Product data sheet

Specifications

> Regulated Power Supply, 100...240V AC, 24V 6.2A, single phase, Panel Mount

ABLP1A24062

Expected capacitor life time	10 year(s)
Meantime between failure [MTBF]	700000 h at $25^{\circ} \mathrm{C}$, full load conforming to SR 332
Output protection type	Against overload and short-circuits, protection technology: automatic reset Against over temperature, protection technology: manual reset Against overvoltage, protection technology: manual reset
Connections - terminals	Screw connection: $0.75 \ldots 2.5 \mathrm{~mm}^{2}$, (AWG 18...AWG 14) without wire end ferrule Screw connection: $0.75 \ldots 1.5 \mathrm{~mm}^{2}$, (AWG 18...AWG 16) with wire end ferrule
Line and load regulation	$\begin{aligned} & <0.5 \text { \%line } \\ & \text { < } 1 \text { \%load } \end{aligned}$
Status LED	1 LED (green)output voltage
Depth	159 mm
Height	30 mm
Width	97 mm
Net weight	0.36 kg
Output coupling	Parallel Serial
Mounting support	Top hat type TH35-15 rail conforming to IEC 60715 Top hat type TH35-7.5 rail conforming to IEC 60715 Double-profile DIN rail panel mounting
Supply	SELV conforming to EN/IEC 60950-1 SELV conforming to EN/IEC 60204-1 SELV conforming to IEC 60364-4-41

Environment

Standards	EN 62368-1 EN/IEC 61010-1 EN 61010-2-201 EN/IEC 61204-3 EN 61000-6-1 EN 61000-6-2 EN 61000-6-3 EN 61000-6-4 EN 61000-3-2 EN 61000-3-3 UL 62368-1 UL 61010-1 UL 61010-2-201 CSA C22.2 No 62368-1 CSA C22.2 No 61010-1 CSA C22.2 No 61010-2-201 IEC 60335-1 EN/IEC 62368-1
Product certifications	CE CULus EAC RCM CB Scheme KC
Environmental characteristic	3M4 conforming to IEC 60721-3-3
Operating altitude	5000 m
Shock resistance	$100 \mathrm{~m} / \mathrm{s}^{2}$ for 11 ms
IP degree of protection	IP10
Ambient air temperature for operation	$-30 . .70^{\circ} \mathrm{C}$
Ambient air temperature for storage	$-40 \ldots 85^{\circ} \mathrm{C}$
Relative humidity	0... 95% without condensation
Overvoltage category	II
Electrical energy source class conforming to IEC 62368-1	ES1

Electrical shock protection class	Class I
Pollution degree	2
Vibration resistance	3 mm ($\mathrm{f}=2 \ldots 9 \mathrm{~Hz}$) conforming to IEC 60068-2-6 $10 \mathrm{~m} / \mathrm{s}^{2}$ ($\mathrm{f}=9 \ldots 200 \mathrm{~Hz}$) conforming to IEC 60068-2-6
Electromagnetic immunity	Immunity to electrostatic discharge - test level: 6 kV (contact discharge) conforming to EN/IEC 61000-4-2 Immunity to electrostatic discharge - test level: 9 kV (air discharge) conforming to EN/IEC 61000-4-2 Immunity to conducted RF disturbances - test level: $10 \mathrm{~V} / \mathrm{m}(80 \mathrm{MHz} \ldots 2 \mathrm{GHz}$) conforming to EN/IEC 61000-4-3 Immunity to conducted RF disturbances - test level: $5 \mathrm{~V} / \mathrm{m}(2 \ldots 2.7 \mathrm{GHz})$ conforming to EN/IEC 61000-4-3 Immunity to conducted RF disturbances - test level: $3 \mathrm{~V} / \mathrm{m}(2.7 \ldots 6 \mathrm{GHz}$) conforming to EN/IEC 61000-4-3 Immunity to fast transients - test level: 4 kV (on input-output) conforming to EN/IEC 61000-4-4 Surge immunity test - test level: 3 kV (between power supply and earth) conforming to EN/IEC 61000-4-5 Surge immunity test - test level: 1.5 kV (between phases) conforming to EN/IEC 61000-4-5 Immunity to conducted RF disturbances - test level: $10 \mathrm{~V}(0.15 \ldots 80 \mathrm{MHz})$ conforming to EN/IEC 61000-4-6 Immunity to magnetic fields - test level: $30 \mathrm{~A} / \mathrm{m}(50 \ldots 60 \mathrm{~Hz})$ conforming to EN/IEC 61000-4-8 Immunity to voltage dips conforming to EN/IEC 61000-4-11 Disturbing field emission conforming to EN 55016-2-3 Limits for harmonic current emissions conforming to EN 61000-3-2 Conducted disturbance emission conforming to EN 55016-1-2 Conducted disturbance emission conforming to EN 55016-2-1
Electromagnetic emission	Conducted emissions conforming to EN 61000-6-3 Radiated emissions conforming to EN 61000-6-4
Dielectric strength	3750 V AC input to output

Packing Units

Unit Type of Package 1	PCE
Number of Units in Package 1	1
Package 1 Weight	504 g
Package 1 Height	4 cm
Package 1 width	14.6 cm
Package 1 Length	21.5 cm
Unit Type of Package 2	503
Number of Units in Package 2	17
Package 2 Weight	9.099 kg
Package 2 Height	30 cm
Package 2 width	30 cm
Package 2 Length	40 cm

Offer Sustainability

Sustainable offer status	Green Premium product
REACh Regulation	REACh Declaration
EU RoHS Directive	Pro-active compliance (Product out of EU RoHS legal scope) EU RoHS Declaration
Mercury free	Yes
RoHS exemption information	Yes
China RoHS Regulation	China RoHS declaration
Environmental Disclosure	Product Environmental Profile
Circularity Profile	End of Life Information
WEEE	The product must be disposed on European Union markets following specific waste collection and never end up in rubbish bins

Dimensions Drawings

Electrical Safety

- If the unit is use in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.
- For means of disconnection a switch or circuit breaker, located near the product, must be included in the installation. A marking as disconnecting devi
- The device has an internal fuse. The unit is tested and approved with branch circuit protective device up to 20A. This circuit breaker can be used as d
- The power supply is only suitable for audio, video, information, communication, industrial and control equipment.

Dimensions Drawings

Dimensions

Front and Side Views

Connections and Schema

Connections and Schema
Correct Parallel Connection

(1) : Load

Incorrect Parallel Connection

(1) : Load

ABLx1Axxxxx-1 = ABLx1Axxxxx-2
$\max 2 x$ ABLx1Axxxxx
$\mathrm{L} 1=\mathrm{L} 2$
$\Delta \mathrm{V}$ max 25 mV
$L_{\text {Load }}<90 \% 2 \times L_{\text {nom }}$
Output Voltage Balancing

(1) : $R_{\text {Load } 1}$
(2) : $R_{\text {Load2 }}$
$\mathrm{R}_{\text {Load1 }}=\mathrm{R}_{\text {Load2 }}$
$I_{1}=I_{2}=\sim I_{\text {nom }}$

Series Connection

(1) : $V_{\text {out1 }}$
(2) : $V_{\text {out } 2}$
(3): $2 \times$ Diode, $\mathrm{V}_{\text {RRM }}>2 \times \mathrm{V}_{\text {out } 1 / 2}, \mathrm{I}_{\mathrm{F}}>2 \times \mathrm{I}_{\mathrm{nom} 1 / 2}$
(4) : $\mathrm{V}_{\text {Lood }}=2 \times \mathrm{V}_{\text {out }}$
(5) : Load

Connections and Schema

Connections and Schema

	(1)		
	$<40^{\circ} \mathrm{C}$	$<50^{\circ} \mathrm{C}$	$<70^{\circ} \mathrm{C}$
ABLP1A12085	$60^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$
ABLP1A24045	$60^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$
ABLP1A24062	$60^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$
ABLP1A24100	$60^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$

(1) : Ambient

Performance Curves

Performance Curves

Mounting Position B and G

Mounting Position F

Mounting Position H

X : Surrounding Air Temperature
Y: Percentage of Max Load (\%)
1 : Altitude 2000 m
2 : Altitude 5000 m
Note : < 100 VAC additional derating by $1.33 \% /$ VAC

Mounting and Clearance

Mounting
Mounting Position B

Mounting Position F
$\frac{\mathrm{mm}}{\mathrm{m}}$.

Mounting Position G

Mounting Position H

