SKU:TEL0137 (https://www.dfrobot.com/product-2216.html)

(https://www.dfrobot.com/product-2212.html)

Introduction

USB GPS Receiver

This GPS receiver brings much more accurate and faster positioning performance with stronger signal compared with traditional GPS receivers. It is compact, lightweight and portable. Integrated with built-in receiving antenna, this product adopts a high-precision positioning chip and industrial-grade manufacturing process so that it can meet the positioning requirements of both industrial-grade and personal use. The GPS

receiver has battery inside for supplying power for storing satellite data, such as satellite signal status, final position and time that would greatly increase the positioning speed at the module's next boot. In addition, this receiver adopts USB interface, which can be conveniently used in maincontrollers like Raspberry Pi, NVIDIA, LattePanda. It is suitable for vehicle navigation, handheld positioning, wearable devices and other fields.

USB GPS Receiver (2m Extension Cable)

This is an Ublox chip-based GPS receiver module of low power and high sensitivity that can receive 56 channels satellite signal. Compared with traditional GPS receivers, it brings much more accurate and faster positioning performance with stronger signal. Integrated with built-in receiving antenna, this product adopts a high-precision positioning chip and industrial-grade manufacturing process so that it can meet the positioning requirements of both industrial-grade and personal use. The GPS receiver has battery inside for supplying power for storing satellite data, such as satellite signal status, final position and time that would greatly increase the positioning speed at the module's next boot. Besides, this receiver adopts USB interface, which can be conveniently used in maincontrollers like Raspberry Pi, NVIDIA, LattePanda. The module has a 2m USB cable and its bottom is magnetic which makes it able to be easily attached to metal objects. It is suitable for vehicle navigation, handheld positioning, wearable devices and other fields.

Specification

- Chip: UBX-G7020-KT
- Frequency: L1, 1575.42MHz/L2,1561.10MHZ/L3,1602.00MHZ
- Baud Rate: 4800,9600,19200,38400,57600,115200bps
- Receiving Channel: 56CH
- Sensitivity: tracking -162dBm; Acquisition: 160dBm; cold start: -148dBm
- Cold Start: 29s average
- Warm Start: 3s average
- Hot Start: 1s average
- Accuracy: horizontal position accuracy<2.5M, SBAS<2.0M
- Timing Accuracy: 30ns
- Update Rate: 1Hz

- Operating Temperature: -40°C~85°C
- Storage Temperature: -40°C~85°C

Tutorial

1. NMEA0183 Protocol Introduction

Connect USB GPS receiver to your computer, and place in an open space. Check sensor data on via serial assistant.

The sensor will output the following data:

\$GPGGA,061831.000,2236.9152,N,11403.2422,E,2,07,1.1,144.0,M,-2.2,M,4.8,0000*60 \$GPGSA,A,3,18,22,25,12,14,21,24,15,,,,1.93,1.04,1.63*01 \$GPGSV,3,1,11,12,40,089,45,14,37,314,46,15,10,078,44,18,77,096,43*72 \$GPGSV,3,2,11,21,27,192,31,22,60,330,43,24,24,037,45,25,42,142,41*71 \$GPGSV,3,3,11,31,21,230,27,42,51,128,37,50,46,122,39*4D \$GPRMC,061831.000,A,2236.9152,N,11403.2422,E,0.00,,130214,,,D*76 \$GPVTG,309.62,T, ,M,0.13,N,0.2,K*6E

1.1 GGA

Sample Data: \$GPGGA,061831.000,2236.9152,N,11403.2422,E,2,07,1.1,144.0,M,-2.2,M,4.8,0000*60

Name	Example	Unit	Description
Message ID	\$GPGGA		GGA protocol header
UTC time	061831.000		hhmmss.sss
Latitude	2236.9152		ddmm.mmmm

N/S Indication	N	Unit	N=North, S=South
Name	Example		Description
Longitude	11403.2422		dddmm.mmm
E/W Indication	E		W=West, E=East

Position Indication	2		0:unpositioned 1:SPS mode, position valid 2:Differential, SPS mode, position valid, 3:PPS mode, position valid
Satellites Used	07		Range: 0 to 12
HDOP	1.1		Horizontal Precision
MSL Altitude	144.0	Meters	
Unit	М	Meters	
Geoidal	-2.2	Meters	
Units	М		_
Differential Time	4.8	Second	Invalid when DGPS is not used
Differential ID	0000		
Checksum	*60		

1.2 GSA

Sample Data: \$GPGSA,A,3,18,22,25,12,14,21,24,15,,,,,1.93,1.04,1.63*01

Name	Sample	Unit	Description
Μοςεραο ΙΠ	¢GDGSA		GSA protocol Header

Name	Sample	Unit	Description
Mode 1	A		M=Manual(forced to operate in 2D or 3D mode), A=Automatic
Mode 2	3		1:Position invalid, 2:2D Position, 3:3D Position

Satellite used	18	Channel 1
Satellite used	22	Channel 2
Satellite used	25	Channel 3
Satellite used	12	Channel 4
Satellite used	14	Channel 5
Satellite used	21	Channel 6
Satellite used	24	Channel 7
Satellite used	15	Channel 8
	111	
Satellite used		Channel 12
PDOP	1.93	Position Precision
HDOP	1.04	Horizontal Precision
VDOP	1.63	Vertical Precision
Checksum	*01	

\$GPGSV,3,1,11,12,40,089,45,14,37,314,46,15,10,078,44,18,77,096,43*72 \$GPGSV,3,2,11,21,27,192,31,22,60,330,43,24,24,037,45,25,42,142,41*71 \$GPGSV,3,3,11,31,21,230,27,42,51,128,37,50,46,122,39*4D

Name	Sample	Unit	Description
Message ID	\$GPGSV		GSV protocol header
Number of messages	3		Range 1 to 3
Message Number	1		Range 1 to 3
Number of satellites	11		
Satellite ID	12		Range 1 to 32
Elevation	40	Degrees	Max 90°
Azimuth	089	Degrees	Range 0 to 359°
SNR (C/No)	45	dBHz	Range 0 to 99, null when not tracking
Satellite ID	14		Range 1 to 32
Elevation	37	Degrees	Max 90°
Azimuth	314	Degrees	Range 0 to 359°
SNR (C/No)	46	dBHz	Range 0 to 99, null when not tracking
Satellite ID	15		Range 1 to 32

Name	Sample	Unit	Description
Elevation		Degrees	Max 90
Azimuth	078	Degrees	Range 0 to 359°

SNR (C/No)	44	dBHz	Range 0 to 99, null when not tracking
Satellite ID	18		Range 1 to 32
Elevation	77	Degrees	Max 90°
Azimuth	096	Degrees	Range 0 to 359°
SNR (C/No)	43	dBHz	Range 0 to 99, null when not tracking
Checksum	*72		

1.4 RMC

Sample Code: \$GPRMC,061831.000,A,2236.9152,N,11403.2422,E,0.00,,130214,,,D*76

Name	Sample	Unit	Description
Message ID	\$GPRMC		RMC Protocol Header
UTC Time	061831.000		hhmmss.ss
Status	А		A=Data valid; V=Data invalid
Latitude	2236.9152		ddmm.mmmmm
N/S Indication	N		N=North, S=South
Longitude	11403.2422		dddmm.mmmm

Lywn mdication	§ ample	Unit	ReswigtionEast
Speed over Ground	0.00	Knot (Knots)	

Course over Ground		Degrees	
Date			ddmmyy
Magnetic variation			-
Checksum	*76		

1.5 VTG

Sample Data: \$GPVTG,309.62,T, ,M,0.13,N,0.2,K*6E

Name	Sample	Unit	Description
Message ID	\$GPVTG		VTG protocol header
Course over Ground	309.62	Degrees	
Reference	Т		True
Course over Ground	309.62	Degrees	
Reference	М		Magnetic
Speed	0.13	Knot (Knots)	
Unit	Ν		Knots
Speed	0.2	km/hr	

Name	& ample	Unit	Rescription
Checksum	*6E		

On Windows or LattePanda

1. Download and install Google Earth (https://www.google.co.uk/earth/download/gep/agree.html).

2. Connect USB GPS module to your Computer or LattePanda, and open the Google Earth.

3. Configure as follows.

If the picture has been jumping far and near, you can click stop, and then click start after it is stable.

Read GPS Data on Raspberry Pi, Jetson Nano, or Linux

1. Download program, and plug in USB GPS receiver.

Taking Raspberry Pi as an example, same to Nano and Linux.

Input the following commands at the terminal
cd
git clone https://github.com/DFRobotdl/USB_GPS_EN.git

//Directory of the file you want to save
//Download program from Github

pi@raspberrypi: ~/Desktop/GPS/USB_GPS_EN	~ ′	××
文件(F) 编辑(E) 标签(T) 帮助(H)		
<pre>pi@raspberrypi:~ \$ cd /home/pi/Desktop/GPS</pre>		
pi@raspberryp1:~/Desktop/GPS \$ Ls	0.000	C 11
pigraspberrypi:~/besktop/GPS \$ git clone https://github.com/DFRobotdl/USB	_GPS	_EN
,git 正古隆列 'USB GDS EN'		
remote: Enumerating objects: 5. done.		
remote: Counting objects: 100% (5/5), done.		
remote: Compressing objects: 100% (5/5), done.		
remote: Total 5 (delta 0), reused 0 (delta 0), pack-reused 0		
展 开 对 象 中 : 100% (5/5), 完 成 .		
pi@raspberrypi:~/Desktop/GPS \$ ls		
USB_GPS_EN		
pi@raspberryp1:~/Desktop/GPS \$ cd USB_GPS_EN		
com b ans b main c		
ni@raspberryni:~/Deskton/GPS/USB_GPS_EN_S		
		1

2. Check device

cd USB_GPS_EN

Input:

sudo ls -l /dev

Find the device you just connected.

crww	1	root	tty	4,	57	12月	29	11:17	tty57	•
crww	1	root	tty	4,	58	12月	29	11:17	tty58	
crww	1	root	tty	4,	59	12月	29	11:17	tty59	
crww	1	root	tty	4,	6	12月	29	11:17	tty6	
crww	1	root	tty	4,	60	12月	29	11:17	tty60	
crww	1	root	tty	4,	61	12月	29	11:17	tty61	
crww	1	root	tty	4,	62	12月	29	11:17	tty62	
crww	1	root	tty	4,	63	12月	29	11:17	tty63	
crww	1	root	tty	4,	7	12月	29	11:17	tty7	
crww	1	root	tty	4,	8	12月	29	11:17	tty8	
crww	1	root	tty	4,	9	12月	29	11:17	tty9	
crw-rw	1	root	dialout	166,	1	12月	29	17:25	ttyACM1	
crw-rw	1	root	dialout	204,	64	12月	29	11:17	ttyAMA0	
crw	1	root	root	5,	3	12月	29	11:17	ttyprintk	
crw-rw	1	root	dialout	4,	64	12月	29	11:17	ttyS0	
crw	1	root	root	10,	239	12月	29	11:17	uhid	
crw	1	root	root	10,	223	12月	29	11:17	uinput	
crw-rw-rw-	1	root	root	1,	9	12月	29	11:17	urandom	
drwxr-xr-x	3	root	root		60	12月	29	11:17	v41	
crw-rw	1	root	video	243,	Θ	12月	29	11:17	vchiq	
crw-rw	1	root	video	248,	Θ	12月	29	11:17	vcio	
crw	1	root	root	249,	Θ	12月	29	11:17	vc-mem	
crw-rw	1	root	tty	7,	Θ	12月	29	11:17	VCS	
crw-rw	1	root	tty	7,	1	12月	29	11:17	vcs1	•

3. Open the previously downloaded min. C file, change the device port in the program to be consistent with the actual one, and save it.

main.c 🗶		
1	 	

4. Open the folder of the program on the terminal, compile and run.

cd /USB_GPS_LINUX
gcc -o GPS main.c
sudo ./GPS

	pi@ras	spberrypi: ~/Desktop/GPS/USB_GPS_EN	~	^	×
文件(F) 编辑(E)	标签(T)	帮助(H)			
pi@raspberrypi:- pi@raspberrypi:- com.h gps.h ma pi@raspberrypi:- pi@raspberrypi:- com.h GPS gps. pi@raspberrypi:- open dev [/dev/t	<pre>\$ cd /hom /Desktop/G in.c /Desktop/G /Desktop/G h main.c /Desktop/G tyACM0]</pre>	e/pi/Desktop/GPS/USB_GPS_EN PS/USB_GPS_EN \$ ls PS/USB_GPS_EN \$ gcc -o GPS main.c PS/USB_GPS_EN \$ ls PS/USB_GPS_EN \$ sudo ./GPS			
UTCTime Slatitude N/S Slongitude E/W 30 41.01302,103	:[065130.0 :[3041.013 :[N] :[10347.72 :[E] 47.72278	0] 02] 278]			
Invalid GPS data	l :*****	* * * * * * * * * * * * * * * * * * * *			
UTCTime Slatitude N/S Slongitude E/W 30 41.01307,103	:[065131.0 :[3041.013 :[N] :[10347.72 :[E] 47.72271	0] 07] 271]			Ţ

5. Copy the GPS data to the Google Map (https://www.google.com/maps)

FAQ

For any questions, advice or cool ideas to share, please visit the **DFRobot Forum** (https://www.dfrobot.com/forum/).

More Documents

DFshopping_car1.png Get **USB GPS Receiver** (https://www.dfrobot.com/product-203.html) from DFRobot Store or **DFRobot Distributor**. (https://www.dfrobot.com/index.php?route=information/distributorslogo)

Turn to the Top