Features

- 2-channel isolated barrier
- 24 V DC supply (Power Rail)
- Dry contact or NAMUR inputs
- Selectable frequency trip values
- 2 relay contact outputs
- Start-up override
- Selectable mode of operation
- Line fault detection (LFD)
- Up to SIL2 acc. to IEC 61508

Function

This isolated barrier is used for intrinsic safety applications. It is a zero speed/standstill monitor that accepts input frequency pulses and triggers an output when the frequency drops below a selected value.

Two startup override values are available. This unit can also be used to determine rotation direction.

During an error condition, relays revert to their de-energized state and LEDs indicate the fault according to NAMUR NE44.
The available diagnostic LEDs show rotation detection, limit trip indicator, power on, and hardware error indication.
The unit is easily programmed via switches mounted on the front of the unit.
A unique collective error messaging feature is available when used with the Power Rail system.
For additional information, refer to www.pepperl-fuchs.com.

Assembly

Connection

General specifications

Signal type	Digital Input
Programming	via DIP switch and programmable
Supply	
Connection	Power Rail or terminals 14+, 15-
Rated voltage $\quad U_{n}$	$20 . .30 \mathrm{~V}$ DC
Power consumption	$\leq 1.5 \mathrm{~W}$
Input	
Connection	Input I: terminals $1+, 2+, 3-$; Input II: terminals 4+, 5+, 6-
Rated values	acc. to EN 60947-5-6 (NAMUR)
Open circuit voltage/short-circuit current	approx. $8 \mathrm{~V} \mathrm{DC} / \mathrm{approx} .8 \mathrm{~mA}$
Switching point/switching hysteresis	1.2 ... $2.1 \mathrm{~mA} /$ approx. 0.2 mA
Line fault detection	breakage I $\leq 0.1 \mathrm{~mA}$, short-circuit $\mathrm{I}>6 \mathrm{~mA}$
Control input	sensor power supply approx. 8.2 V , impedance $1.2 \mathrm{k} \Omega$
Pulse duration	$>200 \mu$ for standstill monitoring, $>250 \mu$ s for rotation direction detecion
Output	
Connection	output I: terminals 7, 8, 9 ; output II: terminals 10, 11, 12
Relay	2 changeover contacts
Contact loading	$253 \mathrm{~V} \mathrm{AC/2} \mathrm{~A} / \cos \phi>0.7 ; 126.5 \mathrm{~V} \mathrm{AC/4} \mathrm{A/cos} \phi>0.7$; 40 V DC/2 A resistive load
Minimum switch current	$2 \mathrm{~mA} / 24 \mathrm{~V}$ DC
Energized/De-energized delay	approx. 20 ms / approx. 20 ms
Mechanical life	10^{7} switching cycles
Trip value $\quad f_{\text {max }}$	for standstill monitoring: $0.1 \mathrm{~Hz} ; 0.5 \mathrm{~Hz} ; 2 \mathrm{~Hz} ; 10 \mathrm{~Hz}$ adjustable via DIP switch (S1 and S2)
Transfer characteristics	
Accuracy	5 \% (S3 = I), 30% (S3 = II)
Start-up override	5 seconds or 20 seconds, programmable
Frequency range	$\leq 2 \mathrm{kHz}$
Rotation direction detection	90° phase difference between pulse input signal 1 and 2, overlapping $\geq 125 \mu \mathrm{~s}$
Electrical isolation	
Input/Output	reinforced insulation according to IEC/EN 61010-1, rated insulation voltage $300 \mathrm{~V}_{\text {eff }}$
Input/power supply	reinforced insulation according to IEC/EN 61010-1, rated insulation voltage $300 \mathrm{~V}_{\text {eff }}$
Output/power supply	reinforced insulation according to IEC/EN 61010-1, rated insulation voltage $300 \mathrm{~V}_{\text {eff }}$
Output/Output	reinforced insulation according to IEC/EN 61010-1, rated insulation voltage $300 \mathrm{~V}_{\text {eff }}$
Directive conformity	
Electromagnetic compatibility	
Directive 2004/108/EC	EN 61326-1:2006
Low voltage	
Directive 2006/95/EC	EN 61010-1:2010
Conformity	
Electromagnetic compatibility	NE 21:2006
Degree of protection	IEC 60529:2001
Input	EN 60947-5-6:2000
Ambient conditions	
Ambient temperature	$-20 \ldots 6{ }^{\circ} \mathrm{C}\left(-4 \ldots 140^{\circ} \mathrm{F}\right)$
Mechanical specifications	
Degree of protection	IP20
Mass	approx. 150 g
Dimensions	$20 \times 119 \times 115 \mathrm{~mm}(0.8 \times 4.7 \times 4.5 \mathrm{in})$, housing type B2
Mounting	on 35 mm DIN mounting rail acc. to EN 60715:2001
Data for application in connection with Ex-areas	
EC-Type Examination Certificate	PTB 00 ATEX 2080 , for additional certificates see www.pepperl-fuchs.com
Group, category, type of protection	
Input	Exia
Voltage U_{0}	10.5 V
Current I_{0}	13 mA
Power P_{0}	34 mW (linear characteristic)
Supply	
Maximum safe voltage $\quad U_{m}$	$253 \mathrm{~V} \mathrm{AC} \mathrm{/} 125 \mathrm{~V}$ DC (Attention! U_{m} is no rated voltage.)
Output	

Contact loading	$253 \mathrm{~V} \mathrm{AC/2} \mathrm{~A} / \cos \phi>0.7 ; 126.5 \mathrm{~V} \mathrm{AC/4} / \cos \phi>0.7 ; 40 \mathrm{~V} \mathrm{DC} / 2 \mathrm{~A}$ resistive load	
Maximum safe voltage $\quad \mathrm{U}_{\mathrm{m}}$	253 V AC (Attention! The rated voltage can be lower.)	
Error message output		
Maximum safe voltage $\quad \mathrm{U}_{\mathrm{m}}$	40 V DC (Attention! U_{m} is no rated voltage.)	
Statement of conformity	TÜV 99 ATEX 1493 X, observe statement of conformity	
Group, category, type of protection, temperature class	(Ex) \\| 3 G Ex nA nC IIC T4	
Output		
Contact loading	$50 \mathrm{VAC} / 4 \mathrm{~A} / \cos \phi>0.7 ; 40 \mathrm{~V} \mathrm{DC} / 2 \mathrm{~A}$ resistive load	
Electrical isolation		
Input/Output	safe electrical isolation acc. to IEC/EN 60079-11, voltage peak value 375 V	
Input/power supply	safe electrical isolation acc. to IEC/EN 60079-11, voltage peak value 375 V	
Directive conformity		
Directive 94/9/EC	EN 60079-0:2012, EN 60079-11:2012, EN 60079-15:2010	
International approvals		
FM approval		
Control drawing	116-0035	
CSA approval		
Control drawing	116-0047	
IECEx approval	IECEx PTB 11.0034	
Approved for	[Ex ia Ga] IIC, [Ex ia Da] IIIC, [Ex ia Ma] I	
General information		
Supplementary information	EC-Type Examination Certificate, Statement of Conformity, Declaration of Conformity, Attestation of Conformity and instructions have to be observed where applicable. For information see www.pepperlfuchs.com.	

Operating principle

The function of standstill monitor with start-up override $(\mathrm{S} 3=\mathrm{I})$ or standstill monitor with rotation direction monitoring ($\mathrm{S} 3=\mathrm{II}$) can be selected by means of DIP switches.

S3:	I	II
Function:	Standstill monitor with start-up override	Standstill monitor with rotation direction monitoring
Input I:	Pulse input 1: NAMUR contacts (bounce-free)	Pulse input 1: NAMUR contacts (bounce-free)
Input II:	Start-up override: contact terminal 4 + 6: 20 seconds contact terminal 5 + 6: 5 seconds	Pulse input 2: NAMUR contacts (bounce-free)
Output I:	MIN/passive	MIN/passive
Output II:	MIN/active	Direction of rotation/error

Standstill monitor with start-up override (S3 = I)

If the frequency falls below the trip value set with the DIP switches $S 1$ and S 2 , the standstill monitor with start-up override switches the output I to passive and the output II to active. Input I is used to monitor the frequency of rising current edges. Signal transmitters can be sensors in accordance with EN 60947-5-6 (NAMUR) or contacts. Input I is monitored for lead breakage/shortcircuiting. A start-up override can be initiated via input II. The duration of the start-up override can be selected between 5 and 20 seconds by means of a bridge (starting trigger) or an external trigger signal. During the start-up override time the outputs assume the "no standstill" state. In this case there is no lead breakage/short-circuit monitoring at input II.

Trip value	Hysteresis	Switch S2	Switch S1
0.1 Hz	0.02 Hz	I	I
0.5 Hz	0.1 Hz	I	II
2 Hz	0.4 Hz	II	I
10 Hz	2 Hz	II	II

Standstill monitor with rotation direction monitoring (S3 = II)

The device also offers stand still monitoring with direction of rotation monitoring as an alternative to stand still monitoring with start-up override. The trip values are identical to the standstill monitor with start-up override. At input II a signal that is offset by 90° to input I has to be applied; in this context minimum signal overlapping should be ensured. Signal transmitters at input I and input II can be sensors in accordance with DIN EN 60947-5-6 (NAMUR) or contacts. Both inputs are monitored for lead faults. Output I is used for standstill signalling and switches to a de-energized state (passive) in the event of a standstill. Output II is switched to active when the direction of rotation is clockwise. If a reverse rotation is detected or if a signal overlap is missing, output II switches to a de-energized state (passive). In this case it can be concluded, that the sensor is misadjusted or defective. If the sensor at input I is misadjusted or defective, input II is used for standstill monitoring.

Behaviour during malfunction:

- Monitoring for lead faults
- Continuous monitoring of the device for errors in internal memory

If an error occurs, both relays go into the secure state, the red LEDs indicate the error and a collective error message is generated via the Power Rail.

Advice on use in SIL2 applications (Functional safety)

Care should be taken to ensure that the relays are de-energized (passive) in the critical condition of the application. Then, in the event of a power failure (de-energized, passive relay) the safety-critical state (energized) relay cannot be achieved.

Example 1:

The protective guard for a rotating shaft must remain locked in position until the shaft has stopped rotating. The safety-critical condition is the rotation of the shaft (risk of injury).For this reason, the locking of the protective guard should be achieved by means of a de-energized (passive) relay. The relay shall be energized (active) only when the shaft has stopped (safe condition). This device function is only achieved with "Standstill monitoring with start-up override" ($\mathrm{S} 3=\mathrm{I}$) and control of the protective guard with relay 2.
Example 2:
The cooling of a critical process by means of fans/coolant pumps has to be monitored. The safety-critical condition is the standstill of the fans/pumps (overheating). For this reason an alarm must be triggered when a relay has de-energized (passive). As long as the fans or the pumps are running (safety condition) the relay is energized (active). This device function can be achieved with "Standstill monitoring with start-up override" $(\mathrm{S} 3=\mathrm{I})$ and "Standstill monitoring with direction of rotation signalling" $(\mathrm{S} 3=\mathrm{II})$ with relay 1.

Maximum switching power of output contacts

The maximum number of switching cycles is depending on the electrical load and may be higher when reduced currents and voltages are applied.

Accessories

Power feed module KFD2-EB2

The power feed module is used to supply the devices with 24 V DC via the Power Rail. The fuse-protected power feed module can supply up to 150 individual devices depending on the power consumption of the devices. Collective error messages received from the Power Rail activate a galvanically-isolated mechanical contact.

Power Rail UPR-03

The Power Rail UPR-03 is a complete unit consisting of the electrical insert and an aluminium profile rail $35 \mathrm{~mm} \times 15 \mathrm{~mm}$. To make electrical contact, the devices are simply engaged.

Profile Rail K-DUCT with Power Rail

The profile rail K-DUCT is an aluminum profile rail with Power Rail insert and two integral cable ducts for system and field cables. Due to this assembly no additional cable guides are necessary.

Power Rail and Profile Rail must not be fed via the device terminals of the individual devices!

