the surface in order to protect the EPD. Transparent protective plate should have sufficient strength in order to resist external force.
(3) You should adopt radiation structure to satisfy the temperature specification.
(4) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the PS at high temperature and the latter causes circuit break by electro-chemical reaction.
(5) Do not touch, push or rub the exposed PS with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of PS for bare hand or greasy cloth. (Some cosmetics deteriorate the PS)
(6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach the PS. Do not use acetone, toluene and alcohol because they cause chemical damage to the PS.
(7) Wipe off saliva or water drops as soon as possible. Their long time contact with PS causes deformations and color fading.

Data sheet status	
Product specification	The data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and dose not form part of the specification.

Product Environmental certification

ROHS

REMARK

All The specifications listed in this document are guaranteed for module only. Post-assembled operation or component(s) may impact module performance or cause unexpected effect or damage and therefore listed specifications is not warranted after any Post-assembled operation.

19. Reliability test

19.1 Reliability test items

	TEST	CONDITION	REMARK
1	High-Temperature Operation	$\mathrm{T}=40^{\circ} \mathrm{C}$, RH=35\%RH, For 240 Hr	
2	Low-Temperature Operation	$\mathrm{T}=0^{\circ} \mathrm{C}$ for 240 hrs	
3	High-Temperature Storage	$\mathrm{T}=60^{\circ} \mathrm{C}$ RH=35\%RH For 240 Hr	Test in white pattern
4	Low-Temperature Storage	$\mathrm{T}=-25^{\circ} \mathrm{C}$ for 240 hrs	Test in white pattern
5	High Temperature, HighHumidity Operation	$\mathrm{T}=40^{\circ} \mathrm{C}, \mathrm{RH}=90 \% \mathrm{RH}$, For 168 Hr	
6	High Temperature, HighHumidity Storage	$\mathrm{T}=60^{\circ} \mathrm{C}$, $\mathrm{RH}=80 \% \mathrm{RH}$, For 240 Hr	Test in white pattern
7	Temperature Cycle	$-25^{\circ} \mathrm{C}(30 \mathrm{~min}) \sim 70^{\circ} \mathrm{C}(30 \mathrm{~min}), 100$ Cycle	Test in white pattern
8	Package Vibration	1.04G,Frequency : 20~200Hz Direction : X,Y,Z Duration: 30 minutes in each direction	Full packed for shipment
9	Package Drop Impact	Drop from height of 100 cm on Concrete surface Drop sequence: 1 corner, 3edges, 6face One drop for each.	Full packed for shipment
10	UV exposure Resistance	$765 \mathrm{~W} / \mathrm{m}^{2}$ for $168 \mathrm{hrs}, 40^{\circ} \mathrm{C}$	
11	Electrostatic discharge	Machine model: $+/-250 \mathrm{~V}, 0 \Omega, 200 \mathrm{pF}$	

Actual EMC level to be measured on customer application.
Note1: Stay white pattern for storage and non-operation test.
Note2: Operation is black/white pattern , hold time is 150 S .
Note3: The function ,appearance, opticals should meet the requirements of the test before and after the test.
Note4: Keep testing after 2 hours placing at $20^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$.

19.2 Product life time

The EPD Module is designed for a 5-year life-time with $25{ }^{\circ} \mathrm{C} / 50 \%$ RH operation assumption. Reliability estimation testing with accelerated life-time theory would be demonstrated to provide confidence of EPD lifetime.

19.3 Product warranty

Warranty conditions have to be negotiated between Midas Displays and individual customers.
Midas Displays provides 12+1(one month delivery time) months warranty for all products which are purchased from Midas Displays.

20. Block Diagram

21. PartA/PartB specification

22. Point and line standard

Shipment Inspection Standard

Equipment: Electrical test fixture, Point gauge

Outline dimension	$29.2(\mathrm{H}) \times 59.2(\mathrm{~V}) \times 0.9(\mathrm{D})$	Unit: mm	Part-A	Active area	Part-B	Border area
Environment	Temperature	Humidity	Illuminance	Distance	Time	Angle
	$19^{\circ} \mathrm{C} \sim 25^{\circ} \mathrm{C}$	$55 \% \pm 5 \% \mathrm{RH}$	800~1300Lux	300 mm	35Sec	
Defect type	Inspection method	Standard		Part-A		Part-B
	Electric Display	$\mathrm{D} \leqslant 0.25 \mathrm{~mm}$		Ignore		Ignore
Spot		$0.25 \mathrm{~mm}<\mathrm{D} \leqslant 0.4 \mathrm{~mm}$		$\mathrm{N} \leqslant 4$		Ignore
		$\mathrm{D}>0.4 \mathrm{~mm}$		Not Allow		Ignore
Display unwork	Electric Display	Not Allow		Not Allow		Ignore
Display error	Electric Display	Not Allow		Not Allow		Ignore
Scratch or line defect(include dirt)	Visual/Film card	$\mathrm{L} \leqslant 2 \mathrm{~mm}, \mathrm{~W} \leqslant 0.2 \mathrm{~mm}$		Ignore		Ignore
		$\begin{gathered} 2.0 \mathrm{~mm}<\mathrm{L} \leqslant 5.0 \mathrm{~mm}, 0.2<\mathrm{W} \leqslant \\ 0.3 \mathrm{~mm}, \end{gathered}$		$\mathrm{N} \leqslant 2$		Ignore
		$\mathrm{L}>5 \mathrm{~mm}, \mathrm{~W}>0.3 \mathrm{~mm}$		Not Allow		Ignore
PS Bubble	Visual/Film card	$\mathrm{D} \leqslant 0.2 \mathrm{~mm}$		Ignore		Ignore
		$0.2 \mathrm{~mm} \leqslant \mathrm{D} \leqslant 0.35 \mathrm{~mm}$		$\mathrm{N} \leqslant 4$		Ignore
		$\mathrm{D}>0.35 \mathrm{~mm}$		Not Allow		Ignore
Side Fragment	Visual/Film card	$\mathrm{X} \leqslant 6 \mathrm{~mm}, \mathrm{Y} \leqslant 0.4 \mathrm{~mm}$, Do not affect the electrode circuit (Edge chipping) $\mathrm{X} \leqslant 1 \mathrm{~mm}, \mathrm{Y} \leqslant 1 \mathrm{~mm}$, Do not affect the electrode circuit((Corner chipping) Ignore				
				$1 \times$		
Remark	1. Appearance defect should not cause electrical defects;					
	2. Appearance defects should not cause dimensional accuracy problems					
	$\mathrm{L}=$ long $\quad \mathrm{W}=$ wide $\mathrm{D}=$ point size $\quad \mathrm{N}=$ Defects NO					

$\mathrm{L}=\mathrm{I} 1+\mathrm{L}$ 2

Lure Dofect

Spot Defect

