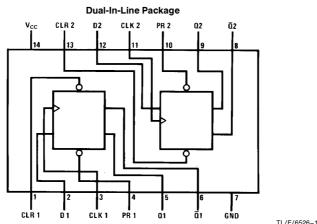


June 1989

5474/DM5474/DM7474 **Dual Positive-Edge-Triggered D Flip-Flops** with Preset, Clear and Complementary Outputs

General Description


This device contains two independent positive-edge-triggered D flip-flops with complementary outputs. The information on the D input is accepted by the flip-flops on the positive going edge of the clock pulse. The triggering occurs at a voltage level and is not directly related to the transition time of the rising edge of the clock. The data on the D input may be changed while the clock is low or high without affecting the outputs as long as the data setup and hold times are not

violated. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

Features

■ Alternate Military/Aerospace device (5474) is available. Contact a National Semiconductor Sales Office/Distributor for specifications.

Connection Diagram

Order Number 5474DMQB, 5474FMQB, DM5474J, DM5474W, DM7474M or DM7474N See NS Package Number J14A, M14A, N14A or W14B

Function Table

Inputs				Outputs		
PR	CLR	CLK	D	Q	Q	
L	н	х	x	н	L	
н	L	х	X	L	н	
L	L	Х	X	H*	H*	
н	н	1	н	н	L	
н	н	1	L	L	н	
н	н	L	X	Q ₀	\overline{Q}_0	
H = High I	ogic Level					

X = Either Low or High Logic Level L = Low Logic Level

 \uparrow = Positive-going transition of the clock. * = This configuration is nonstable; that is, it will not persist when either the preset and/or clear

inputs return to their inactive (high) level. $Q_0 = \mbox{The output logic level of } Q \mbox{ before the indicated input conditions were established.}$

©1995 National Semiconductor Corporation TL/F/6526 RRD-B30M105/Printed in U. S. A.

Absolute Maximum Ratings (Note)

If Military/Aerospace specifie	ed devices are required,
please contact the Nationa	al Semiconductor Sales
Office/Distributors for availab	ility and specifications.
Supply Voltage	7V
Input Voltage	5.5V

Operating Free Air Temperature Range	
DM54 and 54	-55°C to +125°C
DM74	0°C to +70°C
Storage Temperature Range	-65° C to $+150^{\circ}$ C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM5474			DM7474			Units
Gymbol			Min	Nom	Max	Min	Nom	Max	Units
V _{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input	t Voltage	2			2			V
VIL	Low Level Input	Voltage			0.8			0.8	V
I _{OH}	High Level Outp	out Current			-0.4			-0.4	mA
IOL	Low Level Outp	ut Current			16			16	mA
f _{CLK}	Clock Frequenc	y (Note 2)	0		15	0		15	MHz
t _W	Pulse Width	Clock High	30			30			- ns
	(Note 2)	Clock Low	37			37			
		Clear Low	30			30			
		Preset Low	30			30			
t _{SU}	Input Setup Tim	e (Notes 1 & 2)	20 ↑			20 ↑			ns
t _H	Input Hold Time	(Notes 1 & 2)	5↑			5↑			ns
T _A	Free Air Operati	ing Temperature	-55		125	0		70	°C
Note 1: The	symbol (1) indicates the	e rising edge of the clock	pulse is used f	or reference.	•	•	•	•	

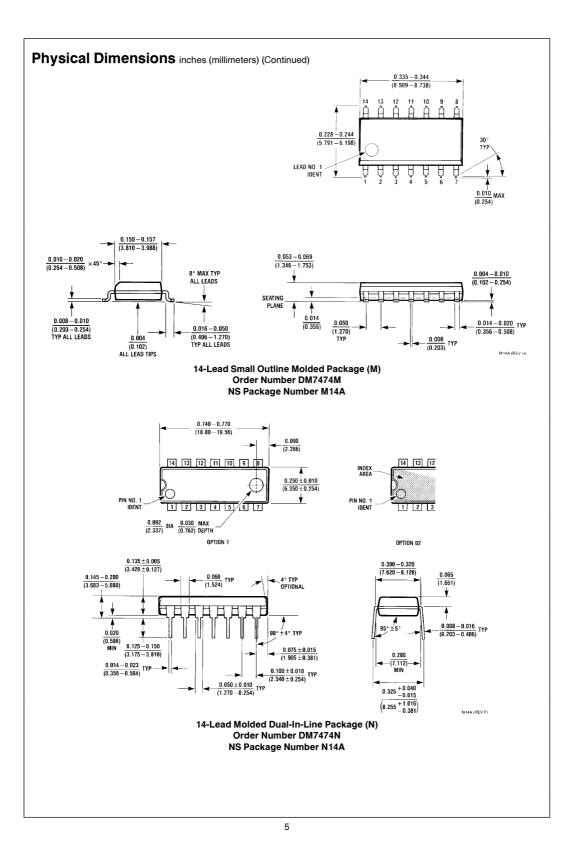
Note 1: The symbol (1) indicates the rising edge of the clock pulse is used for reference.

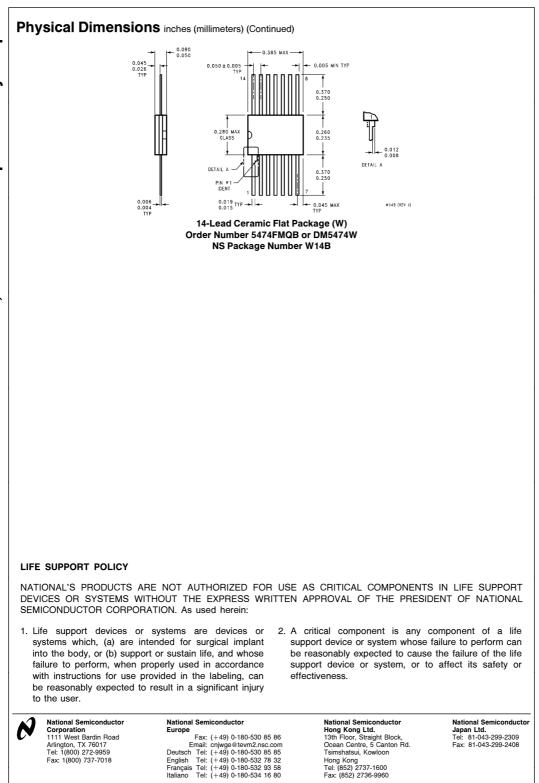
Note 2: T_{A} = 25°C and V_{CC} = 5V.

Symbol	Parameter	Conditions		Min	Typ (Note 3)	Мах	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -12 \text{ mA}$				-1.5	V
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max$ $V_{IL} = Max, V_{IH} = Min$		2.4	3.4		V
V _{OL}	Low Level Output Voltage	$\begin{array}{l} V_{CC} = Min, I_{OL} \\ V_{IH} = Min, V_{IL} \end{array}$			0.2	0.4	v
lı	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 5.5V$				1	mA
	High Level Input Current	$V_{CC} = Max$ $V_{I} = 2.4V$	D			40	μΑ
			Clock			80	
			Clear			120	
			Preset			40	
ΙL	Low Level Input Current	$V_{CC} = Max$ $V_{I} = 0.4V$ (Note 6)	D			-1.6	mA
			Clock			-3.2	
			Clear			-3.2	
			Preset			-1.6	
los	Short Circuit Output Current	V _{CC} = Max (Note 4)	DM54	-20		-55	- mA
			DM74	- 18		-55	
ICC	Supply Current	V _{CC} = Max (Ne	ote 5)		17	30	mA

Note 3: All typicals are at V_{CC}\,=\, 5V, T_A $=\,$ 25°C.

Note 4: Not more than one output should be shorted at a time.


Note 5: With all outputs open, I_{CC} is measured with the Q and Q outputs high in turn. At the time of measurement the clock is grounded.


Note 6: Clear is tested with preset high and preset is tested with clear high.

2

Symbol	Parameter	From (Input) To (Output)	R _L = C _L =	Units	
			Min	Max	
f _{MAX}	Maximum Clock Frequency		15		MHz
t _{PHL}	Propagation Delay Time High to Low Level Output	Preset to Q		40	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	Preset to Q		25	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Clear to Q		40	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	Clear to \overline{Q}		25	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Clock to Q or \overline{Q}		40	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	Clock to Q or Q		25	ns

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.