LMH6732

LMH6732 High Speed Op Amp with Adjustable Bandwidth

Literature Number: SNOSA47A

LMH6732

High Speed Op Amp with Adjustable Bandwidth

General Description

The LMH6732 is a high speed op amp with a unique combination of high performance, low power consumption, and flexibility of application. The supply current is adjustable, over a continuous range of more than 10 to 1, with a single resistor. Rp. This feature allows the device to be used in a wide variety of high performance applications including device turn on/ turn off (Enable/ Disable) for power saving or multiplexing. Typical performance at any supply current is exceptional. The LMH6732's design has been optimized so that the output is well behaved, eliminating spurious outputs on "Enable".

The LMH6732's combination of high performance, low power consumption, and large signal performance makes it ideal for a wide variety of remote site equipment applications such as battery powered test instrumentation and communications gear. Other applications include video switching matrices, ATE and phased array radar systems.

The LMH6732 is available in the SOIC and SOT23-6 packages. To reduce design times and assist in board layout, the LMH6732 is supported by an evaluation board.

Features

■ Exceptional Performance at any Supply Current: $V_S = \pm 5V$, $T_A = 25$ °C, $A_V = +2V/V$, $V_{OUT} = 2V_{PP}$, Typical

I _{cc}	-3dB	DG/DP (%/	Slew	THD	Output
(mA)	BW	deg.)	Rate	1MHz	Current
	(MHz)	PAL	(V/µs)	(dBc)	(mA)
1.0	55	0.020/ 0.036	400	-70.0	9
3.4	180	0.022 / 0.017	2100	-78.5	45
9.0	540	0.025 / 0.010	2700	-79.6	115

■ Ultra High Speed (-3dB BW)

 $1.5GHz (I_{CC} = 10mA,$ $0.25V_{PP}$)

Single resistor adjustability of supply current

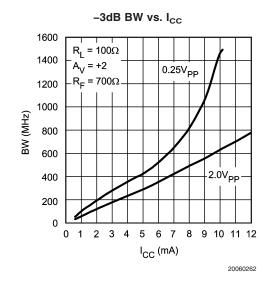
■ Fast enable/ disable capability

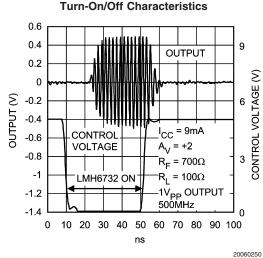
 $20ns (I_{CC} = 9mA)$

"Popless" output on "Enable"

 $15\text{mV} (I_{CC} = 1\text{mA})$

Ultra low disable current


<1µA


■ Unity gain stable

■ Improved Replacement for CLC505 & CLC449

Applications

- Battery powered systems
- Video switching and distribution
- Remote site instrumentation
- Mobile communications gear

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

 $\begin{array}{ccc} \rm V_S & \pm 6.75 V \\ \rm I_{OUT} & (Note \ 3) \\ \rm I_{CC} & 14 mA \\ \rm Common \ Mode \ Input \ Voltage & V^- \ to \ V^+ \\ \rm Maximum \ Junction \ Temperature & +150 ^{\circ}C \\ \rm Storage \ Temperature \ Range & -65 ^{\circ}C \ to +150 ^{\circ}C \\ \end{array}$

Soldering Information

Infrared or Convection (20 sec) 235°C Wave Soldering (10 sec) 260°C

ESD Tolerance (Note 4)

Human Body Model 2000V Machine Model 200V

Operating Ratings (Note 1)

Thermal Resistance

 $\begin{array}{lll} \mbox{Package} & \theta_{\mbox{JC}} \,\, (\mbox{°C/W}) & \theta_{\mbox{JA}} \,\, (\mbox{°C/W}) \\ \mbox{8-Pin SOIC} & 65\mbox{°C/W} & 166\mbox{°C/W} \\ \mbox{6-Pin SOT23} & 120\mbox{°C/W} & 198\mbox{°C/W} \end{array}$

Operating Temperature -40°C to $+85^{\circ}\text{C}$ Nominal Supply Voltage $\pm 4.5\text{V}$ to $\pm 6\text{V}$ Operating Supply Current $0.5\text{mA} < I_{\text{CC}} <$

12mA

Electrical Characteristics I_{CC} = 9mA (Note 2)

 $\rm A_V$ = +2, $\rm R_F$ = 700 $\Omega,~\rm V_S$ = ±5V, $\rm R_L$ = 100 $\Omega,~\rm R_P$ = 39k $\Omega;$ Unless otherwise specified.

Symbol	Parameter	Conditions	Min (Note 6)	Typ (Note 6)	Max (Note 6)	Units
	Domain Response	00.10.10	(11010-0)	(.1010-0)	(11010-0)	
SSBW	-3dB Bandwidth	$V_{OUT} = 2V_{PP}$		540		MHz
LSBW	-3dB Bandwidth	$V_{OUT} = 4.0V_{PP}$		315		MHz
GF _{0.1dB}	0.1dB Gain Flatness	$V_{OUT} = 2V_{PP}$		180		MHz
GFP	Frequency Response Peaking	DC to 200MHz, V _{OUT} = 2V _{PP}		0.01		dB
GFR	Frequency Response Rolloff	DC to 200MHz, V _{OUT} = 2V _{PP}		0.15		dB
LPD	Linear Phase Deviation	DC to 200MHz, V _{OUT} = 2V _{PP}		0.6		-l
		DC to 140MHz, V _{OUT} = 2V _{PP}		0.1		deg
DG	Differential Gain	$R_L = 150\Omega, 4.43MHz$		0.025		%
DP	Differential Phase	$R_L = 150\Omega$, 4.43MHz		0.010		deg
Time Dom	ain Response		•			•
TRS	Rise Time	2V Step		0.8		
TRL	Fall Time	2V Step		0.9		ns
T _S	Settling Time to 0.04%	A _V = -1, 2V Step		18		ns
OS	Overshoot	2V Step		1		%
SR	Slew Rate	5V Step, 40% to 60% (Note 5)		2700		V/µs
Distortion	And Noise Response	1				
HD2	2nd Harmonic Distortion	2V _{PP} , 20MHz		-60		dBc
HD3	3rd Harmonic Distortion	2V _{PP} , 20MHz		-64		dBc
THD	Total Harmonic Distortion	2V _{PP} , 1MHz		-79.6		dBc
V _N	Input Referred Voltage Noise	>1MHz		2.5		nV/ √Hz
I _N	Input Referred Inverting Noise Current	>1MHz		9.7		pA/ √Hz
I _{NN}	Input Referred Non-Inverting Noise Current	>1MHz		1.8		pA/ √Hz
SNF	Noise Floor	>1MHz		-154		dBm _{1Hz}
INV	Total Integrated Input Noise	1MHz to 200MHz		60		μV
Static, DC	Performance		•		•	•
V _{IO}	Input Offset Voltage			±3.0	±8.0 9.9	mV
DV _{IO}	Input Offset Voltage Average Drift	(Note 8)		16		μV/°C

Electrical Characteristics I_{CC}=9mA (Note 2) (Continued) A_V = +2, R_F = 700 Ω , V_S = ±5V, R_L = 100 Ω , R_P = 39k Ω ; Unless otherwise specified.

Symbol	Parameter	Conditions	Min (Note 6)	Typ (Note 6)	Max (Note 6)	Units
I _{BN}	Input Bias Current	Non Inverting (Note 7)		-2	±11	μΑ
DI _{BN}	Input Bias Current Average Drift	Non-Inverting (Note 8)		5		nA/°C
I _{BI}	Input Bias Current	Inverting (Note 7)		-9	±20 ± 30	μΑ
DI _{BI}	Input Bias Current Average Drift	Inverting (Note 8)		-14		nA/°C
+PSRR	Positive Power Supply Rejection Ratio	DC	52 50	62		dB
-PSRR	Negative Power Supply Rejection Ratio	DC	51 48	56		dB
CMRR	Common Mode Rejection Ratio	DC	49 46	52		dB
I _{cc}	Supply Current	$R_L = \infty, R_P = 39k\Omega$	7.5 6.6	9.0	10.5 11.7	mA
I _{cc} I	Supply Current During Shutdown			<1		μA
Miscellane	eous Performance		•	•		
R _{IN}	Input Resistance	Non-Inverting		4.7		МΩ
C _{IN}	Input Capacitance	Non-Inverting		1.8		pF
R _{OUT}	Output Resistance	Closed Loop		32		mΩ
Vo	Output Voltage Range	R _L = ∞	±3.60 ±3.55	±3.75		V
V _{OL}		$R_L = 100\Omega$	±2.90 ±2.85	±3.10		V
CMIR	Common Mode Input Range	Common Mode		±2.2		V
I _O	Output Current	Closed Loop -40mV ≤ V _O ≤ 40mV	±75	±115		mA
TON	Turn-on Time	0.5V _{PP} Sine Wave, 90% of Full Value		20		
TOFF	Turn-off Time	0.5V _{PP} Sine Wave, <5% of Full Value		9		ns
V _{O glitch}	Turn-on Glitch			50		mV
FDTH	Feed-Through	$f = 10MHz$, $A_V = +2$, Off State		-61		dB

Electrical Characteristics I_{CC} = **3.4mA** (Note 2) $A_V = +2$, $R_F = 1k\Omega$, $V_S = \pm 5V$, $R_L = 100\Omega$, $R_P = 137k\Omega$; Unless otherwise specified.

·			Min	Тур	Max	
Symbol	Parameter	Conditions	(Note 6)	(Note 6)	(Note 6)	Units
Frequency	Domain Response			•		
SSBW	-3dB Bandwidth	$V_{OUT} = 2V_{PP}$		180		MHz
LSBW	-3dB Bandwidth	$V_{OUT} = 4.0V_{PP}$		100		MHz
GF _{0.1dB}	0.1dB Gain Flatness	$V_{OUT} = 2V_{PP}$		50		MHz
GFP	Frequency Response Peaking	DC to 75MHz, $V_{OUT} = 2V_{PP}$		0.15		dB
GFR	Frequency Response Rolloff	DC to 75MHz, $V_{OUT} = 2V_{PP}$		0.05		dB
LPD	Linear Phase Deviation	DC to 55MHz, $V_{OUT} = 2V_{PP}$		0.5		doa
		DC to 25MHz, V _{OUT} = 2V _{PP}		0.1		deg
DG	Differential Gain	$R_L = 150\Omega$, 4.43MHz		0.022		%
DP	Differential Phase	$R_L = 150\Omega, 4.43MHz$		0.017		deg
Time Domain Response						

Time Domain Response

Electrical Characteristics I_{CC} = **3.4mA** (Note 2) (Continued) $A_V = +2$, $R_F = 1$ kΩ, $V_S = \pm 5$ V, $R_L = 100$ Ω, $R_P = 137$ kΩ; Unless otherwise specified.

			Min	Тур	Max	
Symbol	Parameter	Conditions	(Note 6)	(Note 6)	(Note 6)	Units
TRS	Rise Time	2V Step		1.7		
TRL	Fall Time	2V Step		2.1		ns
T _s	Settling Time to 0.04%	A _V = −1, 2V Step		18		ns
OS	Overshoot	2V Step		2		%
SR	Slew Rate	5V Step, 40% to 60% (Note 5)		2100		V/µs
Distortion	And Noise Response	(1.010-0)				
HD2	2nd Harmonic Distortion	2V _{PP} , 10MHz		-51		dBc
HD3	3rd Harmonic Distortion	2V _{PP} , 10MHz		-65		dBc
THD	Total Harmonic Distortion	2V _{PP} , 1MHz		-78.5		dBc
V _N	Input Referred Voltage Noise	>1MHz		4.1		nV/ √Hz
	Input Referred Inverting Noise	>1MHz	+			pA/ √Hz
I _N	Current			8.8		
I _{NN}	Input Referred Non-Inverting Noise Current	>1MHz		1.1		pA/ √Hz
SNF	Noise Floor	>1MHz		-151		dBm _{1Hz}
INV	Total Integrated Input Noise	1MHz to 100MHz		60		μV
Static, DC	Performance	I				-
V _{IO}	Input Offset Voltage			±2.5	±7.0 ±8.5	mV
DV _{IO}	Input Offset Voltage Average Drift	(Note 8)		10		μV/°C
I _{BN}	Input Bias Current	Non Inverting (Note 7)		-0.4	±4 ±6	μA
DI _{BN}	Input Bias Current Average Drift	Non-Inverting (Note 8)		8		nA/°C
I _{BI}	Input Bias Current	Inverting (Note 7)		-1	±12 ±16	μA
DI _{BI}	Input Bias Current Average Drift	Inverting (Note 8)		-3	•	nA/°C
+PSRR	Positive Power Supply Rejection	DC	52	64		dB
	Ratio		50			
-PSRR	Negative Power Supply Rejection Ratio	DC	51 50	57		dB
CMRR	Common Mode Rejection Ratio	DC	49	55		dB
OWNT	Common Mode Hejeotion Hatie		48			u u u
I _{cc}	Supply Current	$R_L = \infty$, $R_P = 137k\Omega$	2.8	3.4	3.9	mA
.00	Copp., Camana	, , , , , , , , , , , , , , , , , , , ,	2.6		4.1	
I _{cc} I	Supply Current During Shutdown			<1		μΑ
	eous Performance	1		I	I	
R _{IN}	Input Resistance	Non-Inverting		15		MΩ
C _{IN}	Input Capacitance	Non-Inverting		1.7		pF
R _{OUT}	Output Resistance	Closed Loop		50		mΩ
V _O	Output Voltage Range	R _L = ∞	±3.60 ±3.55	±3.78		
V _{OL}		$R_L = 100\Omega$	±2.90 ±2.85	±3.10		V
CMIR	Common Mode Input Range	Common Mode	-2.00	±2.2		V
I _O	Output Current	Closed Loop	±30	±45		mA
	Suput Suriont	-20mV ≤ V _O ≤ 20mV		-40		ША

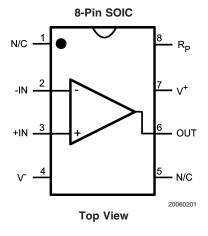
Electrical Characteristics I_{CC} = **3.4mA** (Note 2) (Continued) $A_V = +2$, $R_F = 1k\Omega$, $V_S = \pm 5V$, $R_L = 100\Omega$, $R_P = 137k\Omega$; Unless otherwise specified.

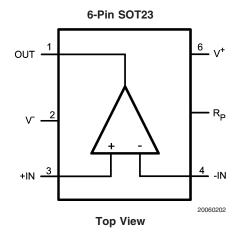
			Min	Тур	Max	
Symbol	Parameter	Conditions	(Note 6)	(Note 6)	(Note 6)	Units
TON	Turn-on Time	0.5V _{PP} Sine Wave, 90% of Full Value		42		ns
TOFF	Turn-off Time	0.5V _{PP} Sine Wave, <5% of Full Value		10		115
V _{O glitch}	Turn-on Glitch			25		mV
FDTH	Feed-Through	$f = 10MHz$, $A_V = +2$, Off State		-61		dB

Electrical Characteristics I_{CC} **= 1.0mA** (Note 2) $A_V = +2$, $R_F = 1k\Omega$, $V_S = \pm 5V$, $R_L = 500\Omega$, $R_P = 412k\Omega$; Unless otherwise specified.

			Min	Тур	Max	
Symbol	Parameter	Conditions	(Note 6)	(Note 6)	(Note 6)	Units
requency	Domain Response					
SSBW	-3dB Bandwidth	$V_{OUT} = 2V_{PP}$		55		MHz
LSBW	-3dB Bandwidth	$V_{OUT} = 4.0V_{PP}$		30		MHz
GF _{0.1dB}	0.1dB Gain Flatness	$V_{OUT} = 2V_{PP}$		20		MHz
GFP	Frequency Response Peaking	DC to 25MHz, $V_{OUT} = 2V_{PP}$		0.11		dB
GFR	Frequency Response Rolloff	DC to 25MHz, $V_{OUT} = 2V_{PP}$		0.05		dB
LPD	Linear Phase Deviation	DC to 20MHz, $V_{OUT} = 2V_{PP}$		1		deg
		DC to 14MHz, $V_{OUT} = 2V_{PP}$		0.3		ueg
DG	Differential Gain	$R_L = 500\Omega, 4.43MHz$		0.020		%
DP	Differential Phase	$R_L = 500\Omega$, 4.43MHz		0.036		deg
Time Dom	ain Response					
TRS	Rise Time	2V Step		3.7		
TRL	Fall Time	2V Step		5.1		ns
T _s	Settling Time to 0.04%	$A_V = -1$, 2V Step		18		ns
OS	Overshoot	2V Step		2		%
SR	Slew Rate	5V Step, 40% to 60%		400		V/µs
		(Note 5)				
Distortion	And Noise Response					
HD2	2nd Harmonic Distortion	2V _{PP} , 5MHz		-43		dBc
HD3	3rd Harmonic Distortion	2V _{PP} , 5MHz		-65		dBc
THD	Total Harmonic Distortion	2V _{PP} , 1MHz		-70.0		dBc
V _N	Input Referred Voltage Noise	>1MHz		8.4		nV/ √Hz
I _N	Input Referred Inverting Noise Current	>1MHz		9.0		pA/ √Hz
I _{NN}	Input Referred Non-Inverting Noise Current	>1MHz		0.8		pA/ √Hz
SNF	Noise Floor	>1MHz		-147		dBm _{1Hz}
INV	Total Integrated Input Noise	1MHz to 100MHz		29		μV
Static, DC	Performance			•		
V _{IO}	Input Offset Voltage			±1.6	±6.0 ±7.3	mV
DV _{IO}	Input Offset Voltage Average Drift	(Note 8)		4		μV/°C
I _{BN}	Input Bias Current	Non Inverting (Note 7)		0.04	±2.0 ±2.5	μA
DI _{BN}	Input Bias Current Average Drift	Non-Inverting (Note 8)		-1		nA/°C
I _{BI}	Input Bias Current	Inverting (Note 7)		-0.1	±6 ±8	μΑ

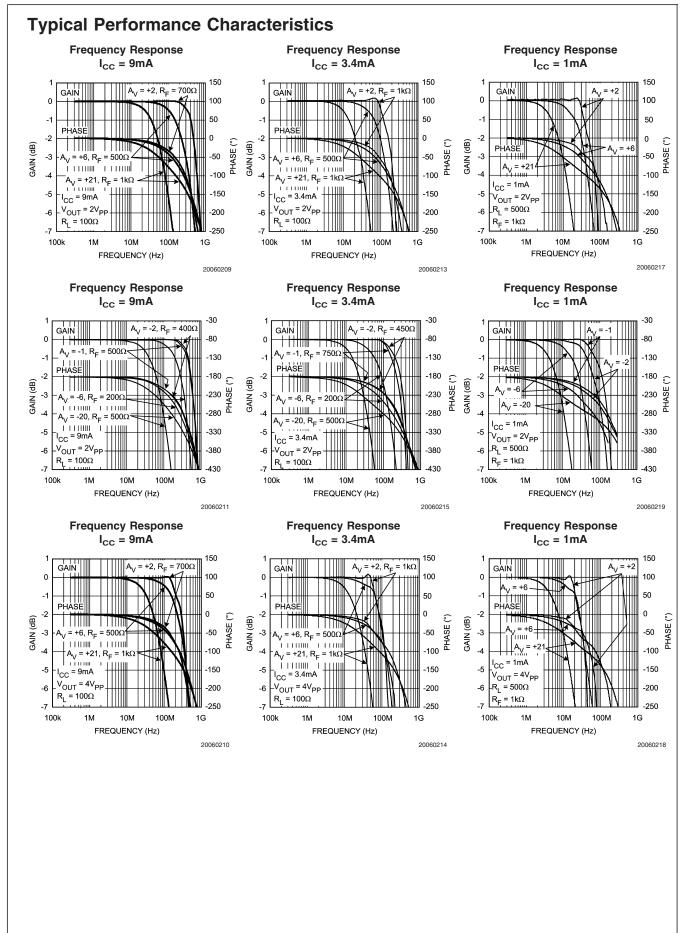
Electrical Characteristics I_{CC}=1.0mA (Note 2) (Continued) $A_V=+2,\ R_F=1k\Omega,\ V_S=\pm5V,\ R_L=500\Omega,\ R_P=412k\Omega;$ Unless otherwise specified.

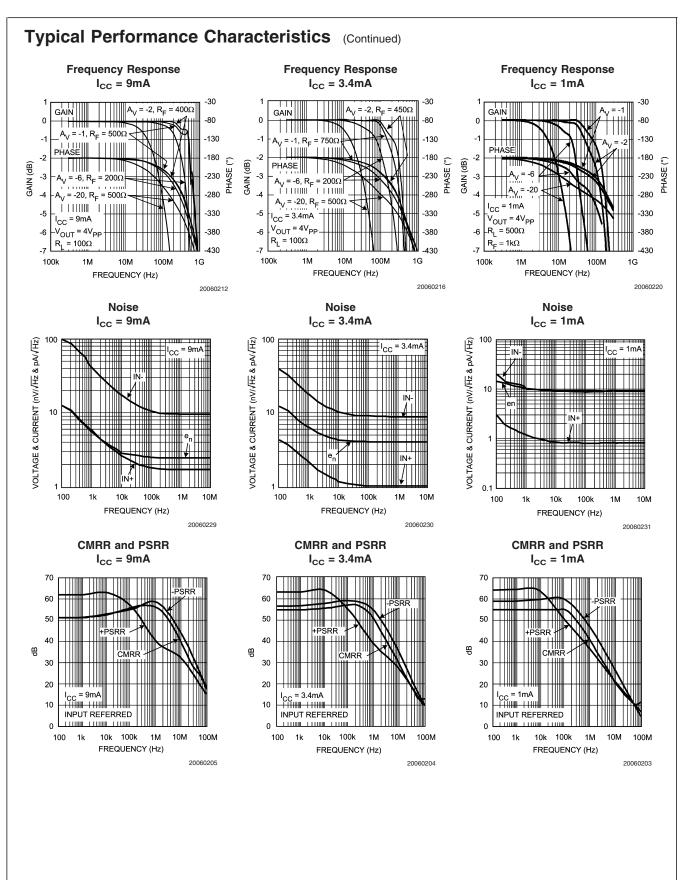

			Min	Тур	Max	
Symbol	Parameter	Conditions	(Note 6)	(Note 6)	(Note 6)	Units
DI_BI	Input Bias Current Average Drift	Inverting (Note 8)		-3		nA/°C
+PSRR	Positive Power Supply Rejection Ratio	DC	52 51	64		dB
-PSRR	Negative Power Supply Rejection Ratio	DC	51 49	59		dB
CMRR	Common Mode Rejection Ratio	DC	49 47	55		dB
I _{CC}	Supply Current	$R_L = \infty, R_P = 412k\Omega$	0.70 0.66	1.0	1.3 1.4	mA
I _{cc} l	Supply Current During Shutdown			<1		μΑ
Miscellane	ous Performance			•		
R _{IN}	Input Resistance	Non-Inverting		46		ΜΩ
C _{IN}	Input Capacitance	Non-Inverting		1.7		pF
R _{OUT}	Output Resistance	Closed Loop		100		m Ω
V _O	Output Voltage Range	R _L = ∞	±3.60 ±3.55	±3.78		V
V _{OL}		$R_L = 500\Omega$	±2.90 ±2.85	±3.10		V
CMIR	Common Mode Input Range	Common Mode		±2.2		V
I _O	Output Current	Closed Loop −15mV ≤ V _O ≤ 15mV	±6	±9		mA
TON	Turn-on Time	0.5V _{PP} Sine Wave, 90% of Full Value		95		no
TOFF	Turn-off Time	0.5V _{PP} Sine Wave, <5% of Full Value		40		ns
V _{O glitch}	Turn-on Glitch			15		mV
FDTH	Feed-Through	f = 10MHz, A _V = +2, Off State		-61		dB

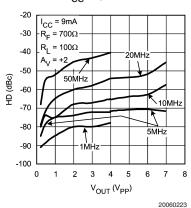

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications, see the Electrical Characteristics tables.

Note 2: Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that $T_J = T_A$. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where $T_J > T_A$. Min/Max ratings are based on production testing unless otherwise specified.

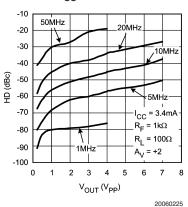
- Note 3: The maximum output current (I_O) is determined by device power dissipation limitations.
- **Note 4:** Human body model: $1.5k\Omega$ in series with 100pF. Machine model: 0Ω in series with 200pF.
- Note 5: Slew Rate is the average of the rising and falling edges.
- Note 6: Typical numbers are the most likely parametric norm. Bold numbers refer to over temperature limits.
- Note 7: Negative input current implies current flowing out of the device.
- Note 8: Drift determined by dividing the change in parameter distribution average at temperature extremes by the total temperature change.

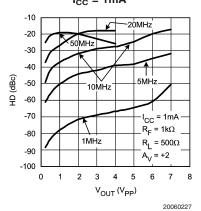

Connection Diagrams

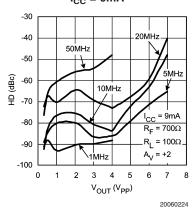


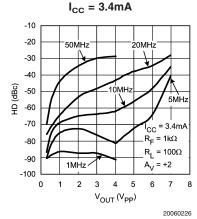

Ordering Information

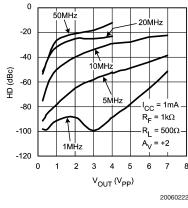
Package	Part Number	Package Marking	Transport Media	NSC Drawing
8-pin SOIC	LMH6732MA	LMH6732MA 95 Units/Rail		M08A
	LMH6732MAX		2.5k Units Tape and Reel	
6-Pin SOT23	LMH6732MF	A97A	1k Units Tape and Reel	MF06A
	LMH6732MFX		3k Units Tape and Reel	

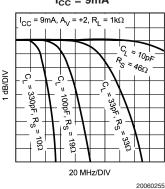


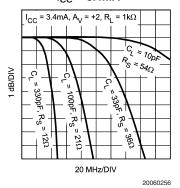

2nd Distortion vs. Output Amplitude $I_{CC} = 9mA$

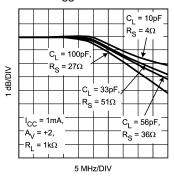

2nd Distortion vs. Output Amplitude $I_{CC} = 3.4 \text{mA}$


2nd Distortion vs. Output Amplitude $I_{CC} = 1 \text{mA}$

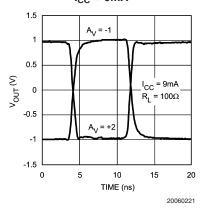

3rd Distortion vs. Output Amplitude $I_{CC} = 9mA$


3rd Distortion vs. Output Amplitude

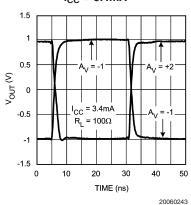

3rd Distortion vs. Output Amplitude $I_{CC} = 1mA$


Frequency Response for Various C_L $I_{CC} = 9mA$

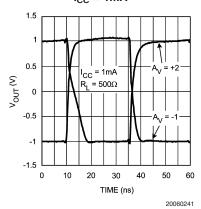
Frequency Response for Various C_L $I_{CC} = 3.4 \text{mA}$

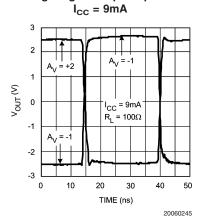


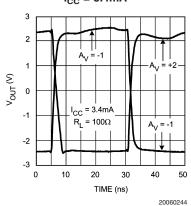
Frequency Response for Various C_L $I_{CC} = 1mA$



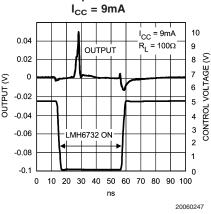
20060257

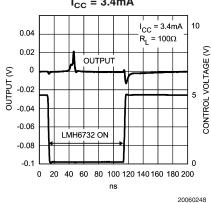

Small Signal Step Response $I_{CC} = 9mA$

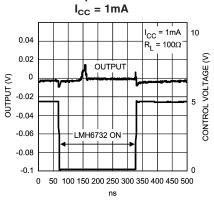

Small Signal Step Response $I_{CC} = 3.4$ mA

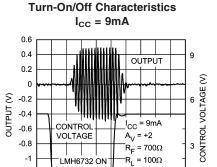

Small Signal Step Response $I_{CC} = 1mA$


Large Signal Step Response

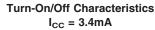

Large Signal Step Response $I_{CC} = 3.4 \text{mA}$

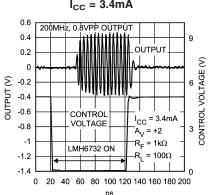

Large Signal Step Response $I_{CC} = 1mA$


Output Glitch

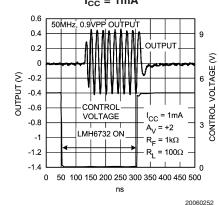

Output Glitch I_{CC} = 3.4mA

Output Glitch


20060249

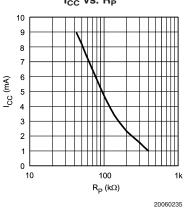


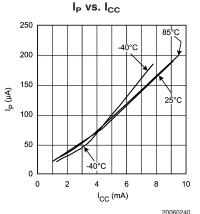
10 20 30 40 50 60 70 80 90 100

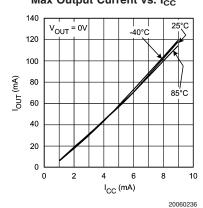

-1V_{PP} OUTPUT 500MHz

20060250

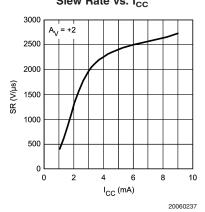
Turn-On/Off Characteristics $I_{CC} = 1mA$

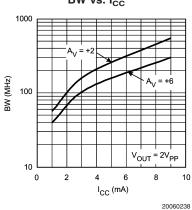


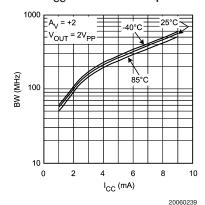

20060251

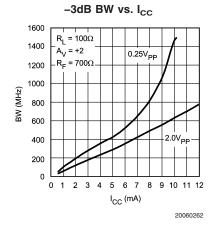

-1.2 -1.4

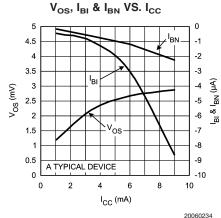
0

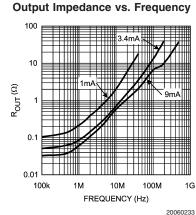


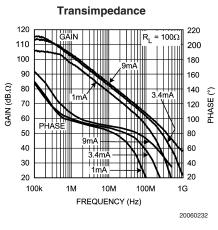

Max Output Current vs. I_{CC}

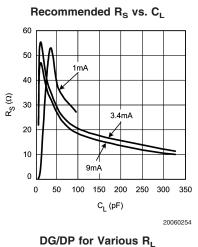

Slew Rate vs. I_{CC}

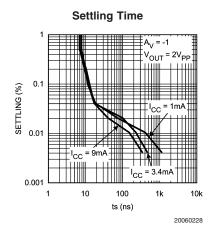


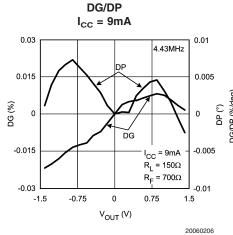

BW vs. I_{CC}

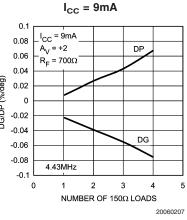


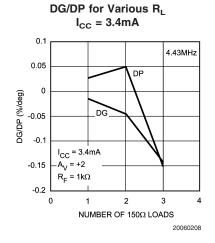

BW vs. I_{CC} for Various Temperature











Application Information:

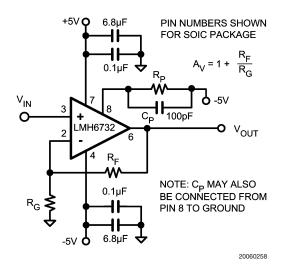


FIGURE 1. Recommended Non-Inverting Gain Circuit

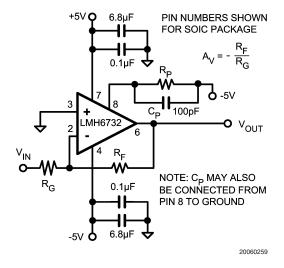


FIGURE 2. Recommended Inverting Gain Circuit

DESCRIPTION

The LMH6732 is an adjustable supply current, current-feedback operational amplifier. Supply current and consequently dynamic performance can be easily adjusted by selecting the value of a single external resistor ($R_{\rm P}$).

Note: Note: The following discussion uses the SOIC package pin numbers.

For the corresponding SOT23-6 package pin numbers, please refer to
the Connection Diagram section.

SELECTING AN OPERATING POINT

The operating point is determined by the supply current which in turn is determined by current (I_P) flowing out of pin 8. As the supply current is increased, the following effects will be observed:

TABLE 1. Device Parameters Related to Supply Current

Specification	Effect as I _{CC} Increases
Bandwidth	Increases
Rise Time	Decreases
Enable/ Disable Speed	Increases
Output Drive	Increases
Input Bias Current	Increases
Input Impedance	Decreases (see Source
	impedance Discussion)

Both the Electrical Characteristics pages and the Typical Performance Characteristics section illustrate these effects to help make the supply current vs. performance trade-off. The supply current is adjustable over a continuous range of more than 10 to 1 with a single resistor, $R_{\rm P}$, allowing for easy trade-off between power consumption and speed. Performance is specified and tested at $I_{\rm CC}=$ 1mA, 3.4mA, and 9mA. (Note: Some test conditions and especially the load resistances are different for the three supply current settlings.) The performance plots show typical performance for all three supply currents levels.

When making the supply current vs. performance trade-off, it is first a good idea to see if one of the standard operating points ($I_{\rm CC}=1{\rm mA},\ 3.4{\rm mA},\ {\rm or}\ 9{\rm mA}$) fits the application. If it does, performance guaranteed on the specification pages will apply directly to your application. In addition, the value of $R_{\rm P}$ may be obtained directly from the Electrical Characteristics pages.

BEYOND 1GHz BANDWIDTH

As stated above, the LMH6732 speed can be increased by increasing the supply current. The -3dB Bandwidth can even reach the unprecedented value of 1.5GHz (A_V = +2, V_{OUT} = 0.25V_{PP}). Of course, this comes at the expense of power consumption (i.e. supply current). The relationship between -3dB BW and supply current is shown in the Typical Performance Characteristics section. The supply current would nominally have to be set to around 10mA to achieve this speed. The absolute maximum supply current setting for the LMH6732 is 14mA. Beyond this value, the operation may become unpredictable.

The following discussion will assist in selecting I_{CC} for applications that cannot operate at one of the specified supply current settlings.

Use the typical performance plots for critical specifications to select the best $I_{\rm CC}.$ For parameters containing Min/Max ratings in the data sheet tables, interpolate between the values of $I_{\rm CC}$ in the plots & specification tables to estimate the max/min values in the application.

The simplified schematic for the supply current setting path (I_P) is shown below in *Figure 3*.

Application Information: (Continued)

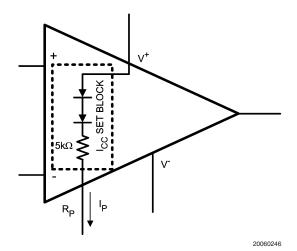


FIGURE 3. Supply Current Control's Simplified Schematic

The terminal marked " R_P " is tied to a potential through a resistor R_P . The current flowing through R_P (I_P) sets the LMH6732's supply current. Throughout the data sheet, the voltages applied to R_P and V^- are both considered to be –5V. However, the two potentials do not necessarily have to be the same. This is beneficial in applications where non-standard supply voltages are used or when there is a need to power down the op amp via digital logic control.

The relationship between I_{CC} and I_{P} is given by:

 $I_P = I_{CC}/57$ (approximate ratio at $I_{CC} = 3.4$ mA; consult " I_{CC} vs. I_P " plot for relationship at any I_{CC}).

Knowing I_P leads to a direct calculation of R_P.

$$R_P + 5k\Omega = [(V^+ -1.6)-V^-]/I_P$$

 $R_P + 5k\Omega = -8.4 / I_P$ (for $V^+ = 5V$ and $V^- = -5V$).

First, an operating point needs to be determined from the plots & specifications as discussed above. From this, I_P is obtained. Knowing I_P and the potential R_P is tied to, R_P can be calculated.

EXAMPLE

An application requires that $V_S = \pm 3V$ and performance in the 1mA operating point range. The required I_P can therefore be determined as follows:

I_P=21μA

 R_{P} is connected from pin 8 to $\mbox{V}^{-}.$ Calculate R_{P} under these conditions:

 $R_P + 5k\Omega = [(V^+ -1.6)-V^-] / I_P$

 $R_P + 5k\Omega = [(3V-1.6V) - (-3V)] / 21\mu A$

 $R_P = 205k\Omega$

The LMH6732 will have performance similar to $R_P=412k\Omega$ shown on the datasheet, but with 40% less power dissipation due to the reduced supply voltages. The op amp will also have a more restricted common-mode range and output swing.

DYNAMIC SHUTDOWN CAPABILITY

The LMH6732 may be powered on and off very quickly by controlling the voltage applied to R_P . If R_P is connected between pin 8 and the output of a CMOS gate powered from $\pm 5V$ supplies, the gate can be used to turn the amplifier on and off. This is shown in *Figure 4* below:

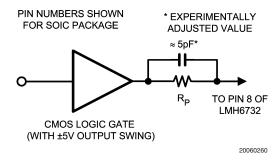


FIGURE 4. Dynamic Control of Power Consumption
Using CMOS Logic

When the gate output is switched from high to low, the LMH6732 will turn on. In the off state, the supply current typically reduces to $1\mu A$ or less. The LMH6732's "off state" supply current is reduced significantly compared to the CLC505. This extremely low supply current in the "off state" is quite advantageous since it allows for significant power saving and minimizes feed-through. To improve switching time, a speed up capacitor from the gate output to pin 8 is recommended. The value of this capacitor will depend on the R_P value used and is best established experimentally. Turn-on and turn-off times of <20ns ($I_{CC}=9mA$) are achievable with ordinary CMOS gates.

EXAMPLE

An open collector logic device is used to dynamically control the power dissipation of the circuit. Here, the desired connection for $\rm R_{\rm P}$ is from pin 8 to the open collector logic device.

PIN NUMBERS SHOWN

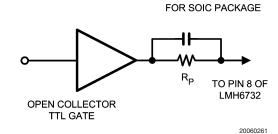


FIGURE 5. Controlling Power On State with TTL Logic (Open Collector Output)

When the logic gate goes low, the LMH6732 is turned on. The LMH6732 V⁺ connection would be to +5V supply.

Performance desired is that given for $I_{CC}=3.4mA$ under standard conditions. From the I_{CC} vs. I_P plot, $I_P=61\mu A$. Then calculating R_P :

 $R_P + 5k\Omega = [(5V-1.6V)-0] / 61\mu A$

 $R_P = 51k\Omega$

Application Information: (Continued)

"POPLESS OUTPUT" & OFF CONDITION OUTPUT STATE

The LMH6732 has been especially designed to have minimum glitches during turn-on and turn-off. This is advantageous in situations where the LMH6732 output is fed to another stage which could experience false auto-ranging, or even worse reset operation, due to these transient glitches. Example of this application would be an AGC circuit or an ADC with multiple ranges set to accommodate the largest input amplitude. For the LMH6732, these sorts of transients are typically less than 50mV in amplitude (see Electrical Characteristics Tables for Typical values). Applications designed to utilize the CLC505's low output glitch would benefit from using the LMH6732 instead since the LMH6732's output glitch is improved to be even lower than the CLC505's. In the "Off State", the output stage is turned off and is in effect put into a high-Z state. In this sate, output can be forced by other active devices. No significant current will flow through the device output pin in this mode of operation.

MUX APPLICATION

Since The LMH6732's output is essentially open in the "off" state, it is a good candidate for a fast 2:1 MUX. Figure 6 shows one such application along with the output waveform in Figure 7 displaying the switching between a continuous triangle wave and a single cycle sine wave (signals trigger locked to each other for stable scope photo). Switching speed of the MUX will be less than 50 ns and is governed by the "Ton" and "Toff" times for U1 and U2 at the supply current set by $\rm R_{P1}$ and $\rm R_{P2}$. Note that the "Control" input is a 5V CMOS logic level.

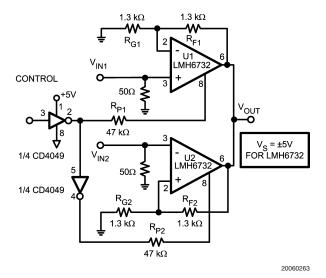


FIGURE 6. 50 ns 2:1 MUX Schematic

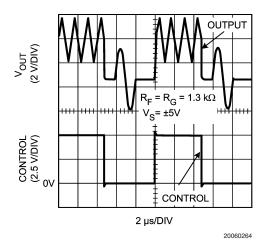


FIGURE 7. MUX "VOUT" and "Control" Waveform

DIFFERENTIAL GAIN AND PHASE

Differential gain and phase are measurements useful primarily in composite video channels. They are measured by monitoring the gain and phase changes of a high frequency carrier (3.58MHz for NTSC and 4.43MHz for PAL systems) as the output of the amplifier is swept over a range of DC voltages. Specifications for the LMH6732 include differential gain and phase. Test signals used are based on a $1V_{\rm PP}$ video level. Test conditions used are the following:

DC sweep range: 0 to 100 IRE units (black to white) Carrier: 4.43MHz at 40 IRE units peak to peak

$A_V = +2, \ R_L = 75\Omega + 75\Omega$ SOURCE IMPEDANCE

For best results, source impedance in the non-inverting circuit configuration (see *Figure 1*) should be kept below $5k\Omega$. Above $5k\Omega$ it is possible for oscillation to occur, depending on other circuit board parasitics. For high signal source impedances, a resistor with a value of less than $5k\Omega$ may be used to terminate the non-inverting input to ground.

FEEDBACK RESISTOR

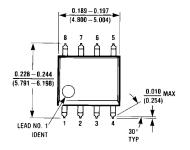
In current-feedback op amps, the value of the feedback resistor plays a major role in determining amplifier dynamics. It is important to select the correct value. The LMH6732 provides optimum performance with feedback resistors as shown in Table 2 below. Selection of an incorrect value can lead to severe rolloff in frequency response, (if the resistor value is too large) or , peaking or oscillation (if the value is too low).

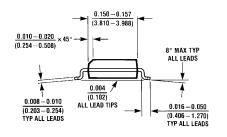
Application Information: (Continued)

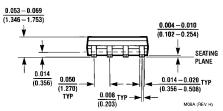
TABLE 2. Feedback Resistor Selection for Various Gain Settings and I_{CC} 's

Gain (V/V)		I _{CC} (mA)			
	9	3.4	1		
A _V = +1	700	1k	1k	Ω	
A _V = +2	700	1k	1k	Ω	
$A_{V} = -1$	500	750	1k	Ω	
$A_V = -2$	400	450	1k	Ω	
A _V = +6	500	500	1k	Ω	
$A_V = -6$	200	200	1k	Ω	
A _V = +21	1k	1k	1k	Ω	
$A_V = -20$	500	500	1k	Ω	

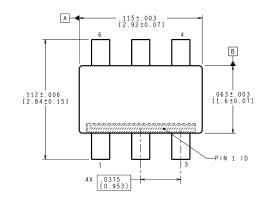
For $I_{\rm CC}$ > 9mA at any closed loop gain setting, a good starting point for R_F would be the 9mA value stated in Table 2 above. This value could then be readjusted, if necessary, to achieve the desired response.

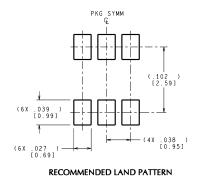

PRINTED CIRCUIT LAYOUT & EVALUATION BOARDS

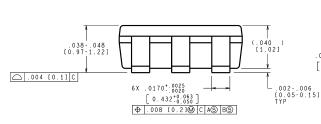

Generally, a good high frequency layout will keep power supply and ground traces away from the inverting input and output pins. Parasitic capacitances on these nodes to ground will cause frequency response peaking and possible circuit oscillations (see Application Note OA-15 for more information). National Semiconductor suggests the following evaluation boards as a guide for high frequency layout and as an aid in device testing and characterization:

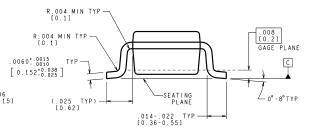

Device	Package	Evaluation Board
		Part Number
LMH6732MF	SOT23-6	CLC730216
LMH6732MA	SOIC	CLC730227

These evaluation boards are shipped when a device sample request is placed with National Semiconductor. The supply current adjustment resistor, $\rm R_{\rm P}$, in both evaluation boards should be tied to the appropriate potential to get the desired supply current. To do so, leave R2 (CLC730216) [R5 (CLC730227)] uninstalled. Jumper "Dis" connector to V $^-$. Install R1 (CLC730216) [R4 (CLC730227)] to set the supply current.


Physical Dimensions inches (millimeters) unless otherwise noted







8-Pin SOIC NS Package Number M08A

CONTROLLING DIMENSION IS INCH VALUES IN [] ARE MILLIMETERS

MF06A (Rev B)

6-Pin SOT23 **NS Package Number MF06A**

Notes

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor
Europe Customer Support Center
Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

TI E2E Community Home Page <u>e2e.ti.com</u>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated