

Product Change Notification

Product Group: OPT/Mon Sep 19, 2022/PCN-OPT-1234-2022-REV-0

Changes of materials for TFDU4301

DESCRIPTION OF CHANGE: -Introduction of a new in-house designed IRDC IC. The Chaldene IC provides

20 percent longer distance (in meters) and improved ESD robustness

from current 1kV to 2kV.

-Introduction of a new Surface Emitting Technology Chip.

-Changeover of the Au wire Diameter from 30um to 25um.

We recommend to test the product in customers application.

REASON FOR CHANGE: - New IC:

The existing external IC Supplier will end the production. In order to assure a long-term product availability of IRDC products, Vishay developed an inhouse IC in cooperation with the worlds leading Chip Foundry.

-New Emitter Chip:

Changeover to latest Surface Emitting Technology to assure long-term

product availability.

-Au wire Diameter reduction:

In order to streamline the production and optimize the material supply chain, Vishay introduces a new Standardization of Au wire Diameter. The material is qualified to high Standards.

EXPECTED INFLUENCE ON QUALITY/RELIABILTY/PERFORMANCE: No change on Quality/Reliability. Similar electrical and optical characteristics.

PART NUMBERS/SERIES/FAMILIES AFFECTED: Please see materials list on the succeeding page.

VISHAY BRAND(s): Vishay Semiconductors

TIME SCHEDULE: Start Shipment Date: Sun Jan 1, 2023

SAMPLE AVAILABILITY: 25-Sep-2022

PRODUCT IDENTIFICATION: via date code

QUALIFICATION DATA: Q-Report is available in ww40.

This PCN is considered approved, without further notification, unless we receive specific customer concerns before Sun Nov 13, 2022 or as specified by contract.

ISSUED BY: Rainer Hauschildt, rainer.hauschildt@vishay.com

For further information, please contact your regional Vishay office.

CONTACT INFORMATION:

Vishay Intertechnology, Inc.

Corporate Headquarters 63 Lincoln Highway, Malvern, PA 19355-2143 U.S.A. Phone (610) 644-1300 Fax (610) 296-0657 www.vishay.com

ONE OF THE WORLD'S LARGEST MANUFACTURERS OF DISCRETE SEMICONDUCTORS AND PASSIVE COMPONENT

Product Change Notification

Product Group: OPT/Mon Sep 19, 2022/PCN-OPT-1234-2022-REV-0

Americas	Europe	Asia
Jim Toal	Boris Lazic	jason Soon
2585 Junction Avenue	Theresienstr.2	25 Tampines Street 92
San Jose California United States 95134-	Heilbronn Baden-Wuerttemberg Germany	Keppel Building # 02-00
1923	74072	Singapore Singapore Singapore 528877
jim.toal@vishay.com	boris.lazic@vishay.com	jason.soon@vishay.com
Phone: +1-408-567-8358	Phone: +49 7131-7498-516	Phone: +65 6780 7879
Fax: +1-408-240-5687	Fax: +49-7131-67-3144	Fax: +65 6780 7897

Vishay Intertechnology, Inc.

Corporate Headquarters 63 Lincoln Highway, Malvern, PA 19355-2143 U.S.A. Phone (610) 644-1300 Fax (610) 296-0657 www.vishay.com

ONE OF THE WORLD'S LARGEST MANUFACTURERS OF DISCRETE SEMICONDUCTORS AND PASSIVE COMPONENT

Product Group: OPT/Mon Sep 19, 2022/PCN-OPT-1234-2022-REV-0

?TFDU4301-TR1	TFDU4301-TR3	TFDU4301-TT1	TFDU4301-TT3	TFDU4301D-TT3
TFDU4301E-TR1	TFDU4301E-TR3	TFDU4301E-TT3		

Vishay Intertechnology, Inc.

Corporate Headquarters 63 Lincoln Highway, Malvern, PA 19355-2143 U.S.A. Phone (610) 644-1300 Fax (610) 296-0657 www.vishay.com

ONE OF THE WORLD'S LARGEST MANUFACTURERS OF DISCRETE SEMICONDUCTORS AND PASSIVE COMPONENT

Author: Rainer Hauschildt

 Tel:
 +49 7131 7498 - 605

 E-mail:
 Rainer.Hauschildt@Vishay.com

Changes of materials for TFDU4301

Vishay Opto has published PCN-OPT-1234-2022, announcing the introduction of a new IC, a new Surface Emitter Chip and the usage of standardized 25µm Bond wires for the existing TFDU4301x IRDC Transceiver Series.

FAQ:

Q: Are there any technical differences (form/fit/function) expected?

A: Mechanically there are no changes.

Electrically/Optically the performance of the Transmitter changes in the following way.

Before material changes:

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, V _{CC1} = V _{CC2} = 2.4 V to 5.5 V unless otherwise noted)						
PARAMETER	TEST CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
TRANSCEIVER						
Supply voltage		V _{OC1}	2.4	-	5.5	V
Operating temperature range		Tamb	-30	-	+85	°C
Data rates			9.6	-	115.2	kbit/s
Idle supply current at V _{CC1}	$ \begin{array}{l} \text{SD} = \text{low}, \ \text{T}_{amb} = -25 \ ^\circ\text{C} \ \text{to} \ +85 \ ^\circ\text{C} \\ \text{independent of ambient light,} \\ V_{\text{CC1}} = V_{\text{CC2}} = 2.4 \ \text{V} \ \text{to} \ 5.5 \ \text{V} \end{array} $	I _{CC1}	40	70	150	μA
(receive mode, no signal)	SD = low, $T_{amb} = 25 \text{ °C}$, V _{CC1} = V _{CC2} = 2.4 V to 5.5 V	I _{CC1}	40	70	100	μA
Average dynamic supply current, transmitting	I _{IRED} = 300 mA, 20 % duty cycle	I _{CC1}	-	0.6	2	mA
Standby (SD) ⁽¹⁾ supply current	SD = high, T _{amb} = -25 °C to +85 °C independent of ambient light	I _{SD}	-	0.01	1	μA
RXD to V _{CC1} impedance		R _{RXD}	400	500	600	kΩ
Input voltage low (TXD, SD)	SD = high	VILo	-0.3	-	0.4	V
Input voltage high (SD)	For compliance with ISD spec.	VIHi	V _{CC1} - 0.3	-	6	V
Input voltage high (TXD)		VIHi	V _{CC1} - 0.5	-	6	V
Timing logic decision level			-	0.5 x V _{CC1}	-	
Input leakage current low	$V_{ILo} \le 0.3 V$	IILo	-	0.01	10	μA
Input leakage current high	$V_{IHi} \ge V_{CC1} - 0.3 V$	I _{IHi}	-	0.01	10	μA
Input capacitance (TXD, SD)		CIN	-	-	5	pF
Output voltage low, RXD	C _{load} = 8 pF, I _{OLo} ≤ +500 µA	VOLo	-	-	0.4	V
Output voltage high, RXD	I _{OH} = -200 μA	VoHi	0.8 x V _{CC1}	-	V _{CC1}	V

© 2019 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED.

Product Group: Vishay Opto / Sep 2022

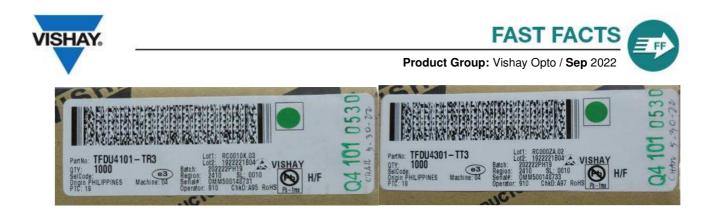
OPTOELECTRONIC CHARACTERISTICS (T _{amb} = 25 °C, V _{CC1} = V _{CC2} = 2.4 V to 5.5 V unless otherwise noted)						
PARAMETER	TEST CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
RECEIVER						
Minimum irradiance E _e in angular range ⁽²⁾	9.6 kbit/s to 115.2 kbit/s, λ = 850 nm to 900 nm; α = 0°, 15°	Ee	-	40 (4)	80 (8)	mW/m ² (µW/cm ²⁾
Maximum irradiance E _e In Angular Range ⁽³⁾	λ = 850 nm to 900 nm	Ee	-	5 (500)	-	kW/m ² (mW/cm ²)
Maximum no detection irradiance ⁽¹⁾	$\begin{array}{l} \lambda = 850 \text{ nm to } 900 \text{ nm}, \\ t_r, t_f < 40 \text{ ns, } t_{po} = 1.6 \ \text{\mu s at } f = 115 \text{ kHz}, \\ \text{no output signal allowed} \end{array}$	Ee	4 (0.4)	-	-	mW/m ² (µW/cm ²⁾
Rise time of output signal	10 % to 90 %, C _L = 8 pF	t _{r(RXD)}	10	30	80	ns
Fall time of output signal	90 % to 10 %, C _L = 8 pF	t _{f(RXD)}	10	30	80	ns
RXD pulse width of output signal	Input pulse length > 1.2 µs	t _{PW}	1.7	2.2	3	μs
Stochastic jitter, leading edge	Input irradiance = 100 mW/m ² , ≤ 115.2 kbit/s		-	-	350	ns
Standby/shutdown delay, receiver startup time	After shutdown active or power-on		-	100	500	μs
Latency		tL	-	50	150	μs
TRANSMITTER (new surface emi	tter values introduced via PCN OPT-1210-202	22)				
IRED operating current limitation	No external resistor for current limitation (4)	ID	200	300	430	mA
Forward voltage of built-in IRED	l _f = 300 mA	Vf	1.4	1.8	1.9	V
Output leakage IRED current	TXD = 0 V, 0 < V _{CC1} < 5.5 V	IIRED	-1	0.01	1	μA
	$\alpha = 0^{\circ}$, 15°, TXD = high, SD = low	l _e	50	200	400	mW/sr
Output radiant intensity	$V_{CC1} = 5 V, \alpha = 0^{\circ}, 15^{\circ},$ TXD = low or SD = high (receiver is inactive as long as SD = high)	I _e	-	-	0.04	mW/sr
Output radiant intensity, angle of half intensity		α	-	± 30	-	۰
Peak - emission wavelength (5)		λ _p	870	-	910	nm
Spectral bandwidth		Δλ	-	45	-	nm
Optical rise time, fall time		t _{ropt} , t _{fopt}	10	50	100	ns
Optical output pulse duration	Input pulse width 1.6 < t_{TXD} < 23 μs	t _{opt}	t _{TXD} - 0.15	-	t _{TXD} + 0.15	μs
	Input pulse width $t_{TXD} \geq 23 \ \mu s$	t _{opt}	23	50	100	μs
Optical overshoot			-	-	25	%

After material changes:

PARAMETER	TEST CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
TRANSCEIVER						
Supply voltage		V _{CC1}	2.4	-	5.5	V
Operating temperature range		Tamb	-25	-	+85	°C
Data rates			9.6	-	115.2	kbit/s
Idle supply current at V _{CC1} (receive mode, no signal)	$ \begin{array}{l} \text{SD} = \text{low}, \ T_{amb} = -25 \ ^\circ\text{C} \ \text{to} \ +85 \ ^\circ\text{C} \\ \text{independent of ambient light,} \\ V_{CC1} = V_{CC2} = 2.4 \ \text{V} \ \text{to} \ 5.5 \ \text{V} \end{array} $	I _{CC1}	40	70	110	μА
Average dynamic supply current, transmitting	I _{IRED} = 300 mA, 20 % duty cycle	I _{CC1}	-	0.6	2	mA
Standby (SD) ⁽¹⁾ supply current	SD = high, T _{amb} = -25 °C to +85 °C independent of ambient light	I _{SD}	-	0.01	1	μA
RXD to V _{CC1} impedance	SD = high	R _{RXD}	400	500	600	kΩ
Input voltage low (TXD, SD)		VILo	-0.3	-	0.4	V
Input voltage high (SD)	For compliance with ISD spec.	VIHi	V _{CC1} - 0.3	-	6	V
Input voltage high (TXD)		VIHi	V _{CC1} - 0.5	-	6	V
Timing logic decision level			-	0.5 x V _{CC1}	-	
Input leakage current low	$V_{ILo} \le 0.3 V$	IILo	-	0.01	10	μA
Input leakage current high	$V_{IHi} \ge V_{CC1} - 0.3 V$	I _{IHi}	-	0.01	10	μA
Input capacitance (TXD, SD)		CIN	-	-	5	pF
Output voltage low, RXD	$C_{load} = 8 \text{ pF}, I_{OLo} \leq +500 \mu\text{A} $	V _{OLo}	-	-	0.15 x V _{CC1}	v
Output voltage high, RXD	I _{OH} = 200 μA	V _{OHi}	0.8 x V _{CC1}	-	-	V

© 2019 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED.

Product Group: Vishay Opto / Sep 2022


OPTOELECTRONIC CHARACTERISTICS (T _{amb} = 25 °C, V _{CC1} = V _{CC2} = 2.4 V to 5.5 V unless otherwise noted)							
PARAMETER	TEST CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT	
RECEIVER							
Minimum irradiance E _e in angular range ⁽²⁾	9.6 kbit/s to 115.2 kbit/s, λ = 850 nm to 900 nm; α = 0°, 15°	Ee	-	20	50	mW/m ²	
Maximum irradiance E _e In Angular Range ⁽³⁾	λ = 850 nm to 900 nm	Ee	2	5	-	kW/m ²	
Maximum no detection irradiance ⁽¹⁾	λ = 850 nm to 900 nm, t_r,t_f < 40 ns, t_{po} = 1.6 μs at f = 115 kHz, no output signal allowed	Ee	4 (0.4)	-	-	mW/m ² (µW/cm ²⁾	
Rise time of output signal	10 % to 90 %, C _L = 8 pF	t _{r(RXD)}	10	30	80	ns	
Fall time of output signal	90 % to 10 %, C _L = 8 pF	t _{f(RXD)}	10	30	80	ns	
RXD pulse width of output signal	Input pulse length > 1.2 µs	t _{PW}	1.7	2.2	3	μs	
Stochastic jitter, leading edge	Input irradiance = 100 mW/m ² , \leq 115.2 kbit/s		-	-	350	ns	
Standby/shutdown delay, receiver startup time	After shutdown active or power-on		-	100	500	μs	
Latency		tL	-	50	150	μs	
TRANSMITTER							
IRED operating current limitation	No external resistor for current limitation (4)	ID	200	300	430	mA	
Forward voltage of built-in IRED	l _f = 300 mA	Vf	1.4	1.8	1.9	V	
Output leakage IRED current	TXD = 0 V, 0 < V _{CC1} < 5.5 V	IIRED	-1	0.01	1	μA	
	$\alpha = 0^{\circ}$, 15°, TXD = high, SD = low	l _e	50	200	400	mW/sr	
Output radiant intensity	$V_{CC1} = 5 V, \alpha = 0^{\circ}, 15^{\circ},$ TXD = low or SD = high (receiver is inactive as long as SD = high)	l _e	-	-	0.04	mW/sr	
Output radiant intensity, angle of half intensity		α	-	± 30	-	٥	
Peak - emission wavelength (5)		λρ	870	-	910	nm	
Spectral bandwidth		Δλ	-	45	-	nm	
TRANSMITTER							
Optical rise time, fall time		t _{ropt} , t _{fopt}	10	50	100	ns	
Optical output pulse duration	Input pulse width 1.6 $< t_{TXD} <$ 23 μs	t _{opt}	t _{TXD} - 0.15	-	t _{TXD} + 0.15	μs	
	Input pulse width $t_{TXD} \geq 23 \ \mu s$	t _{opt}	23	50	100	μs	
Optical overshoot			-	-	25	%	

Q: Are datasheets with these new values available?

A: Datasheets of the new TFDU4301 are available on the Vishay's website: <u>IRDC</u> <u>Transceivers | Vishay</u>. The header of the new datasheet states: **Datasheet Values Refer to PCN-OPT-1234-2022**

Q: When do we plan to implement the new materials in production? A: 01-Jan-2023.

Q: How can the customer distinguish products using existing materials or new materials? A: The PCN announces a changeover date. This changeover date will be mentioned on the standard bar code labels as shown below (Batch 202222PH19 \rightarrow produced in ww22 2022). Besides a green Sticker will be added to the box label only for products using new materials.

Q: Why has Vishay introduced these changes? A: -New IC:

The existing external IC Supplier will end the production. In order to assure a long-term product availability of IRDC products, Vishay developed an inhouse IC in cooperation with the worlds leading Chip Foundry.

-New Emitter Chip:

Changeover to latest Surface Emitting Technology to assure long-term product availability. -Au wire Diameter reduction:

In order to streamline the production and optimize the material supply chain, Vishay introduces a new Standardization of Au wire Diameter. The material is qualified to high Standards.

Q: Are there any technical advantages of the new materials?

A: Yes. The new generation of Chips offer longer link distance, improved ESD robustness, and a wider operating voltage.

Q: Are samples of the new TFDU4301 Series available?

A: Yes, samples can be ordered by contacting me or our Regional Marketing colleagues.

THE AMERICAS

EUROPE

ASIA/PACIFIC

Jim Toal Jim.Toal@vishay.com Boris Lazic Boris.Lazic@vishay.com Jason Soon Jason.Soon@vishay.com