

Stromwandler LF 2005-S

Für die elektronische Strommessung: DC, AC, Impuls..., mit galvanischer Trennung zwischen dem Primärkreis (Starkstromkreis) und dem Sekundärkreis (elektronischer Kreis).

$I_{PN} = 2000 A$

Elektrische Daten

I _{PN}	Primärnennstrom, effektiv			2000		Α		
I _{PM}	Primärstrom, Messbereich @± 24 V			0 ± 3000			Α	
R _M	Messwiderstand @		T _A =	= 70°C	$T_{A} = 85^{\circ}$		5°C	
			R_{M}	nin R _{M max}		$\mathbf{R}_{\mathrm{M}\mathrm{min}}$	R _{M max}	
	mit ± 15 V	$@ \pm 2000 A_{max}$	0	8		0	7	Ω
		@ ± 2200 A _{max}	0	5		0	4	Ω
	mit ± 24 V	@ ± 2000 A _{max}	5	29		13	28	Ω
		@ ± 3000 A _{max}	5	11	@ ± 2800 A	13	13	Ω
I _{SN}	Sekundärnenn	strom, effektiv			400)		mΑ
K _N	Übersetzungsverhältnis				1:	5000		
V _C	Versorgungssp	oannung (+ 5 %)			± 1	524		V
I _c	Stromaufnahme (+ 1)			33 (@ \pm 24 V) + I_s mA				_s mA

Genauigkeit - Dynamisches Verhalten

X	Genauigkeit @ I_{PN} , $T_A = 25^{\circ}C$ Linearitätsfehler	± 0.3 < 0.1		% %
$\mathcal{E}_{\scriptscriptstyle L}$	Linearitatsierilei	Typ	Max	70
I	Offsetstrom $@I_p = 0, T_{\Delta} = 25^{\circ}C$. , p	± 0.5	mA
I _{OM}	Reststrom @ $I_p = 0$, bei spezifiziertem R_M als Folge			
	eines Primätstroms von 3 x I _{PN}		± 0.2	mA
I _{OT}	Temperaturdrift von I _o - 25°C + 85°C	± 0.2	± 0.5	mA
	- 40°C 25°C		± 1.5	mA
t,	Ansprechzeit 1) bis 90 % von I _{PN}	< 1		μs
di/dt	di/dt bei optimaler Kopplung	> 50		A/µs
BW	Frequenzbereich (- 1 dB)	DC 1	100	kHz

Allgemeine Daten

T _A T _S	Umgebungstemperatur Lagertemperatur		- 40 + 85 - 50 + 90	°C °C
\mathbf{R}_{S}	Sekundärwicklungswiderstand	@ T _A = 70°C @ T _A = 85°C	25 26	Ω
m	Masse Normen		1.5 EN 50178: 1997	kg

Anmerkung: 1) Mit einem di/dt von 100 A/µs.

Eigenschaften

- Halleffekt -Kompensationswandler
- Gehäuse aus isolierendem selbstlöschendem Material UL 94-V0.

Vorteile

- Hervorragende Messgenauigkeit
- Sehr gute Linearität
- Geringe Temperaturdrift
- Kurze Ansprechzeit
- Weiter Frequenzbereich
- Keine Zusatzverluste im Messkreis
- Geringe Störanfälligkeit gegenüber Fremdfeldern
- Überstehen Überströme ohne Schaden.

Anwendungen

- Drehstrom- und Servoantriebe, Generatoren
- Stromrichter für Gleichstromantriebe
- Batteriebetriebene Anwendungen
- Unterbrechungsfreie Stromversorgungen (USV)
- Schaltnetzteile
- Stromversorgungen für Schweissanlagen.

Anwendungsbereich

• Industrie.

Stromwandler LF 2005-S

Isolationseigenschaften				
\mathbf{V}_{d}	Prüfspannung, effektiv, 50 Hz, 1 min	6	kV	
		Min		
dCp	Kriechstrecke	29.1	mm	
dCI	Luftstrecke	27.1	mm	
CTI	Vergleichszahl der Kriechwegsbildung (Klasse I)	600		

Applikationsbeispiele

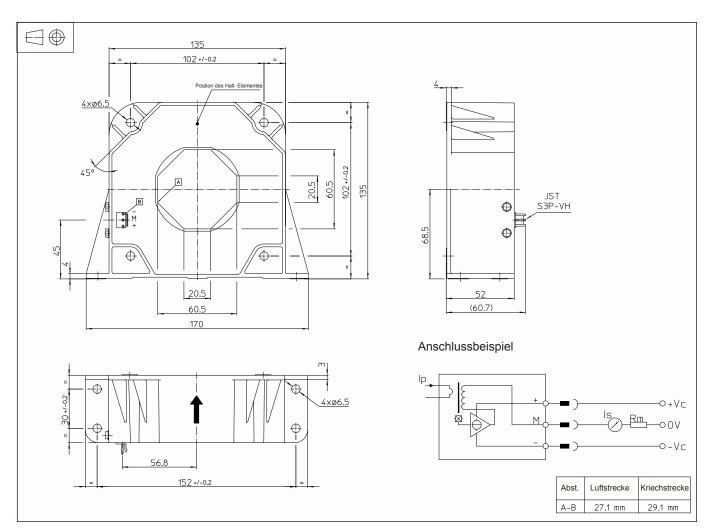
Gemäß EN 50178 und IEC 61010-1 Standard und unter folgenden Bedingungen

- Überspannungskategorie OV 3
- Verschmutzungsgrad PD2
- · Heterogenes Feld

	EN 50178	IEC 61010-1
dCp, dCl	Impulsspannung	Nenn-Isolationsspannung
Einfache isolation	4000 V	4000 V
Verstärkte isolation	2000 V	2000 V

Sicherheitshinweis

Diese Stromwandler müssen in elektrischen/elektronischen Geräten verwendet werden, die die zutreffenden Normen und Sicherheitsanfornderungen erfüllen. Sie müssen gemäß den Herstellerangaben verwendet werden.


Vorsicht, Hochspannung

Bei Betrieb dieses Stromwandlers können gewisse Teile des Moduls eine gefährliche Spannung aufweisen. Die Nichtbeachtung dieser Warnung kann zu Verletzungen und/oder schweren Schäden führen.

Dieser Stromwandler ist ein Einbaugerät, dessen leitende Teile nach Einbau berührungssicher sein müssen. Ein Schutzgehäuse oder eine zusätzliche Abdeckung sind empfehlenswert. Die Hauptspannungsversorgung muss abschaltbar sein.

Abmessungen LF 2005-S (in mm)

Mechanische Eigenschaften

- Allgemeine Toleranz
- Wandlerbefestigung Aufrecht oder Flach

Empfohlenes Drehmoment

- Primäröffnung Oder
- Sekundäranschluss

± 0.5 mm

S3P-VH

4 Löcher Ø 6.5 mm 4 M6 Stahlschrauben 5.5 Nm 60.5 x 20.5 mm Ø max 57 mm

Bemerkungen

- I_s ist positiv, wenn I_P in Richtung des aufgedruckten Pfeiles fliesst.
- Die Temperatur des Primärleiters darf 100°C nicht übersteigen.
- Das dynamische Verhalten (Ansprechzeit und di/dt) ist am besten, wenn eine Primärschiene benutzt wird, welche die Öffnung für den Primärkreis ganz ausfüllt.
- Dieser Wandler ist ein Standardmodell. Sollten davon abweichende Parameter (Versorgungsspannung, Übersetzungsverhältnis, unipolare Messungen...) benötigt werden, nehmen Sie bitte Kontakt mit uns auf.