
Features
• High Performance, Low Power Atmel® AVR® 8-Bit Microcontroller
• Advanced RISC Architecture

– 130 Powerful Instructions – Most Single Clock Cycle Execution
– 32 × 8 General Purpose Working Registers
– Fully Static Operation
– Up to 16 MIPS Throughput at 16 MHz
– On-Chip 2-cycle Multiplier

• High Endurance Non-volatile Memory segments
– 16 Kbytes of In-System Self-programmable Flash program memory
– 512 Bytes EEPROM
– 1 Kbytes Internal SRAM
– Write/Erase cycles: 10,000 Flash/100,000 EEPROM
– Data retention: 20 years at 85°C/100 years at 25°C(1)

– Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation

– Programming Lock for Software Security
• JTAG (IEEE std. 1149.1 compliant) Interface

– Boundary-scan Capabilities According to the JTAG Standard
– Extensive On-chip Debug Support
– Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface

• Peripheral Features
– 4 × 25 Segment LCD Driver
– Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture

Mode
– Real Time Counter with Separate Oscillator
– Four PWM Channels
– 8-channel, 10-bit ADC
– Programmable Serial USART
– Master/Slave SPI Serial Interface
– Universal Serial Interface with Start Condition Detector
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator
– Interrupt and Wake-up on Pin Change

• Special Microcontroller Features
– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated Oscillator
– External and Internal Interrupt Sources
– Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and

Standby
• I/O and Packages

– 54 Programmable I/O Lines
– 64-lead TQFP, 64-pad QFN/MLF and 64-pad DRQFN

• Speed Grade:
– ATmega169PV: 0 - 4 MHz @ 1.8V - 5.5V, 0 - 8 MHz @ 2.7V - 5.5V
– ATmega169P: 0 - 8 MHz @ 2.7V - 5.5V, 0 - 16 MHz @ 4.5V - 5.5V

• Temperature range:
– -40°C to 85°C Industrial

• Ultra-Low Power Consumption
– Active Mode:

1 MHz, 1.8V: 330 µA
32 kHz, 1.8V: 10 µA (including Oscillator)
32 kHz, 1.8V: 25 µA (including Oscillator and LCD)

– Power-down Mode:
0.1 µA at 1.8V

– Power-save Mode:
0.6 µA at 1.8V (Including 32 kHz RTC)

8-bit

Microcontroller
with 16K Bytes
In-System
Programmable
Flash

ATmega169P

ATmega169PV

Preliminary

Rev. 8018P–AVR–08/10

2

8018P–AVR–08/10

ATmega169P

1. Pin Configurations

1.1 Pinout - TQFP/QFN/MLF

Figure 1-1. 64A (TQFP) and 64M1 (QFN/MLF) Pinout ATmega169P

Note: The large center pad underneath the QFN/MLF packages is made of metal and internally connected to GND. It should be sol-
dered or glued to the board to ensure good mechanical stability. If the center pad is left unconnected, the package might loosen
from the board.

6
4

6
3

6
2

47

46

48

45

44

43

42

41

40

39

38

37

36

35

33

34

2

3

1

4

5

6

7

8

9

10

11

12

13

14

16

15

1
7

6
1

6
0

1
8

5
9

2
0

5
8

1
9

2
1

5
7

2
2

5
6

2
3

5
5

2
4

5
4

2
5

5
3

2
6

5
2

2
7

5
1

2
9

2
8

5
0

4
9

3
2

3
1

3
0

PC0 (SEG12)

V
C

C

G
N

D

P
F

0
 (

A
D

C
0
)

P
F

7
 (

A
D

C
7
/T

D
I)

P
F

1
 (

A
D

C
1
)

P
F

2
 (

A
D

C
2
)

P
F

3
 (

A
D

C
3
)

P
F

4
 (

A
D

C
4
/T

C
K

)

P
F

5
 (

A
D

C
5
/T

M
S

)

P
F

6
 (

A
D

C
6
/T

D
O

)

A
R

E
F

G
N

D

A
V

C
C

(RXD/PCINT0) PE0

(TXD/PCINT1) PE1

LCDCAP

(XCK/AIN0/PCINT2) PE2

(AIN1/PCINT3) PE3

(USCK/SCL/PCINT4) PE4

 (DI/SDA/PCINT5) PE5

(DO/PCINT6) PE6

(CLKO/PCINT7) PE7

(SS/PCINT8) PB0

(SCK/PCINT9) PB1

 (MOSI/PCINT10) PB2

(MISO/PCINT11) PB3

(OC0A/PCINT12) PB4

(O
C

2
A

/P
C

IN
T

1
5
)

P
B

7

(T
1
/S

E
G

2
4
)

P
G

3

(OC1B/PCINT14) PB6

(T
0
/S

E
G

2
3
)

P
G

4

(OC1A/PCINT13) PB5

PC1 (SEG11)

PG0 (SEG14)

 (
S

E
G

1
5
)

P
D

7

PC2 (SEG10)

PC3 (SEG9)

PC4 (SEG8)

PC5 (SEG7)

PC6 (SEG6)

PC7 (SEG5)

PA7 (SEG3)

PG2 (SEG4)

PA6 (SEG2)

PA5 (SEG1)

PA4 (SEG0)

PA3 (COM3)

P
A

0
 (

C
O

M
0
)

P
A

1
 (

C
O

M
1
)

P
A

2
 (

C
O

M
2
)

PG1 (SEG13)

 (
S

E
G

1
6
)

P
D

6

(S
E

G
1
7
)

P
D

5

 (
S

E
G

1
8
)

P
D

4

 (
S

E
G

1
9
)

P
D

3

 (
S

E
G

2
0
)

P
D

2

 (
IN

T
0
/S

E
G

2
1
)

P
D

1

 (
IC

P
1
/S

E
G

2
2
)

P
D

0

(T
O

S
C

1
)

X
T

A
L
1

(T
O

S
C

2
)

X
T

A
L
2

R
E

S
E

T
/P

G
5

G
N

D

V
C

C
INDEX CORNER

3

8018P–AVR–08/10

ATmega169P

1.2 Pinout - DRQFN

Figure 1-2. 64MC (DRQFN) Pinout ATmega169P

Top view Bottom view

A1

 B1

A2

 B2

A3

 B3

A4

 B4

A5

 B5

A6

 B6

A7

 B7

A8

A
9

B

8

A
1
0

B

9

A
1
1

B

1
0

A
1
2

B

1
1

A
1
3

B

1
2

A
1
4

B

1
3

A
1
5

B

1
4

A
1
6

B

1
5

A
1

7

 A25

B22

 A24

B21

 A23

B20

 A22

B19

 A21

B18

 A20

B17

 A19

B16

 A18

A

3
4

B
3
0

A

3
3

B
2
9

A

3
2

B
2
8

A

3
1

B
2
7

A

3
0

B
2
6

A

2
9

B
2
5

A

2
8

B
2
4

A

2
7

B
2
3

A

2
6

 A1

B1

 A2

B2

 A3

B3

 A4

 B4

 A5

B5

 A6

B6

 A7

B7

 A8

A25

 B22

A24

 B21

A23

 B20

A22

 B19

A21

 B18

A20

 B17

A19

 B16

A18

A
1
7

B

1
5

A
1
6

B

1
4

A
1
5

B

1
3

A
1
4

B

1
2

A
1
3

B

1
1

A
1
2

B

1
0

A
1
1

B

9

A
1
0

B

8

A
9

A

2
6

B
2
3

A

2
7

B
2
4

A

2
8

B
2
5

A

2
9

B
2
6

A

3
0

B
2
7

A

3
1

B
2
8

A

3
2

B
2
9

A

3
3

B
3
0

A

3
4

Table 1-1. DRQFN-64 Pinout ATmega169P.

A1 PE0 A9 PB7 A18 PG1 (SEG13) A26 PA2 (COM2)

B1 VLCDCAP B8 PB6 B16 PG0 (SEG14) B23 PA3 (COM3)

A2 PE1 A10 PG3 A19 PC0 (SEG12) A27 PA1 (COM1)

B2 PE2 B9 PG4 B17 PC1 (SEG11) B24 PA0 (COM0)

A3 PE3 A11 RESET A20 PC2 (SEG10) A28 VCC

B3 PE4 B10 VCC B18 PC3 (SEG9) B25 GND

A4 PE5 A12 GND A21 PC4 (SEG8) A29 PF7

B4 PE6 B11 XTAL2 (TOSC2) B19 PC5 (SEG7) B26 PF6

A5 PE7 A13 XTAL1 (TOSC1) A22 PC6 (SEG6) A30 PF5

B5 PB0 B12 PD0 (SEG22) B20 PC7 (SEG5) B27 PF4

A6 PB1 A14 PD1 (SEG21) A23 PG2 (SEG4) A31 PF3

B6 PB2 B13 PD2 (SEG20) B21 PA7 (SEG3) B28 PF2

A7 PB3 A15 PD3 (SEG19) A24 PA6 (SEG2) A32 PF1

B7 PB5 B14 PD4 (SEG18) B22 PA4 (SEG0) B29 PF0

A8 PB4 A16 PD5 (SEG17) A25 PA5 (SEG1) A33 AREF

B15 PD7 (SEG15) B30 AVCC

A17 PD6 (SEG16) A34 GND

4

8018P–AVR–08/10

ATmega169P

2. Overview

The ATmega169P is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By execut-

ing powerful instructions in a single clock cycle, the ATmega169P achieves throughputs approaching 1 MIPS per MHz

allowing the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

Figure 2-1. Block Diagram

PROGRAM
COUNTER

INTERNAL
OSCILLATOR

WATCHDOG
TIMER

STACK
POINTER

PROGRAM
FLASH

MCU CONTROL
REGISTER

SRAM

GENERAL
PURPOSE

REGISTERS

INSTRUCTION
REGISTER

TIMER/
COUNTERS

INSTRUCTION
DECODER

DATA DIR.
REG. PORTB

DATA DIR.
REG. PORTE

DATA DIR.
REG. PORTA

DATA DIR.
REG. PORTD

DATA REGISTER
PORTB

DATA REGISTER
PORTE

DATA REGISTER
PORTA

DATA REGISTER
PORTD

TIMING AND
CONTROL

OSCILLATOR

INTERRUPT
UNIT

EEPROM

SPIUSART

STATUS
REGISTER

Z

Y

X

ALU

PORTB DRIVERSPORTE DRIVERS

PORTA DRIVERSPORTF DRIVERS

PORTD DRIVERS

PORTC DRIVERS

PB0 - PB7PE0 - PE7

PA0 - PA7PF0 - PF7

VCC

GND

AREF

X
T
A

L
1

X
T
A

L
2

CONTROL
LINES

+ -

A
N

A
L

O
G

C
O

M
P

A
R

A
T

O
R

PC0 - PC7

8-BIT DATA BUS

R
E

S
E

T

AVCC
CALIB. OSC

DATA DIR.
REG. PORTC

DATA REGISTER
PORTC

ON-CHIP DEBUG

JTAG TAP

PROGRAMMING
LOGIC

BOUNDARY-
SCAN

DATA DIR.
REG. PORTF

DATA REGISTER
PORTF

ADC

PD0 - PD7

DATA DIR.
REG. PORTG

DATA REG.
PORTG

PORTG DRIVERS

PG0 - PG4

UNIVERSAL
SERIAL INTERFACE

AVR CPU

LCD
CONTROLLER/

DRIVER

5

8018P–AVR–08/10

ATmega169P

The AVR core combines a rich instruction set with 32 general purpose working registers. All the

32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent

registers to be accessed in one single instruction executed in one clock cycle. The resulting

architecture is more code efficient while achieving throughputs up to ten times faster than con-

ventional CISC microcontrollers.

The ATmega169P provides the following features: 16 Kbytes of In-System Programmable Flash

with Read-While-Write capabilities, 512 bytes EEPROM, 1 Kbyte SRAM, 53 general purpose I/O

lines, 32 general purpose working registers, a JTAG interface for Boundary-scan, On-chip

Debugging support and programming, a complete On-chip LCD controller with internal step-up

voltage, three flexible Timer/Counters with compare modes, internal and external interrupts, a

serial programmable USART, Universal Serial Interface with Start Condition Detector, an 8-

channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, an SPI serial

port, and five software selectable power saving modes. The Idle mode stops the CPU while

allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The

Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip

functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous

timer and the LCD controller continues to run, allowing the user to maintain a timer base and

operate the LCD display while the rest of the device is sleeping. The ADC Noise Reduction

mode stops the CPU and all I/O modules except asynchronous timer, LCD controller and ADC,

to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator

Oscillator is running while the rest of the device is sleeping. This allows very fast start-up com-

bined with low-power consumption.

The device is manufactured using Atmel’s high density non-volatile memory technology. The

On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI

serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot pro-

gram running on the AVR core. The Boot program can use any interface to download the

application program in the Application Flash memory. Software in the Boot Flash section will

continue to run while the Application Flash section is updated, providing true Read-While-Write

operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a

monolithic chip, the Atmel ATmega169P is a powerful microcontroller that provides a highly flex-

ible and cost effective solution to many embedded control applications.

The ATmega169P AVR is supported with a full suite of program and system development tools

including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators,

and Evaluation kits.

6

8018P–AVR–08/10

ATmega169P

2.2 Pin Descriptions

2.2.1 VCC

Digital supply voltage.

2.2.2 GND

Ground.

2.2.3 Port A (PA7:PA0)

Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The

Port A output buffers have symmetrical drive characteristics with both high sink and source

capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up

resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,

even if the clock is not running.

Port A also serves the functions of various special features of the ATmega169P as listed on

”Alternate Functions of Port A” on page 73.

2.2.4 Port B (PB7:PB0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The

Port B output buffers have symmetrical drive characteristics with both high sink and source

capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up

resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,

even if the clock is not running.

Port B has better driving capabilities than the other ports.

Port B also serves the functions of various special features of the ATmega169P as listed on

”Alternate Functions of Port B” on page 74.

2.2.5 Port C (PC7:PC0)

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The

Port C output buffers have symmetrical drive characteristics with both high sink and source

capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up

resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,

even if the clock is not running.

Port C also serves the functions of special features of the ATmega169P as listed on ”Alternate

Functions of Port C” on page 77.

2.2.6 Port D (PD7:PD0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The

Port D output buffers have symmetrical drive characteristics with both high sink and source

capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up

resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,

even if the clock is not running.

Port D also serves the functions of various special features of the ATmega169P as listed on

”Alternate Functions of Port D” on page 79.

7

8018P–AVR–08/10

ATmega169P

2.2.7 Port E (PE7:PE0)

Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The

Port E output buffers have symmetrical drive characteristics with both high sink and source

capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up

resistors are activated. The Port E pins are tri-stated when a reset condition becomes active,

even if the clock is not running.

Port E also serves the functions of various special features of the ATmega169P as listed on

”Alternate Functions of Port E” on page 81.

2.2.8 Port F (PF7:PF0)

Port F serves as the analog inputs to the A/D Converter.

Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins

can provide internal pull-up resistors (selected for each bit). The Port F output buffers have sym-

metrical drive characteristics with both high sink and source capability. As inputs, Port F pins

that are externally pulled low will source current if the pull-up resistors are activated. The Port F

pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the

JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will

be activated even if a reset occurs.

Port F also serves the functions of the JTAG interface, see ”Alternate Functions of Port F” on

page 83.

2.2.9 Port G (PG5:PG0)

Port G is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The

Port G output buffers have symmetrical drive characteristics with both high sink and source

capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up

resistors are activated. The Port G pins are tri-stated when a reset condition becomes active,

even if the clock is not running.

Port G also serves the functions of various special features of the ATmega169P as listed on

page 85.

2.2.10 RESET

Reset input. A low level on this pin for longer than the minimum pulse length will generate a

reset, even if the clock is not running. The minimum pulse length is given in Table 28-4 on page

333. Shorter pulses are not guaranteed to generate a reset.

2.2.11 XTAL1

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

2.2.12 XTAL2

Output from the inverting Oscillator amplifier.

2.2.13 AVCC

AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally con-

nected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC

through a low-pass filter.

8

8018P–AVR–08/10

ATmega169P

2.2.14 AREF

This is the analog reference pin for the A/D Converter.

2.2.15 LCDCAP

An external capacitor (typical > 470 nF) must be connected to the LCDCAP pin as shown in Fig-

ure 23-2 on page 236. This capacitor acts as a reservoir for LCD power (VLCD). A large

capacitance reduces ripple on VLCD but increases the time until VLCD reaches its target value.

9

8018P–AVR–08/10

ATmega169P

3. Resources

A comprehensive set of development tools, application notes and datasheets are available for

download on http://www.atmel.com/avr.

Note: 1.

4. Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less

than 1 PPM over 20 years at 85°C or 100 years at 25°C.

10

8018P–AVR–08/10

ATmega169P

5. About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of

the device. Be aware that not all C compiler vendors include bit definitions in the header files

and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen-

tation for more details.

These code examples assume that the part specific header file is included before compilation.

For I/O registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI"

instructions must be replaced with instructions that allow access to extended I/O. Typically

"LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR".

11

8018P–AVR–08/10

ATmega169P

6. AVR CPU Core

6.1 Introduction

This section discusses the AVR core architecture in general. The main function of the CPU core

is to ensure correct program execution. The CPU must therefore be able to access memories,

perform calculations, control peripherals, and handle interrupts.

6.2 Architectural Overview

Figure 6-1. Block Diagram of the AVR Architecture

In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with

separate memories and buses for program and data. Instructions in the program memory are

executed with a single level pipelining. While one instruction is being executed, the next instruc-

tion is pre-fetched from the program memory. This concept enables instructions to be executed

in every clock cycle. The program memory is In-System Reprogrammable Flash memory.

Flash
Program
Memory

Instruction
Register

Instruction
Decoder

Program
Counter

Control Lines

32 x 8
General
Purpose

Registrers

ALU

Status
and Control

I/O Lines

EEPROM

Data Bus 8-bit

Data
SRAM

D
ir
e

c
t

A
d

d
re

s
s
in

g

In
d

ir
e

c
t

A
d

d
re

s
s
in

g

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

I/O Module 2

I/O Module1

I/O Module n

12

8018P–AVR–08/10

ATmega169P

The fast-access Register File contains 32 × 8-bit general purpose working registers with a single

clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typ-

ical ALU operation, two operands are output from the Register File, the operation is executed,

and the result is stored back in the Register File – in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data

Space addressing – enabling efficient address calculations. One of the these address pointers

can also be used as an address pointer for look up tables in Flash program memory. These

added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and

a register. Single register operations can also be executed in the ALU. After an arithmetic opera-

tion, the Status Register is updated to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to

directly address the whole address space. Most AVR instructions have a single 16-bit word for-

mat. Every program memory address contains a 16-bit or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot Program section and the

Application Program section. Both sections have dedicated Lock bits for write and read/write

protection. The SPM instruction that writes into the Application Flash memory section must

reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the

Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack

size is only limited by the total SRAM size and the usage of the SRAM. All user programs must

initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack

Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed

through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional Global

Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the

Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector posi-

tion. The lower the Interrupt Vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control Regis-

ters, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as the Data

Space locations following those of the Register File, 0x20 - 0x5F. In addition, the ATmega169P

has Extended I/O space from 0x60 - 0xFF in SRAM where only the ST/STS/STD and

LD/LDS/LDD instructions can be used.

6.3 ALU – Arithmetic Logic Unit

The high-performance AVR ALU operates in direct connection with all the 32 general purpose

working registers. Within a single clock cycle, arithmetic operations between general purpose

registers or between a register and an immediate are executed. The ALU operations are divided

into three main categories – arithmetic, logical, and bit-functions. Some implementations of the

architecture also provide a powerful multiplier supporting both signed/unsigned multiplication

and fractional format. See the “Instruction Set” section for a detailed description.

13

8018P–AVR–08/10

ATmega169P

6.4 Stack Pointer

The Stack is mainly used for storing temporary data, for storing local variables and for storing

return addresses after interrupts and subroutine calls. Note that the Stack is implemented as

growing from higher to lower memory locations. The Stack Pointer Register always points to the

top of the Stack. The Stack Pointer points to the data SRAM Stack area where the Subroutine

and Interrupt Stacks are located. A Stack PUSH command will decrease the Stack Pointer.

The Stack in the data SRAM must be defined by the program before any subroutine calls are

executed or interrupts are enabled. Initial Stack Pointer value equals the last address of the

internal SRAM and the Stack Pointer must be set to point above start of the SRAM, see Figure

7-2 on page 21.

See Table 6-1 for Stack Pointer details.

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of

bits actually used is implementation dependent. Note that the data space in some implementa-

tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register

will not be present.

Table 6-1. Stack Pointer instructions

Instruction Stack pointer Description

PUSH Decremented by 1 Data is pushed onto the stack

CALL
ICALL
RCALL

Decremented by 2
Return address is pushed onto the stack with a subroutine call or
interrupt

POP Incremented by 1 Data is popped from the stack

RET
RETI

Incremented by 2 Return address is popped from the stack with return from
subroutine or return from interrupt

14

8018P–AVR–08/10

ATmega169P

6.4.1 SPH and SPL – Stack Pointer

6.5 Instruction Execution Timing

This section describes the general access timing concepts for instruction execution. The AVR

CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the

chip. No internal clock division is used.

Figure 6-2 shows the parallel instruction fetches and instruction executions enabled by the Har-

vard architecture and the fast-access Register File concept. This is the basic pipelining concept

to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,

functions per clocks, and functions per power-unit.

Figure 6-2. The Parallel Instruction Fetches and Instruction Executions

Figure 6-3 shows the internal timing concept for the Register File. In a single clock cycle an ALU

operation using two register operands is executed, and the result is stored back to the destina-

tion register.

Figure 6-3. Single Cycle ALU Operation

Bit 15 14 13 12 11 10 9 8

0x3E (0x5E) – – – – – SP10 SP9 SP8 SPH

0x3D (0x5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

clk

1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch

2nd Instruction Execute
3rd Instruction Fetch

3rd Instruction Execute
4th Instruction Fetch

T1 T2 T3 T4

CPU

Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

T1 T2 T3 T4

clk
CPU

15

8018P–AVR–08/10

ATmega169P

6.6 Reset and Interrupt Handling

The AVR provides several different interrupt sources. These interrupts and the separate Reset

Vector each have a separate program vector in the program memory space. All interrupts are

assigned individual enable bits which must be written logic one together with the Global Interrupt

Enable bit in the Status Register in order to enable the interrupt. Depending on the Program

Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12

are programmed. This feature improves software security. See the section ”Memory Program-

ming” on page 296 for details.

The lowest addresses in the program memory space are by default defined as the Reset and

Interrupt Vectors. The complete list of vectors is shown in ”Interrupts” on page 56. The list also

determines the priority levels of the different interrupts. The lower the address the higher is the

priority level. RESET has the highest priority, and next is INT0 – the External Interrupt Request

0. The Interrupt Vectors can be moved to the start of the Boot Flash section by setting the IVSEL

bit in the MCU Control Register (MCUCR). Refer to ”Interrupts” on page 56 for more information.

The Reset Vector can also be moved to the start of the Boot Flash section by programming the

BOOTRST Fuse, see ”Boot Loader Support – Read-While-Write Self-Programming” on page

280.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are dis-

abled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled

interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a

Return from Interrupt instruction – RETI – is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the

Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vec-

tor in order to execute the interrupt handling routine, and hardware clears the corresponding

Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s)

to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is

cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is

cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt

Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the

Global Interrupt Enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These

interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the

interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one

more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor

restored when returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled.

No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the

CLI instruction. The following example shows how this can be used to avoid interrupts during the

timed EEPROM write sequence.

16

8018P–AVR–08/10

ATmega169P

When using the SEI instruction to enable interrupts, the instruction following SEI will be exe-

cuted before any pending interrupts, as shown in this example.

6.6.1 Interrupt Response Time

The interrupt execution response for all the enabled AVR interrupts is four clock cycles mini-

mum. After four clock cycles the program vector address for the actual interrupt handling routine

is executed. During this four clock cycle period, the Program Counter is pushed onto the Stack.

The vector is normally a jump to the interrupt routine, and this jump takes three clock cycles. If

an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed

before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt

execution response time is increased by four clock cycles. This increase comes in addition to the

start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock

cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack Pointer is

incremented by two, and the I-bit in SREG is set.

Assembly Code Example

in r16, SREG ; store SREG value

cli ; disable interrupts during timed sequence

sbi EECR, EEMWE ; start EEPROM write

sbi EECR, EEWE

out SREG, r16 ; restore SREG value (I-bit)

C Code Example

char cSREG;

cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */

__disable_interrupt();

EECR |= (1<<EEMWE); /* start EEPROM write */

EECR |= (1<<EEWE);

SREG = cSREG; /* restore SREG value (I-bit) */

Assembly Code Example

sei ; set Global Interrupt Enable

sleep; enter sleep, waiting for interrupt

; note: will enter sleep before any pending

; interrupt(s)

C Code Example

__enable_interrupt(); /* set Global Interrupt Enable */

__sleep(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */

17

8018P–AVR–08/10

ATmega169P

6.7 Status Register

The Status Register contains information about the result of the most recently executed arithme-

tic instruction. This information can be used for altering program flow in order to perform

conditional operations. Note that the Status Register is updated after all ALU operations, as

specified in the Instruction Set Reference. This will in many cases remove the need for using the

dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored

when returning from an interrupt. This must be handled by software.

6.7.1 SREG – AVR Status Register

The SREG is defined as:

• Bit 7 – I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual inter-

rupt enable control is then performed in separate control registers. If the Global Interrupt Enable

Register is cleared, none of the interrupts are enabled independent of the individual interrupt

enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by

the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by

the application with the SEI and CLI instructions, as described in the instruction set reference.

• Bit 6 – T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or desti-

nation for the operated bit. A bit from a register in the Register File can be copied into T by the

BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the

BLD instruction.

• Bit 5 – H: Half Carry Flag

The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful

in BCD arithmetic. See the “Instruction Set Description” for detailed information.

• Bit 4 – S: Sign Bit, S = N ⊕ V

The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement

Overflow Flag V. See the “Instruction Set Description” for detailed information.

• Bit 3 – V: Two’s Complement Overflow Flag

The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the

“Instruction Set Description” for detailed information.

• Bit 2 – N: Negative Flag

The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the

“Instruction Set Description” for detailed information.

Bit 7 6 5 4 3 2 1 0

0x3F (0x5F) I T H S V N Z C SREG

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

18

8018P–AVR–08/10

ATmega169P

• Bit 1 – Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction

Set Description” for detailed information.

• Bit 0 – C: Carry Flag

The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set

Description” for detailed information.

6.8 General Purpose Register File

The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve

the required performance and flexibility, the following input/output schemes are supported by the

Register File:

• One 8-bit output operand and one 8-bit result input

• Two 8-bit output operands and one 8-bit result input

• Two 8-bit output operands and one 16-bit result input

• One 16-bit output operand and one 16-bit result input

Figure 6-4 shows the structure of the 32 general purpose working registers in the CPU.

Figure 6-4. AVR CPU General Purpose Working Registers

Most of the instructions operating on the Register File have direct access to all registers, and

most of them are single cycle instructions.

As shown in Figure 6-4, each register is also assigned a data memory address, mapping them

directly into the first 32 locations of the user Data Space. Although not being physically imple-

mented as SRAM locations, this memory organization provides great flexibility in access of the

registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file.

7 0 Addr.

R0 0x00

R1 0x01

R2 0x02

…

R13 0x0D

General R14 0x0E

Purpose R15 0x0F

Working R16 0x10

Registers R17 0x11

…

R26 0x1A X-register Low Byte

R27 0x1B X-register High Byte

R28 0x1C Y-register Low Byte

R29 0x1D Y-register High Byte

R30 0x1E Z-register Low Byte

R31 0x1F Z-register High Byte

19

8018P–AVR–08/10

ATmega169P

6.8.1 The X-register, Y-register, and Z-register

The registers R26..R31 have some added functions to their general purpose usage. These reg-

isters are 16-bit address pointers for indirect addressing of the data space. The three indirect

address registers X, Y, and Z are defined as described in Figure 6-5.

Figure 6-5. The X-, Y-, and Z-registers

In the different addressing modes these address registers have functions as fixed displacement,

automatic increment, and automatic decrement (see the instruction set reference for details).

15 XH XL 0
X-register 7 0 7 0

R27 (0x1B) R26 (0x1A)15 YH YL 0
Y-register 7 0 7 0

R29 (0x1D) R28 (0x1C)15 ZH ZL 0
Z-register 7 0 7 0

R31 (0x1F) R30 (0x1E)

20

8018P–AVR–08/10

ATmega169P

7. AVR Memories

This section describes the different memories in the ATmega169P. The AVR architecture has

two main memory spaces, the Data Memory and the Program Memory space. In addition, the

ATmega169P features an EEPROM Memory for data storage. All three memory spaces are lin-

ear and regular.

7.1 In-System Reprogrammable Flash Program Memory

The ATmega169P contains 16 Kbytes On-chip In-System Reprogrammable Flash memory for

program storage. Since all AVR instructions are 16 or 32 bits wide, the Flash is organized as 8K

× 16. For software security, the Flash Program memory space is divided into two sections, Boot

Program section and Application Program section.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The ATmega169P

Program Counter (PC) is 13 bits wide, thus addressing the 8K program memory locations. The

operation of Boot Program section and associated Boot Lock bits for software protection are

described in detail in ”Boot Loader Support – Read-While-Write Self-Programming” on page

280. ”Memory Programming” on page 296 contains a detailed description on Flash data serial

downloading using the SPI pins or the JTAG interface.

Constant tables can be allocated within the entire program memory address space (see the LPM

– Load Program Memory instruction description).

Timing diagrams for instruction fetch and execution are presented in ”Instruction Execution Tim-

ing” on page 14.

Figure 7-1. Program Memory Map

0x0000

0x1FFF

Program Memory

Application Flash Section

Boot Flash Section

21

8018P–AVR–08/10

ATmega169P

7.2 SRAM Data Memory

Figure 7-2 shows how the ATmega169P SRAM Memory is organized.

The ATmega169P is a complex microcontroller with more peripheral units than can be sup-

ported within the 64 locations reserved in the Opcode for the IN and OUT instructions. For the

Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instruc-

tions can be used.

The lower 1,280 data memory locations address both the Register File, the I/O memory,

Extended I/O memory, and the internal data SRAM. The first 32 locations address the Register

File, the next 64 location the standard I/O memory, then 160 locations of Extended I/O memory,

and the next 1024 locations address the internal data SRAM.

The five different addressing modes for the data memory cover: Direct, Indirect with Displace-

ment, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register

File, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base address given

by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-incre-

ment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 I/O Registers, 160 Extended I/O Registers, and

the 1,024 bytes of internal data SRAM in the ATmega169P are all accessible through all these

addressing modes. The Register File is described in ”General Purpose Register File” on page

18.

Figure 7-2. Data Memory Map

32 Registers
64 I/O Registers

Internal SRAM
(1024 x 8)

0x0000 - 0x001F
0x0020 - 0x005F

0x04FF

0x0060 - 0x00FF

Data Memory

160 Ext I/O Reg.

0x0100

22

8018P–AVR–08/10

ATmega169P

7.2.1 Data Memory Access Times

This section describes the general access timing concepts for internal memory access. The

internal data SRAM access is performed in two clkCPU cycles as described in Figure 7-3.

Figure 7-3. On-chip Data SRAM Access Cycles

clk

WR

RD

Data

Data

Address Address valid

T1 T2 T3

Compute Address

R
e

a
d

W
ri

te

CPU

Memory Access Instruction Next Instruction

23

8018P–AVR–08/10

ATmega169P

7.3 EEPROM Data Memory

The ATmega169P contains 512 bytes of data EEPROM memory. It is organized as a separate

data space, in which single bytes can be read and written. The EEPROM has an endurance of at

least 100,000 write/erase cycles. This section describes the access between the EEPROM and

the CPU, specifying the EEPROM Address Registers, the EEPROM Data Register, and the

EEPROM Control Register.

For a detailed description of SPI, JTAG and Parallel data downloading to the EEPROM, see

”Serial Downloading” on page 310, ”Programming via the JTAG Interface” on page 316, and

”Parallel Programming Parameters, Pin Mapping, and Commands” on page 299 respectively.

7.3.1 EEPROM Read/Write Access

The EEPROM Access Registers are accessible in the I/O space.

The write access time for the EEPROM is given in Table 7-1 on page 24. A self-timing function,

however, lets the user software detect when the next byte can be written. If the user code con-

tains instructions that write the EEPROM, some precautions must be taken. In heavily filtered

power supplies, VCC is likely to rise or fall slowly on power-up/down. This causes the device for

some period of time to run at a voltage lower than specified as minimum for the clock frequency

used. See ”Preventing EEPROM Corruption” on page 27 for details on how to avoid problems in

these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is

executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next

instruction is executed.

The following procedure should be followed when writing the EEPROM (the order of steps 3 and

4 is not essential). See ”EEPROM Register Description” on page 28 for supplementary descrip-

tion for each register bit:

1. Wait until EEWE becomes zero.

2. Wait until SPMEN in SPMCSR becomes zero.

3. Write new EEPROM address to EEAR (optional).

4. Write new EEPROM data to EEDR (optional).

5. Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.

6. Within four clock cycles after setting EEMWE, write a logical one to EEWE.

The EEPROM can not be programmed during a CPU write to the Flash memory. The software

must check that the Flash programming is completed before initiating a new EEPROM write.

Step 2 is only relevant if the software contains a Boot Loader allowing the CPU to program the

Flash. If the Flash is never being updated by the CPU, step 2 can be omitted. See ”Boot Loader

Support – Read-While-Write Self-Programming” on page 280 for details about Boot

programming.

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the

EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is

interrupting another EEPROM access, the EEAR or EEDR Register will be modified, causing the

interrupted EEPROM access to fail. It is recommended to have the Global Interrupt Flag cleared

during all the steps to avoid these problems.

24

8018P–AVR–08/10

ATmega169P

When the write access time has elapsed, the EEWE bit is cleared by hardware. The user soft-

ware can poll this bit and wait for a zero before writing the next byte. When EEWE has been set,

the CPU is halted for two cycles before the next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation is in

progress, it is neither possible to read the EEPROM, nor to change the EEAR Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 7-1 lists the typical pro-

gramming time for EEPROM access from the CPU.

Table 7-1. EEPROM Programming Time

Symbol

Number of Calibrated

RC Oscillator Cycles Typical Programming Time

EEPROM write (from CPU) 27 072 3.3 ms

25

8018P–AVR–08/10

ATmega169P

The following code examples show one assembly and one C function for writing to the

EEPROM. To avoid that interrupts will occur during execution of these functions, the examples

assume that interrupts are controlled (for example by disabling interrupts globally). The exam-

ples also assume that no Flash Boot Loader is present in the software. If such code is present,

the EEPROM write function must also wait for any ongoing SPM command to finish.

Assembly Code Example

EEPROM_write:

; Wait for completion of previous write

sbic EECR,EEWE

rjmp EEPROM_write

; Set up address (r18:r17) in address register

out EEARH, r18

out EEARL, r17

; Write data (r16) to Data Register

out EEDR,r16

; Write logical one to EEMWE

sbi EECR,EEMWE

; Start eeprom write by setting EEWE

sbi EECR,EEWE

ret

C Code Example

void EEPROM_write(unsigned int uiAddress, unsigned char ucData)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEWE))

;

/* Set up address and Data Registers */

EEAR = uiAddress;

EEDR = ucData;

/* Write logical one to EEMWE */

EECR |= (1<<EEMWE);

/* Start eeprom write by setting EEWE */

EECR |= (1<<EEWE);

}

26

8018P–AVR–08/10

ATmega169P

The next code examples show assembly and C functions for reading the EEPROM. The exam-

ples assume that interrupts are controlled so that no interrupts will occur during execution of

these functions.

Assembly Code Example

EEPROM_read:

; Wait for completion of previous write

sbic EECR,EEWE

rjmp EEPROM_read

; Set up address (r18:r17) in address register

out EEARH, r18

out EEARL, r17

; Start eeprom read by writing EERE

sbi EECR,EERE

; Read data from Data Register

in r16,EEDR

ret

C Code Example

unsigned char EEPROM_read(unsigned int uiAddress)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEWE))

;

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */

EECR |= (1<<EERE);

/* Return data from Data Register */

return EEDR;

}

27

8018P–AVR–08/10

ATmega169P

7.3.2 EEPROM Write During Power-down Sleep Mode

When entering Power-down sleep mode while an EEPROM write operation is active, the

EEPROM write operation will continue, and will complete before the Write Access time has

passed. However, when the write operation is completed, the clock continues running, and as a

consequence, the device does not enter Power-down entirely. It is therefore recommended to

verify that the EEPROM write operation is completed before entering Power-down.

7.3.3 Preventing EEPROM Corruption

During periods of low VCC, the EEPROM data can be corrupted because the supply voltage is

too low for the CPU and the EEPROM to operate properly. These issues are the same as for

board level systems using EEPROM, and the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First,

a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-

ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can

be done by enabling the internal Brown-out Detector (BOD). If the detection level of the internal

BOD does not match the needed detection level, an external low VCC reset Protection circuit can

be used. If a reset occurs while a write operation is in progress, the write operation will be com-

pleted provided that the power supply voltage is sufficient.

7.4 I/O Memory

The I/O space definition of the ATmega169P is shown in ”Register Summary” on page 373.

All ATmega169P I/Os and peripherals are placed in the I/O space. All I/O locations may be

accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data between the 32

general purpose working registers and the I/O space. I/O Registers within the address range

0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the

value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the

instruction set section for more details. When using the I/O specific commands IN and OUT, the

I/O addresses 0x00 - 0x3F must be used. When addressing I/O Registers as data space using

LD and ST instructions, 0x20 must be added to these addresses. The ATmega169P is a com-

plex microcontroller with more peripheral units than can be supported within the 64 location

reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 -

0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed.

Reserved I/O memory addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most

other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore

be used on registers containing such Status Flags. The CBI and SBI instructions work with reg-

isters 0x00 to 0x1F only.

The I/O and peripherals control registers are explained in later sections.

28

8018P–AVR–08/10

ATmega169P

7.5 General Purpose I/O Registers

The ATmega169P contains three General Purpose I/O Registers. These registers can be used

for storing any information, and they are particularly useful for storing global variables and Sta-

tus Flags. General Purpose I/O Registers within the address range 0x00 - 0x1F are directly bit-

accessible using the SBI, CBI, SBIS, and SBIC instructions.

7.5.1 GPIOR2 – General Purpose I/O Register 2

7.5.2 GPIOR1 – General Purpose I/O Register 1

7.5.3 GPIOR0 – General Purpose I/O Register 0

7.6 EEPROM Register Description

7.6.1 EEARH and EEARL – EEPROM Address Register

• Bits 15:9 – Res: Reserved Bits

These bits are reserved and will always read as zero.

• Bits 8:0 – EEAR8:0: EEPROM Address

The EEPROM Address Registers – EEARH and EEARL specify the EEPROM address in the

512 bytes EEPROM space. The EEPROM data bytes are addressed linearly between 0 and

511. The initial value of EEAR is undefined. A proper value must be written before the EEPROM

may be accessed.

Bit 7 6 5 4 3 2 1 0

0x2B (0x4B) MSB LSB GPIOR2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x2A (0x4A) MSB LSB GPIOR1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1E (0x3E) MSB LSB GPIOR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

0x22 (0x42) – – – – – – – EEAR8 EEARH

0x21 (0x41) EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 X

X X X X X X X X

29

8018P–AVR–08/10

ATmega169P

7.6.2 EEDR – EEPROM Data Register

• Bits 7:0 – EEDR7:0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to the

EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the

EEDR contains the data read out from the EEPROM at the address given by EEAR.

7.6.3 EECR – EEPROM Control Register

• Bits 7..4 – Res: Reserved Bits

These bits are reserved and will always read as zero.

• Bit 3 – EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the I-bit in SREG is set. Writing

EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a constant inter-

rupt when EEWE is cleared.

• Bit 2 – EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be written.

When EEMWE is set, setting EEWE within four clock cycles will write data to the EEPROM at

the selected address. If EEMWE is zero, setting EEWE will have no effect. When EEMWE has

been written to one by software, hardware clears the bit to zero after four clock cycles. See the

description of the EEWE bit for an EEPROM write procedure.

• Bit 1 – EEWE: EEPROM Write Enable

The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When address

and data are correctly set up, the EEWE bit must be written to one to write the value into the

EEPROM. The EEMWE bit must be written to one before a logical one is written to EEWE, oth-

erwise no EEPROM write takes place.

• Bit 0 – EERE: EEPROM Read Enable

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the correct

address is set up in the EEAR Register, the EERE bit must be written to a logic one to trigger the

EEPROM read. The EEPROM read access takes one instruction, and the requested data is

available immediately. When the EEPROM is read, the CPU is halted for four cycles before the

next instruction is executed.

Bit 7 6 5 4 3 2 1 0

0x20 (0x40) MSB LSB EEDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1F (0x3F) – – – – EERIE EEMWE EEWE EERE EECR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 X 0

30

8018P–AVR–08/10

ATmega169P

8. System Clock and Clock Options

8.1 Clock Systems and their Distribution

Figure 8-1 presents the principal clock systems in the AVR and their distribution. All of the clocks

need not be active at a given time. In order to reduce power consumption, the clocks to modules

not being used can be halted by using different sleep modes, as described in ”Power Manage-

ment and Sleep Modes” on page 40. The clock systems are detailed below.

Figure 8-1. Clock Distribution

8.1.1 CPU Clock – clkCPU

The CPU clock is routed to parts of the system concerned with operation of the AVR core.

Examples of such modules are the General Purpose Register File, the Status Register and the

data memory holding the Stack Pointer. Halting the CPU clock inhibits the core from performing

general operations and calculations.

8.1.2 I/O Clock – clkI/O

The I/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, and USART.

The I/O clock is also used by the External Interrupt module, but note that some external inter-

rupts are detected by asynchronous logic, allowing such interrupts to be detected even if the I/O

clock is halted. Also note that start condition detection in the USI module is carried out asynchro-

nously when clkI/O is halted, enabling USI start condition detection in all sleep modes.

8.1.3 Flash Clock – clkFLASH

The Flash clock controls operation of the Flash interface. The Flash clock is usually active simul-

taneously with the CPU clock.

General I/O
Modules

Asynchronous
Timer/Counter

CPU Core RAM

clk
I/O

clk
ASY

AVR Clock
Control Unit

clk
CPU

Flash and
EEPROM

clk
FLASH

Source clock

Watchdog Timer

Watchdog

Oscillator

Reset Logic

Clock
Multiplexer

Watchdog clock

Calibrated RC
Oscillator

Timer/Counter
Oscillator

Crystal
Oscillator

Low-frequency
Crystal Oscillator

External Clock

LCD Controller

System Clock

Prescaler

31

8018P–AVR–08/10

ATmega169P

8.1.4 Asynchronous Timer Clock – clkASY

The Asynchronous Timer clock allows the Asynchronous Timer/Counter and the LCD controller

to be clocked directly from an external clock or an external 32 kHz clock crystal. The dedicated

clock domain allows using this Timer/Counter as a real-time counter even when the device is in

sleep mode. It also allows the LCD controller output to continue while the rest of the device is in

sleep mode.

8.1.5 ADC Clock – clkADC

The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks

in order to reduce noise generated by digital circuitry. This gives more accurate ADC conversion

results.

8.2 Clock Sources

The device has the following clock source options, selectable by Flash Fuse bits as shown

below. The clock from the selected source is input to the AVR clock generator, and routed to the

appropriate modules.

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

The various choices for each clocking option is given in the following sections. When the CPU

wakes up from Power-down or Power-save, the selected clock source is used to time the start-

up, ensuring stable Oscillator operation before instruction execution starts. When the CPU starts

from reset, there is an additional delay allowing the power to reach a stable level before com-

mencing normal operation. The Watchdog Oscillator is used for timing this real-time part of the

start-up time. The number of WDT Oscillator cycles used for each time-out is shown in Table 8-

2. The frequency of the Watchdog Oscillator is voltage dependent as shown in ”Typical Charac-

teristics” on page 338.

Table 8-1. Device Clocking Options Select(1)

Device Clocking Option CKSEL3:0

External Crystal/Ceramic Resonator 1111 - 1000

External Low-frequency Crystal 0111 - 0110

Calibrated Internal RC Oscillator 0010

External Clock 0000

Reserved 0011, 0001, 0101, 0100

Table 8-2. Number of Watchdog Oscillator Cycles

Typ Time-out (VCC = 5.0V) Typ Time-out (VCC = 3.0V) Number of Cycles

4.1 ms 4.3 ms 4K (4,096)

65 ms 69 ms 64K (65,536)

32

8018P–AVR–08/10

ATmega169P

8.3 Default Clock Source

The device is shipped with CKSEL = “0010”, SUT = “10”, and CKDIV8 programmed. The default

clock source setting is the Internal RC Oscillator with longest start-up time and an initial system

clock prescaling of 8. This default setting ensures that all users can make their desired clock

source setting using an In-System or Parallel programmer.

8.4 Calibrated Internal RC Oscillator

B default, the Internal RC Oscillator provides an approximate 8 MHz clock. Though voltage and

temperature dependent, this clock can be very accurately calibrated by the user. See Table 28-2

on page 332 and ”Internal Oscillator Speed” on page 365 for more details. The device is shipped

with the CKDIV8 Fuse programmed. See ”System Clock Prescaler” on page 37 for more details.

This clock may be selected as the system clock by programming the CKSEL Fuses as shown in

Table 8-3. If selected, it will operate with no external components. During reset, hardware loads

the pre-programmed calibration value into the OSCCAL Register and thereby automatically cali-

brates the RC Oscillator. The accuracy of this calibration is shown as Factory calibration in Table

28-2 on page 332.

By changing the OSCCAL register from SW, see ”OSCCAL – Oscillator Calibration Register” on

page 38, it is possible to get a higher calibration accuracy than by using the factory calibration.

The accuracy of this calibration is shown as User calibration in Table 28-2 on page 332.

When this Oscillator is used as the chip clock, the Watchdog Oscillator will still be used for the

Watchdog Timer and for the Reset Time-out. For more information on the pre-programmed cali-

bration value, see the section ”Calibration Byte” on page 299.

Notes: 1. The device is shipped with this option selected.
2. The frequency ranges are preliminary values. Actual values are TBD.
3. If 8 MHz frequency exceeds the specification of the device (depends on VCC), the CKDIV8

Fuse can be programmed in order to divide the internal frequency by 8.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in

Table 8-4.

Note: 1. The device is shipped with this option selected.

Table 8-3. Internal Calibrated RC Oscillator Operating Modes(1)(3)

Frequency Range(2) (MHz) CKSEL3:0

7.3 - 8.1 0010

Table 8-4. Start-up times for the internal calibrated RC Oscillator clock selection

Power Conditions

Start-up Time from Power-

down and Power-save

Additional Delay from

Reset (VCC = 5.0V) SUT1:0

BOD enabled 6 CK 14CK 00

Fast rising power 6 CK 14CK + 4.1 ms 01

Slowly rising power 6 CK 14CK + 65 ms(1) 10

Reserved 11

33

8018P–AVR–08/10

ATmega169P

8.5 Crystal Oscillator

XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be con-

figured for use as an On-chip Oscillator, as shown in Figure 8-2. Either a quartz crystal or a

ceramic resonator may be used.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the

capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and the

electromagnetic noise of the environment. Some initial guidelines for choosing capacitors for

use with crystals are given in Table 8-5. For ceramic resonators, the capacitor values given by

the manufacturer should be used.

Figure 8-2. Crystal Oscillator Connections

The Oscillator can operate in three different modes, each optimized for a specific frequency

range. The operating mode is selected by the fuses CKSEL3:1 as shown in Table 8-5.

Notes: 1. This option should not be used with crystals, only with ceramic resonators.

Table 8-5. Crystal Oscillator Operating Modes

CKSEL3:1 Frequency Range (MHz)

Recommended Range for Capacitors C1 and

C2 for Use with Crystals (pF)

100(1) 0.4 - 0.9 –

101 0.9 - 3.0 12 - 22

110 3.0 - 8.0 12 - 22

111 8.0 - 12 - 22

XTAL2 (TOSC2)

XTAL1 (TOSC1)

GND

C2

C1

34

8018P–AVR–08/10

ATmega169P

The CKSEL0 Fuse together with the SUT1..0 Fuses select the start-up times as shown in Table

8-6.

Notes: 1. These options should only be used when not operating close to the maximum frequency of the
device, and only if frequency stability at start-up is not important for the application. These
options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability
at start-up. They can also be used with crystals when not operating close to the maximum fre-
quency of the device, and if frequency stability at start-up is not important for the application.

8.6 Low-frequency Crystal Oscillator

The Low-frequency Crystal Oscillator is optimized for use with a 32.768 kHz watch crystal.

When selecting crystals, load capacitance and crystal’s Equivalent Series Resistance, ESR

must be taken into consideration. Both values are specified by the crystal vendor. ATmega169P

oscillator is optimized for very low power consumption, and thus when selecting crystals, see

Table 8-7 for maximum ESR recommendations on 9 pF and 6.5 pF crystals.

Table 8-7. Maximum ESR Recommendation for 32.768 kHz Watch Crystal

Note: 1. Maximum ESR is typical value based on characterization

The Low-frequency Crystal Oscillator provides an internal load capacitance, see Table 8-8 on

page 35 at each TOSC pin.

Table 8-6. Start-up Times for the Crystal Oscillator Clock Selection

CKSEL0 SUT1:0

Start-up Time from

Power-down and

Power-save

Additional Delay

from Reset

(VCC = 5.0V) Recommended Usage

0 00 258 CK(1) 14CK + 4.1 ms
Ceramic resonator, fast
rising power

0 01 258 CK(1) 14CK + 65 ms
Ceramic resonator, slowly
rising power

0 10 1K CK(2) 14CK
Ceramic resonator, BOD
enabled

0 11 1K CK(2) 14CK + 4.1 ms
Ceramic resonator, fast
rising power

1 00 1K CK(2) 14CK + 65 ms
Ceramic resonator, slowly
rising power

1 01 16K CK 14CK
Crystal Oscillator, BOD
enabled

1 10 16K CK 14CK + 4.1 ms
Crystal Oscillator, fast
rising power

1 11 16K CK 14CK + 65 ms
Crystal Oscillator, slowly
rising power

Crystal CL (pF) Max ESR [kΩ](1)

6.5 60

9 35

35

8018P–AVR–08/10

ATmega169P

The capacitance (Ce + Ci) needed at each TOSC pin can be calculated by using:

where

Ce - is optional external capacitors as described in Figure 8-2 on page 33.
Ci - is is the pin capacitance in Table 8-8.
CL - is the load capacitance for a 32.768 kHz crystal specified by the crystal vendor.
CS - is the total stray capacitance for one TOSC pin.

Crystals specifying load capacitance (CL) higher than the ones given in the Table 8-8, require

external capacitors applied as described in Figure 8-2 on page 33.

The Low-frequency Crystal Oscillator must be selected by setting the CKSEL Fuses to “0110” or

“0111” as shown in Table 8-10. Start-up times are determined by the SUT Fuses as shown in

Table 8-9.

Note: 1. This option should only be used if frequency stability at start-up is not important for the
application

Table 8-8. Capacitance for Low-Frequency Crystal Oscillator

Device 32 kHz Osc. Type Cap (Xtal1/Tosc1) Cap (Xtal2/Tosc2)

ATmega169P
System Osc. 16 pF 6 pF

Timer Osc. 16 pF 6 pF

Table 8-9. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

SUT1..0 Additional Delay from Reset (VCC = 5.0V) Recommended Usage

00 14 CK Fast rising power or BOD enabled

01 14 CK + 4 ms Slowly rising power

10 14 CK + 65 ms Stable frequency at start-up

11 Reserved

Table 8-10. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

CKSEL3..0

Start-up Time from

Power-down and Power-save Recommended Usage

0110(1) 1K CK

0111 32K CK Stable frequency at start-up

Ce Ci+ 2 CL⋅ Cs–=

36

8018P–AVR–08/10

ATmega169P

8.7 External Clock

To drive the device from an external clock source, XTAL1 should be driven as shown in Figure

8-3. To run the device on an external clock, the CKSEL Fuses must be programmed to “0000”.

Figure 8-3. External Clock Drive Configuration

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in

Table 8-12.

When applying an external clock, it is required to avoid sudden changes in the applied clock fre-

quency to ensure stable operation of the MCU. A variation in frequency of more than 2% from

one clock cycle to the next can lead to unpredictable behavior. It is required to ensure that the

MCU is kept in Reset during such changes in the clock frequency.

Note that the System Clock Prescaler can be used to implement run-time changes of the internal

clock frequency while still ensuring stable operation. Refer to ”System Clock Prescaler” on page

37 for details.

Table 8-11. Crystal Oscillator Clock Frequency

CKSEL3..0 Frequency Range

0000 0 - 16 MHz

Table 8-12. Start-up Times for the External Clock Selection

SUT1..0

Start-up Time from Power-

down and Power-save

Additional Delay from

Reset (VCC = 5.0V) Recommended Usage

00 6 CK 14CK BOD enabled

01 6 CK 14CK + 4.1 ms Fast rising power

10 6 CK 14CK + 65 ms Slowly rising power

11 Reserved

NC

EXTERNAL

CLOCK

SIGNAL

XTAL2

XTAL1

GND

37

8018P–AVR–08/10

ATmega169P

8.8 Timer/Counter Oscillator

ATmega169P uses the same crystal oscillator for Low-frequency Oscillator and Timer/Counter

Oscillator. See ”Low-frequency Crystal Oscillator” on page 34 for details on the oscillator and

crystal requirements.

ATmega169P share the Timer/Counter Oscillator Pins (TOSC1 and TOSC2) with XTAL1 and

XTAL2. When using the Timer/Counter Oscillator, the system clock needs to be four times the

oscillator frequency. Due to this and the pin sharing, the Timer/Counter Oscillator can only be

used when the Calibrated Internal RC Oscillator is selected as system clock source.

Applying an external clock source to TOSC1 can be done if EXTCLK in the ASSR Register is

written to logic one. See ”Asynchronous operation of the Timer/Counter” on page 150 for further

description on selecting external clock as input instead of a 32.768 kHz watch crystal.

8.9 Clock Output Buffer

When the CKOUT Fuse is programmed, the system Clock will be output on CLKO. This mode is

suitable when chip clock is used to drive other circuits on the system. The clock will be output

also during reset and the normal operation of I/O pin will be overridden when the fuse is pro-

grammed. Any clock source, including internal RC Oscillator, can be selected when CLKO

serves as clock output. If the System Clock Prescaler is used, it is the divided system clock that

is output when the CKOUT Fuse is programmed.

8.10 System Clock Prescaler

The ATmega169P system clock can be divided by setting the ”CLKPR – Clock Prescale Regis-

ter” on page 38. This feature can be used to decrease the system clock frequency and power

consumption when the requirement for processing power is low. This can be used with all clock

source options, and it will affect the clock frequency of the CPU and all synchronous peripherals.

clkI/O, clkADC, clkCPU, and clkFLASH are divided by a factor as shown in Table 8-13.

When switching between prescaler settings, the System Clock Prescaler ensures that no

glitches occur in the clock system and that no intermediate frequency is higher than neither the

clock frequency corresponding to the previous setting, nor the clock frequency corresponding to

the new setting.

The ripple counter that implements the prescaler runs at the frequency of the undivided clock,

which may be faster than the CPU’s clock frequency. Hence, it is not possible to determine the

state of the prescaler – even if it were readable, and the exact time it takes to switch from one

clock division to another cannot be exactly predicted. From the time the CLKPS values are writ-

ten, it takes between T1 + T2 and T1 + 2 × T2 before the new clock frequency is active. In this

interval, 2 active clock edges are produced. Here, T1 is the previous clock period, and T2 is the

period corresponding to the new prescaler setting.

To avoid unintentional changes of clock frequency, a special write procedure must be followed

to change the CLKPS bits:

1. Write the Clock Prescaler Change Enable (CLKPCE) bit to one and all other bits in
CLKPR to zero.

2. Within four cycles, write the desired value to CLKPS while writing a zero to CLKPCE.

Interrupts must be disabled when changing prescaler setting to make sure the write procedure is

not interrupted.

38

8018P–AVR–08/10

ATmega169P

8.11 Register Description

8.11.1 OSCCAL – Oscillator Calibration Register

• Bits 7:0 – CAL7:0: Oscillator Calibration Value

The Oscillator Calibration Register is used to trim the Calibrated Internal RC Oscillator to

remove process variations from the oscillator frequency. A pre-programmed calibration value is

automatically written to this register during chip reset, giving the Factory calibrated frequency as

specified in Table 28-2 on page 332. The application software can write this register to change

the oscillator frequency. The oscillator can be calibrated to frequencies as specified in Table 28-

2 on page 332. Calibration outside that range is not guaranteed.

Note that this oscillator is used to time EEPROM and Flash write accesses, and these write

times will be affected accordingly. If the EEPROM or Flash are written, do not calibrate to more

than 8.8 MHz. Otherwise, the EEPROM or Flash write may fail.

The CAL7 bit determines the range of operation for the oscillator. Setting this bit to 0 gives the

lowest frequency range, setting this bit to 1 gives the highest frequency range. The two fre-

quency ranges are overlapping, in other words a setting of OSCCAL = 0x7F gives a higher

frequency than OSCCAL = 0x80.

The CAL6..0 bits are used to tune the frequency within the selected range. A setting of 0x00

gives the lowest frequency in that range, and a setting of 0x7F gives the highest frequency in the

range.

8.11.2 CLKPR – Clock Prescale Register

• Bit 7 – CLKPCE: Clock Prescaler Change Enable

The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE

bit is only updated when the other bits in CLKPR are simultaneously written to zero. CLKPCE is

cleared by hardware four cycles after it is written or when CLKPS bits are written. Rewriting the

CLKPCE bit within this time-out period does neither extend the time-out period, nor clear the

CLKPCE bit.

• Bits 3:0 – CLKPS3:0: Clock Prescaler Select Bits 3 - 0

These bits define the division factor between the selected clock source and the internal system

clock. These bits can be written run-time to vary the clock frequency to suit the application

requirements. As the divider divides the master clock input to the MCU, the speed of all synchro-

nous peripherals is reduced when a division factor is used. The division factors are given in

Table 8-13 on page 39.

The CKDIV8 Fuse determines the initial value of the CLKPS bits. If CKDIV8 is unprogrammed,

the CLKPS bits will be reset to “0000”. If CKDIV8 is programmed, CLKPS bits are reset to

Bit 7 6 5 4 3 2 1 0

(0x66) CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value

Bit 7 6 5 4 3 2 1 0

(0x61) CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 CLKPR

Read/Write R/W R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description

39

8018P–AVR–08/10

ATmega169P

“0011”, giving a division factor of 8 at start up. This feature should be used if the selected clock

source has a higher frequency than the maximum frequency of the device at the present operat-

ing conditions. Note that any value can be written to the CLKPS bits regardless of the CKDIV8

Fuse setting. The Application software must ensure that a sufficient division factor is chosen if

the selected clock source has a higher frequency than the maximum frequency of the device at

the present operating conditions. The device is shipped with the CKDIV8 Fuse programmed.

Table 8-13. Clock Prescaler Select

CLKPS3 CLKPS2 CLKPS1 CLKPS0 Clock Division Factor

0 0 0 0 1

0 0 0 1 2

0 0 1 0 4

0 0 1 1 8

0 1 0 0 16

0 1 0 1 32

0 1 1 0 64

0 1 1 1 128

1 0 0 0 256

1 0 0 1 Reserved

1 0 1 0 Reserved

1 0 1 1 Reserved

1 1 0 0 Reserved

1 1 0 1 Reserved

1 1 1 0 Reserved

1 1 1 1 Reserved

40

8018P–AVR–08/10

ATmega169P

9. Power Management and Sleep Modes

Sleep modes enable the application to shut down unused modules in the MCU, thereby saving-

power. The AVR provides various sleep modes allowing the user to tailor the power

consumption to the application’s requirements.

9.1 Sleep Modes

Figure 8-1 on page 30 presents the different clock systems in the ATmega169P, and their distri-

bution. The figure is helpful in selecting an appropriate sleep mode. Table 9-1 shows the

different sleep modes and their wake up sources.

Notes: 1. Only recommended with external crystal or resonator selected as clock source.
2. If either LCD controller or Timer/Counter2 is running in asynchronous mode.
3. For INT0, only level interrupt.

To enter any of the sleep modes, the SE bit in SMCR must be written to logic one and a SLEEP

instruction must be executed. The SM2, SM1, and SM0 bits in the SMCR Register select which

sleep mode will be activated by the SLEEP instruction. See Table 9-2 on page 45 for a

summary.

If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU

is then halted for four cycles in addition to the start-up time, executes the interrupt routine, and

resumes execution from the instruction following SLEEP. The contents of the Register File and

SRAM are unaltered when the device wakes up from sleep. If a reset occurs during sleep mode,

the MCU wakes up and executes from the Reset Vector.

Table 9-1. Active Clock Domains and Wake-up Sources in the Different Sleep Modes.

Active Clock Domains Oscillators Wake-up Sources

Sleep

Mode c
lk

C
P

U

c
lk

F
L

A
S

H

c
lk

IO

c
lk

A
D

C

c
lk

A
S

Y

M
a

in
 C

lo
c
k

S
o

u
rc

e
 E

n
a

b
le

d

T
im

e
r

O
s

c

E
n

a
b

le
d

IN
T

0
 a

n
d

P
in

 C
h

a
n

g
e

U
S

I
S

ta
rt

C
o

n
d

it
io

n

L
C

D

C
o

n
tr

o
ll

e
r

T
im

e
r2

S
P

M
/

E
E

P
R

O
M

R
e

a
d

y

A
D

C

O
th

e
r

I/
O

Idle X X X X X(2) X X X X X X X

ADC NRM X X X X(2) X(3) X X(2) X(2) X X

Power-
down

X(3) X

Power-
save

X X X(3) X X X

Standby(1) X X(3) X

41

8018P–AVR–08/10

ATmega169P

9.2 Idle Mode

When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle

mode, stopping the CPU but allowing LCD controller, the SPI, USART, Analog Comparator,

ADC, USI, Timer/Counters, Watchdog, and the interrupt system to continue operating. This

sleep mode basically halts clkCPU and clkFLASH, while allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal

ones like the Timer Overflow and USART Transmit Complete interrupts. If wake-up from the

Analog Comparator interrupt is not required, the Analog Comparator can be powered down by

setting the ACD bit in the Analog Comparator Control and Status Register – ACSR. This will

reduce power consumption in Idle mode. If the ADC is enabled, a conversion starts automati-

cally when this mode is entered.

9.3 ADC Noise Reduction Mode

When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC

Noise Reduction mode, stopping the CPU but allowing the ADC, the external interrupts, the USI

start condition detection, Timer/Counter2, LCD Controller, and the Watchdog to continue operat-

ing (if enabled). This sleep mode basically halts clkI/O, clkCPU, and clkFLASH, while allowing the

other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If

the ADC is enabled, a conversion starts automatically when this mode is entered. Apart form the

ADC Conversion Complete interrupt, only an External Reset, a Watchdog Reset, a Brown-out

Reset, an LCD controller interrupt, USI start condition interrupt, a Timer/Counter2 interrupt, an

SPM/EEPROM ready interrupt, an external level interrupt on INT0 or a pin change interrupt can

wake up the MCU from ADC Noise Reduction mode.

9.4 Power-down Mode

When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-

down mode. In this mode, the external Oscillator is stopped, while the external interrupts, the

USI start condition detection, and the Watchdog continue operating (if enabled). Only an Exter-

nal Reset, a Watchdog Reset, a Brown-out Reset, USI start condition interrupt, an external level

interrupt on INT0, or a pin change interrupt can wake up the MCU. This sleep mode basically

halts all generated clocks, allowing operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed

level must be held for some time to wake up the MCU. Refer to ”External Interrupts” on page 61

for details.

When waking up from Power-down mode, there is a delay from the wake-up condition occurs

until the wake-up becomes effective. This allows the clock to restart and become stable after

having been stopped. The wake-up period is defined by the same CKSEL Fuses that define the

Reset Time-out period, as described in ”Clock Sources” on page 31.

42

8018P–AVR–08/10

ATmega169P

9.5 Power-save Mode

When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter Power-

save mode. This mode is identical to Power-down, with one exception:

If Timer/Counter2 and/or the LCD controller are enabled, they will keep running during sleep.

The device can wake up from either Timer Overflow or Output Compare event from

Timer/Counter2 if the corresponding Timer/Counter2 interrupt enable bits are set in TIMSK2,

and the Global Interrupt Enable bit in SREG is set. It can also wake up from an LCD controller

interrupt.

If neither Timer/Counter2 nor the LCD controller is running, Power-down mode is recommended

instead of Power-save mode.

The LCD controller and Timer/Counter2 can be clocked both synchronously and asynchronously

in Power-save mode. The clock source for the two modules can be selected independent of

each other. If neither the LCD controller nor the Timer/Counter2 is using the asynchronous

clock, the Timer/Counter Oscillator is stopped during sleep. If neither the LCD controller nor the

Timer/Counter2 is using the synchronous clock, the clock source is stopped during sleep. Note

that even if the synchronous clock is running in Power-save, this clock is only available for the

LCD controller and Timer/Counter2.

9.6 Standby Mode

When the SM2..0 bits are 110 and an external crystal/resonator clock option is selected, the

SLEEP instruction makes the MCU enter Standby mode. This mode is identical to Power-down

with the exception that the Oscillator is kept running. From Standby mode, the device wakes up

in six clock cycles.

9.7 Power Reduction Register

The Power Reduction Register (PRR), see ”PRR – Power Reduction Register” on page 45, pro-

vides a method to stop the clock to individual peripherals to reduce power consumption. The

current state of the peripheral is frozen and the I/O registers can not be read or written.

Resources used by the peripheral when stopping the clock will remain occupied, hence the

peripheral should in most cases be disabled before stopping the clock. Waking up a module,

which is done by clearing the bit in PRR, puts the module in the same state as before shutdown.

Module shutdown can be used in Idle mode and Active mode to significantly reduce the overall

power consumption. See ”Supply Current of I/O modules” on page 343 for examples. In all other

sleep modes, the clock is already stopped.

43

8018P–AVR–08/10

ATmega169P

9.8 Minimizing Power Consumption

There are several issues to consider when trying to minimize the power consumption in an AVR

controlled system. In general, sleep modes should be used as much as possible, and the sleep

mode should be selected so that as few as possible of the device’s functions are operating. All

functions not needed should be disabled. In particular, the following modules may need special

consideration when trying to achieve the lowest possible power consumption.

9.8.1 Analog to Digital Converter

If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be dis-

abled before entering any sleep mode. When the ADC is turned off and on again, the next

conversion will be an extended conversion. Refer to ”ADC - Analog to Digital Converter” on page

216 for details on ADC operation.

9.8.2 Analog Comparator

When entering Idle mode, the Analog Comparator should be disabled if not used. When entering

ADC Noise Reduction mode, the Analog Comparator should be disabled. In other sleep modes,

the Analog Comparator is automatically disabled. However, if the Analog Comparator is set up

to use the Internal Voltage Reference as input, the Analog Comparator should be disabled in all

sleep modes. Otherwise, the Internal Voltage Reference will be enabled, independent of sleep

mode. Refer to ”AC - Analog Comparator” on page 212 for details on how to configure the Ana-

log Comparator.

9.8.3 Brown-out Detector

If the Brown-out Detector is not needed by the application, this module should be turned off. If

the Brown-out Detector is enabled by the BODLEVEL Fuses, it will be enabled in all sleep

modes, and hence, always consume power. In the deeper sleep modes, this will contribute sig-

nificantly to the total current consumption. Refer to ”Brown-out Detection” on page 50 for details

on how to configure the Brown-out Detector.

9.8.4 Internal Voltage Reference

The Internal Voltage Reference will be enabled when needed by the Brown-out Detection, the

Analog Comparator or the ADC. If these modules are disabled as described in the sections

above, the internal voltage reference will be disabled and it will not be consuming power. When

turned on again, the user must allow the reference to start up before the output is used. If the

reference is kept on in sleep mode, the output can be used immediately. Refer to ”Internal Volt-

age Reference” on page 51 for details on the start-up time.

9.8.5 Watchdog Timer

If the Watchdog Timer is not needed in the application, the module should be turned off. If the

Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence, always consume

power. In the deeper sleep modes, this will contribute significantly to the total current consump-

tion. Refer to ”Watchdog Timer” on page 51 for details on how to configure the Watchdog Timer.

44

8018P–AVR–08/10

ATmega169P

9.8.6 Port Pins

When entering a sleep mode, all port pins should be configured to use minimum power. The

most important is then to ensure that no pins drive resistive loads. In sleep modes where both

the I/O clock (clkI/O) and the ADC clock (clkADC) are stopped, the input buffers of the device will

be disabled. This ensures that no power is consumed by the input logic when not needed. In

some cases, the input logic is needed for detecting wake-up conditions, and it will then be

enabled. Refer to the section ”Digital Input Enable and Sleep Modes” on page 69 for details on

which pins are enabled. If the input buffer is enabled and the input signal is left floating or have

an analog signal level close to VCC/2, the input buffer will use excessive power.

For analog input pins, the digital input buffer should be disabled at all times. An analog signal

level close to VCC/2 on an input pin can cause significant current even in active mode. Digital

input buffers can be disabled by writing to the Digital Input Disable Registers (DIDR1 and

DIDR0). Refer to ”DIDR1 – Digital Input Disable Register 1” on page 215 and ”DIDR0 – Digital

Input Disable Register 0” on page 233 for details.

9.8.7 JTAG Interface and On-chip Debug System

If the On-chip debug system is enabled by the OCDEN Fuse and the chip enter Power down or

Power save sleep mode, the main clock source remains enabled. In these sleep modes, this will

contribute significantly to the total current consumption. There are three alternative ways to

avoid this:

• Disable OCDEN Fuse.

• Disable JTAGEN Fuse.

• Write one to the JTD bit in MCUCSR.

The TDO pin is left floating when the JTAG interface is enabled while the JTAG TAP controller is

not shifting data. If the hardware connected to the TDO pin does not pull up the logic level,

power consumption will increase. Note that the TDI pin for the next device in the scan chain con-

tains a pull-up that avoids this problem. Writing the JTD bit in the MCUCSR register to one or

leaving the JTAG fuse unprogrammed disables the JTAG interface.

45

8018P–AVR–08/10

ATmega169P

9.9 Register Description

9.9.1 SMCR – Sleep Mode Control Register

The Sleep Mode Control Register contains control bits for power management.

• Bits 3, 2, 1 – SM2:0: Sleep Mode Select Bits 2, 1, and 0

These bits select between the five available sleep modes as shown in Table 9-2.

Note: 1. Standby mode is only recommended for use with external crystals or resonators.

• Bit 1 – SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP

instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmer’s

purpose, it is recommended to write the Sleep Enable (SE) bit to one just before the execution of

the SLEEP instruction and to clear it immediately after waking up.

9.9.2 PRR – Power Reduction Register

• Bit 7:5 - Res: Reserved bits

These bits are reserved and will always read as zero.

• Bit 4 - PRLCD: Power Reduction LCD

Writing logic one to this bit shuts down the LCD controller. The LCD controller must be disabled

and the display discharged before shut down. See ”Disabling the LCD” on page 244 for details

on how to disable the LCD controller.

Bit 7 6 5 4 3 2 1 0

0x33 (0x53) – – – – SM2 SM1 SM0 SE SMCR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 9-2. Sleep Mode Select

SM2 SM1 SM0 Sleep Mode

0 0 0 Idle

0 0 1 ADC Noise Reduction

0 1 0 Power-down

0 1 1 Power-save

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Standby(1)

1 1 1 Reserved

Bit 7 6 5 4 3 2 1 0

(0x64) – – – PRLCD PRTIM1 PRSPI PRUSART0 PRADC PRR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

46

8018P–AVR–08/10

ATmega169P

• Bit 3 - PRTIM1: Power Reduction Timer/Counter1

Writing a logic one to this bit shuts down the Timer/Counter1 module. When the Timer/Counter1

is enabled, operation will continue like before the shutdown.

• Bit 2 - PRSPI: Power Reduction Serial Peripheral Interface

Writing a logic one to this bit shuts down the Serial Peripheral Interface by stopping the clock to

the module. When waking up the SPI again, the SPI should be re initialized to ensure proper

operation.

• Bit 1 - PRUSART0: Power Reduction USART0

Writing a logic one to this bit shuts down the USART by stopping the clock to the module. When

waking up the USART again, the USART should be re initialized to ensure proper operation.

• Bit 0 - PRADC: Power Reduction ADC

Writing a logic one to this bit shuts down the ADC. The ADC must be disabled before shut down.

The analog comparator cannot use the ADC input MUX when the ADC is shut down.

Note: The Analog Comparator is disabled using the ACD-bit in the ”ACSR – Analog Comparator Control
and Status Register” on page 214.

47

8018P–AVR–08/10

ATmega169P

10. System Control and Reset

10.1 Resetting the AVR

During reset, all I/O Registers are set to their initial values, and the program starts execution

from the Reset Vector. The instruction placed at the Reset Vector must be a JMP – Absolute

Jump – instruction to the reset handling routine. If the program never enables an interrupt

source, the Interrupt Vectors are not used, and regular program code can be placed at these

locations. This is also the case if the Reset Vector is in the Application section while the Interrupt

Vectors are in the Boot section or vice versa. The circuit diagram in Figure 10-1 on page 48

shows the reset logic. Table 28-4 on page 333 defines the electrical parameters of the reset

circuitry.

The I/O ports of the AVR are immediately reset to their initial state when a reset source goes

active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the internal

reset. This allows the power to reach a stable level before normal operation starts. The time-out

period of the delay counter is defined by the user through the SUT and CKSEL Fuses. The dif-

ferent selections for the delay period are presented in ”Clock Sources” on page 31.

10.2 Reset Sources

The ATmega169P has five sources of reset:

• Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset

threshold (VPOT).

• External Reset. The MCU is reset when a low level is present on the RESET pin for longer than

the minimum pulse length.

• Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the

Watchdog is enabled.

• Brown-out Reset. The MCU is reset when the supply voltage VCC is below the Brown-out Reset

threshold (VBOT) and the Brown-out Detector is enabled.

• JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset Register, one

of the scan chains of the JTAG system. Refer to the section ”IEEE 1149.1 (JTAG) Boundary-

scan” on page 259 for details.

48

8018P–AVR–08/10

ATmega169P

Figure 10-1. Reset Logic

10.2.1 Power-on Reset

A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detection level

is defined in ”System and Reset Characteristics” on page 333. The POR is activated whenever

VCC is below the detection level. The POR circuit can be used to trigger the start-up Reset, as

well as to detect a failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the

Power-on Reset threshold voltage invokes the delay counter, which determines how long the

device is kept in RESET after VCC rise. The RESET signal is activated again, without any delay,

when VCC decreases below the detection level.

Figure 10-2. MCU Start-up, RESET Tied to VCC

MCU Status

Register (MCUSR)

Brown-out

Reset CircuitBODLEVEL [2..0]

Delay Counters

CKSEL[3:0]

CK

TIMEOUT

W
D

R
F

B
O

R
F

E
X

T
R

F

P
O

R
F

DATA BUS

Clock

Generator

SPIKE

FILTER

Pull-up Resistor

J
T

R
F

JTAG Reset

Register

Watchdog

Oscillator

SUT[1:0]

Power-on Reset

Circuit

V

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST

CC

49

8018P–AVR–08/10

ATmega169P

Figure 10-3. MCU Start-up, RESET Extended Externally

10.2.2 External Reset

An External Reset is generated by a low level on the RESET pin. Reset pulses longer than the

minimum pulse width (see ”System and Reset Characteristics” on page 333) will generate a

reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.

When the applied signal reaches the Reset Threshold Voltage – VRST – on its positive edge, the

delay counter starts the MCU after the Time-out period – tTOUT – has expired.

Figure 10-4. External Reset During Operation

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST

VCC

CC

50

8018P–AVR–08/10

ATmega169P

10.2.3 Brown-out Detection

ATmega169P has an On-chip Brown-out Detection (BOD) circuit for monitoring the VCC level

during operation by comparing it to a fixed trigger level. The trigger level for the BOD can be

selected by the BODLEVEL Fuses. The trigger level has a hysteresis to ensure spike free

Brown-out Detection. The hysteresis on the detection level should be interpreted as VBOT+ =

VBOT + VHYST/2 and VBOT- = VBOT - VHYST/2.When the BOD is enabled, and VCC decreases to a

value below the trigger level (VBOT- in Figure 10-5), the Brown-out Reset is immediately acti-

vated. When VCC increases above the trigger level (VBOT+ in Figure 10-5), the delay counter

starts the MCU after the Time-out period tTOUT has expired.

The BOD circuit will only detect a drop in VCC if the voltage stays below the trigger level for lon-

ger than tBOD given in ”System and Reset Characteristics” on page 333.

Figure 10-5. Brown-out Reset During Operation

10.2.4 Watchdog Reset

When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration. On

the falling edge of this pulse, the delay timer starts counting the Time-out period tTOUT. Refer to

”Watchdog Timer” on page 51 for details on operation of the Watchdog Timer.

Figure 10-6. Watchdog Reset During Operation

VCC

RESET

TIME-OUT

INTERNAL
RESET

VBOT-

VBOT+

tTOUT

CK

CC

51

8018P–AVR–08/10

ATmega169P

10.3 Internal Voltage Reference

ATmega169P features an internal bandgap reference. This reference is used for Brown-out

Detection, and it can be used as an input to the Analog Comparator or the ADC.

10.3.1 Voltage Reference Enable Signals and Start-up Time

The voltage reference has a start-up time that may influence the way it should be used. The

start-up time is given in ”System and Reset Characteristics” on page 333. To save power, the

reference is not always turned on. The reference is on during the following situations:

1. When the BOD is enabled (by programming the BODLEVEL [2..0] Fuse).

2. When the bandgap reference is connected to the Analog Comparator (by setting the
ACBG bit in ACSR).

3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user

must always allow the reference to start up before the output from the Analog Comparator or

ADC is used. To reduce power consumption in Power-down mode, the user can avoid the three

conditions above to ensure that the reference is turned off before entering Power-down mode.

10.4 Watchdog Timer

The Watchdog Timer is clocked from a separate On-chip Oscillator which runs at 1 MHz. This is

the typical value at VCC = 5V. See characterization data for typical values at other VCC levels. By

controlling the Watchdog Timer prescaler, the Watchdog Reset interval can be adjusted as

shown in Table 10-2 on page 55. The WDR – Watchdog Reset – instruction resets the Watch-

dog Timer. The Watchdog Timer is also reset when it is disabled and when a Chip Reset occurs.

Eight different clock cycle periods can be selected to determine the reset period. If the reset

period expires without another Watchdog Reset, the ATmega169P resets and executes from the

Reset Vector. For timing details on the Watchdog Reset, refer to Table 10-2 on page 55.

To prevent unintentional disabling of the Watchdog or unintentional change of time-out period,

two different safety levels are selected by the fuse WDTON as shown in Table 10-1 Refer to

”Timed Sequences for Changing the Configuration of the Watchdog Timer” on page 52 for

details.

Table 10-1. WDT Configuration as a Function of the Fuse Settings of WDTON

WDTON

Safety

Level

WDT Initial

State

How to Disable the

WDT

How to Change Time-

out

Unprogrammed 1 Disabled Timed sequence Timed sequence

Programmed 2 Enabled Always enabled Timed sequence

52

8018P–AVR–08/10

ATmega169P

Figure 10-7. Watchdog Timer

10.4.1 Timed Sequences for Changing the Configuration of the Watchdog Timer

The sequence for changing configuration differs slightly between the two safety levels. Separate

procedures are described for each level.

10.4.1.1 Safety Level 1

In this mode, the Watchdog Timer is initially disabled, but can be enabled by writing the WDE bit

to 1 without any restriction. A timed sequence is needed when changing the Watchdog Time-out

period or disabling an enabled Watchdog Timer. To disable an enabled Watchdog Timer, and/or

changing the Watchdog Time-out, the following procedure must be followed:

1. In the same operation, write a logic one to WDCE and WDE. A logic one must be written
to WDE regardless of the previous value of the WDE bit.

2. Within the next four clock cycles, in the same operation, write the WDE and WDP bits as
desired, but with the WDCE bit cleared.

10.4.1.2 Safety Level 2

In this mode, the Watchdog Timer is always enabled, and the WDE bit will always read as one. A

timed sequence is needed when changing the Watchdog Time-out period. To change the

Watchdog Time-out, the following procedure must be followed:

1. In the same operation, write a logical one to WDCE and WDE. Even though the WDE
always is set, the WDE must be written to one to start the timed sequence.

Within the next four clock cycles, in the same operation, write the WDP bits as desired, but with

the WDCE bit cleared. The value written to the WDE bit is irrelevant.

WATCHDOG

OSCILLATOR

53

8018P–AVR–08/10

ATmega169P

Note: 1. See ”About Code Examples” on page 10.

Assembly Code Example(1)

WDT_off:

; Reset WDT

wdr

; Write logical one to WDCE and WDE

in r16, WDTCR

ori r16, (1<<WDCE)|(1<<WDE)

out WDTCR, r16

; Turn off WDT

ldi r16, (0<<WDE)

out WDTCR, r16

ret

C Code Example(1)

void WDT_off(void)

{

/* Reset WDT */

__watchdog_reset();

/* Write logical one to WDCE and WDE */

WDTCR |= (1<<WDCE) | (1<<WDE);

/* Turn off WDT */

WDTCR = 0x00;

}

54

8018P–AVR–08/10

ATmega169P

10.5 Register Description

10.5.1 MCUSR – MCU Status Register

The MCU Status Register provides information on which reset source caused an MCU reset.

• Bit 4 – JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by

the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic

zero to the flag.

• Bit 3 – WDRF: Watchdog Reset Flag

This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by writing a

logic zero to the flag.

• Bit 2 – BORF: Brown-out Reset Flag

This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing a

logic zero to the flag.

• Bit 1 – EXTRF: External Reset Flag

This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a

logic zero to the flag.

• Bit 0 – PORF: Power-on Reset Flag

This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag.

To make use of the Reset Flags to identify a reset condition, the user should read and then

Reset the MCUSR as early as possible in the program. If the register is cleared before another

reset occurs, the source of the reset can be found by examining the Reset Flags.

10.5.2 WDTCR – Watchdog Timer Control Register

• Bits 7:5 – Res: Reserved Bits

These bits are reserved and will always read as zero.

• Bit 4 – WDCE: Watchdog Change Enable

This bit must be set when the WDE bit is written to logic zero. Otherwise, the Watchdog will not

be disabled. Once written to one, hardware will clear this bit after four clock cycles. Refer to the

description of the WDE bit for a Watchdog disable procedure. This bit must also be set when

changing the prescaler bits. See ”Timed Sequences for Changing the Configuration of the

Watchdog Timer” on page 52.

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) – – – JTRF WDRF BORF EXTRF PORF MCUSR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description

Bit 7 6 5 4 3 2 1 0

(0x60) – – – WDCE WDE WDP2 WDP1 WDP0 WDTCR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

55

8018P–AVR–08/10

ATmega169P

• Bit 3 – WDE: Watchdog Enable

When the WDE is written to logic one, the Watchdog Timer is enabled, and if the WDE is written

to logic zero, the Watchdog Timer function is disabled. WDE can only be cleared if the WDCE bit

has logic level one. To disable an enabled Watchdog Timer, the following procedure must be

followed:

1. In the same operation, write a logic one to WDCE and WDE. A logic one must be written
to WDE even though it is set to one before the disable operation starts.

2. Within the next four clock cycles, write a logic 0 to WDE. This disables the Watchdog.

In safety level 2, it is not possible to disable the Watchdog Timer, even with the algorithm

described above. See ”Timed Sequences for Changing the Configuration of the Watchdog

Timer” on page 52.

• Bits 2:0 – WDP2, WDP1, WDP0: Watchdog Timer Prescaler 2, 1, and 0

The WDP2, WDP1, and WDP0 bits determine the Watchdog Timer prescaling when the Watch-

dog Timer is enabled. The different prescaling values and their corresponding Timeout Periods

are shown in Table 10-2.

Note: Also see Figure 29-54 on page 366.

The following code example shows one assembly and one C function for turning off the WDT.

The example assumes that interrupts are controlled (for example by disabling interrupts globally)

so that no interrupts will occur during execution of these functions.

Table 10-2. Watchdog Timer Prescale Select

WDP2 WDP1 WDP0

Number of WDT

Oscillator Cycles

Typical Time-out at

VCC = 3.0V

Typical Time-out at

VCC = 5.0V

0 0 0 16K cycles 15.4 ms 14.7 ms

0 0 1 32K cycles 30.8 ms 29.3 ms

0 1 0 64K cycles 61.6 ms 58.7 ms

0 1 1 128K cycles 0.12 s 0.12 s

1 0 0 256K cycles 0.25 s 0.23 s

1 0 1 512K cycles 0.49 s 0.47 s

1 1 0 1,024K cycles 1.0 s 0.9 s

1 1 1 2,048K cycles 2.0 s 1.9 s

56

8018P–AVR–08/10

ATmega169P

11. Interrupts

This section describes the specifics of the interrupt handling as performed in ATmega169P. For

a general explanation of the AVR interrupt handling, refer to ”Reset and Interrupt Handling” on

page 15.

11.1 Interrupt Vectors in ATmega169P

Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at
reset, see ”Boot Loader Support – Read-While-Write Self-Programming” on page 280.

2. When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of the Boot
Flash Section. The address of each Interrupt Vector will then be the address in this table
added to the start address of the Boot Flash Section.

Table 11-1. Reset and Interrupt Vectors

Vector

No.

Program

Address(2) Source Interrupt Definition

1 0x0000(1) RESET
External Pin, Power-on Reset, Brown-out Reset,
Watchdog Reset, and JTAG AVR Reset

2 0x0002 INT0 External Interrupt Request 0

3 0x0004 PCINT0 Pin Change Interrupt Request 0

4 0x0006 PCINT1 Pin Change Interrupt Request 1

5 0x0008 TIMER2 COMP Timer/Counter2 Compare Match

6 0x000A TIMER2 OVF Timer/Counter2 Overflow

7 0x000C TIMER1 CAPT Timer/Counter1 Capture Event

8 0x000E TIMER1 COMPA Timer/Counter1 Compare Match A

9 0x0010 TIMER1 COMPB Timer/Counter1 Compare Match B

10 0x0012 TIMER1 OVF Timer/Counter1 Overflow

11 0x0014 TIMER0 COMP Timer/Counter0 Compare Match

12 0x0016 TIMER0 OVF Timer/Counter0 Overflow

13 0x0018 SPI, STC SPI Serial Transfer Complete

14 0x001A USART, RX USART0, Rx Complete

15 0x001C USART, UDREn USART0 Data Register Empty

16 0x001E USART, TX USART0, Tx Complete

17 0x0020 USI START USI Start Condition

18 0x0022 USI OVERFLOW USI Overflow

19 0x0024 ANALOG COMP Analog Comparator

20 0x0026 ADC ADC Conversion Complete

21 0x0028 EE READY EEPROM Ready

22 0x002A SPM READY Store Program Memory Ready

23 0x002C LCD LCD Start of Frame

57

8018P–AVR–08/10

ATmega169P

Table 11-2 on page 57 shows reset and Interrupt Vectors placement for the various combina-

tions of BOOTRST and IVSEL settings. If the program never enables an interrupt source, the

Interrupt Vectors are not used, and regular program code can be placed at these locations. This

is also the case if the Reset Vector is in the Application section while the Interrupt Vectors are in

the Boot section or vice versa.

Note: 1. The Boot Reset Address is shown in Table 26-6 on page 292. For the BOOTRST Fuse “1”
means unprogrammed while “0” means programmed.

The most typical and general program setup for the Reset and Interrupt Vector Addresses in

ATmega169P is:

Address Labels Code Comments

0x0000 jmp RESET ; Reset Handler

0x0002 jmp EXT_INT0 ; IRQ0 Handler

0x0004 jmp PCINT0 ; PCINT0 Handler

0x0006 jmp PCINT1 ; PCINT0 Handler

0x0008 jmp TIM2_COMP ; Timer2 Compare Handler

0x000A jmp TIM2_OVF ; Timer2 Overflow Handler

0x000C jmp TIM1_CAPT ; Timer1 Capture Handler

0x000E jmp TIM1_COMPA ; Timer1 CompareA Handler

0x0010 jmp TIM1_COMPB ; Timer1 CompareB Handler

0x0012 jmp TIM1_OVF ; Timer1 Overflow Handler

0x0014 jmp TIM0_COMP ; Timer0 Compare Handler

0x0016 jmp TIM0_OVF ; Timer0 Overflow Handler

0x0018 jmp SPI_STC ; SPI Transfer Complete Handler

0x001A jmp USART_RXCn ; USART0 RX Complete Handler

0x001C jmp USART_DRE ; USART0,UDRn Empty Handler

0x001E jmp USART_TXCn ; USART0 TX Complete Handler

0x0020 jmp USI_STRT ; USI Start Condition Handler

0x0022 jmp USI_OVFL ; USI Overflow Handler

0x0024 jmp ANA_COMP ; Analog Comparator Handler

0x0026 jmp ADC ; ADC Conversion Complete Handler

0x0028 jmp EE_RDY ; EEPROM Ready Handler

0x002A jmp SPM_RDY ; SPM Ready Handler

0x002C jmp LCD_SOF ; LCD Start of Frame Handler

;

0x002E RESET: ldi r16, high(RAMEND); Main program start

0x002F out SPH,r16 Set Stack Pointer to top of RAM

0x0030 ldi r16, low(RAMEND)

Table 11-2. Reset and Interrupt Vectors Placement(1)

BOOTRST IVSEL Reset Address Interrupt Vectors Start Address

1 0 0x0000 0x0002

1 1 0x0000 Boot Reset Address + 0x0002

0 0 Boot Reset Address 0x0002

0 1 Boot Reset Address Boot Reset Address + 0x0002

58

8018P–AVR–08/10

ATmega169P

0x0031 out SPL,r16
0x0032 sei ; Enable interrupts

0x0033 <instr> xxx

When the BOOTRST Fuse is unprogrammed, the Boot section size set to 2 Kbytes and the

IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typical and

general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

0x0000 RESET: ldi r16,high(RAMEND); Main program start

0x0001 out SPH,r16 ; Set Stack Pointer to top of RAM

0x0002 ldi r16,low(RAMEND)

0x0003 out SPL,r16
0x0004 sei ; Enable interrupts

0x0005 <instr> xxx

;

.org 0x1C02

0x1C02 jmp EXT_INT0 ; IRQ0 Handler

0x1C04 jmp PCINT0 ; PCINT0 Handler

... ;

0x1C2C jmp SPM_RDY ; Store Program Memory Ready Handler

When the BOOTRST Fuse is programmed and the Boot section size set to 2 Kbytes, the most

typical and general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

.org 0x0002

0x0002 jmp EXT_INT0 ; IRQ0 Handler

0x0004 jmp PCINT0 ; PCINT0 Handler

... ;

0x002C jmp SPM_RDY ; Store Program Memory Ready Handler

;

.org 0x1C00
0x1C00 RESET: ldi r16,high(RAMEND); Main program start

0x1C01 out SPH,r16 ; Set Stack Pointer to top of RAM

0x1C02 ldi r16,low(RAMEND)

0x1C03 out SPL,r16
0x1C04 sei ; Enable interrupts

0x1C05 <instr> xxx

When the BOOTRST Fuse is programmed, the Boot section size set to 2 Kbytes and the IVSEL

bit in the MCUCR Register is set before any interrupts are enabled, the most typical and general

program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

;

.org 0x1C00
0x1C00 jmp RESET ; Reset handler
0x1C02 jmp EXT_INT0 ; IRQ0 Handler

0x1C04 jmp PCINT0 ; PCINT0 Handler

... ;

0x1C2C jmp SPM_RDY ; Store Program Memory Ready Handler

59

8018P–AVR–08/10

ATmega169P

;

0x1C2E RESET: ldi r16,high(RAMEND); Main program start

0x1C2F out SPH,r16 ; Set Stack Pointer to top of RAM

0x1C30 ldi r16,low(RAMEND)

0x1C31 out SPL,r16
0x1C32 sei ; Enable interrupts

0x1C33 <instr> xxx

11.2 Moving Interrupts Between Application and Boot Space

The General Interrupt Control Register controls the placement of the Interrupt Vector table, see

”MCUCR – MCU Control Register” on page 60.

To avoid unintentional changes of Interrupt Vector tables, a special write procedure must be fol-

lowed to change the IVSEL bit:

a. Write the Interrupt Vector Change Enable (IVCE) bit to one.

b. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled

in the cycle IVCE is set, and they remain disabled until after the instruction following the write to

IVSEL. If IVSEL is not written, interrupts remain disabled for four cycles. The I-bit in the Status

Register is unaffected by the automatic disabling.

Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is programmed,
interrupts are disabled while executing from the Application section. If Interrupt Vectors are placed
in the Application section and Boot Lock bit BLB12 is programed, interrupts are disabled while
executing from the Boot Loader section. Refer to the section ”Boot Loader Support – Read-While-
Write Self-Programming” on page 280 for details on Boot Lock bits.

The following example shows how interrupts are moved.

60

8018P–AVR–08/10

ATmega169P

11.2.1 MCUCR – MCU Control Register

• Bit 1 – IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the Flash

memory. When this bit is set (one), the Interrupt Vectors are moved to the beginning of the Boot

Loader section of the Flash. The actual address of the start of the Boot Flash Section is deter-

mined by the BOOTSZ Fuses. Refer to the section ”Boot Loader Support – Read-While-Write

Self-Programming” on page 280 for details.

• Bit 0 – IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by

hardware four cycles after it is written or when IVSEL is written. Setting the IVCE bit will disable

interrupts, as explained in the description in ”Moving Interrupts Between Application and Boot

Space” on page 59. See Code Example.

Assembly Code Example

Move_interrupts:

; Get MCUCR

in r16, MCUCR

mov r17, r16

; Enable change of Interrupt Vectors

ori r16, (1<<IVCE)

out MCUCR, r16

; Move interrupts to Boot Flash section

ori r17, (1<<IVSEL)

out MCUCR, r17

ret

C Code Example

void Move_interrupts(void)

{

uchar temp;

/* Get MCUCR*/

temp = MCUCR;

/* Enable change of Interrupt Vectors */

MCUCR = temp | (1<<IVCE);

/* Move interrupts to Boot Flash section

*/ MCUCR = temp | (1<<IVSEL);

}

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) JTD - - PUD – – IVSEL IVCE MCUCR

Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

61

8018P–AVR–08/10

ATmega169P

12. External Interrupts

The External Interrupts are triggered by the INT0 pin or any of the PCINT15..0 pins. Observe

that, if enabled, the interrupts will trigger even if the INT0 or PCINT15..0 pins are configured as

outputs. This feature provides a way of generating a software interrupt. The pin change interrupt

PCI1 will trigger if any enabled PCINT15..8 pin toggles. Pin change interrupts PCI0 will trigger if

any enabled PCINT7..0 pin toggles. The PCMSK1 and PCMSK0 Registers control which pins

contribute to the pin change interrupts. Pin change interrupts on PCINT15..0 are detected asyn-

chronously. This implies that these interrupts can be used for waking the part also from sleep

modes other than Idle mode.

The INT0 interrupts can be triggered by a falling or rising edge or a low level. This is set up as

indicated in the specification for the External Interrupt Control Register A – EICRA. When the

INT0 interrupt is enabled and is configured as level triggered, the interrupt will trigger as long as

the pin is held low. Note that recognition of falling or rising edge interrupts on INT0 requires the

presence of an I/O clock, described in ”Clock Systems and their Distribution” on page 30. Low

level interrupt on INT0 is detected asynchronously. This implies that this interrupt can be used

for waking the part also from sleep modes other than Idle mode. The I/O clock is halted in all

sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down, the required level

must be held long enough for the MCU to complete the wake-up to trigger the level interrupt. If

the level disappears before the end of the Start-up Time, the MCU will still wake up, but no inter-

rupt will be generated. The start-up time is defined by the SUT and CKSEL Fuses as described

in ”System Clock and Clock Options” on page 30.

12.1 Pin Change Interrupt Timing

An example of timing of a pin change interrupt is shown in Figure 12-1.

Figure 12-1. Pin Change Interrupt

clk

PCINT(n)

pin_lat

pin_sync

pcint_in_(n)

pcint_syn

pcint_setflag

PCIF

PCINT(0)

pin_sync

pcint_syn
pin_lat

D Q

LE

pcint_setflag
PCIF

clk

clk
PCINT(0) in PCMSK(x)

pcint_in_(0)
0

x

62

8018P–AVR–08/10

ATmega169P

12.2 Register Description

12.2.1 EICRA – External Interrupt Control Register A

The External Interrupt Control Register A contains control bits for interrupt sense control.

• Bit 1, 0 – ISC01, ISC00: Interrupt Sense Control 0 Bit 1 and Bit 0

The External Interrupt 0 is activated by the external pin INT0 if the SREG I-flag and the corre-

sponding interrupt mask are set. The level and edges on the external INT0 pin that activate the

interrupt are defined in Table 12-1. The value on the INT0 pin is sampled before detecting

edges. If edge or toggle interrupt is selected, pulses that last longer than one clock period will

generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level

interrupt is selected, the low level must be held until the completion of the currently executing

instruction to generate an interrupt.

12.2.2 EIMSK – External Interrupt Mask Register

• Bit 7 – PCIE1: Pin Change Interrupt Enable 1

When the PCIE1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin

change interrupt 1 is enabled. Any change on any enabled PCINT15..8 pin will cause an inter-

rupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI1

Interrupt Vector. PCINT15:8 pins are enabled individually by the PCMSK1 Register.

• Bit 6 – PCIE0: Pin Change Interrupt Enable 0

When the PCIE0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin

change interrupt 0 is enabled. Any change on any enabled PCINT7..0 pin will cause an interrupt.

The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI0 Inter-

rupt Vector. PCINT7:0 pins are enabled individually by the PCMSK0 Register.

• Bit 0 – INT0: External Interrupt Request 0 Enable

When the INT0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the exter-

nal pin interrupt is enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and ISC00) in the

External Interrupt Control Register A (EICRA) define whether the external interrupt is activated

on rising and/or falling edge of the INT0 pin or level sensed. Activity on the pin will cause an

Bit 7 6 5 4 3 2 1 0

(0x69) – – – – – – ISC01 ISC00 EICRA

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 12-1. Interrupt 0 Sense Control

ISC01 ISC00 Description

0 0 The low level of INT0 generates an interrupt request.

0 1 Any logical change on INT0 generates an interrupt request.

1 0 The falling edge of INT0 generates an interrupt request.

1 1 The rising edge of INT0 generates an interrupt request.

Bit 7 6 5 4 3 2 1 0

0x1D (0x3D) PCIE1 PCIE0 – – – – – INT0 EIMSK

Read/Write R/W R/W R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

63

8018P–AVR–08/10

ATmega169P

interrupt request even if INT0 is configured as an output. The corresponding interrupt of External

Interrupt Request 0 is executed from the INT0 Interrupt Vector.

12.2.3 EIFR – External Interrupt Flag Register

• Bit 7 – PCIF1: Pin Change Interrupt Flag 1

When a logic change on any PCINT15..8 pin triggers an interrupt request, PCIF1 becomes set

(one). If the I-bit in SREG and the PCIE1 bit in EIMSK are set (one), the MCU will jump to the

corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-

natively, the flag can be cleared by writing a logical one to it.

• Bit 6 – PCIF0: Pin Change Interrupt Flag 0

When a logic change on any PCINT7:0 pin triggers an interrupt request, PCIF0 becomes set

(one). If the I-bit in SREG and the PCIE0 bit in EIMSK are set (one), the MCU will jump to the

corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-

natively, the flag can be cleared by writing a logical one to it.

• Bit 0 – INTF0: External Interrupt Flag 0

When an edge or logic change on the INT0 pin triggers an interrupt request, INTF0 becomes set

(one). If the I-bit in SREG and the INT0 bit in EIMSK are set (one), the MCU will jump to the cor-

responding Interrupt Vector. The flag is cleared when the interrupt routine is executed.

Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared

when INT0 is configured as a level interrupt.

12.2.4 PCMSK1 – Pin Change Mask Register 1

• Bit 7:0 – PCINT15:8: Pin Change Enable Mask 15..8

Each PCINT15:8-bit selects whether pin change interrupt is enabled on the corresponding I/O

pin. If PCINT15:8 is set and the PCIE1 bit in EIMSK is set, pin change interrupt is enabled on the

corresponding I/O pin. If PCINT15..8 is cleared, pin change interrupt on the corresponding I/O

pin is disabled.

Bit 7 6 5 4 3 2 1 0

0x1C (0x3C) PCIF1 PCIF0 – – – – – INTF0 EIFR

Read/Write R/W R/W R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6C) PCINT15 PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 PCMSK1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

64

8018P–AVR–08/10

ATmega169P

12.2.5 PCMSK0 – Pin Change Mask Register 0

• Bit 7:0 – PCINT7:0: Pin Change Enable Mask 7:0

Each PCINT7:0 bit selects whether pin change interrupt is enabled on the corresponding I/O pin.

If PCINT7:0 is set and the PCIE0 bit in EIMSK is set, pin change interrupt is enabled on the cor-

responding I/O pin. If PCINT7:0 is cleared, pin change interrupt on the corresponding I/O pin is

disabled.

Bit 7 6 5 4 3 2 1 0

(0x6B) PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 PCMSK0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

65

8018P–AVR–08/10

ATmega169P

13. I/O-Ports

13.1 Overview

All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports.

This means that the direction of one port pin can be changed without unintentionally changing

the direction of any other pin with the SBI and CBI instructions. The same applies when chang-

ing drive value (if configured as output) or enabling/disabling of pull-up resistors (if configured as

input). Each output buffer has symmetrical drive characteristics with both high sink and source

capability. The pin driver is strong enough to drive LED displays directly. All port pins have indi-

vidually selectable pull-up resistors with a supply-voltage invariant resistance. All I/O pins have

protection diodes to both VCC and Ground as indicated in Figure 13-1 on page 65. Refer to

”Electrical Characteristics” on page 329 for a complete list of parameters.

Figure 13-1. I/O Pin Equivalent Schematic

All registers and bit references in this section are written in general form. A lower case “x” repre-

sents the numbering letter for the port, and a lower case “n” represents the bit number. However,

when using the register or bit defines in a program, the precise form must be used. For example,

PORTB3 for bit no. 3 in Port B, here documented generally as PORTxn. The physical I/O Regis-

ters and bit locations are listed in ”Register Description for I/O-Ports” on page 88.

Three I/O memory address locations are allocated for each port, one each for the Data Register

– PORTx, Data Direction Register – DDRx, and the Port Input Pins – PINx. The Port Input Pins

I/O location is read only, while the Data Register and the Data Direction Register are read/write.

However, writing a logic one to a bit in the PINx Register, will result in a toggle in the correspond-

ing bit in the Data Register. In addition, the Pull-up Disable – PUD bit in MCUCR disables the

pull-up function for all pins in all ports when set.

Using the I/O port as General Digital I/O is described in ”Ports as General Digital I/O” on page

66. Most port pins are multiplexed with alternate functions for the peripheral features on the

device. How each alternate function interferes with the port pin is described in ”Alternate Port

Functions” on page 71. Refer to the individual module sections for a full description of the alter-

nate functions.

Note that enabling the alternate function of some of the port pins does not affect the use of the

other pins in the port as general digital I/O.

C
pin

Logic

R
pu

See Figure

"General Digital I/O" for

Details

Pxn

66

8018P–AVR–08/10

ATmega169P

13.2 Ports as General Digital I/O

The ports are bi-directional I/O ports with optional internal pull-ups. Figure 13-2 shows a func-

tional description of one I/O-port pin, here generically called Pxn.

Figure 13-2. General Digital I/O(1)

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O,
SLEEP, and PUD are common to all ports.

13.2.1 Configuring the Pin

Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in ”Register

Description for I/O-Ports” on page 88, the DDxn bits are accessed at the DDRx I/O address, the

PORTxn bits at the PORTx I/O address, and the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one,

Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input

pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is

activated. To switch the pull-up resistor off, PORTxn has to be written logic zero or the pin has to

be configured as an output pin. The port pins are tri-stated when reset condition becomes active,

even if no clocks are running.

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven

high (one). If PORTxn is written logic zero when the pin is configured as an output pin, the port

pin is driven low (zero).

clk

RPx

RRx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WRx: WRITE PORTx
RRx: READ PORTx REGISTER
RPx: READ PORTx PIN

PUD: PULLUP DISABLE

clk
I/O

: I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

RESET

RESET

Q

QD

Q

Q D

CLR

PORTxn

Q

Q D

CLR

DDxn

PINxn

D
A
T
A

 B
U

S

SLEEP

SLEEP: SLEEP CONTROL

Pxn

I/O

WPx

0

1

WRx

WPx: WRITE PINx REGISTER

67

8018P–AVR–08/10

ATmega169P

13.2.2 Toggling the Pin

Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn.

Note that the SBI instruction can be used to toggle one single bit in a port.

13.2.3 Switching Between Input and Output

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn}

= 0b11), an intermediate state with either pull-up enabled {DDxn, PORTxn} = 0b01) or output

low ({DDxn, PORTxn} = 0b10) must occur. Normally, the pull-up enabled state is fully accept-

able, as a high-impedant environment will not notice the difference between a strong high driver

and a pull-up. If this is not the case, the PUD bit in the MCUCR Register can be set to disable all

pull-ups in all ports.

Switching between input with pull-up and output low generates the same problem. The user

must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn}

= 0b11) as an intermediate step.

Table 13-1 summarizes the control signals for the pin value.

13.2.4 Reading the Pin Value

Independent of the setting of Data Direction bit DDxn, the port pin can be read through the

PINxn Register bit. As shown in Figure 13-2 on page 66, the PINxn Register bit and the preced-

ing latch constitute a synchronizer. This is needed to avoid metastability if the physical pin

changes value near the edge of the internal clock, but it also introduces a delay. Figure 13-3 on

page 68 shows a timing diagram of the synchronization when reading an externally applied pin

value. The maximum and minimum propagation delays are denoted tpd,max and tpd,min

respectively.

Table 13-1. Port Pin Configurations

DDxn PORTxn

PUD

(in MCUCR) I/O Pull-up Comment

0 0 X Input No Tri-state (Hi-Z)

0 1 0 Input Yes Pxn will source current if ext. pulled low.

0 1 1 Input No Tri-state (Hi-Z)

1 0 X Output No Output Low (Sink)

1 1 X Output No Output High (Source)

68

8018P–AVR–08/10

ATmega169P

Figure 13-3. Synchronization when Reading an Externally Applied Pin value

Consider the clock period starting shortly after the first falling edge of the system clock. The latch

is closed when the clock is low, and goes transparent when the clock is high, as indicated by the

shaded region of the “SYNC LATCH” signal. The signal value is latched when the system clock

goes low. It is clocked into the PINxn Register at the succeeding positive clock edge. As indi-

cated by the two arrows tpd,max and tpd,min, a single signal transition on the pin will be delayed

between ½ and 1½ system clock period depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as indi-

cated in Figure 13-4. The out instruction sets the “SYNC LATCH” signal at the positive edge of

the clock. In this case, the delay tpd through the synchronizer is 1 system clock period.

Figure 13-4. Synchronization when Reading a Software Assigned Pin Value

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define

the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The resulting pin

XXX in r17, PINx

0x00 0xFF

INSTRUCTIONS

SYNC LATCH

PINxn

r17

XXX

SYSTEM CLK

tpd, max

tpd, min

out PORTx, r16 nop in r17, PINx0xFF

0x00 0xFF

SYSTEM CLKr16INSTRUCTIONSSYNC LATCHPINxnr17 tpd

69

8018P–AVR–08/10

ATmega169P

values are read back again, but as previously discussed, a nop instruction is included to be able

to read back the value recently assigned to some of the pins.

Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-
ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3
as low and redefining bits 0 and 1 as strong high drivers.

13.2.5 Digital Input Enable and Sleep Modes

As shown in Figure 13-2 on page 66, the digital input signal can be clamped to ground at the

input of the Schmidt Trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep

Controller in Power-down mode, Power-save mode, and Standby mode to avoid high power

consumption if some input signals are left floating, or have an analog signal level close to VCC/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt

request is not enabled, SLEEP is active also for these pins. SLEEP is also overridden by various

other alternate functions as described in ”Alternate Port Functions” on page 71.

If a logic high level (“one”) is present on an asynchronous external interrupt pin configured as

“Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the external interrupt

is not enabled, the corresponding External Interrupt Flag will be set when resuming from the

above mentioned Sleep mode, as the clamping in these sleep mode produces the requested

logic change.

Assembly Code Example(1)

...

; Define pull-ups and set outputs high

; Define directions for port pins

ldi r16,(1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0)

ldi r17,(1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0)

out PORTB,r16

out DDRB,r17

; Insert nop for synchronization

nop

; Read port pins

in r16,PINB

...

C Code Example

unsigned char i;

...

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0);

DDRB = (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0);

/* Insert nop for synchronization*/

__no_operation();

/* Read port pins */

i = PINB;

...

70

8018P–AVR–08/10

ATmega169P

13.2.6 Unconnected Pins

If some pins are unused, it is recommended to ensure that these pins have a defined level. Even

though most of the digital inputs are disabled in the deep sleep modes as described above, float-

ing inputs should be avoided to reduce current consumption in all other modes where the digital

inputs are enabled (Reset, Active mode and Idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal pull-up.

In this case, the pull-up will be disabled during reset. If low power consumption during reset is

important, it is recommended to use an external pull-up or pull-down. Connecting unused pins

directly to VCC or GND is not recommended, since this may cause excessive currents if the pin is

accidentally configured as an output.

71

8018P–AVR–08/10

ATmega169P

13.3 Alternate Port Functions

Most port pins have alternate functions in addition to being general digital I/Os. Figure 13-5

shows how the port pin control signals from the simplified Figure 13-2 on page 66 can be over-

ridden by alternate functions. The overriding signals may not be present in all port pins, but the

figure serves as a generic description applicable to all port pins in the AVR microcontroller

family.

Figure 13-5. Alternate Port Functions(1)

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O,
SLEEP, and PUD are common to all ports. All other signals are unique for each pin.

Table 13-2 on page 72 summarizes the function of the overriding signals. The pin and port

indexes from Figure 13-5 on page 71 are not shown in the succeeding tables. The overriding

signals are generated internally in the modules having the alternate function.

clk

RPx

RRx
WRx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WRx: WRITE PORTx
RRx: READ PORTx REGISTER

RPx: READ PORTx PIN

PUD: PULLUP DISABLE

clk
I/O

: I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

SET

CLR

0

1

0

1

0

1

DIxn

AIOxn

DIEOExn

PVOVxn

PVOExn

DDOVxn

DDOExn

PUOExn

PUOVxn

PUOExn: Pxn PULL-UP OVERRIDE ENABLE
PUOVxn: Pxn PULL-UP OVERRIDE VALUE
DDOExn: Pxn DATA DIRECTION OVERRIDE ENABLE

DDOVxn: Pxn DATA DIRECTION OVERRIDE VALUE
PVOExn: Pxn PORT VALUE OVERRIDE ENABLE
PVOVxn: Pxn PORT VALUE OVERRIDE VALUE

DIxn: DIGITAL INPUT PIN n ON PORTx
AIOxn: ANALOG INPUT/OUTPUT PIN n ON PORTx

RESET

RESET

Q

Q D

CLR

Q

Q D

CLR

Q

QD

CLR

PINxn

PORTxn

DDxn

D
A
T
A

 B
U

S

0

1
DIEOVxn

SLEEP

DIEOExn: Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE

DIEOVxn: Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE

SLEEP: SLEEP CONTROL

Pxn

I/O

0

1

PTOExn

WPx

PTOExn: Pxn, PORT TOGGLE OVERRIDE ENABLE

WPx: WRITE PINx

72

8018P–AVR–08/10

ATmega169P

The following subsections shortly describe the alternate functions for each port, and relate the

overriding signals to the alternate function. Refer to the alternate function description for further

details.

Table 13-2. Generic Description of Overriding Signals for Alternate Functions

Signal Name Full Name Description

PUOE
Pull-up Override
Enable

If this signal is set, the pull-up enable is controlled by the PUOV
signal. If this signal is cleared, the pull-up is enabled when
{DDxn, PORTxn, PUD} = 0b010.

PUOV
Pull-up Override
Value

If PUOE is set, the pull-up is enabled/disabled when PUOV is
set/cleared, regardless of the setting of the DDxn, PORTxn,
and PUD Register bits.

DDOE
Data Direction
Override Enable

If this signal is set, the Output Driver Enable is controlled by the
DDOV signal. If this signal is cleared, the Output driver is
enabled by the DDxn Register bit.

DDOV
Data Direction
Override Value

If DDOE is set, the Output Driver is enabled/disabled when
DDOV is set/cleared, regardless of the setting of the DDxn
Register bit.

PVOE
Port Value
Override Enable

If this signal is set and the Output Driver is enabled, the port
value is controlled by the PVOV signal. If PVOE is cleared, and
the Output Driver is enabled, the port Value is controlled by the
PORTxn Register bit.

PVOV
Port Value
Override Value

If PVOE is set, the port value is set to PVOV, regardless of the
setting of the PORTxn Register bit.

PTOE
Port Toggle
Override Enable

If PTOE is set, the PORTxn Register bit is inverted.

DIEOE
Digital Input
Enable Override
Enable

If this bit is set, the Digital Input Enable is controlled by the
DIEOV signal. If this signal is cleared, the Digital Input Enable
is determined by MCU state (Normal mode, sleep mode).

DIEOV
Digital Input
Enable Override
Value

If DIEOE is set, the Digital Input is enabled/disabled when
DIEOV is set/cleared, regardless of the MCU state (Normal
mode, sleep mode).

DI Digital Input

This is the Digital Input to alternate functions. In the figure, the
signal is connected to the output of the schmitt trigger but
before the synchronizer. Unless the Digital Input is used as a
clock source, the module with the alternate function will use its
own synchronizer.

AIO
Analog
Input/Output

This is the Analog Input/output to/from alternate functions. The
signal is connected directly to the pad, and can be used bi-
directionally.

73

8018P–AVR–08/10

ATmega169P

13.3.1 Alternate Functions of Port A

The Port A has an alternate function as COM0:3 and SEG0:3 for the LCD Controller.

Table 13-4 and Table 13-5 on page 74 relates the alternate functions of Port A to the overriding

signals shown in Figure 13-5 on page 71.

Table 13-3. Port A Pins Alternate Functions

Port Pin Alternate Function

PA7 SEG3 (LCD Front Plane 3)

PA6 SEG2 (LCD Front Plane 2)

PA5 SEG1 (LCD Front Plane 1)

PA4 SEG0 (LCD Front Plane 0)

PA3 COM3 (LCD Back Plane 3)

PA2 COM2 (LCD Back Plane 2)

PA1 COM1 (LCD Back Plane 1)

PA0 COM0 (LCD Back Plane 0)

Table 13-4. Overriding Signals for Alternate Functions in PA7..PA4

Signal Name PA7/SEG3 PA6/SEG2 PA5/SEG1 PA4/SEG0

PUOE LCDEN LCDEN LCDEN LCDEN

PUOV 0 0 0 0

DDOE LCDEN LCDEN LCDEN LCDEN

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE – – – –

DIEOE LCDEN LCDEN LCDEN LCDEN

DIEOV 0 0 0 0

DI – – – –

AIO SEG3 SEG2 SEG1 SEG0

74

8018P–AVR–08/10

ATmega169P

13.3.2 Alternate Functions of Port B

The Port B pins with alternate functions are shown in Table 13-6.

The alternate pin configuration is as follows:

• OC2A/PCINT15, Bit 7

OC2, Output Compare Match A output: The PB7 pin can serve as an external output for the

Timer/Counter2 Output Compare A. The pin has to be configured as an output (DDB7 set (one))

to serve this function. The OC2A pin is also the output pin for the PWM mode timer function.

PCINT15, Pin Change Interrupt source 15: The PB7 pin can serve as an external interrupt

source.

Table 13-5. Overriding Signals for Alternate Functions in PA3..PA0

Signal Name PA3/COM3 PA2/COM2 PA1/COM1 PA0/COM0

PUOE
LCDEN •
(LCDMUX>2)

LCDEN •
(LCDMUX>1)

LCDEN •
(LCDMUX>0)

LCDEN

PUOV 0 0 0 0

DDOE
LCDEN •
(LCDMUX>2)

LCDEN •
(LCDMUX>1)

LCDEN •
(LCDMUX>0)

LCDEN

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE – – – –

DIEOE
LCDEN •
(LCDMUX>2)

LCDEN •
(LCDMUX>1)

LCDEN •
(LCDMUX>0)

LCDEN

DIEOV 0 0 0 0

DI – – – –

AIO COM3 COM2 COM1 COM0

Table 13-6. Port B Pins Alternate Functions

Port Pin Alternate Functions

PB7
OC2A/PCINT15 (Output Compare and PWM Output A for Timer/Counter2 or Pin Change
Interrupt15).

PB6
OC1B/PCINT14 (Output Compare and PWM Output B for Timer/Counter1 or Pin Change
Interrupt14).

PB5
OC1A/PCINT13 (Output Compare and PWM Output A for Timer/Counter1 or Pin Change
Interrupt13).

PB4
OC0A/PCINT12 (Output Compare and PWM Output A for Timer/Counter0 or Pin Change
Interrupt12).

PB3 MISO/PCINT11 (SPI Bus Master Input/Slave Output or Pin Change Interrupt11).

PB2 MOSI/PCINT10 (SPI Bus Master Output/Slave Input or Pin Change Interrupt10).

PB1 SCK/PCINT9 (SPI Bus Serial Clock or Pin Change Interrupt9).

PB0 SS/PCINT8 (SPI Slave Select input or Pin Change Interrupt8).

75

8018P–AVR–08/10

ATmega169P

• OC1B/PCINT14, Bit 6

OC1B, Output Compare Match B output: The PB6 pin can serve as an external output for the

Timer/Counter1 Output Compare B. The pin has to be configured as an output (DDB6 set (one))

to serve this function. The OC1B pin is also the output pin for the PWM mode timer function.

PCINT14, Pin Change Interrupt Source 14: The PB6 pin can serve as an external interrupt

source.

• OC1A/PCINT13, Bit 5

OC1A, Output Compare Match A output: The PB5 pin can serve as an external output for the

Timer/Counter1 Output Compare A. The pin has to be configured as an output (DDB5 set (one))

to serve this function. The OC1A pin is also the output pin for the PWM mode timer function.

PCINT13, Pin Change Interrupt Source 13: The PB5 pin can serve as an external interrupt

source.

• OC0A/PCINT12, Bit 4

OC0A, Output Compare Match A output: The PB4 pin can serve as an external output for the

Timer/Counter0 Output Compare A. The pin has to be configured as an output (DDB4 set (one))

to serve this function. The OC0A pin is also the output pin for the PWM mode timer function.

PCINT12, Pin Change Interrupt Source 12: The PB4 pin can serve as an external interrupt

source.

• MISO/PCINT11 – Port B, Bit 3

MISO: Master Data input, Slave Data output pin for SPI. When the SPI is enabled as a Master,

this pin is configured as an input regardless of the setting of DDB3. When the SPI is enabled as

a Slave, the data direction of this pin is controlled by DDB3. When the pin is forced to be an

input, the pull-up can still be controlled by the PORTB3 bit.

PCINT11, Pin Change Interrupt Source 11: The PB3 pin can serve as an external interrupt

source.

• MOSI/PCINT10 – Port B, Bit 2

MOSI: SPI Master Data output, Slave Data input for SPI. When the SPI is enabled as a Slave,

this pin is configured as an input regardless of the setting of DDB2. When the SPI is enabled as

a Master, the data direction of this pin is controlled by DDB2. When the pin is forced to be an

input, the pull-up can still be controlled by the PORTB2 bit.

PCINT10, Pin Change Interrupt Source 10: The PB2 pin can serve as an external interrupt

source.

• SCK/PCINT9 – Port B, Bit 1

SCK: Master Clock output, Slave Clock input pin for SPI. When the SPI is enabled as a Slave,

this pin is configured as an input regardless of the setting of DDB1. When the SPI is enabled as

a Master, the data direction of this pin is controlled by DDB1. When the pin is forced to be an

input, the pull-up can still be controlled by the PORTB1 bit.

PCINT9, Pin Change Interrupt Source 9: The PB1 pin can serve as an external interrupt source.

• SS/PCINT8 – Port B, Bit 0

SS: Slave Port Select input. When the SPI is enabled as a Slave, this pin is configured as an

input regardless of the setting of DDB0. As a Slave, the SPI is activated when this pin is driven

76

8018P–AVR–08/10

ATmega169P

low. When the SPI is enabled as a Master, the data direction of this pin is controlled by DDB0.

When the pin is forced to be an input, the pull-up can still be controlled by the PORTB0 bit.

PCINT8, Pin Change Interrupt Source 8: The PB0 pin can serve as an external interrupt source.

Table 13-7 and Table 13-8 on page 77 relate the alternate functions of Port B to the overriding

signals shown in Figure 13-5 on page 71. SPI MSTR INPUT and SPI SLAVE OUTPUT consti-

tute the MISO signal, while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE INPUT.

Table 13-7. Overriding Signals for Alternate Functions in PB7..PB4

Signal

Name

PB7/OC2A/

PCINT15

PB6/OC1B/

PCINT14

PB5/OC1A/

PCINT13

PB4/OC0A/

PCINT12

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE OC2A ENABLE OC1B ENABLE OC1A ENABLE OC0A ENABLE

PVOV OC2A OC1B OC1A OC0A

PTOE – – – –

DIEOE PCINT15 • PCIE1 PCINT14 • PCIE1 PCINT13 • PCIE1 PCINT12 • PCIE1

DIEOV 1 1 1 1

DI PCINT15 INPUT PCINT14 INPUT PCINT13 INPUT PCINT12 INPUT

AIO – – – –

77

8018P–AVR–08/10

ATmega169P

13.3.3 Alternate Functions of Port C

The Port C has an alternate function as the SEG5:12 for the LCD Controller.

Table 13-8. Overriding Signals for Alternate Functions in PB3..PB0

Signal

Name

PB3/MISO/

PCINT11

PB2/MOSI/

PCINT10

PB1/SCK/

PCINT9

PB0/SS/

PCINT8

PUOE SPE • MSTR SPE • MSTR SPE • MSTR SPE • MSTR

PUOV PORTB3 • PUD PORTB2 • PUD PORTB1 • PUD PORTB0 • PUD

DDOE SPE • MSTR SPE • MSTR SPE • MSTR SPE • MSTR

DDOV 0 0 0 0

PVOE SPE • MSTR SPE • MSTR SPE • MSTR 0

PVOV SPI SLAVE OUTPUT SPI MSTR OUTPUT SCK OUTPUT 0

PTOE – – – –

DIEOE PCINT11 • PCIE1 PCINT10 • PCIE1 PCINT9 • PCIE1 PCINT8 • PCIE1

DIEOV 1 1 1 1

DI
PCINT11 INPUT

SPI MSTR INPUT

PCINT10 INPUT

SPI SLAVE INPUT

PCINT9 INPUT

SCK INPUT

PCINT8 INPUT

SPI SS

AIO – – – –

Table 13-9. Port C Pins Alternate Functions

Port Pin Alternate Function

PC7 SEG5 (LCD Front Plane 5)

PC6 SEG6 (LCD Front Plane 6)

PC5 SEG7 (LCD Front Plane 7)

PC4 SEG8 (LCD Front Plane 8)

PC3 SEG9 (LCD Front Plane 9)

PC2 SEG10 (LCD Front Plane 10)

PC1 SEG11 (LCD Front Plane 11)

PC0 SEG12 (LCD Front Plane 12)

78

8018P–AVR–08/10

ATmega169P

Table 13-10 and Table 13-11 relate the alternate functions of Port C to the overriding signals

shown in Figure 13-5 on page 71.

Table 13-10. Overriding Signals for Alternate Functions in PC7..PC4

Signal

Name PC7/SEG5 PC6/SEG6 PC5/SEG7 PC4/SEG8

PUOE LCDEN LCDEN LCDEN LCDEN

PUOV 0 0 0 0

DDOE LCDEN LCDEN LCDEN LCDEN

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE – – – –

DIEOE LCDEN LCDEN LCDEN LCDEN

DIEOV 0 0 0 0

DI – – – –

AIO SEG5 SEG6 SEG7 SEG8

Table 13-11. Overriding Signals for Alternate Functions in PC3..PC0

Signal

Name PC3/SEG9 PC2/SEG10 PC1/SEG11 PC0/SEG12

PUOE LCDEN LCDEN LCDEN LCDEN

PUOV 0 0 0 0

DDOE LCDEN LCDEN LCDEN LCDEN

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE – – – –

DIEOE LCDEN LCDEN LCDEN LCDEN

DIEOV 0 0 0 0

DI – – – –

AIO SEG9 SEG10 SEG11 SEG12

79

8018P–AVR–08/10

ATmega169P

13.3.4 Alternate Functions of Port D

The Port D pins with alternate functions are shown in Table 13-12.

The alternate pin configuration is as follows:

• SEG15 - SEG20 – Port D, Bit 7:2

SEG15-SEG20, LCD front plane 15-20.

• INT0/SEG21 – Port D, Bit 1

INT0, External Interrupt Source 0. The PD1 pin can serve as an external interrupt source to the

MCU.

SEG21, LCD front plane 21.

• ICP1/SEG22 – Port D, Bit 0

ICP1 – Input Capture pin1: The PD0 pin can act as an Input Capture pin for Timer/Counter1.

SEG22, LCD front plane 22.

Table 13-12. Port D Pins Alternate Functions

Port Pin Alternate Function

PD7 SEG15 (LCD front plane 15)

PD6 SEG16 (LCD front plane 16)

PD5 SEG17 (LCD front plane 17)

PD4 SEG18 (LCD front plane 18)

PD3 SEG19 (LCD front plane 19)

PD2 SEG20 (LCD front plane 20)

PD1 INT0/SEG21 (External Interrupt0 Input or LCD front plane 21)

PD0 ICP1/SEG22 (Timer/Counter1 Input Capture pin or LCD front plane 22)

80

8018P–AVR–08/10

ATmega169P

Table 13-13 and Table 13-14 relates the alternate functions of Port D to the overriding signals

shown in Figure 13-5 on page 71.

Table 13-13. Overriding Signals for Alternate Functions PD7..PD4

Signal

Name PD7/SEG15 PD6/SEG16 PD5/SEG17 PD4/SEG18

PUOE
LCDEN •
(LCDPM>1)

LCDEN •
(LCDPM>1)

LCDEN •
(LCDPM>2)

LCDEN •
(LCDPM>2)

PUOV 0 0 0 0

DDOE
LCDEN •
(LCDPM>1)

LCDEN •
(LCDPM>1)

LCDEN •
(LCDPM>2)

LCDEN •
(LCDPM>2)

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE – – – –

DIEOE
LCDEN •
(LCDPM>1)

LCDEN •
(LCDPM>1)

LCDEN •
(LCDPM>2)

LCDEN •
(LCDPM>2)

DIEOV 0 0 0 0

DI – – – –

AIO SEG15 SEG16 SEG17 SEG18

Table 13-14. Overriding Signals for Alternate Functions in PD3..PD0

Signal

Name PD3/SEG19 PD2/SEG20 PD1/INT0/SEG21 PD0/ICP1/SEG22

PUOE
LCDEN •
(LCDPM>3)

LCDEN •
(LCDPM>3)

LCDEN •
(LCDPM>4)

LCDEN •
(LCDPM>4)

PUOV 0 0 0 0

DDOE
LCDEN •
(LCDPM>3)

LCDEN •
(LCDPM>3)

LCDEN •
(LCDPM>4)

LCDEN •
(LCDPM>4)

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE – – – –

DIEOE
LCDEN •
(LCDPM>3)

LCDEN •
(LCDPM>3)

LCDEN + (INT0
ENABLE)

LCDEN •
(LCDPM>4)

DIEOV 0 0
LCDEN • (INT0
ENABLE)

0

DI – – INT0 INPUT ICP1 INPUT

AIO – –

81

8018P–AVR–08/10

ATmega169P

13.3.5 Alternate Functions of Port E

The Port E pins with alternate functions are shown in Table 13-15.

• PCINT7 – Port E, Bit 7

PCINT7, Pin Change Interrupt Source 7: The PE7 pin can serve as an external interrupt source.

CLKO, Divided System Clock: The divided system clock can be output on the PE7 pin. The

divided system clock will be output if the CKOUT Fuse is programmed, regardless of the

PORTE7 and DDE7 settings. It will also be output during reset.

• DO/PCINT6 – Port E, Bit 6

DO, Universal Serial Interface Data output.

PCINT6, Pin Change Interrupt Source 6: The PE6 pin can serve as an external interrupt source.

• DI/SDA/PCINT5 – Port E, Bit 5

DI, Universal Serial Interface Data input.

SDA, Two-wire Serial Interface Data:

PCINT5, Pin Change Interrupt Source 5: The PE5 pin can serve as an external interrupt source.

• USCK/SCL/PCINT4 – Port E, Bit 4

USCK, Universal Serial Interface Clock.

SCL, Two-wire Serial Interface Clock.

PCINT4, Pin Change Interrupt Source 4: The PE4 pin can serve as an external interrupt source.

• AIN1/PCINT3 – Port E, Bit 3

AIN1 – Analog Comparator Negative input. This pin is directly connected to the negative input of

the Analog Comparator.

PCINT3, Pin Change Interrupt Source 3: The PE3 pin can serve as an external interrupt source.

Table 13-15. Port E Pins Alternate Functions

Port Pin Alternate Function

PE7
PCINT7 (Pin Change Interrupt7)
CLKO (Divided System Clock)

PE6 DO/PCINT6 (USI Data Output or Pin Change Interrupt6)

PE5 DI/SDA/PCINT5 (USI Data Input or TWI Serial DAta or Pin Change Interrupt5)

PE4
USCK/SCL/PCINT4 (USART External Clock Input/Output or TWI Serial Clock or Pin
Change Interrupt4)

PE3 AIN1/PCINT3 (Analog Comparator Negative Input or Pin Change Interrupt3)

PE2
XCK/AIN0/ PCINT2 (USART External Clock or Analog Comparator Positive Input or Pin
Change Interrupt2)

PE1 TXD/PCINT1 (USART Transmit Pin or Pin Change Interrupt1)

PE0 RXD/PCINT0 (USART Receive Pin or Pin Change Interrupt0)

82

8018P–AVR–08/10

ATmega169P

• XCK/AIN0/PCINT2 – Port E, Bit 2

XCK, USART External Clock. The Data Direction Register (DDE2) controls whether the clock is

output (DDE2 set) or input (DDE2 cleared). The XCK pin is active only when the USART oper-

ates in synchronous mode.

AIN0 – Analog Comparator Positive input. This pin is directly connected to the positive input of

the Analog Comparator.

PCINT2, Pin Change Interrupt Source 2: The PE2 pin can serve as an external interrupt source.

• TXD/PCINT1 – Port E, Bit 1

TXD0, UART0 Transmit pin.

PCINT1, Pin Change Interrupt Source 1: The PE1 pin can serve as an external interrupt source.

• RXD/PCINT0 – Port E, Bit 0

RXD, USART Receive pin. Receive Data (Data input pin for the USART). When the USART

Receiver is enabled this pin is configured as an input regardless of the value of DDE0. When the

USART forces this pin to be an input, a logical one in PORTE0 will turn on the internal pull-up.

PCINT0, Pin Change Interrupt Source 0: The PE0 pin can serve as an external interrupt source.

Table 13-16 and Table 13-17 on page 83 relates the alternate functions of Port E to the overrid-

ing signals shown in Figure 13-5 on page 71.

Note: 1. CKOUT is one if the CKOUT Fuse is programmed

Table 13-16. Overriding Signals for Alternate Functions PE7:PE4

Signal

Name PE7/PCINT7

PE6/DO/

PCINT6

PE5/DI/SDA/

PCINT5

PE4/USCK/SCL/

PCINT4

PUOE 0 0 USI_TWO-WIRE USI_TWO-WIRE

PUOV 0 0 0 0

DDOE CKOUT(1) 0 USI_TWO-WIRE USI_TWO-WIRE

DDOV 1 0
(SDA + PORTE5) •
DDE5

(USI_SCL_HOLD •
PORTE4) + DDE4

PVOE CKOUT(1) USI_THREE-
WIRE

USI_TWO-WIRE •
DDE5

USI_TWO-WIRE • DDE4

PVOV clkI/O DO 0 0

PTOE – – 0 USITC

DIEOE PCINT7 • PCIE0 PCINT6 • PCIE0
(PCINT5 • PCIE0) +
USISIE

(PCINT4 • PCIE0) +
USISIE

DIEOV 1 1 1 1

DI PCINT7 INPUT PCINT6 INPUT
DI/SDA INPUT

PCINT5 INPUT

USCKL/SCL INPUT

PCINT4 INPUT

AIO – – – –

83

8018P–AVR–08/10

ATmega169P

Note: 1. AIN0D and AIN1D is described in ”DIDR1 – Digital Input Disable Register 1” on page 215.

13.3.6 Alternate Functions of Port F

The Port F has an alternate function as analog input for the ADC as shown in Table 13-18. If

some Port F pins are configured as outputs, it is essential that these do not switch when a con-

version is in progress. This might corrupt the result of the conversion. If the JTAG interface is

enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS) and PF4(TCK) will be activated even

if a reset occurs.

• TDI, ADC7 – Port F, Bit 7

ADC7, Analog to Digital Converter, Channel 7.

TDI, JTAG Test Data In: Serial input data to be shifted in to the Instruction Register or Data Reg-

ister (scan chains). When the JTAG interface is enabled, this pin can not be used as an I/O pin.

Table 13-17. Overriding Signals for Alternate Functions in PE3:PE0

Signal

Name

PE3/AIN1/

PCINT3

PE2/XCK/AIN0/

PCINT2

PE1/TXD/

PCINT1 PE0/RXD/PCINT0

PUOE 0 0 TXENn RXENn

PUOV 0 0 0 PORTE0 • PUD

DDOE 0 0 TXENn RXENn

DDOV 0 0 1 0

PVOE 0 XCK OUTPUT ENABLE TXENn 0

PVOV 0 XCK TXD 0

PTOE – – – –

DIEOE
(PCINT3 • PCIE0)
+ AIN1D(1)

(PCINT2 • PCIE0) +
AIN0D(1) PCINT1 • PCIE0 PCINT0 • PCIE0

DIEOV PCINT3 • PCIE0 PCINT2 • PCIE0 1 1

DI PCINT3 INPUT XCK/PCINT2 INPUT PCINT1 INPUT RXD/PCINT0 INPUT

AIO AIN1 INPUT AIN0 INPUT – –

Table 13-18. Port F Pins Alternate Functions

Port Pin Alternate Function

PF7 ADC7/TDI (ADC input channel 7 or JTAG Test Data Input)

PF6 ADC6/TDO (ADC input channel 6 or JTAG Test Data Output)

PF5 ADC5/TMS (ADC input channel 5 or JTAG Test mode Select)

PF4 ADC4/TCK (ADC input channel 4 or JTAG Test ClocK)

PF3 ADC3 (ADC input channel 3)

PF2 ADC2 (ADC input channel 2)

PF1 ADC1 (ADC input channel 1)

PF0 ADC0 (ADC input channel 0)

84

8018P–AVR–08/10

ATmega169P

• TDO, ADC6 – Port F, Bit 6

ADC6, Analog to Digital Converter, Channel 6.

TDO, JTAG Test Data Out: Serial output data from Instruction Register or Data Register. When

the JTAG interface is enabled, this pin can not be used as an I/O pin. In TAP states that shift out

data, the TDO pin drives actively. In other states the pin is pulled high.

• TMS, ADC5 – Port F, Bit 5

ADC5, Analog to Digital Converter, Channel 5.

TMS, JTAG Test mode Select: This pin is used for navigating through the TAP-controller state

machine. When the JTAG interface is enabled, this pin can not be used as an I/O pin.

• TCK, ADC4 – Port F, Bit 4

ADC4, Analog to Digital Converter, Channel 4.

TCK, JTAG Test Clock: JTAG operation is synchronous to TCK. When the JTAG interface is

enabled, this pin can not be used as an I/O pin.

• ADC3 - ADC0 – Port F, Bit 3:0

Analog to Digital Converter, Channel 3-0.

Table 13-19. Overriding Signals for Alternate Functions in PF7:PF4

Signal

Name PF7/ADC7/TDI PF6/ADC6/TDO PF5/ADC5/TMS PF4/ADC4/TCK

PUOE JTAGEN JTAGEN JTAGEN JTAGEN

PUOV 1 1 1 1

DDOE JTAGEN JTAGEN JTAGEN JTAGEN

DDOV 0 SHIFT_IR + SHIFT_DR 0 0

PVOE 0 JTAGEN 0 0

PVOV 0 TDO 0 0

PTOE – – – –

DIEOE JTAGEN JTAGEN JTAGEN JTAGEN

DIEOV 0 0 0 1

DI – – – –

AIO
TDI
ADC7 INPUT

ADC6 INPUT
TMS
ADC5 INPUT

TCK
ADC4 INPUT

85

8018P–AVR–08/10

ATmega169P

13.3.7 Alternate Functions of Port G

The alternate pin configuration is as follows:

Note: 1. Port G, PG5 is input only. Pull-up is always on.
See Table 27-3 on page 297 for RSTDISBL fuse.

The alternate pin configuration is as follows:

• RESET – Port G, Bit 5

RESET: External Reset input. When the RSTDISBL Fuse is programmed (‘0’), PG5 will function

as input with pull-up always on.

• T0/SEG23 – Port G, Bit 4

T0, Timer/Counter0 Counter Source.

SEG23, LCD front plane 23

• T1/SEG24 – Port G, Bit 3

T1, Timer/Counter1 Counter Source.

SEG24, LCD front plane 24

Table 13-20. Overriding Signals for Alternate Functions in PF3:PF0

Signal

Name PF3/ADC3 PF2/ADC2 PF1/ADC1 PF0/ADC0

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE – – – –

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI – – – –

AIO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADC0 INPUT

Table 13-21. Port G Pins Alternate Functions(1)

Port Pin Alternate Function

PG5 RESET

PG4 T0/SEG23 (Timer/Counter0 Clock Input or LCD Front Plane 23)

PG3 T1/SEG24 (Timer/Counter1 Clock Input or LCD Front Plane 24)

PG2 SEG4 (LCD Front Plane 4)

PG1 SEG13 (LCD Front Plane 13)

PG0 SEG14 (LCD Front Plane 14)

86

8018P–AVR–08/10

ATmega169P

• SEG4 – Port G, Bit 2

SEG4, LCD front plane 4

• SEG13 – Port G, Bit 1

SEG13, Segment driver 13

• SEG14 – Port G, Bit 0

SEG14, LCD front plane 14

Table 13-21 on page 85 and Table 13-22 relates the alternate functions of Port G to the overrid-

ing signals shown in Figure 13-5 on page 71.

Table 13-22. Overriding Signals for Alternate Functions in PG4

Signal

Name PG4/T0/SEG23

PUOE LCDEN • (LCDPM>5)

PUOV 0

DDOE LCDEN • (LCDPM>5)

DDOV 1

PVOE 0

PVOV 0

PTOE – – – –

DIEOE LCDEN • (LCDPM>5)

DIEOV 0

DI T0 INPUT

AIO SEG23

87

8018P–AVR–08/10

ATmega169P

Table 13-23. Overriding Signals for Alternate Functions in PG3:0

Signal

Name PG3/T1/SEG24 PG2/SEG4 PG1/SEG13 PG0/SEG14

PUOE
LCDEN •
(LCDPM>6)

LCDEN
LCDEN •
(LCDPM>0)

LCDEN • (LCDPM>0)

PUOV 0 0 0 0

DDOE
LCDEN •
(LCDPM>6)

LCDEN
LCDEN •
(LCDPM>0)

LCDEN • (LCDPM>0)

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE – – – –

DIEOE
LCDEN •
(LCDPM>6)

LCDEN
LCDEN •
(LCDPM>0)

LCDEN • (LCDPM>0)

DIEOV 0 0 0 0

DI T1 INPUT – – –

AIO SEG24 SEG4 SEG13 SEG14

88

8018P–AVR–08/10

ATmega169P

13.4 Register Description for I/O-Ports

13.4.1 MCUCR – MCU Control Register

• Bit 4 – PUD: Pull-up Disable

When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn and

PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See ”Con-

figuring the Pin” on page 66 for more details about this feature.

13.4.2 PORTA – Port A Data Register

13.4.3 DDRA – Port A Data Direction Register

13.4.4 PINA – Port A Input Pins Address

13.4.5 PORTB – Port B Data Register

13.4.6 DDRB – Port B Data Direction Register

13.4.7 PINB – Port B Input Pins Address

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) JTD - - PUD – – IVSEL IVCE MCUCR

Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x02 (0x22) PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 PORTA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x01 (0x21) DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 DDRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x00 (0x20) PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 PINA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

0x05 (0x25) PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 PORTB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x04 (0x24) DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 DDRB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x03 (0x23) PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 PINB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

89

8018P–AVR–08/10

ATmega169P

13.4.8 PORTC – Port C Data Register

13.4.9 DDRC – Port C Data Direction Register

13.4.10 PINC – Port C Input Pins Address

13.4.11 PORTD – Port D Data Register

13.4.12 DDRD – Port D Data Direction Register

13.4.13 PIND – Port D Input Pins Address

13.4.14 PORTE – Port E Data Register

13.4.15 DDRE – Port E Data Direction Register

Bit 7 6 5 4 3 2 1 0

0x08 (0x28) PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 PORTC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x07 (0x27) DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 DDRC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x06 (0x26) PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 PINC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

0x0B (0x2B) PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 PORTD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x0A (0x2A) DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 DDRD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x09 (0x29) PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 PIND

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

0x0E (0x2E) PORTE7 PORTE6 PORTE5 PORTE4 PORTE3 PORTE2 PORTE1 PORTE0 PORTE

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x0D (0x2D) DDE7 DDE6 DDE5 DDE4 DDE3 DDE2 DDE1 DDE0 DDRE

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

90

8018P–AVR–08/10

ATmega169P

13.4.16 PINE – Port E Input Pins Address

13.4.17 PORTF – Port F Data Register

13.4.18 DDRF – Port F Data Direction Register

13.4.19 PINF – Port F Input Pins Address

13.4.20 PORTG – Port G Data Register

13.4.21 DDRG – Port G Data Direction Register

13.4.22 PING – Port G Input Pins Address

Bit 7 6 5 4 3 2 1 0

0x0C (0x2C) PINE7 PINE6 PINE5 PINE4 PINE3 PINE2 PINE1 PINE0 PINE

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

0x11 (0x31) PORTF7 PORTF6 PORTF5 PORTF4 PORTF3 PORTF2 PORTF1 PORTF0 PORTF

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x10 (0x30) DDF7 DDF6 DDF5 DDF4 DDF3 DDF2 DDF1 DDF0 DDRF

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x0F (0x2F) PINF7 PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINF0 PINF

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

0x14 (0x34) – – PORTG4 PORTG4 PORTG3 PORTG2 PORTG1 PORTG0 PORTG

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x13 (0x33) – – DDG5 DDG4 DDG3 DDG2 DDG1 DDG0 DDRG

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x12 (0x32) – – PING5 PING4 PING3 PING2 PING1 PING0 PING

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 N/A N/A N/A N/A N/A

91

8018P–AVR–08/10

ATmega169P

14. 8-bit Timer/Counter0 with PWM

14.1 Features

• Single Compare Unit Counter

• Clear Timer on Compare Match (Auto Reload)

• Glitch-free, Phase Correct Pulse Width Modulator (PWM)

• Frequency Generator

• External Event Counter

• 10-bit Clock Prescaler

• Overflow and Compare Match Interrupt Sources (TOV0 and OCF0A)

14.2 Overview

Timer/Counter0 is a general purpose, single compare unit, 8-bit Timer/Counter module. A simpli-

fied block diagram is shown in Figure 14-1. For the actual placement of I/O pins, refer to Figure

1-1 on page 2. CPU accessible I/O Registers, including I/O bits and I/O pins, are shown in bold.

The device-specific I/O Register and bit locations are listed in the ”8-bit Timer/Counter Register

Description” on page 102.

Figure 14-1. 8-bit Timer/Counter Block Diagram

14.2.1 Registers

The Timer/Counter (TCNT0) and Output Compare Register (OCR0A) are 8-bit registers. Inter-

rupt request (abbreviated to Int.Req. in the figure) signals are all visible in the Timer Interrupt

Flag Register (TIFR0). All interrupts are individually masked with the Timer Interrupt Mask Reg-

ister (TIMSK0). TIFR0 and TIMSK0 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on

the T0 pin. The Clock Select logic block controls which clock source and edge the Timer/Counter

uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source

is selected. The output from the Clock Select logic is referred to as the timer clock (clkT0).

Timer/Counter

D
A
T
A

 B
U

S

=

TCNTn

Waveform

Generation
OCn

= 0

Control Logic

= 0xFF

BOTTOM

count

clear

direction

TOVn

(Int.Req.)

OCRn

TCCRn

Clock Select

Tn
Edge

Detector

(From Prescaler)

clkTn

TOP

OCn

(Int.Req.)

92

8018P–AVR–08/10

ATmega169P

The double buffered Output Compare Register (OCR0A) is compared with the Timer/Counter

value at all times. The result of the compare can be used by the Waveform Generator to gener-

ate a PWM or variable frequency output on the Output Compare pin (OC0A). See ”Output

Compare Unit” on page 93. for details. The compare match event will also set the Compare Flag

(OCF0A) which can be used to generate an Output Compare interrupt request.

14.2.2 Definitions

Many register and bit references in this section are written in general form. A lower case “n”

replaces the Timer/Counter number, in this case 0. A lower case “x” replaces the Output Com-

pare unit number, in this case unit A. However, when using the register or bit defines in a

program, the precise form must be used, that is, TCNT0 for accessing Timer/Counter0 counter

value and so on.

The definitions in Table 14-1 are also used extensively throughout the document.

14.3 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source

is selected by the Clock Select logic which is controlled by the Clock Select (CS02:0) bits

located in the Timer/Counter Control Register (TCCR0A). For details on clock sources and pres-

caler, see ”Timer/Counter0 and Timer/Counter1 Prescalers” on page 135.

14.4 Counter Unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure

14-2 shows a block diagram of the counter and its surroundings.

Figure 14-2. Counter Unit Block Diagram

Table 14-1. Timer/Counter Definitions

BOTTOM The counter reaches the BOTTOM when it becomes 0x00.

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the

count sequence. The TOP value can be assigned to be the fixed value 0xFF

(MAX) or the value stored in the OCR0A Register. The assignment is dependent

on the mode of operation.

DATA BUS

TCNTn Control Logic

count

TOVn
(Int.Req.)

Clock Select

top

Tn
Edge

Detector

(From Prescaler)

clk
Tn

bottom

direction

clear

93

8018P–AVR–08/10

ATmega169P

Signal description (internal signals):

count Increment or decrement TCNT0 by 1.

direction Select between increment and decrement.

clear Clear TCNT0 (set all bits to zero).

clkTn Timer/Counter clock, referred to as clkT0 in the following.

top Signalize that TCNT0 has reached maximum value.

bottom Signalize that TCNT0 has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or decremented

at each timer clock (clkT0). clkT0 can be generated from an external or internal clock source,

selected by the Clock Select bits (CS02:0). When no clock source is selected (CS02:0 = 0) the

timer is stopped. However, the TCNT0 value can be accessed by the CPU, regardless of

whether clkT0 is present or not. A CPU write overrides (has priority over) all counter clear or

count operations.

The counting sequence is determined by the setting of the WGM01 and WGM00 bits located in

the Timer/Counter Control Register (TCCR0A). There are close connections between how the

counter behaves (counts) and how waveforms are generated on the Output Compare output

OC0A. For more details about advanced counting sequences and waveform generation, see

”Modes of Operation” on page 96.

The Timer/Counter Overflow Flag (TOV0) is set according to the mode of operation selected by

the WGM01:0 bits. TOV0 can be used for generating a CPU interrupt.

14.5 Output Compare Unit

The 8-bit comparator continuously compares TCNT0 with the Output Compare Register

(OCR0A). Whenever TCNT0 equals OCR0A, the comparator signals a match. A match will set

the Output Compare Flag (OCF0A) at the next timer clock cycle. If enabled (OCIE0A = 1 and

Global Interrupt Flag in SREG is set), the Output Compare Flag generates an Output Compare

interrupt. The OCF0A Flag is automatically cleared when the interrupt is executed. Alternatively,

the OCF0A Flag can be cleared by software by writing a logical one to its I/O bit location. The

Waveform Generator uses the match signal to generate an output according to operating mode

set by the WGM01:0 bits and Compare Output mode (COM0A1:0) bits. The max and bottom sig-

nals are used by the Waveform Generator for handling the special cases of the extreme values

in some modes of operation (See ”Modes of Operation” on page 96.).

Figure 14-3 on page 94 shows a block diagram of the Output Compare unit.

94

8018P–AVR–08/10

ATmega169P

Figure 14-3. Output Compare Unit, Block Diagram

The OCR0A Register is double buffered when using any of the Pulse Width Modulation (PWM)

modes. For the normal and Clear Timer on Compare (CTC) modes of operation, the double buff-

ering is disabled. The double buffering synchronizes the update of the OCR0 Compare Register

to either top or bottom of the counting sequence. The synchronization prevents the occurrence

of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR0A Register access may seem complex, but this is not case. When the double buffer-

ing is enabled, the CPU has access to the OCR0A Buffer Register, and if double buffering is

disabled the CPU will access the OCR0A directly.

14.5.1 Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by

writing a one to the Force Output Compare (FOC0A) bit. Forcing compare match will not set the

OCF0A Flag or reload/clear the timer, but the OC0A pin will be updated as if a real compare

match had occurred (the COM0A1:0 bits settings define whether the OC0A pin is set, cleared or

toggled).

14.5.2 Compare Match Blocking by TCNT0 Write

All CPU write operations to the TCNT0 Register will block any compare match that occur in the

next timer clock cycle, even when the timer is stopped. This feature allows OCR0A to be initial-

ized to the same value as TCNT0 without triggering an interrupt when the Timer/Counter clock is

enabled.

OCFnx (Int.Req.)

= (8-bit Comparator)

OCRnx

OCnx

DATA BUS

TCNTn

WGMn1:0

Waveform Generator

top

FOCn

COMnx1:0

bottom

95

8018P–AVR–08/10

ATmega169P

14.5.3 Using the Output Compare Unit

Since writing TCNT0 in any mode of operation will block all compare matches for one timer clock

cycle, there are risks involved when changing TCNT0 when using the Output Compare unit,

independently of whether the Timer/Counter is running or not. If the value written to TCNT0

equals the OCR0A value, the compare match will be missed, resulting in incorrect waveform

generation. Similarly, do not write the TCNT0 value equal to BOTTOM when the counter is down

counting.

The setup of the OC0A should be performed before setting the Data Direction Register for the

port pin to output. The easiest way of setting the OC0A value is to use the Force Output Com-

pare (FOC0A) strobe bits in Normal mode. The OC0A Register keeps its value even when

changing between Waveform Generation modes.

Be aware that the COM0A1:0 bits are not double buffered together with the compare value.

Changing the COM0A1:0 bits will take effect immediately.

14.6 Compare Match Output Unit

The Compare Output mode (COM0A1:0) bits have two functions. The Waveform Generator

uses the COM0A1:0 bits for defining the Output Compare (OC0A) state at the next compare

match. Also, the COM0A1:0 bits control the OC0A pin output source. Figure 14-4 shows a sim-

plified schematic of the logic affected by the COM0A1:0 bit setting. The I/O Registers, I/O bits,

and I/O pins in the figure are shown in bold. Only the parts of the general I/O port control regis-

ters (DDR and PORT) that are affected by the COM0A1:0 bits are shown. When referring to the

OC0A state, the reference is for the internal OC0A Register, not the OC0A pin. If a System

Reset occur, the OC0A Register is reset to “0”.

Figure 14-4. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the Output Compare (OC0A) from the Waveform

Generator if either of the COM0A1:0 bits are set. However, the OC0A pin direction (input or out-

put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction

Register bit for the OC0A pin (DDR_OC0A) must be set as output before the OC0A value is vis-

ible on the pin. The port override function is independent of the Waveform Generation mode.

PORT

DDR

D Q

D Q

OCn

PinOCnx

D Q
Waveform

Generator

COMnx1

COMnx0

0

1

D
A
T
A

 B
U

S

FOCn

clk
I/O

96

8018P–AVR–08/10

ATmega169P

The design of the Output Compare pin logic allows initialization of the OC0A state before the

output is enabled. Note that some COM0A1:0 bit settings are reserved for certain modes of

operation. See ”8-bit Timer/Counter Register Description” on page 102.

14.6.1 Compare Output Mode and Waveform Generation

The Waveform Generator uses the COM0A1:0 bits differently in Normal, CTC, and PWM

modes. For all modes, setting the COM0A1:0 = 0 tells the Waveform Generator that no action on

the OC0A Register is to be performed on the next compare match. For compare output actions

in the non-PWM modes refer to Table 14-3 on page 103. For fast PWM mode, refer to Table 14-

4 on page 103, and for phase correct PWM refer to Table 14-5 on page 103.

A change of the COM0A1:0 bits state will have effect at the first compare match after the bits are

written. For non-PWM modes, the action can be forced to have immediate effect by using the

FOC0A strobe bits.

14.7 Modes of Operation

The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins,

is defined by the combination of the Waveform Generation mode (WGM01:0) and Compare Out-

put mode (COM0A1:0) bits. The Compare Output mode bits do not affect the counting

sequence, while the Waveform Generation mode bits do. The COM0A1:0 bits control whether

the PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-

PWM modes the COM0A1:0 bits control whether the output should be set, cleared, or toggled at

a compare match (See ”Compare Match Output Unit” on page 95.).

For detailed timing information refer to Figure 14-8, Figure 14-9, Figure 14-10 and Figure 14-11

in ”Timer/Counter Timing Diagrams” on page 100.

14.7.1 Normal Mode

The simplest mode of operation is the Normal mode (WGM01:0 = 0). In this mode the counting

direction is always up (incrementing), and no counter clear is performed. The counter simply

overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-

tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV0) will be set in the same

timer clock cycle as the TCNT0 becomes zero. The TOV0 Flag in this case behaves like a ninth

bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt

that automatically clears the TOV0 Flag, the timer resolution can be increased by software.

There are no special cases to consider in the Normal mode, a new counter value can be written

anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the Out-

put Compare to generate waveforms in Normal mode is not recommended, since this will

occupy too much of the CPU time.

14.7.2 Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGM01:0 = 2), the OCR0A Register is used to

manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter

value (TCNT0) matches the OCR0A. The OCR0A defines the top value for the counter, hence

also its resolution. This mode allows greater control of the compare match output frequency. It

also simplifies the operation of counting external events.

97

8018P–AVR–08/10

ATmega169P

The timing diagram for the CTC mode is shown in Figure 14-5. The counter value (TCNT0)

increases until a compare match occurs between TCNT0 and OCR0A, and then counter

(TCNT0) is cleared.

Figure 14-5. CTC Mode, Timing Diagram

An interrupt can be generated each time the counter value reaches the TOP value by using the

OCF0A Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating

the TOP value. However, changing TOP to a value close to BOTTOM when the counter is run-

ning with none or a low prescaler value must be done with care since the CTC mode does not

have the double buffering feature. If the new value written to OCR0A is lower than the current

value of TCNT0, the counter will miss the compare match. The counter will then have to count to

its maximum value (0xFF) and wrap around starting at 0x00 before the compare match can

occur.

For generating a waveform output in CTC mode, the OC0A output can be set to toggle its logical

level on each compare match by setting the Compare Output mode bits to toggle mode

(COM0A1:0 = 1). The OC0A value will not be visible on the port pin unless the data direction for

the pin is set to output. The waveform generated will have a maximum frequency of fOC0 =

fclk_I/O/2 when OCR0A is set to zero (0x00). The waveform frequency is defined by the following

equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV0 Flag is set in the same timer clock cycle that the

counter counts from MAX to 0x00.

14.7.3 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGM01:0 = 3) provides a high frequency

PWM waveform generation option. The fast PWM differs from the other PWM option by its sin-

gle-slope operation. The counter counts from BOTTOM to MAX then restarts from BOTTOM. In

non-inverting Compare Output mode, the Output Compare (OC0A) is cleared on the compare

match between TCNT0 and OCR0A, and set at BOTTOM. In inverting Compare Output mode,

the output is set on compare match and cleared at BOTTOM. Due to the single-slope operation,

the operating frequency of the fast PWM mode can be twice as high as the phase correct PWM

mode that use dual-slope operation. This high frequency makes the fast PWM mode well suited

for power regulation, rectification, and DAC applications. High frequency allows physically small

sized external components (coils, capacitors), and therefore reduces total system cost.

TCNTn

OCn
(Toggle)

OCnx Interrupt Flag Set

1 4Period 2 3

(COMnx1:0 = 1)

fOCnx

fclk_I/O

2 N 1 OCRnx+()⋅ ⋅
--=

98

8018P–AVR–08/10

ATmega169P

In fast PWM mode, the counter is incremented until the counter value matches the MAX value.

The counter is then cleared at the following timer clock cycle. The timing diagram for the fast

PWM mode is shown in Figure 14-6. The TCNT0 value is in the timing diagram shown as a his-

togram for illustrating the single-slope operation. The diagram includes non-inverted and

inverted PWM outputs. The small horizontal line marks on the TCNT0 slopes represent compare

matches between OCR0A and TCNT0.

Figure 14-6. Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches MAX. If the inter-

rupt is enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC0A pin.

Setting the COM0A1:0 bits to two will produce a non-inverted PWM and an inverted PWM output

can be generated by setting the COM0A1:0 to three (See Table 14-4 on page 103). The actual

OC0A value will only be visible on the port pin if the data direction for the port pin is set as out-

put. The PWM waveform is generated by setting (or clearing) the OC0A Register at the compare

match between OCR0A and TCNT0, and clearing (or setting) the OC0A Register at the timer

clock cycle the counter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0A Register represents special cases when generating a PWM

waveform output in the fast PWM mode. If the OCR0A is set equal to BOTTOM, the output will

be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR0A equal to MAX will result

in a constantly high or low output (depending on the polarity of the output set by the COM0A1:0

bits).

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-

ting OC0A to toggle its logical level on each compare match (COM0A1:0 = 1). The waveform

generated will have a maximum frequency of fOC0 = fclk_I/O/2 when OCR0A is set to zero. This

TCNTn

OCRnx Update and
TOVn Interrupt Flag Set

1Period 2 3

OCn

OCn

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx Interrupt Flag Set

4 5 6 7

fOCnxPWM
fclk_I/O

N 256⋅
------------------=

99

8018P–AVR–08/10

ATmega169P

feature is similar to the OC0A toggle in CTC mode, except the double buffer feature of the Out-

put Compare unit is enabled in the fast PWM mode.

14.7.4 Phase Correct PWM Mode

The phase correct PWM mode (WGM01:0 = 1) provides a high resolution phase correct PWM

waveform generation option. The phase correct PWM mode is based on a dual-slope operation.

The counter counts repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In non-

inverting Compare Output mode, the Output Compare (OC0A) is cleared on the compare match

between TCNT0 and OCR0A while upcounting, and set on the compare match while down-

counting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation

has lower maximum operation frequency than single slope operation. However, due to the sym-

metric feature of the dual-slope PWM modes, these modes are preferred for motor control

applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase correct

PWM mode the counter is incremented until the counter value matches MAX. When the counter

reaches MAX, it changes the count direction. The TCNT0 value will be equal to MAX for one

timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 14-7.

The TCNT0 value is in the timing diagram shown as a histogram for illustrating the dual-slope

operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal

line marks on the TCNT0 slopes represent compare matches between OCR0A and TCNT0.

Figure 14-7. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches BOTTOM. The

Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM

value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the

OC0A pin. Setting the COM0A1:0 bits to two will produce a non-inverted PWM. An inverted

PWM output can be generated by setting the COM0A1:0 to three (See Table 14-5 on page 103).

The actual OC0A value will only be visible on the port pin if the data direction for the port pin is

TOVn Interrupt Flag Set

OCnx Interrupt Flag Set

1 2 3

TCNTn

Period

OCn

OCn

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx Update

100

8018P–AVR–08/10

ATmega169P

set as output. The PWM waveform is generated by clearing (or setting) the OC0A Register at the

compare match between OCR0A and TCNT0 when the counter increments, and setting (or

clearing) the OC0A Register at compare match between OCR0A and TCNT0 when the counter

decrements. The PWM frequency for the output when using phase correct PWM can be calcu-

lated by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0A Register represent special cases when generating a PWM

waveform output in the phase correct PWM mode. If the OCR0A is set equal to BOTTOM, the

output will be continuously low and if set equal to MAX the output will be continuously high for

non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of period 2 in Figure 14-7 on page 99 OCn has a transition from high to low

even though there is no Compare Match. The point of this transition is to guarantee symmetry

around BOTTOM. There are two cases that give a transition without Compare Match.

• OCR0A changes its value from MAX, like in Figure 14-7 on page 99. When the OCR0A value

is MAX the OCn pin value is the same as the result of a down-counting Compare Match. To

ensure symmetry around BOTTOM the OCn value at MAX must correspond to the result of an

up-counting Compare Match.

• The timer starts counting from a value higher than the one in OCR0A, and for that reason

misses the Compare Match and hence the OCn change that would have happened on the way

up.

14.8 Timer/Counter Timing Diagrams

The Timer/Counter is a synchronous design and the timer clock (clkT0) is therefore shown as a

clock enable signal in the following figures. The figures include information on when Interrupt

Flags are set. Figure 14-8 contains timing data for basic Timer/Counter operation. The figure

shows the count sequence close to the MAX value in all modes other than phase correct PWM

mode.

Figure 14-8. Timer/Counter Timing Diagram, no Prescaling

Figure 14-9 on page 101 shows the same timing data, but with the prescaler enabled.

fOCnxPCPWM

fclk_I/O

N 510⋅
------------------=

clk
Tn

(clk
I/O

/1)

TOVn

clk
I/O

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

101

8018P–AVR–08/10

ATmega169P

Figure 14-9. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 14-10 shows the setting of OCF0A in all modes except CTC mode.

Figure 14-10. Timer/Counter Timing Diagram, Setting of OCF0A, with Prescaler (fclk_I/O/8)

Figure 14-11 shows the setting of OCF0A and the clearing of TCNT0 in CTC mode.

Figure 14-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Pres-
caler (fclk_I/O/8)

TOVn

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

clk
I/O

clk
Tn

(clk
I/O

/8)

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clk
I/O

clk
Tn

(clk
I/O

/8)

OCFnx

OCRnx

TCNTn

(CTC)

TOP

TOP - 1 TOP BOTTOM BOTTOM + 1

clk
I/O

clk
Tn

(clk
I/O

/8)

102

8018P–AVR–08/10

ATmega169P

14.9 8-bit Timer/Counter Register Description

14.9.1 TCCR0A – Timer/Counter Control Register A

• Bit 7 – FOC0A: Force Output Compare A

The FOC0A bit is only active when the WGM00 bit specifies a non-PWM mode. However, for

ensuring compatibility with future devices, this bit must be set to zero when TCCR0A is written

when operating in PWM mode. When writing a logical one to the FOC0A bit, an immediate com-

pare match is forced on the Waveform Generation unit. The OC0A output is changed according

to its COM0A1:0 bits setting. Note that the FOC0A bit is implemented as a strobe. Therefore it is

the value present in the COM0A1:0 bits that determines the effect of the forced compare.

A FOC0A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using

OCR0A as TOP.

The FOC0A bit is always read as zero.

• Bit 6, 3 – WGM01:0: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum (TOP)

counter value, and what type of waveform generation to be used. Modes of operation supported

by the Timer/Counter unit are: Normal mode, Clear Timer on Compare match (CTC) mode, and

two types of Pulse Width Modulation (PWM) modes. See Table 14-2 and ”Modes of Operation”

on page 96.

Note: 1. The CTC0 and PWM0 bit definition names are now obsolete. Use the WGM01:0 definitions.
However, the functionality and location of these bits are compatible with previous versions of
the timer.

• Bit 5:4 – COM0A1:0: Compare Match Output Mode

These bits control the Output Compare pin (OC0A) behavior. If one or both of the COM0A1:0

bits are set, the OC0A output overrides the normal port functionality of the I/O pin it is connected

to. However, note that the Data Direction Register (DDR) bit corresponding to the OC0A pin

must be set in order to enable the output driver.

Bit 7 6 5 4 3 2 1 0

0x24 (0x44) FOC0A WGM00 COM0A1 COM0A0 WGM01 CS02 CS01 CS00 TCCR0A

Read/Write W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 14-2. Waveform Generation Mode Bit Description()

Mode

WGM01

(CTC0)

WGM00

(PWM0)

Timer/Counter Mode

of Operation TOP

Update of

OCR0A at

TOV0 Flag Set

on

0 0 0 Normal 0xFF Immediate MAX

1 0 1 PWM, Phase Correct 0xFF TOP BOTTOM

2 1 0 CTC OCR0A Immediate MAX

3 1 1 Fast PWM 0xFF BOTTOM MAX

103

8018P–AVR–08/10

ATmega169P

When OC0A is connected to the pin, the function of the COM0A1:0 bits depends on the

WGM01:0 bit setting. Table 14-3 shows the COM0A1:0 bit functionality when the WGM01:0 bits

are set to a normal or CTC mode (non-PWM).

Table 14-4 shows the COM0A1:0 bit functionality when the WGM01:0 bits are set to fast PWM

mode.

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the com-
pare match is ignored, but the set or clear is done at BOTTOM. See ”Fast PWM Mode” on
page 97 for more details.

Table 14-5 shows the COM0A1:0 bit functionality when the WGM01:0 bits are set to phase cor-

rect PWM mode.

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the com-
pare match is ignored, but the set or clear is done at TOP. See ”Phase Correct PWM Mode” on
page 99 for more details.

• Bit 2:0 – CS02:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter.

Table 14-3. Compare Output Mode, non-PWM Mode

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Toggle OC0A on compare match

1 0 Clear OC0A on compare match

1 1 Set OC0A on compare match

Table 14-4. Compare Output Mode, Fast PWM Mode(1)

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Reserved

1 0
Clear OC0A on compare match, set OC0A at BOTTOM
(non-inverting mode)

1 1
Set OC0A on compare match, clear OC0A at BOTTOM
(inverting mode)

Table 14-5. Compare Output Mode, Phase Correct PWM Mode(1)

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Reserved

1 0
Clear OC0A on compare match when up-counting. Set OC0A on
compare match when down counting.

1 1
Set OC0A on compare match when up-counting. Clear OC0A on
compare match when down counting.

104

8018P–AVR–08/10

ATmega169P

If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the

counter even if the pin is configured as an output. This feature allows software control of the

counting.

14.9.2 TCNT0 – Timer/Counter Register

The Timer/Counter Register gives direct access, both for read and write operations, to the

Timer/Counter unit 8-bit counter. Writing to the TCNT0 Register blocks (removes) the compare

match on the following timer clock. Modifying the counter (TCNT0) while the counter is running,

introduces a risk of missing a compare match between TCNT0 and the OCR0A Register.

14.9.3 OCR0A – Output Compare Register A

The Output Compare Register A contains an 8-bit value that is continuously compared with the

counter value (TCNT0). A match can be used to generate an Output Compare interrupt, or to

generate a waveform output on the OC0A pin.

14.9.4 TIMSK0 – Timer/Counter 0 Interrupt Mask Register

Table 14-6. Clock Select Bit Description

CS02 CS01 CS00 Description

0 0 0 No clock source (Timer/Counter stopped)

0 0 1 clkI/O/(No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on T0 pin. Clock on falling edge.

1 1 1 External clock source on T0 pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

0x26 (0x46) TCNT0[7:0] TCNT0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x27 (0x47) OCR0A[7:0] OCR0A

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6E) – – – – – – OCIE0A TOIE0 TIMSK0

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

105

8018P–AVR–08/10

ATmega169P

• Bit 1 – OCIE0A: Timer/Counter0 Output Compare Match A Interrupt Enable

When the OCIE0A bit is written to one, and the I-bit in the Status Register is set (one), the

Timer/Counter0 Compare Match A interrupt is enabled. The corresponding interrupt is executed

if a compare match in Timer/Counter0 occurs, that is, when the OCF0A bit is set in the

Timer/Counter 0 Interrupt Flag Register – TIFR0.

• Bit 0 – TOIE0: Timer/Counter0 Overflow Interrupt Enable

When the TOIE0 bit is written to one, and the I-bit in the Status Register is set (one), the

Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is executed if an

overflow in Timer/Counter0 occurs, that is, when the TOV0 bit is set in the Timer/Counter 0 Inter-

rupt Flag Register – TIFR0.

14.9.5 TIFR0 – Timer/Counter 0 Interrupt Flag Register

• Bit 1 – OCF0A: Output Compare Flag 0 A

The OCF0A bit is set (one) when a compare match occurs between the Timer/Counter0 and the

data in OCR0A – Output Compare Register0. OCF0A is cleared by hardware when executing

the corresponding interrupt handling vector. Alternatively, OCF0A is cleared by writing a logic

one to the flag. When the I-bit in SREG, OCIE0A (Timer/Counter0 Compare match Interrupt

Enable), and OCF0A are set (one), the Timer/Counter0 Compare match Interrupt is executed.

• Bit 0 – TOV0: Timer/Counter0 Overflow Flag

The bit TOV0 is set (one) when an overflow occurs in Timer/Counter0. TOV0 is cleared by hard-

ware when executing the corresponding interrupt handling vector. Alternatively, TOV0 is cleared

by writing a logic one to the flag. When the SREG I-bit, TOIE0 (Timer/Counter0 Overflow Inter-

rupt Enable), and TOV0 are set (one), the Timer/Counter0 Overflow interrupt is executed. In

phase correct PWM mode, this bit is set when Timer/Counter0 changes counting direction at

0x00.

Bit 7 6 5 4 3 2 1 0

0x15 (0x35) – – – – – – OCF0A TOV0 TIFR0

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

106

8018P–AVR–08/10

ATmega169P

15. 16-bit Timer/Counter1

15.1 Features

• True 16-bit Design (that is, allows 16-bit PWM)

• Two independent Output Compare Units

• Double Buffered Output Compare Registers

• One Input Capture Unit

• Input Capture Noise Canceler

• Clear Timer on Compare Match (Auto Reload)

• Glitch-free, Phase Correct Pulse Width Modulator (PWM)

• Variable PWM Period

• Frequency Generator

• External Event Counter

• Four independent interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1)

15.2 Overview

The 16-bit Timer/Counter unit allows accurate program execution timing (event management),

wave generation, and signal timing measurement. Most register and bit references in this sec-

tion are written in general form. A lower case “n” replaces the Timer/Counter number, and a

lower case “x” replaces the Output Compare unit number. However, when using the register or

bit defines in a program, the precise form must be used, that is, TCNT1 for accessing

Timer/Counter1 counter value and so on.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 15-1 on page 107. For

the actual placement of I/O pins, refer to Figure 1-1 on page 2. CPU accessible I/O Registers,

including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit loca-

tions are listed in the Section 15.11 ”16-bit Timer/Counter Register Description” on page 128.

The PRTIM1 bit in Section 9.9.2 ”PRR – Power Reduction Register” on page 45 must be written

to zero to enable Timer/Counter1 module.

107

8018P–AVR–08/10

ATmega169P

Figure 15-1. 16-bit Timer/Counter Block Diagram(1)

Note: 1. Refer to Figure 1-1 on page 2, Table 13-5 on page 74, and Table 13-11 on page 78 for
Timer/Counter1 pin placement and description.

15.2.1 Registers

The Timer/Counter (TCNT1), Output Compare Registers (OCR1A/B), and Input Capture Regis-

ter (ICR1) are all 16-bit registers. Special procedures must be followed when accessing the 16-

bit registers. These procedures are described in the section ”Accessing 16-bit Registers” on

page 109. The Timer/Counter Control Registers (TCCR1A/B) are 8-bit registers and have no

CPU access restrictions. Interrupt requests (abbreviated to Int.Req. in the figure) signals are all

visible in the Timer Interrupt Flag Register (TIFR1). All interrupts are individually masked with

the Timer Interrupt Mask Register (TIMSK1). TIFR1 and TIMSK1 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on

the T1 pin. The Clock Select logic block controls which clock source and edge the Timer/Counter

uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source

is selected. The output from the Clock Select logic is referred to as the timer clock (clkT1).

The double buffered Output Compare Registers (OCR1A/B) are compared with the Timer/Coun-

ter value at all time. The result of the compare can be used by the Waveform Generator to

generate a PWM or variable frequency output on the Output Compare pin (OC1A/B). See ”Out-

Clock Select

Timer/Counter

D
A
T
A

 B
U

S

OCRnA

OCRnB

ICRn

=

=

TCNTn

Waveform

Generation

Waveform

Generation

OCnA

OCnB

Noise
Canceler

ICPn

=

Fixed

TOP

Values

Edge
Detector

Control Logic

= 0

TOP BOTTOM

Count

Clear

Direction

TOVn

(Int.Req.)

OCnA

(Int.Req.)

OCnB

(Int.Req.)

ICFn (Int.Req.)

TCCRnA TCCRnB

(From Analog

Comparator Ouput)

Tn
Edge

Detector

(From Prescaler)

clk
Tn

108

8018P–AVR–08/10

ATmega169P

put Compare Units” on page 115. The compare match event will also set the Compare Match

Flag (OCF1A/B) which can be used to generate an Output Compare interrupt request.

The Input Capture Register can capture the Timer/Counter value at a given external (edge trig-

gered) event on either the Input Capture pin (ICP1) or on the Analog Comparator pins (See ”AC

- Analog Comparator” on page 212.) The Input Capture unit includes a digital filtering unit (Noise

Canceler) for reducing the chance of capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined

by either the OCR1A Register, the ICR1 Register, or by a set of fixed values. When using

OCR1A as TOP value in a PWM mode, the OCR1A Register can not be used for generating a

PWM output. However, the TOP value will in this case be double buffered allowing the TOP

value to be changed in run time. If a fixed TOP value is required, the ICR1 Register can be used

as an alternative, freeing the OCR1A to be used as PWM output.

15.2.2 Definitions

The following definitions are used extensively throughout the section:

15.2.3 Compatibility

The 16-bit Timer/Counter has been updated and improved from previous versions of the 16-bit

AVR Timer/Counter. This 16-bit Timer/Counter is fully compatible with the earlier version

regarding:

• All 16-bit Timer/Counter related I/O Register address locations, including Timer Interrupt

Registers.

• Bit locations inside all 16-bit Timer/Counter Registers, including Timer Interrupt Registers.

• Interrupt Vectors.

The following control bits have changed name, but have same functionality and register location:

• PWM10 is changed to WGM10.

• PWM11 is changed to WGM11.

• CTC1 is changed to WGM12.

The following bits are added to the 16-bit Timer/Counter Control Registers:

• FOC1A and FOC1B are added to TCCR1C.

• WGM13 is added to TCCR1B.

The 16-bit Timer/Counter has improvements that will affect the compatibility in some special

cases.

BOTTOM The counter reaches the BOTTOM when it becomes 0x0000.MAX The counter reaches its MAXimum when it becomes 0xFFFF (decimal 65535).TOP The counter reaches the TOP when it becomes equal to the highest value in the count sequence. The TOP value can be assigned to be one of the fixed values: 0x00FF, 0x01FF, or 0x03FF, or to the value stored in the OCR1A or ICR1 Register. The assignment is dependent of the mode of operation.

109

8018P–AVR–08/10

ATmega169P

15.3 Accessing 16-bit Registers

The TCNT1, OCR1A/B, and ICR1 are 16-bit registers that can be accessed by the AVR CPU via

the 8-bit data bus. The 16-bit register must be byte accessed using two read or write operations.

Each 16-bit timer has a single 8-bit register for temporary storing of the high byte of the 16-bit

access. The same temporary register is shared between all 16-bit registers within each 16-bit

timer. Accessing the low byte triggers the 16-bit read or write operation. When the low byte of a

16-bit register is written by the CPU, the high byte stored in the temporary register, and the low

byte written are both copied into the 16-bit register in the same clock cycle. When the low byte of

a 16-bit register is read by the CPU, the high byte of the 16-bit register is copied into the tempo-

rary register in the same clock cycle as the low byte is read.

Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCR1A/B 16-

bit registers does not involve using the temporary register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low

byte must be read before the high byte.

The following code examples show how to access the 16-bit Timer Registers assuming that no

interrupts updates the temporary register. The same principle can be used directly for accessing

the OCR1A/B and ICR1 Registers. Note that when using “C”, the compiler handles the 16-bit

access.

Note: 1. See ”About Code Examples” on page 10.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt

occurs between the two instructions accessing the 16-bit register, and the interrupt code

updates the temporary register by accessing the same or any other of the 16-bit Timer Regis-

ters, then the result of the access outside the interrupt will be corrupted. Therefore, when both

Assembly Code Examples(1)

...

; Set TCNT1 to 0x01FF

ldi r17,0x01

ldi r16,0xFF

out TCNT1H,r17
out TCNT1L,r16
; Read TCNT1 into r17:r16
in r16,TCNT1L
in r17,TCNT1H
...

C Code Examples(1)

unsigned int i;

...

/* Set TCNT1 to 0x01FF */

TCNT1 = 0x1FF;
/* Read TCNT1 into i */

i = TCNT1;
...

110

8018P–AVR–08/10

ATmega169P

the main code and the interrupt code update the temporary register, the main code must disable

the interrupts during the 16-bit access.

The following code examples show how to do an atomic read of the TCNT1 Register contents.

Reading any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

Note: 1. See ”About Code Examples” on page 10.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

Assembly Code Example(1)

TIM16_ReadTCNT1:
; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Read TCNT1 into r17:r16
in r16,TCNT1L
in r17,TCNT1H
; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

unsigned int TIM16_ReadTCNT1(void)
{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

__disable_interrupt();

/* Read TCNT1 into i */

i = TCNT1;
/* Restore global interrupt flag */

SREG = sreg;

return i;

}

111

8018P–AVR–08/10

ATmega169P

The following code examples show how to do an atomic write of the TCNT1 Register contents.

Writing any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

Note: 1. See ”About Code Examples” on page 10.

The assembly code example requires that the r17:r16 register pair contains the value to be writ-

ten to TCNT1.

15.3.1 Reusing the Temporary High Byte Register

If writing to more than one 16-bit register where the high byte is the same for all registers written,

then the high byte only needs to be written once. However, note that the same rule of atomic

operation described previously also applies in this case.

15.4 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source

is selected by the Clock Select logic which is controlled by the Clock Select (CS12:0) bits

located in the Timer/Counter control Register B (TCCR1B). For details on clock sources and

prescaler, see ”Timer/Counter0 and Timer/Counter1 Prescalers” on page 135.

Assembly Code Example(1)

TIM16_WriteTCNT1:
; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Set TCNT1 to r17:r16

out TCNT1H,r17
out TCNT1L,r16
; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

void TIM16_WriteTCNT1(unsigned int i)
{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

__disable_interrupt();

/* Set TCNT1 to i */

TCNT1 = i;
/* Restore global interrupt flag */

SREG = sreg;

}

112

8018P–AVR–08/10

ATmega169P

15.5 Counter Unit

The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit.

Figure 15-2 shows a block diagram of the counter and its surroundings.

Figure 15-2. Counter Unit Block Diagram

Signal description (internal signals):

Count Increment or decrement TCNT1 by 1.

Direction Select between increment and decrement.

Clear Clear TCNT1 (set all bits to zero).

clkT1 Timer/Counter clock.

TOP Signalize that TCNT1 has reached maximum value.

BOTTOM Signalize that TCNT1 has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNT1H) con-

taining the upper eight bits of the counter, and Counter Low (TCNT1L) containing the lower eight

bits. The TCNT1H Register can only be indirectly accessed by the CPU. When the CPU does an

access to the TCNT1H I/O location, the CPU accesses the high byte temporary register (TEMP).

The temporary register is updated with the TCNT1H value when the TCNT1L is read, and

TCNT1H is updated with the temporary register value when TCNT1L is written. This allows the

CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data bus.

It is important to notice that there are special cases of writing to the TCNT1 Register when the

counter is counting that will give unpredictable results. The special cases are described in the

sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented

at each timer clock (clkT1). The clkT1 can be generated from an external or internal clock source,

selected by the Clock Select bits (CS12:0). When no clock source is selected (CS12:0 = 0) the

timer is stopped. However, the TCNT1 value can be accessed by the CPU, independent of

whether clkT1 is present or not. A CPU write overrides (has priority over) all counter clear or

count operations.

The counting sequence is determined by the setting of the Waveform Generation mode bits

(WGM13:0) located in the Timer/Counter Control Registers A and B (TCCR1A and TCCR1B).

There are close connections between how the counter behaves (counts) and how waveforms

are generated on the Output Compare outputs OC1x. For more details about advanced counting

sequences and waveform generation, see ”Modes of Operation” on page 118.

TEMP (8-bit)

DATA BUS (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)
Control Logic

Count

Clear

Direction

TOVn

(Int.Req.)

Clock Select

TOP BOTTOM

Tn
Edge

Detector

(From Prescaler)

clk
Tn

113

8018P–AVR–08/10

ATmega169P

The Timer/Counter Overflow Flag (TOV1) is set according to the mode of operation selected by

the WGM13:0 bits. TOV1 can be used for generating a CPU interrupt.

15.6 Input Capture Unit

The Timer/Counter incorporates an Input Capture unit that can capture external events and give

them a time-stamp indicating time of occurrence. The external signal indicating an event, or mul-

tiple events, can be applied via the ICP1 pin or alternatively, via the analog-comparator unit. The

time-stamps can then be used to calculate frequency, duty-cycle, and other features of the sig-

nal applied. Alternatively the time-stamps can be used for creating a log of the events.

The Input Capture unit is illustrated by the block diagram shown in Figure 15-3. The elements of

the block diagram that are not directly a part of the Input Capture unit are gray shaded. The

small “n” in register and bit names indicates the Timer/Counter number.

Figure 15-3. Input Capture Unit Block Diagram

When a change of the logic level (an event) occurs on the Input Capture pin (ICP1), alternatively

on the Analog Comparator output (ACO), and this change confirms to the setting of the edge

detector, a capture will be triggered. When a capture is triggered, the 16-bit value of the counter

(TCNT1) is written to the Input Capture Register (ICR1). The Input Capture Flag (ICF1) is set at

the same system clock as the TCNT1 value is copied into ICR1 Register. If enabled (ICIE1 = 1),

the Input Capture Flag generates an Input Capture interrupt. The ICF1 Flag is automatically

cleared when the interrupt is executed. Alternatively the ICF1 Flag can be cleared by software

by writing a logical one to its I/O bit location.

Reading the 16-bit value in the Input Capture Register (ICR1) is done by first reading the low

byte (ICR1L) and then the high byte (ICR1H). When the low byte is read the high byte is copied

into the high byte temporary register (TEMP). When the CPU reads the ICR1H I/O location it will

access the TEMP Register.

The ICR1 Register can only be written when using a Waveform Generation mode that utilizes

the ICR1 Register for defining the counter’s TOP value. In these cases the Waveform Genera-

ICFn (Int.Req.)

Analog
Comparator

WRITE ICRn (16-bit Register)

ICRnH (8-bit)

Noise
Canceler

ICPn

Edge
Detector

TEMP (8-bit)

DATA BUS (8-bit)

ICRnL (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)

ACIC* ICNC ICESACO*

114

8018P–AVR–08/10

ATmega169P

tion mode (WGM13:0) bits must be set before the TOP value can be written to the ICR1

Register. When writing the ICR1 Register the high byte must be written to the ICR1H I/O location

before the low byte is written to ICR1L.

For more information on how to access the 16-bit registers refer to ”Accessing 16-bit Registers”

on page 109.

15.6.1 Input Capture Trigger Source

The main trigger source for the Input Capture unit is the Input Capture pin (ICP1).

Timer/Counter1 can alternatively use the Analog Comparator output as trigger source for the

Input Capture unit. The Analog Comparator is selected as trigger source by setting the Analog

Comparator Input Capture (ACIC) bit in the Analog Comparator Control and Status Register

(ACSR). Be aware that changing trigger source can trigger a capture. The Input Capture Flag

must therefore be cleared after the change.

Both the Input Capture pin (ICP1) and the Analog Comparator output (ACO) inputs are sampled

using the same technique as for the T1 pin (Figure 16-1 on page 135). The edge detector is also

identical. However, when the noise canceler is enabled, additional logic is inserted before the

edge detector, which increases the delay by four system clock cycles. Note that the input of the

noise canceler and edge detector is always enabled unless the Timer/Counter is set in a Wave-

form Generation mode that uses ICR1 to define TOP.

An Input Capture can be triggered by software by controlling the port of the ICP1 pin.

15.6.2 Noise Canceler

The noise canceler improves noise immunity by using a simple digital filtering scheme. The

noise canceler input is monitored over four samples, and all four must be equal for changing the

output that in turn is used by the edge detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNC1) bit in

Timer/Counter Control Register B (TCCR1B). When enabled the noise canceler introduces addi-

tional four system clock cycles of delay from a change applied to the input, to the update of the

ICR1 Register. The noise canceler uses the system clock and is therefore not affected by the

prescaler.

15.6.3 Using the Input Capture Unit

The main challenge when using the Input Capture unit is to assign enough processor capacity

for handling the incoming events. The time between two events is critical. If the processor has

not read the captured value in the ICR1 Register before the next event occurs, the ICR1 will be

overwritten with a new value. In this case the result of the capture will be incorrect.

When using the Input Capture interrupt, the ICR1 Register should be read as early in the inter-

rupt handler routine as possible. Even though the Input Capture interrupt has relatively high

priority, the maximum interrupt response time is dependent on the maximum number of clock

cycles it takes to handle any of the other interrupt requests.

Using the Input Capture unit in any mode of operation when the TOP value (resolution) is

actively changed during operation, is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed after

each capture. Changing the edge sensing must be done as early as possible after the ICR1

Register has been read. After a change of the edge, the Input Capture Flag (ICF1) must be

115

8018P–AVR–08/10

ATmega169P

cleared by software (writing a logical one to the I/O bit location). For measuring frequency only,

the clearing of the ICF1 Flag is not required (if an interrupt handler is used).

15.7 Output Compare Units

The 16-bit comparator continuously compares TCNT1 with the Output Compare Register

(OCR1x). If TCNT equals OCR1x the comparator signals a match. A match will set the Output

Compare Flag (OCF1x) at the next timer clock cycle. If enabled (OCIE1x = 1), the Output Com-

pare Flag generates an Output Compare interrupt. The OCF1x Flag is automatically cleared

when the interrupt is executed. Alternatively the OCF1x Flag can be cleared by software by writ-

ing a logical one to its I/O bit location. The Waveform Generator uses the match signal to

generate an output according to operating mode set by the Waveform Generation mode

(WGM13:0) bits and Compare Output mode (COM1x1:0) bits. The TOP and BOTTOM signals

are used by the Waveform Generator for handling the special cases of the extreme values in

some modes of operation (See ”Modes of Operation” on page 118.)

A special feature of Output Compare unit A allows it to define the Timer/Counter TOP value (that

is, counter resolution). In addition to the counter resolution, the TOP value defines the period

time for waveforms generated by the Waveform Generator.

Figure 15-4 shows a block diagram of the Output Compare unit. The small “n” in the register and

bit names indicates the device number (n = 1 for Timer/Counter 1), and the “x” indicates Output

Compare unit (A/B). The elements of the block diagram that are not directly a part of the Output

Compare unit are gray shaded.

Figure 15-4. Output Compare Unit, Block Diagram

The OCR1x Register is double buffered when using any of the twelve Pulse Width Modulation

(PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the

double buffering is disabled. The double buffering synchronizes the update of the OCR1x Com-

pare Register to either TOP or BOTTOM of the counting sequence. The synchronization

OCFnx (Int.Req.)

= (16-bit Comparator)

OCRnx Buffer (16-bit Register)

OCRnxH Buf. (8-bit)

OCnx

TEMP (8-bit)

DATA BUS (8-bit)

OCRnxL Buf. (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)

COMnx1:0WGMn3:0

OCRnx (16-bit Register)

OCRnxH (8-bit) OCRnxL (8-bit)

Waveform Generator
TOP

BOTTOM

116

8018P–AVR–08/10

ATmega169P

prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the out-

put glitch-free.

The OCR1x Register access may seem complex, but this is not case. When the double buffering

is enabled, the CPU has access to the OCR1x Buffer Register, and if double buffering is dis-

abled the CPU will access the OCR1x directly. The content of the OCR1x (Buffer or Compare)

Register is only changed by a write operation (the Timer/Counter does not update this register

automatically as the TCNT1 and ICR1 Register). Therefore OCR1x is not read via the high byte

temporary register (TEMP). However, it is a good practice to read the low byte first as when

accessing other 16-bit registers. Writing the OCR1x Registers must be done via the TEMP Reg-

ister since the compare of all 16 bits is done continuously. The high byte (OCR1xH) has to be

written first. When the high byte I/O location is written by the CPU, the TEMP Register will be

updated by the value written. Then when the low byte (OCR1xL) is written to the lower eight bits,

the high byte will be copied into the upper 8-bits of either the OCR1x buffer or OCR1x Compare

Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to ”Accessing 16-bit Registers”

on page 109.

15.7.1 Force Output Compare

In non-PWM Waveform Generation modes, the match output of the comparator can be forced by

writing a one to the Force Output Compare (FOC1x) bit. Forcing compare match will not set the

OCF1x Flag or reload/clear the timer, but the OC1x pin will be updated as if a real compare

match had occurred (the COMx1:0 bits settings define whether the OC1x pin is set, cleared or

toggled).

15.7.2 Compare Match Blocking by TCNT1 Write

All CPU writes to the TCNT1 Register will block any compare match that occurs in the next timer

clock cycle, even when the timer is stopped. This feature allows OCR1x to be initialized to the

same value as TCNT1 without triggering an interrupt when the Timer/Counter clock is enabled.

15.7.3 Using the Output Compare Unit

Since writing TCNT1 in any mode of operation will block all compare matches for one timer clock

cycle, there are risks involved when changing TCNT1 when using any of the Output Compare

units, independent of whether the Timer/Counter is running or not. If the value written to TCNT1

equals the OCR1x value, the compare match will be missed, resulting in incorrect waveform

generation. Do not write the TCNT1 equal to TOP in PWM modes with variable TOP values. The

compare match for the TOP will be ignored and the counter will continue to 0xFFFF. Similarly,

do not write the TCNT1 value equal to BOTTOM when the counter is down counting.

The setup of the OC1x should be performed before setting the Data Direction Register for the

port pin to output. The easiest way of setting the OC1x value is to use the Force Output Com-

pare (FOC1x) strobe bits in Normal mode. The OC1x Register keeps its value even when

changing between Waveform Generation modes.

Be aware that the COM1x1:0 bits are not double buffered together with the compare value.

Changing the COM1x1:0 bits will take effect immediately.

117

8018P–AVR–08/10

ATmega169P

15.8 Compare Match Output Unit

The Compare Output mode (COM1x1:0) bits have two functions. The Waveform Generator uses

the COM1x1:0 bits for defining the Output Compare (OC1x) state at the next compare match.

Secondly the COM1x1:0 bits control the OC1x pin output source. Figure 15-5 shows a simplified

schematic of the logic affected by the COM1x1:0 bit setting. The I/O Registers, I/O bits, and I/O

pins in the figure are shown in bold. Only the parts of the general I/O Port Control Registers

(DDR and PORT) that are affected by the COM1x1:0 bits are shown. When referring to the

OC1x state, the reference is for the internal OC1x Register, not the OC1x pin. If a system reset

occur, the OC1x Register is reset to “0”.

Figure 15-5. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the Output Compare (OC1x) from the Waveform

Generator if either of the COM1x1:0 bits are set. However, the OC1x pin direction (input or out-

put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction

Register bit for the OC1x pin (DDR_OC1x) must be set as output before the OC1x value is visi-

ble on the pin. The port override function is generally independent of the Waveform Generation

mode, but there are some exceptions. Refer to Table 15-1 on page 128, Table 15-2 on page 128

and Table 15-3 on page 129 for details.

The design of the Output Compare pin logic allows initialization of the OC1x state before the out-

put is enabled. Note that some COM1x1:0 bit settings are reserved for certain modes of

operation. See ”16-bit Timer/Counter Register Description” on page 128.

The COM1x1:0 bits have no effect on the Input Capture unit.

PORT

DDR

D Q

D Q

OCnx

PinOCnx

D Q
Waveform

Generator

COMnx1

COMnx0

0

1
D

A
T
A

 B
U

S
FOCnx

clk
I/O

118

8018P–AVR–08/10

ATmega169P

15.8.1 Compare Output Mode and Waveform Generation

The Waveform Generator uses the COM1x1:0 bits differently in normal, CTC, and PWM modes.

For all modes, setting the COM1x1:0 = 0 tells the Waveform Generator that no action on the

OC1x Register is to be performed on the next compare match. For compare output actions in the

non-PWM modes refer to Table 15-1 on page 128. For fast PWM mode refer to Table 15-2 on

page 128, and for phase correct and phase and frequency correct PWM refer to Table 15-3 on

page 129.

A change of the COM1x1:0 bits state will have effect at the first compare match after the bits are

written. For non-PWM modes, the action can be forced to have immediate effect by using the

FOC1x strobe bits.

15.9 Modes of Operation

The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins,

is defined by the combination of the Waveform Generation mode (WGM13:0) and Compare Out-

put mode (COM1x1:0) bits. The Compare Output mode bits do not affect the counting sequence,

while the Waveform Generation mode bits do. The COM1x1:0 bits control whether the PWM out-

put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes

the COM1x1:0 bits control whether the output should be set, cleared or toggle at a compare

match. (See ”Compare Match Output Unit” on page 117.)

For detailed timing information refer to ”Timer/Counter Timing Diagrams” on page 126.

15.9.1 Normal Mode

The simplest mode of operation is the Normal mode (WGM13:0 = 0). In this mode the counting

direction is always up (incrementing), and no counter clear is performed. The counter simply

overruns when it passes its maximum 16-bit value (MAX = 0xFFFF) and then restarts from the

BOTTOM (0x0000). In normal operation the Timer/Counter Overflow Flag (TOV1) will be set in

the same timer clock cycle as the TCNT1 becomes zero. The TOV1 Flag in this case behaves

like a 17th bit, except that it is only set, not cleared. However, combined with the timer overflow

interrupt that automatically clears the TOV1 Flag, the timer resolution can be increased by soft-

ware. There are no special cases to consider in the Normal mode, a new counter value can be

written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maximum

interval between the external events must not exceed the resolution of the counter. If the interval

between events are too long, the timer overflow interrupt or the prescaler must be used to

extend the resolution for the capture unit.

The Output Compare units can be used to generate interrupts at some given time. Using the

Output Compare to generate waveforms in Normal mode is not recommended, since this will

occupy too much of the CPU time.

15.9.2 Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGM13:0 = 4 or 12), the OCR1A or ICR1 Register

are used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when

the counter value (TCNT1) matches either the OCR1A (WGM13:0 = 4) or the ICR1 (WGM13:0 =

12). The OCR1A or ICR1 define the top value for the counter, hence also its resolution. This

mode allows greater control of the compare match output frequency. It also simplifies the opera-

tion of counting external events.

119

8018P–AVR–08/10

ATmega169P

The timing diagram for the CTC mode is shown in Figure 15-6. The counter value (TCNT1)

increases until a compare match occurs with either OCR1A or ICR1, and then counter (TCNT1)

is cleared.

Figure 15-6. CTC Mode, Timing Diagram

An interrupt can be generated at each time the counter value reaches the TOP value by either

using the OCF1A or ICF1 Flag according to the register used to define the TOP value. If the

interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. How-

ever, changing the TOP to a value close to BOTTOM when the counter is running with none or a

low prescaler value must be done with care since the CTC mode does not have the double buff-

ering feature. If the new value written to OCR1A or ICR1 is lower than the current value of

TCNT1, the counter will miss the compare match. The counter will then have to count to its max-

imum value (0xFFFF) and wrap around starting at 0x0000 before the compare match can occur.

In many cases this feature is not desirable. An alternative will then be to use the fast PWM mode

using OCR1A for defining TOP (WGM13:0 = 15) since the OCR1A then will be double buffered.

For generating a waveform output in CTC mode, the OC1A output can be set to toggle its logical

level on each compare match by setting the Compare Output mode bits to toggle mode

(COM1A1:0 = 1). The OC1A value will not be visible on the port pin unless the data direction for

the pin is set to output (DDR_OC1A = 1). The waveform generated will have a maximum fre-

quency of fOC1A = fclk_I/O/2 when OCR1A is set to zero (0x0000). The waveform frequency is

defined by the following equation:

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV1 Flag is set in the same timer clock cycle that the

counter counts from MAX to 0x0000.

TCNTn

OCnA

(Toggle)

OCnA Interrupt Flag Set

or ICFn Interrupt Flag Set

(Interrupt on TOP)

1 4Period 2 3

(COMnA1:0 = 1)

fOCnA
fclk_I/O

2 N 1 OCRnA+()⋅ ⋅
---=

120

8018P–AVR–08/10

ATmega169P

15.9.3 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGM13:0 = 5, 6, 7, 14, or 15) provides a

high frequency PWM waveform generation option. The fast PWM differs from the other PWM

options by its single-slope operation. The counter counts from BOTTOM to TOP then restarts

from BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1x) is cleared

on the compare match between TCNT1 and OCR1x, and set at BOTTOM. In inverting Compare

Output mode output is set on compare match and cleared at BOTTOM. Due to the single-slope

operation, the operating frequency of the fast PWM mode can be twice as high as the phase cor-

rect and phase and frequency correct PWM modes that use dual-slope operation. This high

frequency makes the fast PWM mode well suited for power regulation, rectification, and DAC

applications. High frequency allows physically small sized external components (coils, capaci-

tors), hence reduces total system cost.

The PWM resolution for fast PWM can be fixed to 8-bit, 9-bit, or 10-bit, or defined by either ICR1

or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the

maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can be

calculated by using the following equation:

In fast PWM mode the counter is incremented until the counter value matches either one of the

fixed values 0x00FF, 0x01FF, or 0x03FF (WGM13:0 = 5, 6, or 7), the value in ICR1 (WGM13:0 =

14), or the value in OCR1A (WGM13:0 = 15). The counter is then cleared at the following timer

clock cycle. The timing diagram for the fast PWM mode is shown in Figure 15-7. The figure

shows fast PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1 value is in the

timing diagram shown as a histogram for illustrating the single-slope operation. The diagram

includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT1

slopes represent compare matches between OCR1x and TCNT1. The OC1x Interrupt Flag will

be set when a compare match occurs.

Figure 15-7. Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches TOP. In addition

the OC1A or ICF1 Flag is set at the same timer clock cycle as TOV1 is set when either OCR1A

RFPWM
TOP 1+()log

2()log
-----------------------------------=

TCNTn

OCRnx / TOP Update

and TOVn Interrupt Flag

Set and OCnA Interrupt

Flag Set or ICFn

Interrupt Flag Set

(Interrupt on TOP)

1 7Period 2 3 4 5 6 8

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

121

8018P–AVR–08/10

ATmega169P

or ICR1 is used for defining the TOP value. If one of the interrupts are enabled, the interrupt han-

dler routine can be used for updating the TOP and compare values.

When changing the TOP value the program must ensure that the new TOP value is higher or

equal to the value of all of the Compare Registers. If the TOP value is lower than any of the

Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.

Note that when using fixed TOP values the unused bits are masked to zero when any of the

OCR1x Registers are written.

The procedure for updating ICR1 differs from updating OCR1A when used for defining the TOP

value. The ICR1 Register is not double buffered. This means that if ICR1 is changed to a low

value when the counter is running with none or a low prescaler value, there is a risk that the new

ICR1 value written is lower than the current value of TCNT1. The result will then be that the

counter will miss the compare match at the TOP value. The counter will then have to count to the

MAX value (0xFFFF) and wrap around starting at 0x0000 before the compare match can occur.

The OCR1A Register however, is double buffered. This feature allows the OCR1A I/O location

to be written anytime. When the OCR1A I/O location is written the value written will be put into

the OCR1A Buffer Register. The OCR1A Compare Register will then be updated with the value

in the Buffer Register at the next timer clock cycle the TCNT1 matches TOP. The update is done

at the same timer clock cycle as the TCNT1 is cleared and the TOV1 Flag is set.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using

ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However,

if the base PWM frequency is actively changed (by changing the TOP value), using the OCR1A

as TOP is clearly a better choice due to its double buffer feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins.

Setting the COM1x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output

can be generated by setting the COM1x1:0 to three (see Table 15-2 on page 128). The actual

OC1x value will only be visible on the port pin if the data direction for the port pin is set as output

(DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x Register at

the compare match between OCR1x and TCNT1, and clearing (or setting) the OC1x Register at

the timer clock cycle the counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating a PWM

waveform output in the fast PWM mode. If the OCR1x is set equal to BOTTOM (0x0000) the out-

put will be a narrow spike for each TOP+1 timer clock cycle. Setting the OCR1x equal to TOP

will result in a constant high or low output (depending on the polarity of the output set by the

COM1x1:0 bits).

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-

ting OC1A to toggle its logical level on each compare match (COM1A1:0 = 1). This applies only

if OCR1A is used to define the TOP value (WGM13:0 = 15). The waveform generated will have

a maximum frequency of fOC1A = fclk_I/O/2 when OCR1A is set to zero (0x0000). This feature is

similar to the OC1A toggle in CTC mode, except the double buffer feature of the Output Com-

pare unit is enabled in the fast PWM mode.

fOCnxPWM
fclk_I/O

N 1 TOP+()⋅
-----------------------------------=

122

8018P–AVR–08/10

ATmega169P

15.9.4 Phase Correct PWM Mode

The phase correct Pulse Width Modulation or phase correct PWM mode (WGM13:0 = 1, 2, 3,

10, or 11) provides a high resolution phase correct PWM waveform generation option. The

phase correct PWM mode is, like the phase and frequency correct PWM mode, based on a dual-

slope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then from

TOP to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1x) is

cleared on the compare match between TCNT1 and OCR1x while upcounting, and set on the

compare match while down counting. In inverting Output Compare mode, the operation is

inverted. The dual-slope operation has lower maximum operation frequency than single slope

operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes

are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-bit, 9-bit, or 10-bit, or

defined by either ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set

to 0x0003), and the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM reso-

lution in bits can be calculated by using the following equation:

In phase correct PWM mode the counter is incremented until the counter value matches either

one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGM13:0 = 1, 2, or 3), the value in ICR1

(WGM13:0 = 10), or the value in OCR1A (WGM13:0 = 11). The counter has then reached the

TOP and changes the count direction. The TCNT1 value will be equal to TOP for one timer clock

cycle. The timing diagram for the phase correct PWM mode is shown on Figure 15-8. The figure

shows phase correct PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1

value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The

diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on

the TCNT1 slopes represent compare matches between OCR1x and TCNT1. The OC1x Inter-

rupt Flag will be set when a compare match occurs.

Figure 15-8. Phase Correct PWM Mode, Timing Diagram

RPCPWM
TOP 1+()log

2()log
-----------------------------------=

OCRnx/TOP Update and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 2 3 4

TOVn Interrupt Flag Set
(Interrupt on Bottom)

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

123

8018P–AVR–08/10

ATmega169P

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches BOTTOM. When

either OCR1A or ICR1 is used for defining the TOP value, the OC1A or ICF1 Flag is set accord-

ingly at the same timer clock cycle as the OCR1x Registers are updated with the double buffer

value (at TOP). The Interrupt Flags can be used to generate an interrupt each time the counter

reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or

equal to the value of all of the Compare Registers. If the TOP value is lower than any of the

Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.

Note that when using fixed TOP values, the unused bits are masked to zero when any of the

OCR1x Registers are written. As the third period shown in Figure 15-8 on page 122 illustrates,

changing the TOP actively while the Timer/Counter is running in the phase correct mode can

result in an unsymmetrical output. The reason for this can be found in the time of update of the

OCR1x Register. Since the OCR1x update occurs at TOP, the PWM period starts and ends at

TOP. This implies that the length of the falling slope is determined by the previous TOP value,

while the length of the rising slope is determined by the new TOP value. When these two values

differ the two slopes of the period will differ in length. The difference in length gives the unsym-

metrical result on the output.

It is recommended to use the phase and frequency correct mode instead of the phase correct

mode when changing the TOP value while the Timer/Counter is running. When using a static

TOP value there are practically no differences between the two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the

OC1x pins. Setting the COM1x1:0 bits to two will produce a non-inverted PWM and an inverted

PWM output can be generated by setting the COM1x1:0 to three (See Table 15-3 on page 129).

The actual OC1x value will only be visible on the port pin if the data direction for the port pin is

set as output (DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x

Register at the compare match between OCR1x and TCNT1 when the counter increments, and

clearing (or setting) the OC1x Register at compare match between OCR1x and TCNT1 when

the counter decrements. The PWM frequency for the output when using phase correct PWM can

be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represent special cases when generating a PWM

waveform output in the phase correct PWM mode. If the OCR1x is set equal to BOTTOM the

output will be continuously low and if set equal to TOP the output will be continuously high for

non-inverted PWM mode. For inverted PWM the output will have the opposite logic values. If

OCR1A is used to define the TOP value (WGM13:0 = 11) and COM1A1:0 = 1, the OC1A output

will toggle with a 50% duty cycle.

fOCnxPCPWM
fclk_I/O

2 N TOP⋅ ⋅
----------------------------=

124

8018P–AVR–08/10

ATmega169P

15.9.5 Phase and Frequency Correct PWM Mode

The phase and frequency correct Pulse Width Modulation, or phase and frequency correct PWM

mode (WGM13:0 = 8 or 9) provides a high resolution phase and frequency correct PWM wave-

form generation option. The phase and frequency correct PWM mode is, like the phase correct

PWM mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM

(0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output mode, the

Output Compare (OC1x) is cleared on the compare match between TCNT1 and OCR1x while

upcounting, and set on the compare match while down counting. In inverting Compare Output

mode, the operation is inverted. The dual-slope operation gives a lower maximum operation fre-

quency compared to the single-slope operation. However, due to the symmetric feature of the

dual-slope PWM modes, these modes are preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct PWM

mode is the time the OCR1x Register is updated by the OCR1x Buffer Register, (see Figure 15-

8 on page 122 and Figure 15-9 on page 125).

The PWM resolution for the phase and frequency correct PWM mode can be defined by either

ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and

the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can

be calculated using the following equation:

In phase and frequency correct PWM mode the counter is incremented until the counter value

matches either the value in ICR1 (WGM13:0 = 8), or the value in OCR1A (WGM13:0 = 9). The

counter has then reached the TOP and changes the count direction. The TCNT1 value will be

equal to TOP for one timer clock cycle. The timing diagram for the phase correct and frequency

correct PWM mode is shown on Figure 15-9 on page 125. The figure shows phase and fre-

quency correct PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1 value is in

the timing diagram shown as a histogram for illustrating the dual-slope operation. The diagram

includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT1

slopes represent compare matches between OCR1x and TCNT1. The OC1x Interrupt Flag will

be set when a compare match occurs.

RPFCPWM
TOP 1+()log

2()log
-----------------------------------=

125

8018P–AVR–08/10

ATmega169P

Figure 15-9. Phase and Frequency Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV1) is set at the same timer clock cycle as the OCR1x

Registers are updated with the double buffer value (at BOTTOM). When either OCR1A or ICR1

is used for defining the TOP value, the OC1A or ICF1 Flag set when TCNT1 has reached TOP.

The Interrupt Flags can then be used to generate an interrupt each time the counter reaches the

TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or

equal to the value of all of the Compare Registers. If the TOP value is lower than any of the

Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.

As Figure 15-9 shows the output generated is, in contrast to the phase correct mode, symmetri-

cal in all periods. Since the OCR1x Registers are updated at BOTTOM, the length of the rising

and the falling slopes will always be equal. This gives symmetrical output pulses and is therefore

frequency correct.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using

ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However,

if the base PWM frequency is actively changed by changing the TOP value, using the OCR1A as

TOP is clearly a better choice due to its double buffer feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM wave-

forms on the OC1x pins. Setting the COM1x1:0 bits to two will produce a non-inverted PWM and

an inverted PWM output can be generated by setting the COM1x1:0 to three (See Table 15-3 on

page 129). The actual OC1x value will only be visible on the port pin if the data direction for the

port pin is set as output (DDR_OC1x). The PWM waveform is generated by setting (or clearing)

the OC1x Register at the compare match between OCR1x and TCNT1 when the counter incre-

ments, and clearing (or setting) the OC1x Register at compare match between OCR1x and

TCNT1 when the counter decrements. The PWM frequency for the output when using phase

and frequency correct PWM can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

OCRnx/TOP Updateand
TOVn Interrupt Flag Set
(Interrupt on Bottom)

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 2 3 4

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

fOCnxPFCPWM

fclk_I/O

2 N TOP⋅ ⋅
----------------------------=

126

8018P–AVR–08/10

ATmega169P

The extreme values for the OCR1x Register represents special cases when generating a PWM

waveform output in the phase and frequency correct PWM mode. If the OCR1x is set equal to

BOTTOM the output will be continuously low and if set equal to TOP the output will be set to

high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic val-

ues. If OCR1A is used to define the TOP value (WGM13:0 = 9) and COM1A1:0 = 1, the OC1A

output will toggle with a 50% duty cycle.

15.10 Timer/Counter Timing Diagrams

The Timer/Counter is a synchronous design and the timer clock (clkT1) is therefore shown as a

clock enable signal in the following figures. The figures include information on when Interrupt

Flags are set, and when the OCR1x Register is updated with the OCR1x buffer value (only for

modes utilizing double buffering). Figure 15-10 shows a timing diagram for the setting of OCF1x.

Figure 15-10. Timer/Counter Timing Diagram, Setting of OCF1x, no Prescaling

Figure 15-11 shows the same timing data, but with the prescaler enabled.

Figure 15-11. Timer/Counter Timing Diagram, Setting of OCF1x, with Prescaler (fclk_I/O/8)

Figure 15-12 on page 127 shows the count sequence close to TOP in various modes. When

using phase and frequency correct PWM mode the OCR1x Register is updated at BOTTOM.

The timing diagrams will be the same, but TOP should be replaced by BOTTOM, TOP-1 by

clk
Tn

(clk
I/O

/1)

OCFnx

clk
I/O

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clk
I/O

clk
Tn

(clk
I/O

/8)

127

8018P–AVR–08/10

ATmega169P

BOTTOM+1 and so on. The same renaming applies for modes that set the TOV1 Flag at

BOTTOM.

Figure 15-12. Timer/Counter Timing Diagram, no Prescaling

Figure 15-13 shows the same timing data, but with the prescaler enabled.

Figure 15-13. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

TOVn (FPWM)

and ICFn (if used

as TOP)

OCRnx
(Update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx Value New OCRnx Value

TOP - 1 TOP BOTTOM BOTTOM + 1

clk
Tn

(clk
I/O

/1)

clk
I/O

TOVn (FPWM)

and ICFn (if used

as TOP)

OCRnx
(Update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx Value New OCRnx Value

TOP - 1 TOP BOTTOM BOTTOM + 1

clk
I/O

clk
Tn

(clk
I/O

/8)

128

8018P–AVR–08/10

ATmega169P

15.11 16-bit Timer/Counter Register Description

15.11.1 TCCR1A – Timer/Counter1 Control Register A

• Bit 7:6 – COM1A1:0: Compare Output Mode for Unit A

• Bit 5:4 – COM1B1:0: Compare Output Mode for Unit B

The COM1A1:0 and COM1B1:0 control the Output Compare pins (OC1A and OC1B respec-

tively) behavior. If one or both of the COM1A1:0 bits are written to one, the OC1A output

overrides the normal port functionality of the I/O pin it is connected to. If one or both of the

COM1B1:0 bit are written to one, the OC1B output overrides the normal port functionality of the

I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit correspond-

ing to the OC1A or OC1B pin must be set in order to enable the output driver.

When the OC1A or OC1B is connected to the pin, the function of the COM1x1:0 bits is depen-

dent of the WGM13:0 bits setting. Table 15-1 shows the COM1x1:0 bit functionality when the

WGM13:0 bits are set to a Normal or a CTC mode (non-PWM).

Table 15-2 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the fast

PWM mode.

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. In
this case the compare match is ignored, but the set or clear is done at TOP. See ”Fast PWM
Mode” on page 120. for more details.

Bit 7 6 5 4 3 2 1 0

(0x80) COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10 TCCR1A

Read/Write R/W R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 15-1. Compare Output Mode, non-PWM

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B disconnected.

0 1 Toggle OC1A/OC1B on Compare Match.

1 0
Clear OC1A/OC1B on Compare Match (Set output to
low level).

1 1
Set OC1A/OC1B on Compare Match (Set output to
high level).

Table 15-2. Compare Output Mode, Fast PWM(1)

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B disconnected.

0 1

WGM13:0 = 14 or 15: Toggle OC1A on Compare
Match, OC1B disconnected (normal port operation).
For all other WGM1 settings, normal port operation,
OC1A/OC1B disconnected.

1 0
Clear OC1A/OC1B on Compare Match, set
OC1A/OC1B at BOTTOM (non-inverting mode)

1 1
Set OC1A/OC1B on Compare Match, clear
OC1A/OC1B at BOTTOM (inverting mode)

129

8018P–AVR–08/10

ATmega169P

Table 15-3 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the phase

correct or the phase and frequency correct, PWM mode.

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. See
”Phase Correct PWM Mode” on page 122. for more details.

• Bit 1:0 – WGM11:0: Waveform Generation Mode

Combined with the WGM13:2 bits found in the TCCR1B Register, these bits control the counting

sequence of the counter, the source for maximum (TOP) counter value, and what type of wave-

form generation to be used, see Table 15-4 on page 130. Modes of operation supported by the

Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare match (CTC) mode,

and three types of Pulse Width Modulation (PWM) modes. (See ”Modes of Operation” on page

118.)

Table 15-3. Compare Output Mode, Phase Correct and Phase and Frequency Correct
PWM(1)

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B disconnected.

0 1

WGM13:0 = 9 or 11: Toggle OC1A on Compare
Match, OC1B disconnected (normal port operation).
For all other WGM1 settings, normal port operation,
OC1A/OC1B disconnected.

1 0
Clear OC1A/OC1B on Compare Match when up-
counting. Set OC1A/OC1B on Compare Match when
down counting.

1 1
Set OC1A/OC1B on Compare Match when up-
counting. Clear OC1A/OC1B on Compare Match
when down counting.

130

8018P–AVR–08/10

ATmega169P

Note: 1. The CTC1 and PWM11:0 bit definition names are obsolete. Use the WGM12:0 definitions. However, the functionality and
location of these bits are compatible with previous versions of the timer.

15.11.2 TCCR1B – Timer/Counter1 Control Register B

• Bit 7 – ICNC1: Input Capture Noise Canceler

Setting this bit (to one) activates the Input Capture Noise Canceler. When the noise canceler is

activated, the input from the Input Capture pin (ICP1) is filtered. The filter function requires four

successive equal valued samples of the ICP1 pin for changing its output. The Input Capture is

therefore delayed by four Oscillator cycles when the noise canceler is enabled.

• Bit 6 – ICES1: Input Capture Edge Select

This bit selects which edge on the Input Capture pin (ICP1) that is used to trigger a capture

event. When the ICES1 bit is written to zero, a falling (negative) edge is used as trigger, and

when the ICES1 bit is written to one, a rising (positive) edge will trigger the capture.

Table 15-4. Waveform Generation Mode Bit Description(1)

Mode WGM13

WGM12

(CTC1)

WGM11

(PWM11)

WGM10

(PWM10)

Timer/Counter Mode of

Operation TOP

Update of

OCR1x at

TOV1 Flag

Set on

0 0 0 0 0 Normal 0xFFFF Immediate MAX

1 0 0 0 1 PWM, Phase Correct, 8-bit 0x00FF TOP BOTTOM

2 0 0 1 0 PWM, Phase Correct, 9-bit 0x01FF TOP BOTTOM

3 0 0 1 1 PWM, Phase Correct, 10-bit 0x03FF TOP BOTTOM

4 0 1 0 0 CTC OCR1A Immediate MAX

5 0 1 0 1 Fast PWM, 8-bit 0x00FF BOTTOM TOP

6 0 1 1 0 Fast PWM, 9-bit 0x01FF BOTTOM TOP

7 0 1 1 1 Fast PWM, 10-bit 0x03FF BOTTOM TOP

8 1 0 0 0
PWM, Phase and Frequency
Correct

ICR1 BOTTOM BOTTOM

9 1 0 0 1
PWM, Phase and Frequency
Correct

OCR1A BOTTOM BOTTOM

10 1 0 1 0 PWM, Phase Correct ICR1 TOP BOTTOM

11 1 0 1 1 PWM, Phase Correct OCR1A TOP BOTTOM

12 1 1 0 0 CTC ICR1 Immediate MAX

13 1 1 0 1 (Reserved) – – –

14 1 1 1 0 Fast PWM ICR1 BOTTOM TOP

15 1 1 1 1 Fast PWM OCR1A BOTTOM TOP

Bit 7 6 5 4 3 2 1 0

(0x81) ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 TCCR1B

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

131

8018P–AVR–08/10

ATmega169P

When a capture is triggered according to the ICES1 setting, the counter value is copied into the

Input Capture Register (ICR1). The event will also set the Input Capture Flag (ICF1), and this

can be used to cause an Input Capture Interrupt, if this interrupt is enabled.

When the ICR1 is used as TOP value (see description of the WGM13:0 bits located in the

TCCR1A and the TCCR1B Register), the ICP1 is disconnected and consequently the Input Cap-

ture function is disabled.

• Bit 5 – Reserved Bit

This bit is reserved for future use. For ensuring compatibility with future devices, this bit must be

written to zero when TCCR1B is written.

• Bit 4:3 – WGM13:2: Waveform Generation Mode

See TCCR1A Register description.

• Bit 2:0 – CS12:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter, see Figure

15-10 on page 126 and Figure 15-11 on page 126.

If external pin modes are used for the Timer/Counter1, transitions on the T1 pin will clock the

counter even if the pin is configured as an output. This feature allows software control of the

counting.

15.11.3 TCCR1C – Timer/Counter1 Control Register C

• Bit 7 – FOC1A: Force Output Compare for Unit A

• Bit 6 – FOC1B: Force Output Compare for Unit B

The FOC1A/FOC1B bits are only active when the WGM13:0 bits specifies a non-PWM mode.

However, for ensuring compatibility with future devices, these bits must be set to zero when

TCCR1A is written when operating in a PWM mode. When writing a logical one to the

FOC1A/FOC1B bit, an immediate compare match is forced on the Waveform Generation unit.

The OC1A/OC1B output is changed according to its COM1x1:0 bits setting. Note that the

Table 15-5. Clock Select Bit Description

CS12 CS11 CS10 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkI/O/1 (No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on T1 pin. Clock on falling edge.

1 1 1 External clock source on T1 pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

(0x82) FOC1A FOC1B – – – – – – TCCR1C

Read/Write R/W R/W R R R R R R

Initial Value 0 0 0 0 0 0 0 0

132

8018P–AVR–08/10

ATmega169P

FOC1A/FOC1B bits are implemented as strobes. Therefore it is the value present in the

COM1x1:0 bits that determine the effect of the forced compare.

A FOC1A/FOC1B strobe will not generate any interrupt nor will it clear the timer in Clear Timer

on Compare match (CTC) mode using OCR1A as TOP.

The FOC1A/FOC1B bits are always read as zero.

15.11.4 TCNT1H and TCNT1L – Timer/Counter1

The two Timer/Counter I/O locations (TCNT1H and TCNT1L, combined TCNT1) give direct

access, both for read and for write operations, to the Timer/Counter unit 16-bit counter. To

ensure that both the high and low bytes are read and written simultaneously when the CPU

accesses these registers, the access is performed using an 8-bit temporary High Byte Register

(TEMP). This temporary register is shared by all the other 16-bit registers. See ”Accessing 16-bit

Registers” on page 109.

Modifying the counter (TCNT1) while the counter is running introduces a risk of missing a com-

pare match between TCNT1 and one of the OCR1x Registers.

Writing to the TCNT1 Register blocks (removes) the compare match on the following timer clock

for all compare units.

15.11.5 OCR1AH and OCR1AL – Output Compare Register 1 A

15.11.6 OCR1BH and OCR1BL – Output Compare Register 1 B

The Output Compare Registers contain a 16-bit value that is continuously compared with the

counter value (TCNT1). A match can be used to generate an Output Compare interrupt, or to

generate a waveform output on the OC1x pin.

The Output Compare Registers are 16-bit in size. To ensure that both the high and low bytes are

written simultaneously when the CPU writes to these registers, the access is performed using an

8-bit temporary High Byte Register (TEMP). This temporary register is shared by all the other

16-bit registers. See ”Accessing 16-bit Registers” on page 109.

Bit 7 6 5 4 3 2 1 0

(0x85) TCNT1[15:8] TCNT1H

(0x84) TCNT1[7:0] TCNT1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x89) OCR1A[15:8] OCR1AH

(0x88) OCR1A[7:0] OCR1AL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x8B) OCR1B[15:8] OCR1BH

(0x8A) OCR1B[7:0] OCR1BL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

133

8018P–AVR–08/10

ATmega169P

15.11.7 ICR1H and ICR1L – Input Capture Register 1

The Input Capture is updated with the counter (TCNT1) value each time an event occurs on the

ICP1 pin (or optionally on the Analog Comparator output for Timer/Counter1). The Input Capture

can be used for defining the counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes are read

simultaneously when the CPU accesses these registers, the access is performed using an 8-bit

temporary High Byte Register (TEMP). This temporary register is shared by all the other 16-bit

registers. See ”Accessing 16-bit Registers” on page 109.

15.11.8 TIMSK1 – Timer/Counter1 Interrupt Mask Register

• Bit 5 – ICIE1: Timer/Counter1, Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally

enabled), the Timer/Counter1 Input Capture interrupt is enabled. The corresponding Interrupt

Vector (See ”Interrupts” on page 56.) is executed when the ICF1 Flag, located in TIFR1, is set.

• Bit 2 – OCIE1B: Timer/Counter1, Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally

enabled), the Timer/Counter1 Output Compare B Match interrupt is enabled. The corresponding

Interrupt Vector (See ”Interrupts” on page 56.) is executed when the OCF1B Flag, located in

TIFR1, is set.

• Bit 1 – OCIE1A: Timer/Counter1, Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally

enabled), the Timer/Counter1 Output Compare A Match interrupt is enabled. The corresponding

Interrupt Vector (See ”Interrupts” on page 56.) is executed when the OCF1A Flag, located in

TIFR1, is set.

• Bit 0 – TOIE1: Timer/Counter1, Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally

enabled), the Timer/Counter1 Overflow interrupt is enabled. The corresponding Interrupt Vector

(See ”Interrupts” on page 56.) is executed when the TOV1 Flag, located in TIFR1, is set.

Bit 7 6 5 4 3 2 1 0

(0x87) ICR1[15:8] ICR1H

(0x86) ICR1[7:0] ICR1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6F) – – ICIE1 – – OCIE1B OCIE1A TOIE1 TIMSK1

Read/Write R R R/W R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

134

8018P–AVR–08/10

ATmega169P

15.11.9 TIFR1 – Timer/Counter1 Interrupt Flag Register

• Bit 5 – ICF1: Timer/Counter1, Input Capture Flag

This flag is set when a capture event occurs on the ICP1 pin. When the Input Capture Register

(ICR1) is set by the WGM13:0 to be used as the TOP value, the ICF1 Flag is set when the coun-

ter reaches the TOP value.

ICF1 is automatically cleared when the Input Capture Interrupt Vector is executed. Alternatively,

ICF1 can be cleared by writing a logic one to its bit location.

• Bit 2 – OCF1B: Timer/Counter1, Output Compare B Match Flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output

Compare Register B (OCR1B).

Note that a Forced Output Compare (FOC1B) strobe will not set the OCF1B Flag.

OCF1B is automatically cleared when the Output Compare Match B Interrupt Vector is exe-

cuted. Alternatively, OCF1B can be cleared by writing a logic one to its bit location.

• Bit 1 – OCF1A: Timer/Counter1, Output Compare A Match Flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output

Compare Register A (OCR1A).

Note that a Forced Output Compare (FOC1A) strobe will not set the OCF1A Flag.

OCF1A is automatically cleared when the Output Compare Match A Interrupt Vector is exe-

cuted. Alternatively, OCF1A can be cleared by writing a logic one to its bit location.

• Bit 0 – TOV1: Timer/Counter1, Overflow Flag

The setting of this flag is dependent of the WGM13:0 bits setting. In Normal and CTC modes,

the TOV1 Flag is set when the timer overflows. Refer to Table 15-4 on page 130 for the TOV1

Flag behavior when using another WGM13:0 bit setting.

TOV1 is automatically cleared when the Timer/Counter1 Overflow Interrupt Vector is executed.

Alternatively, TOV1 can be cleared by writing a logic one to its bit location.

Bit 7 6 5 4 3 2 1 0

0x16 (0x36) – – ICF1 – – OCF1B OCF1A TOV1 TIFR1

Read/Write R R R/W R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

135

8018P–AVR–08/10

ATmega169P

16. Timer/Counter0 and Timer/Counter1 Prescalers

Timer/Counter1 and Timer/Counter0 share the same prescaler module, but the Timer/Counters

can have different prescaler settings. The description below applies to both Timer/Counter1 and

Timer/Counter0.

16.1 Prescaler Reset

The prescaler is free running, that is, operates independently of the Clock Select logic of the

Timer/Counter, and it is shared by Timer/Counter1 and Timer/Counter0. Since the prescaler is

not affected by the Timer/Counter’s clock select, the state of the prescaler will have implications

for situations where a prescaled clock is used. One example of prescaling artifacts occurs when

the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 1). The number of system clock

cycles from when the timer is enabled to the first count occurs can be from 1 to N+1 system

clock cycles, where N equals the prescaler divisor (8, 64, 256, or 1024).

It is possible to use the prescaler reset for synchronizing the Timer/Counter to program execu-

tion. However, care must be taken if the other Timer/Counter that shares the same prescaler

also uses prescaling. A prescaler reset will affect the prescaler period for all Timer/Counters it is

connected to.

16.2 Internal Clock Source

The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This

provides the fastest operation, with a maximum Timer/Counter clock frequency equal to system

clock frequency (fCLK_I/O). Alternatively, one of four taps from the prescaler can be used as a

clock source. The prescaled clock has a frequency of either fCLK_I/O/8, fCLK_I/O/64, fCLK_I/O/256, or

fCLK_I/O/1024.

16.3 External Clock Source

An external clock source applied to the T1/T0 pin can be used as Timer/Counter clock

(clkT1/clkT0). The T1/T0 pin is sampled once every system clock cycle by the pin synchronization

logic. The synchronized (sampled) signal is then passed through the edge detector. Figure 16-1

on page 135 shows a functional equivalent block diagram of the T1/T0 synchronization and

edge detector logic. The registers are clocked at the positive edge of the internal system clock

(clkI/O). The latch is transparent in the high period of the internal system clock.

The edge detector generates one clkT1/clkT0 pulse for each positive (CSn2:0 = 7) or negative

(CSn2:0 = 6) edge it detects.

Figure 16-1. T1/T0 Pin Sampling

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles

from an edge has been applied to the T1/T0 pin to the counter is updated.

Tn_sync

(To Clock
Select Logic)

Edge DetectorSynchronization

D QD Q

LE

D QTn

clk
I/O

136

8018P–AVR–08/10

ATmega169P

Enabling and disabling of the clock input must be done when T1/T0 has been stable for at least

one system clock cycle, otherwise it is a risk that a false Timer/Counter clock pulse is generated.

Each half period of the external clock applied must be longer than one system clock cycle to

ensure correct sampling. The external clock must be guaranteed to have less than half the sys-

tem clock frequency (fExtClk < fclk_I/O/2) given a 50/50% duty cycle. Since the edge detector uses

sampling, the maximum frequency of an external clock it can detect is half the sampling fre-

quency (Nyquist sampling theorem). However, due to variation of the system clock frequency

and duty cycle caused by Oscillator source (crystal, resonator, and capacitors) tolerances, it is

recommended that maximum frequency of an external clock source is less than fclk_I/O/2.5.

An external clock source can not be prescaled.

Figure 16-2. Prescaler for Timer/Counter0 and Timer/Counter1(1)

Note: 1. The synchronization logic on the input pins (T1/T0) is shown in Figure 16-1 on page 135.

PSR10

Clear

clk
T1

clk
T0

T1

T0

clk
I/O

Synchronization

Synchronization

137

8018P–AVR–08/10

ATmega169P

16.4 Register Description

16.4.1 GTCCR – General Timer/Counter Control Register

• Bit 7 – TSM: Timer/Counter Synchronization Mode

Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this mode, the

value that is written to the PSR2 and PSR10 bits is kept, hence keeping the corresponding pres-

caler reset signals asserted. This ensures that the corresponding Timer/Counters are halted and

can be configured to the same value without the risk of one of them advancing during configura-

tion. When the TSM bit is written to zero, the PSR2 and PSR10 bits are cleared by hardware,

and the Timer/Counters start counting simultaneously.

• Bit 0 – PSR10: Prescaler Reset Timer/Counter1 and Timer/Counter0

When this bit is one, Timer/Counter1 and Timer/Counter0 prescaler will be Reset. This bit is nor-

mally cleared immediately by hardware, except if the TSM bit is set. Note that Timer/Counter1

and Timer/Counter0 share the same prescaler and a reset of this prescaler will affect both

timers.

Bit 7 6 5 4 3 2 1 0

0x23 (0x43) TSM – – – – – PSR2 PSR10 GTCCR

Read/Write R/W R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

138

8018P–AVR–08/10

ATmega169P

17. 8-bit Timer/Counter2 with PWM and Asynchronous Operation

Timer/Counter2 is a general purpose, single compare unit, 8-bit Timer/Counter module. The

main features are:

• Single Compare Unit Counter

• Clear Timer on Compare Match (Auto Reload)

• Glitch-free, Phase Correct Pulse Width Modulator (PWM)

• Frequency Generator

• 10-bit Clock Prescaler

• Overflow and Compare Match Interrupt Sources (TOV2 and OCF2A)

• Allows Clocking from External 32 kHz Watch Crystal Independent of the I/O Clock

17.1 Overview

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 17-1. For the actual

placement of I/O pins, refer to Figure 1-1 on page 2. CPU accessible I/O Registers, including I/O

bits and I/O pins, are shown in bold. The device-specific I/O Register and bit locations are listed

in the Section 17.10 ”8-bit Timer/Counter Register Description” on page 153.

Figure 17-1. 8-bit Timer/Counter Block Diagram

17.1.1 Registers

The Timer/Counter (TCNT2) and Output Compare Register (OCR2A) are 8-bit registers. Inter-

rupt request (shorten as Int.Req.) signals are all visible in the Timer Interrupt Flag Register

Timer/Counter

D
A
TA

 B
U

S

=

TCNTn

Waveform
Generation

OCnx

= 0

Control Logic

= 0xFF

TOPBOTTOM

count

clear

direction

TOVn
(Int.Req.)

OCnx
(Int.Req.)

Synchronization Unit

OCRnx

TCCRnx

ASSRn
Status flags

clk
I/O

clkASY

Synchronized Status flags

asynchronous mode
select (ASn)

TOSC1

T/C
Oscillator

TOSC2

Prescaler

clkTn

clk
I/O

139

8018P–AVR–08/10

ATmega169P

(TIFR2). All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK2).

TIFR2 and TIMSK2 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from

the TOSC1/2 pins, as detailed later in this section. The asynchronous operation is controlled by

the Asynchronous Status Register (ASSR). The Clock Select logic block controls which clock

source the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inac-

tive when no clock source is selected. The output from the Clock Select logic is referred to as the

timer clock (clkT2).

The double buffered Output Compare Register (OCR2A) is compared with the Timer/Counter

value at all times. The result of the compare can be used by the Waveform Generator to gener-

ate a PWM or variable frequency output on the Output Compare pin (OC2A). See ”Output

Compare Unit” on page 140. for details. The compare match event will also set the Compare

Flag (OCF2A) which can be used to generate an Output Compare interrupt request.

17.1.2 Definitions

Many register and bit references in this document are written in general form. A lower case “n”

replaces the Timer/Counter number, in this case 2. However, when using the register or bit

defines in a program, the precise form must be used, that is, TCNT2 for accessing

Timer/Counter2 counter value and so on.

The definitions in Table 17-1 are also used extensively throughout the section.

17.2 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal synchronous or an external asynchronous

clock source. The clock source clkT2 is by default equal to the MCU clock, clkI/O. When the AS2

bit in the ASSR Register is written to logic one, the clock source is taken from the Timer/Counter

Oscillator connected to TOSC1 and TOSC2. For details on asynchronous operation, see ”ASSR

– Asynchronous Status Register” on page 156. For details on clock sources and prescaler, see

”Timer/Counter Prescaler” on page 152.

17.3 Counter Unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure

17-2 on page 140 shows a block diagram of the counter and its surrounding environment.

Table 17-1. Timer/Counter Definitions

BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00).

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the

count sequence. The TOP value can be assigned to be the fixed value 0xFF

(MAX) or the value stored in the OCR2A Register. The assignment is dependent

on the mode of operation.

140

8018P–AVR–08/10

ATmega169P

Figure 17-2. Counter Unit Block Diagram

Signal description (internal signals):

count Increment or decrement TCNT2 by 1.

direction Selects between increment and decrement.

clear Clear TCNT2 (set all bits to zero).

clkT2 Timer/Counter clock.

top Signalizes that TCNT2 has reached maximum value.

bottom Signalizes that TCNT2 has reached minimum value (zero).

Depending on the mode of operation used, the counter is cleared, incremented, or decremented

at each timer clock (clkT2). clkT2 can be generated from an external or internal clock source,

selected by the Clock Select bits (CS22:0). When no clock source is selected (CS22:0 = 0) the

timer is stopped. However, the TCNT2 value can be accessed by the CPU, regardless of

whether clkT2 is present or not. A CPU write overrides (has priority over) all counter clear or

count operations.

The counting sequence is determined by the setting of the WGM21 and WGM20 bits located in

the Timer/Counter Control Register (TCCR2A). There are close connections between how the

counter behaves (counts) and how waveforms are generated on the Output Compare output

OC2A. For more details about advanced counting sequences and waveform generation, see

”Modes of Operation” on page 143.

The Timer/Counter Overflow Flag (TOV2) is set according to the mode of operation selected by

the WGM21:0 bits. TOV2 can be used for generating a CPU interrupt.

17.4 Output Compare Unit

The 8-bit comparator continuously compares TCNT2 with the Output Compare Register

(OCR2A). Whenever TCNT2 equals OCR2A, the comparator signals a match. A match will set

the Output Compare Flag (OCF2A) at the next timer clock cycle. If enabled (OCIE2A = 1), the

Output Compare Flag generates an Output Compare interrupt. The OCF2A Flag is automatically

cleared when the interrupt is executed. Alternatively, the OCF2A Flag can be cleared by soft-

ware by writing a logical one to its I/O bit location. The Waveform Generator uses the match

signal to generate an output according to operating mode set by the WGM21:0 bits and Com-

pare Output mode (COM2A1:0) bits. The max and bottom signals are used by the Waveform

Generator for handling the special cases of the extreme values in some modes of operation

(”Modes of Operation” on page 143).

Figure 17-3 on page 141 shows a block diagram of the Output Compare unit.

DATA BUS

TCNTn Control Logic

count

TOVn

(Int.Req.)

topbottom

direction

clear

TOSC1

T/C

Oscillator

TOSC2

Prescaler

clk
I/O

clk
Tn

141

8018P–AVR–08/10

ATmega169P

Figure 17-3. Output Compare Unit, Block Diagram

The OCR2A Register is double buffered when using any of the Pulse Width Modulation (PWM)

modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the double

buffering is disabled. The double buffering synchronizes the update of the OCR2A Compare

Register to either top or bottom of the counting sequence. The synchronization prevents the

occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR2A Register access may seem complex, but this is not case. When the double buffer-

ing is enabled, the CPU has access to the OCR2A Buffer Register, and if double buffering is

disabled the CPU will access the OCR2A directly.

17.4.1 Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by

writing a one to the Force Output Compare (FOC2A) bit. Forcing compare match will not set the

OCF2A Flag or reload/clear the timer, but the OC2A pin will be updated as if a real compare

match had occurred (the COM2A1:0 bits settings define whether the OC2A pin is set, cleared or

toggled).

17.4.2 Compare Match Blocking by TCNT2 Write

All CPU write operations to the TCNT2 Register will block any compare match that occurs in the

next timer clock cycle, even when the timer is stopped. This feature allows OCR2A to be initial-

ized to the same value as TCNT2 without triggering an interrupt when the Timer/Counter clock is

enabled.

17.4.3 Using the Output Compare Unit

Since writing TCNT2 in any mode of operation will block all compare matches for one timer clock

cycle, there are risks involved when changing TCNT2 when using the Output Compare unit,

independently of whether the Timer/Counter is running or not. If the value written to TCNT2

equals the OCR2A value, the compare match will be missed, resulting in incorrect waveform

generation. Similarly, do not write the TCNT2 value equal to BOTTOM when the counter is down

counting.

OCFnx (Int.Req.)

= (8-bit Comparator)

OCRnx

OCnx

DATA BUS

TCNTn

WGMn1:0

Waveform Generator

top

FOCn

COMnx1:0

bottom

142

8018P–AVR–08/10

ATmega169P

The setup of the OC2A should be performed before setting the Data Direction Register for the

port pin to output. The easiest way of setting the OC2A value is to use the Force Output Com-

pare (FOC2A) strobe bit in Normal mode. The OC2A Register keeps its value even when

changing between Waveform Generation modes.

Be aware that the COM2A1:0 bits are not double buffered together with the compare value.

Changing the COM2A1:0 bits will take effect immediately.

17.5 Compare Match Output Unit

The Compare Output mode (COM2A1:0) bits have two functions. The Waveform Generator

uses the COM2A1:0 bits for defining the Output Compare (OC2A) state at the next compare

match. Also, the COM2A1:0 bits control the OC2A pin output source. Figure 17-4 shows a sim-

plified schematic of the logic affected by the COM2A1:0 bit setting. The I/O Registers, I/O bits,

and I/O pins in the figure are shown in bold. Only the parts of the general I/O Port Control Regis-

ters (DDR and PORT) that are affected by the COM2A1:0 bits are shown. When referring to the

OC2A state, the reference is for the internal OC2A Register, not the OC2A pin.

Figure 17-4. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the Output Compare (OC2A) from the Waveform

Generator if either of the COM2A1:0 bits are set. However, the OC2A pin direction (input or out-

put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction

Register bit for the OC2A pin (DDR_OC2A) must be set as output before the OC2A value is vis-

ible on the pin. The port override function is independent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OC2A state before the

output is enabled. Note that some COM2A1:0 bit settings are reserved for certain modes of

operation. See ”8-bit Timer/Counter Register Description” on page 153.

PORT

DDR

D Q

D Q

OCnx

PinOCnx

D Q
Waveform
Generator

COMnx1

COMnx0

0

1

D
A
TA

 B
U

S

FOCnx

clk
I/O

143

8018P–AVR–08/10

ATmega169P

17.5.1 Compare Output Mode and Waveform Generation

The Waveform Generator uses the COM2A1:0 bits differently in normal, CTC, and PWM modes.

For all modes, setting the COM2A1:0 = 0 tells the Waveform Generator that no action on the

OC2A Register is to be performed on the next compare match. For compare output actions in

the non-PWM modes refer to Table 17-3 on page 154. For fast PWM mode, refer to Table 17-4

on page 154, and for phase correct PWM refer to Table 17-5 on page 154.

A change of the COM2A1:0 bits state will have effect at the first compare match after the bits are

written. For non-PWM modes, the action can be forced to have immediate effect by using the

FOC2A strobe bits.

17.6 Modes of Operation

The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins,

is defined by the combination of the Waveform Generation mode (WGM21:0) and Compare Out-

put mode (COM2A1:0) bits. The Compare Output mode bits do not affect the counting

sequence, while the Waveform Generation mode bits do. The COM2A1:0 bits control whether

the PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-

PWM modes the COM2A1:0 bits control whether the output should be set, cleared, or toggled at

a compare match. (See ”Compare Match Output Unit” on page 142.)

For detailed timing information refer to ”Timer/Counter Timing Diagrams” on page 148.

17.6.1 Normal Mode

The simplest mode of operation is the Normal mode (WGM21:0 = 0). In this mode the counting

direction is always up (incrementing), and no counter clear is performed. The counter simply

overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-

tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV2) will be set in the same

timer clock cycle as the TCNT2 becomes zero. The TOV2 Flag in this case behaves like a ninth

bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt

that automatically clears the TOV2 Flag, the timer resolution can be increased by software.

There are no special cases to consider in the Normal mode, a new counter value can be written

anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the Out-

put Compare to generate waveforms in Normal mode is not recommended, since this will

occupy too much of the CPU time.

17.6.2 Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGM21:0 = 2), the OCR2A Register is used to

manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter

value (TCNT2) matches the OCR2A. The OCR2A defines the top value for the counter, hence

also its resolution. This mode allows greater control of the compare match output frequency. It

also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 17-5 on page 144. The counter value

(TCNT2) increases until a compare match occurs between TCNT2 and OCR2A, and then coun-

ter (TCNT2) is cleared.

144

8018P–AVR–08/10

ATmega169P

Figure 17-5. CTC Mode, Timing Diagram

An interrupt can be generated each time the counter value reaches the TOP value by using the

OCF2A Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating

the TOP value. However, changing the TOP to a value close to BOTTOM when the counter is

running with none or a low prescaler value must be done with care since the CTC mode does

not have the double buffering feature. If the new value written to OCR2A is lower than the cur-

rent value of TCNT2, the counter will miss the compare match. The counter will then have to

count to its maximum value (0xFF) and wrap around starting at 0x00 before the compare match

can occur.

For generating a waveform output in CTC mode, the OC2A output can be set to toggle its logical

level on each compare match by setting the Compare Output mode bits to toggle mode

(COM2A1:0 = 1). The OC2A value will not be visible on the port pin unless the data direction for

the pin is set to output. The waveform generated will have a maximum frequency of fOC2A =

fclk_I/O/2 when OCR2A is set to zero (0x00). The waveform frequency is defined by the following

equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

As for the Normal mode of operation, the TOV2 Flag is set in the same timer clock cycle that the

counter counts from MAX to 0x00.

17.6.3 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGM21:0 = 3) provides a high frequency

PWM waveform generation option. The fast PWM differs from the other PWM option by its sin-

gle-slope operation. The counter counts from BOTTOM to MAX then restarts from BOTTOM. In

non-inverting Compare Output mode, the Output Compare (OC2A) is cleared on the compare

match between TCNT2 and OCR2A, and set at BOTTOM. In inverting Compare Output mode,

the output is set on compare match and cleared at BOTTOM. Due to the single-slope operation,

the operating frequency of the fast PWM mode can be twice as high as the phase correct PWM

mode that uses dual-slope operation. This high frequency makes the fast PWM mode well suited

for power regulation, rectification, and DAC applications. High frequency allows physically small

sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX value.

The counter is then cleared at the following timer clock cycle. The timing diagram for the fast

TCNTn

OCnx
(Toggle)

OCnx Interrupt Flag Set

1 4Period 2 3

(COMnx1:0 = 1)

fOCnx

fclk_I/O

2 N 1 OCRnx+()⋅ ⋅
--=

145

8018P–AVR–08/10

ATmega169P

PWM mode is shown in Figure 17-6. The TCNT2 value is in the timing diagram shown as a his-

togram for illustrating the single-slope operation. The diagram includes non-inverted and

inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes represent compare

matches between OCR2A and TCNT2.

Figure 17-6. Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches MAX. If the inter-

rupt is enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2A pin.

Setting the COM2A1:0 bits to two will produce a non-inverted PWM and an inverted PWM output

can be generated by setting the COM2A1:0 to three (See Table 17-4 on page 154). The actual

OC2A value will only be visible on the port pin if the data direction for the port pin is set as out-

put. The PWM waveform is generated by setting (or clearing) the OC2A Register at the compare

match between OCR2A and TCNT2, and clearing (or setting) the OC2A Register at the timer

clock cycle the counter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a PWM

waveform output in the fast PWM mode. If the OCR2A is set equal to BOTTOM, the output will

be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR2A equal to MAX will result

in a constantly high or low output (depending on the polarity of the output set by the COM2A1:0

bits).

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-

ting OC2A to toggle its logical level on each compare match (COM2A1:0 = 1). The waveform

generated will have a maximum frequency of foc2 = fclk_I/O/2 when OCR2A is set to zero. This fea-

ture is similar to the OC2A toggle in CTC mode, except the double buffer feature of the Output

Compare unit is enabled in the fast PWM mode.

TCNTn

OCRnx Update and
TOVn Interrupt Flag Set

1Period 2 3

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx Interrupt Flag Set

4 5 6 7

fOCnxPWM
fclk_I/O

N 256⋅
------------------=

146

8018P–AVR–08/10

ATmega169P

17.6.4 Phase Correct PWM Mode

The phase correct PWM mode (WGM21:0 = 1) provides a high resolution phase correct PWM

waveform generation option. The phase correct PWM mode is based on a dual-slope operation.

The counter counts repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In non-

inverting Compare Output mode, the Output Compare (OC2A) is cleared on the compare match

between TCNT2 and OCR2A while upcounting, and set on the compare match while down-

counting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation

has lower maximum operation frequency than single slope operation. However, due to the sym-

metric feature of the dual-slope PWM modes, these modes are preferred for motor control

applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase correct

PWM mode the counter is incremented until the counter value matches MAX. When the counter

reaches MAX, it changes the count direction. The TCNT2 value will be equal to MAX for one

timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 17-7.

The TCNT2 value is in the timing diagram shown as a histogram for illustrating the dual-slope

operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal

line marks on the TCNT2 slopes represent compare matches between OCR2A and TCNT2.

Figure 17-7. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches BOTTOM. The

Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM

value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the

OC2A pin. Setting the COM2A1:0 bits to two will produce a non-inverted PWM. An inverted

PWM output can be generated by setting the COM2A1:0 to three (See Table 17-5 on page 154).

The actual OC2A value will only be visible on the port pin if the data direction for the port pin is

set as output. The PWM waveform is generated by clearing (or setting) the OC2A Register at the

compare match between OCR2A and TCNT2 when the counter increments, and setting (or

TOVn Interrupt Flag Set

OCnx Interrupt Flag Set

1 2 3

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx Update

147

8018P–AVR–08/10

ATmega169P

clearing) the OC2A Register at compare match between OCR2A and TCNT2 when the counter

decrements. The PWM frequency for the output when using phase correct PWM can be calcu-

lated by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a PWM

waveform output in the phase correct PWM mode. If the OCR2A is set equal to BOTTOM, the

output will be continuously low and if set equal to MAX the output will be continuously high for

non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of period 2 in Figure 17-7 on page 146 OCn has a transition from high to low

even though there is no Compare Match. The point of this transition is to guarantee symmetry

around BOTTOM. There are two cases that give a transition without Compare Match.

• OCR2A changes its value from MAX, like in Figure 17-7 on page 146. When the OCR2A value

is MAX the OCn pin value is the same as the result of a down-counting compare match. To

ensure symmetry around BOTTOM the OCn value at MAX must correspond to the result of an

up-counting Compare Match.

• The timer starts counting from a value higher than the one in OCR2A, and for that reason

misses the Compare Match and hence the OCn change that would have happened on the way

up.

fOCnxPCPWM

fclk_I/O

N 510⋅
------------------=

148

8018P–AVR–08/10

ATmega169P

17.7 Timer/Counter Timing Diagrams

The following figures show the Timer/Counter in synchronous mode, and the timer clock (clkT2)

is therefore shown as a clock enable signal. In asynchronous mode, clkI/O should be replaced by

the Timer/Counter Oscillator clock. The figures include information on when Interrupt Flags are

set. Figure 17-8 contains timing data for basic Timer/Counter operation. The figure shows the

count sequence close to the MAX value in all modes other than phase correct PWM mode.

Figure 17-8. Timer/Counter Timing Diagram, no Prescaling

Figure 17-9 shows the same timing data, but with the prescaler enabled.

Figure 17-9. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 17-10 on page 149 shows the setting of OCF2A in all modes except CTC mode.

clk
Tn

(clk
I/O

/1)

TOVn

clk
I/O

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

TOVn

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

clk
I/O

clk
Tn

(clk
I/O

/8)

149

8018P–AVR–08/10

ATmega169P

Figure 17-10. Timer/Counter Timing Diagram, Setting of OCF2A, with Prescaler (fclk_I/O/8)

Figure 17-11 shows the setting of OCF2A and the clearing of TCNT2 in CTC mode.

Figure 17-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Pres-
caler (fclk_I/O/8)

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clk
I/O

clk
Tn

(clk
I/O

/8)

OCFnx

OCRnx

TCNTn
(CTC)

TOP

TOP - 1 TOP BOTTOM BOTTOM + 1

clk
I/O

clk
Tn

(clk
I/O

/8)

150

8018P–AVR–08/10

ATmega169P

17.8 Asynchronous operation of the Timer/Counter

17.8.1 Asynchronous Operation of Timer/Counter2

When Timer/Counter2 operates asynchronously, some considerations must be taken.

• Warning: When switching between asynchronous and synchronous clocking of

Timer/Counter2, the Timer Registers TCNT2, OCR2A, and TCCR2A might be corrupted. A

safe procedure for switching clock source is:

a. Disable the Timer/Counter2 interrupts by clearing OCIE2A and TOIE2.

b. Select clock source by setting AS2 as appropriate.

c. Write new values to TCNT2, OCR2A, and TCCR2A.

d. To switch to asynchronous operation: Wait for TCN2UB, OCR2UB, and TCR2UB.

e. Clear the Timer/Counter2 Interrupt Flags.

f. Enable interrupts, if needed.

• The CPU main clock frequency must be more than four times the Oscillator frequency.

• When writing to one of the registers TCNT2, OCR2A, or TCCR2A, the value is transferred to a

temporary register, and latched after two positive edges on TOSC1. The user should not write

a new value before the contents of the temporary register have been transferred to its

destination. Each of the three mentioned registers have their individual temporary register,

which means that, for example, writing to TCNT2 does not disturb an OCR2A write in progress.

To detect that a transfer to the destination register has taken place, the Asynchronous Status

Register – ASSR has been implemented.

• When entering Power-save or ADC Noise Reduction mode after having written to TCNT2,

OCR2A, or TCCR2A, the user must wait until the written register has been updated if

Timer/Counter2 is used to wake up the device. Otherwise, the MCU will enter sleep mode

before the changes are effective. This is particularly important if the Output Compare2 interrupt

is used to wake up the device, since the Output Compare function is disabled during writing to

OCR2A or TCNT2. If the write cycle is not finished, and the MCU enters sleep mode before the

OCR2UB bit returns to zero, the device will never receive a compare match interrupt, and the

MCU will not wake up.

• If Timer/Counter2 is used to wake the device up from Power-save or ADC Noise Reduction

mode, precautions must be taken if the user wants to re-enter one of these modes: The

interrupt logic needs one TOSC1 cycle to be reset. If the time between wake-up and re-

entering sleep mode is less than one TOSC1 cycle, the interrupt will not occur, and the device

will fail to wake up. If the user is in doubt whether the time before re-entering Power-save or

ADC Noise Reduction mode is sufficient, the following algorithm can be used to ensure that

one TOSC1 cycle has elapsed:

a. Write a value to TCCR2A, TCNT2, or OCR2A.

b. Wait until the corresponding Update Busy Flag in ASSR returns to zero.

c. Enter Power-save or ADC Noise Reduction mode.

• When the asynchronous operation is selected, the 32.768 kHz Oscillator for Timer/Counter2 is

always running, except in Power-down and Standby modes. After a Power-up Reset or wake-

up from Power-down or Standby mode, the user should be aware of the fact that this Oscillator

might take as long as one second to stabilize. The user is advised to wait for at least one

second before using Timer/Counter2 after power-up or wake-up from Power-down or Standby

mode. The contents of all Timer/Counter2 Registers must be considered lost after a wake-up

151

8018P–AVR–08/10

ATmega169P

from Power-down or Standby mode due to unstable clock signal upon start-up, no matter

whether the Oscillator is in use or a clock signal is applied to the TOSC1 pin.

• Description of wake up from Power-save or ADC Noise Reduction mode when the timer is

clocked asynchronously: When the interrupt condition is met, the wake up process is started

on the following cycle of the timer clock, that is, the timer is always advanced by at least one

before the processor can read the counter value. After wake-up, the MCU is halted for four

cycles, it executes the interrupt routine, and resumes execution from the instruction following

SLEEP.

• Reading of the TCNT2 Register shortly after wake-up from Power-save may give an incorrect

result. Since TCNT2 is clocked on the asynchronous TOSC clock, reading TCNT2 must be

done through a register synchronized to the internal I/O clock domain. Synchronization takes

place for every rising TOSC1 edge. When waking up from Power-save mode, and the I/O clock

(clkI/O) again becomes active, TCNT2 will read as the previous value (before entering sleep)

until the next rising TOSC1 edge. The phase of the TOSC clock after waking up from Power-

save mode is essentially unpredictable, as it depends on the wake-up time. The recommended

procedure for reading TCNT2 is thus as follows:

a. Write any value to either of the registers OCR2A or TCCR2A.

b. Wait for the corresponding Update Busy Flag to be cleared.

c. Read TCNT2.

• During asynchronous operation, the synchronization of the Interrupt Flags for the

asynchronous timer takes 3 processor cycles plus one timer cycle. The timer is therefore

advanced by at least one before the processor can read the timer value causing the setting of

the Interrupt Flag. The Output Compare pin is changed on the timer clock and is not

synchronized to the processor clock.

152

8018P–AVR–08/10

ATmega169P

17.9 Timer/Counter Prescaler

Figure 17-12. Prescaler for Timer/Counter2

The clock source for Timer/Counter2 is named clkT2S. clkT2S is by default connected to the main

system I/O clock clkIO. By setting the AS2 bit in ASSR, Timer/Counter2 is asynchronously

clocked from the TOSC1 pin. This enables use of Timer/Counter2 as a Real Time Counter

(RTC). When AS2 is set, pins TOSC1 and TOSC2 are disconnected from Port C. A crystal can

then be connected between the TOSC1 and TOSC2 pins to serve as an independent clock

source for Timer/Counter2. The Oscillator is optimized for use with a 32.768 kHz crystal. If

applying an external clock on TOSC1, the EXCLK bit in ASSR must be set.

For Timer/Counter2, the possible prescaled selections are: clkT2S/8, clkT2S/32, clkT2S/64,

clkT2S/128, clkT2S/256, and clkT2S/1024. Additionally, clkT2S as well as 0 (stop) may be selected.

Setting the PSR2 bit in GTCCR resets the prescaler. This allows the user to operate with a pre-

dictable prescaler.

10-BIT T/C PRESCALER

TIMER/COUNTER2 CLOCK SOURCE

clk
I/O clk

T2S

TOSC1

AS2

CS20

CS21

CS22

c
lk

T
2
S
/8

c
lk

T
2
S
/6

4

c
lk

T
2
S
/1

2
8

c
lk

T
2
S
/1

0
2
4

c
lk

T
2
S
/2

5
6

c
lk

T
2
S
/3

2

0PSR2

Clear

clk
T2

153

8018P–AVR–08/10

ATmega169P

17.10 8-bit Timer/Counter Register Description

17.10.1 TCCR2A – Timer/Counter Control Register A

• Bit 7 – FOC2A: Force Output Compare A

The FOC2A bit is only active when the WGM bits specify a non-PWM mode. However, for ensur-

ing compatibility with future devices, this bit must be set to zero when TCCR2A is written when

operating in PWM mode. When writing a logical one to the FOC2A bit, an immediate compare

match is forced on the Waveform Generation unit. The OC2A output is changed according to its

COM2A1:0 bits setting. Note that the FOC2A bit is implemented as a strobe. Therefore it is the

value present in the COM2A1:0 bits that determines the effect of the forced compare.

A FOC2A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using

OCR2A as TOP.

The FOC2A bit is always read as zero.

• Bit 6, 3 – WGM21:0: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum (TOP)

counter value, and what type of waveform generation to be used. Modes of operation supported

by the Timer/Counter unit are: Normal mode, Clear Timer on Compare match (CTC) mode, and

two types of Pulse Width Modulation (PWM) modes. See Table 17-2 and ”Modes of Operation”

on page 143.

Note: 1. The CTC2 and PWM2 bit definition names are now obsolete. Use the WGM21:0 definitions.
However, the functionality and location of these bits are compatible with previous versions of
the timer.

• Bit 5:4 – COM2A1:0: Compare Match Output Mode A

These bits control the Output Compare pin (OC2A) behavior. If one or both of the COM2A1:0

bits are set, the OC2A output overrides the normal port functionality of the I/O pin it is connected

to. However, note that the Data Direction Register (DDR) bit corresponding to OC2A pin must be

set in order to enable the output driver.

When OC2A is connected to the pin, the function of the COM2A1:0 bits depends on the

WGM21:0 bit setting. Table 17-3 on page 154 shows the COM2A1:0 bit functionality when the

WGM21:0 bits are set to a normal or CTC mode (non-PWM).

Bit 7 6 5 4 3 2 1 0

(0xB0) FOC2A WGM20 COM2A1 COM2A0 WGM21 CS22 CS21 CS20 TCCR2A

Read/Write W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 17-2. Waveform Generation Mode Bit Description(1)

Mode

WGM21

(CTC2)

WGM20

(PWM2)

Timer/Counter Mode of

Operation TOP

Update of

OCR2A at

TOV2 Flag

Set on

0 0 0 Normal 0xFF Immediate MAX

1 0 1 PWM, Phase Correct 0xFF TOP BOTTOM

2 1 0 CTC OCR2A Immediate MAX

3 1 1 Fast PWM 0xFF BOTTOM MAX

154

8018P–AVR–08/10

ATmega169P

Table 17-4 shows the COM2A1:0 bit functionality when the WGM21:0 bits are set to fast PWM

mode.

Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the com-
pare match is ignored, but the set or clear is done at TOP. See ”Fast PWM Mode” on page 144
for more details.

Table 17-5 shows the COM2A1:0 bit functionality when the WGM21:0 bits are set to phase cor-

rect PWM mode.

Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the com-
pare match is ignored, but the set or clear is done at TOP. See ”Phase Correct PWM Mode” on
page 146 for more details.

Table 17-3. Compare Output Mode, non-PWM Mode

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected.

0 1 Toggle OC2A on compare match.

1 0 Clear OC2A on compare match.

1 1 Set OC2A on compare match.

Table 17-4. Compare Output Mode, Fast PWM Mode(1)

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected.

0 1 Reserved

1 0
Clear OC2A on compare match, set OC2A at BOTTOM
(non-inverting mode).

1 1
Set OC2A on compare match, clear OC2A at BOTTOM
(inverting mode).

Table 17-5. Compare Output Mode, Phase Correct PWM Mode(1)

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected.

0 1 Reserved

1 0
Clear OC2A on compare match when up-counting. Set OC2A on
compare match when down counting.

1 1
Set OC2A on compare match when up-counting. Clear OC2A on
compare match when down counting.

155

8018P–AVR–08/10

ATmega169P

• Bit 2:0 – CS22:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter, see Table

17-6.

17.10.2 TCNT2 – Timer/Counter Register

The Timer/Counter Register gives direct access, both for read and write operations, to the

Timer/Counter unit 8-bit counter. Writing to the TCNT2 Register blocks (removes) the compare

match on the following timer clock. Modifying the counter (TCNT2) while the counter is running,

introduces a risk of missing a compare match between TCNT2 and the OCR2A Register.

17.10.3 OCR2A – Output Compare Register A

The Output Compare Register A contains an 8-bit value that is continuously compared with the

counter value (TCNT2). A match can be used to generate an Output Compare interrupt, or to

generate a waveform output on the OC2A pin.

Table 17-6. Clock Select Bit Description

CS22 CS21 CS20 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkT2S/(No prescaling)

0 1 0 clkT2S/8 (From prescaler)

0 1 1 clkT2S/32 (From prescaler)

1 0 0 clkT2S/64 (From prescaler)

1 0 1 clkT2S/128 (From prescaler)

1 1 0 clkT2S/256 (From prescaler)

1 1 1 clkT2S/1024 (From prescaler)

Bit 7 6 5 4 3 2 1 0

(0xB2) TCNT2[7:0] TCNT2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xB3) OCR2A[7:0] OCR2A

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

156

8018P–AVR–08/10

ATmega169P

17.10.4 TIMSK2 – Timer/Counter2 Interrupt Mask Register

• Bit 1 – OCIE2A: Timer/Counter2 Output Compare Match A Interrupt Enable

When the OCIE2A bit is written to one and the I-bit in the Status Register is set (one), the

Timer/Counter2 Compare Match A interrupt is enabled. The corresponding interrupt is executed

if a compare match in Timer/Counter2 occurs, that is, when the OCF2A bit is set in the

Timer/Counter 2 Interrupt Flag Register – TIFR2.

• Bit 0 – TOIE2: Timer/Counter2 Overflow Interrupt Enable

When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the

Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed if an

overflow in Timer/Counter2 occurs, that is, when the TOV2 bit is set in the Timer/Counter2 Inter-

rupt Flag Register – TIFR2.

17.10.5 TIFR2 – Timer/Counter2 Interrupt Flag Register

• Bit 1 – OCF2A: Output Compare Flag 2 A

The OCF2A bit is set (one) when a compare match occurs between the Timer/Counter2 and the

data in OCR2A – Output Compare Register2. OCF2A is cleared by hardware when executing

the corresponding interrupt handling vector. Alternatively, OCF2A is cleared by writing a logic

one to the flag. When the I-bit in SREG, OCIE2A (Timer/Counter2 Compare match Interrupt

Enable), and OCF2A are set (one), the Timer/Counter2 Compare match Interrupt is executed.

• Bit 0 – TOV2: Timer/Counter2 Overflow Flag

The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared by hard-

ware when executing the corresponding interrupt handling vector. Alternatively, TOV2 is cleared

by writing a logic one to the flag. When the SREG I-bit, TOIE2A (Timer/Counter2 Overflow Inter-

rupt Enable), and TOV2 are set (one), the Timer/Counter2 Overflow interrupt is executed. In

PWM mode, this bit is set when Timer/Counter2 changes counting direction at 0x00.

17.10.6 ASSR – Asynchronous Status Register

• Bit 4 – EXCLK: Enable External Clock Input

When EXCLK is written to one, and asynchronous clock is selected, the external clock input buf-

fer is enabled and an external clock can be input on Timer Oscillator 1 (TOSC1) pin instead of a

Bit 7 6 5 4 3 2 1 0

(0x70) – – – – – – OCIE2A TOIE2 TIMSK2

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x17 (0x37) – – – – – – OCF2A TOV2 TIFR2

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xB6) – – – EXCLK AS2 TCN2UB OCR2UB TCR2UB ASSR

Read/Write R R R R/W R/W R R R

Initial Value 0 0 0 0 0 0 0 0

157

8018P–AVR–08/10

ATmega169P

32 kHz crystal. Writing to EXCLK should be done before asynchronous operation is selected.

Note that the crystal Oscillator will only run when this bit is zero.

• Bit 3 – AS2: Asynchronous Timer/Counter2

When AS2 is written to zero, Timer/Counter2 is clocked from the I/O clock, clkI/O. When AS2 is

written to one, Timer/Counter2 is clocked from a crystal Oscillator connected to the Timer Oscil-

lator 1 (TOSC1) pin. When the value of AS2 is changed, the contents of TCNT2, OCR2A, and

TCCR2A might be corrupted.

• Bit 2 – TCN2UB: Timer/Counter2 Update Busy

When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes set.

When TCNT2 has been updated from the temporary storage register, this bit is cleared by hard-

ware. A logical zero in this bit indicates that TCNT2 is ready to be updated with a new value.

• Bit 1 – OCR2UB: Output Compare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR2A is written, this bit becomes set.

When OCR2A has been updated from the temporary storage register, this bit is cleared by hard-

ware. A logical zero in this bit indicates that OCR2A is ready to be updated with a new value.

• Bit 0 – TCR2UB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2A is written, this bit becomes set.

When TCCR2A has been updated from the temporary storage register, this bit is cleared by

hardware. A logical zero in this bit indicates that TCCR2A is ready to be updated with a new

value.

If a write is performed to any of the three Timer/Counter2 Registers while its update busy flag is

set, the updated value might get corrupted and cause an unintentional interrupt to occur.

The mechanisms for reading TCNT2, OCR2A, and TCCR2A are different. When reading

TCNT2, the actual timer value is read. When reading OCR2A or TCCR2A, the value in the tem-

porary storage register is read.

17.10.7 GTCCR – General Timer/Counter Control Register

• Bit 1 – PSR2: Prescaler Reset Timer/Counter2

When this bit is one, the Timer/Counter2 prescaler will be reset. This bit is normally cleared

immediately by hardware. If the bit is written when Timer/Counter2 is operating in asynchronous

mode, the bit will remain one until the prescaler has been reset. The bit will not be cleared by

hardware if the TSM bit is set. Refer to the description of the ”Bit 7 – TSM: Timer/Counter Syn-

chronization Mode” on page 137 for a description of the Timer/Counter Synchronization mode.

Bit 7 6 5 4 3 2 1 0

0x23 (0x43) TSM – – – – – PSR2 PSR10 GTCCR

Read/Write R/W R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

158

8018P–AVR–08/10

ATmega169P

18. SPI – Serial Peripheral Interface

18.1 Features

• Full-duplex, Three-wire Synchronous Data Transfer

• Master or Slave Operation

• LSB First or MSB First Data Transfer

• Seven Programmable Bit Rates

• End of Transmission Interrupt Flag

• Write Collision Flag Protection

• Wake-up from Idle Mode

• Double Speed (CK/2) Master SPI Mode

18.2 Overview

The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the

ATmega169P and peripheral devices or between several AVR devices.

The PRSPI bit in ”PRR – Power Reduction Register” on page 45 must be written to zero to

enable SPI module.

Figure 18-1. SPI Block Diagram(1)

Note: 1. Refer to Figure 1-1 on page 2, and Table 13-6 on page 74 for SPI pin placement.

S
P

I2
X

S
P

I2
X

DIVIDER
/2/4/8/16/32/64/128

159

8018P–AVR–08/10

ATmega169P

The interconnection between Master and Slave CPUs with SPI is shown in Figure 18-2. The sys-

tem consists of two shift Registers, and a Master clock generator. The SPI Master initiates the

communication cycle when pulling low the Slave Select SS pin of the desired Slave. Master and

Slave prepare the data to be sent in their respective shift Registers, and the Master generates

the required clock pulses on the SCK line to interchange data. Data is always shifted from Mas-

ter to Slave on the Master Out – Slave In, MOSI, line, and from Slave to Master on the Master In

– Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling

high the Slave Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This

must be handled by user software before communication can start. When this is done, writing a

byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight

bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of

Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an

interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or

signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be

kept in the Buffer Register for later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long

as the SS pin is driven high. In this state, software may update the contents of the SPI Data

Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin

until the SS pin is driven low. As one byte has been completely shifted, the end of Transmission

Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an interrupt

is requested. The Slave may continue to place new data to be sent into SPDR before reading

the incoming data. The last incoming byte will be kept in the Buffer Register for later use.

Figure 18-2. SPI Master-slave Interconnection

The system is single buffered in the transmit direction and double buffered in the receive direc-

tion. This means that bytes to be transmitted cannot be written to the SPI Data Register before

the entire shift cycle is completed. When receiving data, however, a received character must be

read from the SPI Data Register before the next character has been completely shifted in. Oth-

erwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure

correct sampling of the clock signal, the minimum low and high periods should be:

Low period: longer than 2 CPU clock cycles.

High period: longer than 2 CPU clock cycles.

SHIFT
ENABLE

160

8018P–AVR–08/10

ATmega169P

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden

according to Table 18-1. For more details on automatic port overrides, refer to ”Alternate Port

Functions” on page 71.

Note: 1. See ”Alternate Functions of Port B” on page 74 for a detailed description of how to define the
direction of the user defined SPI pins.

The following code examples show how to initialize the SPI as a Master and how to perform a

simple transmission. DDR_SPI in the examples must be replaced by the actual Data Direction

Register controlling the SPI pins. DD_MOSI, DD_MISO and DD_SCK must be replaced by the

actual data direction bits for these pins. For example if MOSI is placed on pin PB5, replace

DD_MOSI with DDB5 and DDR_SPI with DDRB.

Table 18-1. SPI Pin Overrides(1)

Pin Direction, Master SPI Direction, Slave SPI

MOSI User Defined Input

MISO Input User Defined

SCK User Defined Input

SS User Defined Input

161

8018P–AVR–08/10

ATmega169P

Note: 1. ”About Code Examples” on page 10

Assembly Code Example(1)

SPI_MasterInit:

; Set MOSI and SCK output, all others input

ldi r17,(1<<DD_MOSI)|(1<<DD_SCK)

out DDR_SPI,r17

; Enable SPI, Master, set clock rate fck/16

ldi r17,(1<<SPE)|(1<<MSTR)|(1<<SPR0)

out SPCR,r17

ret

SPI_MasterTransmit:

; Start transmission of data (r16)

out SPDR,r16

Wait_Transmit:

; Wait for transmission complete

sbis SPSR,SPIF

rjmp Wait_Transmit

ret

C Code Example(1)

void SPI_MasterInit(void)

{

/* Set MOSI and SCK output, all others input */

DDR_SPI = (1<<DD_MOSI)|(1<<DD_SCK);

/* Enable SPI, Master, set clock rate fck/16 */

SPCR = (1<<SPE)|(1<<MSTR)|(1<<SPR0);

}

void SPI_MasterTransmit(char cData)

{

/* Start transmission */

SPDR = cData;

/* Wait for transmission complete */

while(!(SPSR & (1<<SPIF)))

;

}

162

8018P–AVR–08/10

ATmega169P

The following code examples show how to initialize the SPI as a Slave and how to perform a

simple reception.

Note: 1. ”About Code Examples” on page 10.

Assembly Code Example(1)

SPI_SlaveInit:

; Set MISO output, all others input

ldi r17,(1<<DD_MISO)

out DDR_SPI,r17

; Enable SPI

ldi r17,(1<<SPE)

out SPCR,r17

ret

SPI_SlaveReceive:

; Wait for reception complete

sbis SPSR,SPIF

rjmp SPI_SlaveReceive

; Read received data and return

in r16,SPDR

ret

C Code Example(1)

void SPI_SlaveInit(void)

{

/* Set MISO output, all others input */

DDR_SPI = (1<<DD_MISO);

/* Enable SPI */

SPCR = (1<<SPE);

}

char SPI_SlaveReceive(void)

{

/* Wait for reception complete */

while(!(SPSR & (1<<SPIF)))

;

/* Return Data Register */

return SPDR;

}

163

8018P–AVR–08/10

ATmega169P

18.3 SS Pin Functionality

18.3.1 Slave Mode

When the SPI is configured as a Slave, the Slave Select (SS) pin is always input. When SS is

held low, the SPI is activated, and MISO becomes an output if configured so by the user. All

other pins are inputs. When SS is driven high, all pins are inputs, and the SPI is passive, which

means that it will not receive incoming data. Note that the SPI logic will be reset once the SS pin

is driven high.

The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous

with the master clock generator. When the SS pin is driven high, the SPI slave will immediately

reset the send and receive logic, and drop any partially received data in the Shift Register.

18.3.2 Master Mode

When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the

direction of the SS pin.

If SS is configured as an output, the pin is a general output pin which does not affect the SPI

system. Typically, the pin will be driving the SS pin of the SPI Slave.

If SS is configured as an input, it must be held high to ensure Master SPI operation. If the SS pin

is driven low by peripheral circuitry when the SPI is configured as a Master with the SS pin

defined as an input, the SPI system interprets this as another master selecting the SPI as a

slave and starting to send data to it. To avoid bus contention, the SPI system takes the following

actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a result of
the SPI becoming a Slave, the MOSI and SCK pins become inputs.

2. The SPIF Flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG is
set, the interrupt routine will be executed.

Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a possi-

bility that SS is driven low, the interrupt should always check that the MSTR bit is still set. If the

MSTR bit has been cleared by a slave select, it must be set by the user to re-enable SPI Master

mode.

164

8018P–AVR–08/10

ATmega169P

18.4 Data Modes

There are four combinations of SCK phase and polarity with respect to serial data, which are

determined by control bits CPHA and CPOL. The SPI data transfer formats are shown in Figure

18-3 and Figure 18-4. Data bits are shifted out and latched in on opposite edges of the SCK sig-

nal, ensuring sufficient time for data signals to stabilize. This is clearly seen by summarizing

Table 18-3 on page 165 and Table 18-4 on page 165, as done below:

Figure 18-3. SPI Transfer Format with CPHA = 0

Figure 18-4. SPI Transfer Format with CPHA = 1

Table 18-2. CPOL Functionality

Leading Edge Trailing eDge SPI Mode

CPOL=0, CPHA=0 Sample (Rising) Setup (Falling) 0

CPOL=0, CPHA=1 Setup (Rising) Sample (Falling) 1

CPOL=1, CPHA=0 Sample (Falling) Setup (Rising) 2

CPOL=1, CPHA=1 Setup (Falling) Sample (Rising) 3

Bit 1
Bit 6

LSB
MSB

SCK (CPOL = 0)

mode 0

SAMPLE I

MOSI/MISO

CHANGE 0

MOSI PIN

CHANGE 0

MISO PIN

SCK (CPOL = 1)

mode 2

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

MSB first (DORD = 0)
LSB first (DORD = 1)

SCK (CPOL = 0)

mode 1

SAMPLE I

MOSI/MISO

CHANGE 0

MOSI PIN

CHANGE 0

MISO PIN

SCK (CPOL = 1)

mode 3

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB first (DORD = 0)
LSB first (DORD = 1)

165

8018P–AVR–08/10

ATmega169P

18.5 Register Description

18.5.1 SPCR – SPI Control Register

• Bit 7 – SPIE: SPI Interrupt Enable

This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the if

the Global Interrupt Enable bit in SREG is set.

• Bit 6 – SPE: SPI Enable

When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI

operations.

• Bit 5 – DORD: Data Order

When the DORD bit is written to one, the LSB of the data word is transmitted first.

When the DORD bit is written to zero, the MSB of the data word is transmitted first.

• Bit 4 – MSTR: Master/Slave Select

This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic

zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be cleared,

and SPIF in SPSR will become set. The user will then have to set MSTR to re-enable SPI Mas-

ter mode.

• Bit 3 – CPOL: Clock Polarity

When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low

when idle. Refer to Figure 18-3 on page 164 and Figure 18-4 on page 164 for an example. The

CPOL functionality is summarized below:

• Bit 2 – CPHA: Clock Phase

The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or

trailing (last) edge of SCK. Refer to Figure 18-3 on page 164 and Figure 18-4 on page 164 for an

example. The CPOL functionality is summarized below:

Bit 7 6 5 4 3 2 1 0

0x2C (0x4C) SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 SPCR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 18-3. CPOL Functionality

CPOL Leading Edge Trailing Edge

0 Rising Falling

1 Falling Rising

Table 18-4. CPHA Functionality

CPHA Leading Edge Trailing Edge

0 Sample Setup

1 Setup Sample

166

8018P–AVR–08/10

ATmega169P

• Bits 1, 0 – SPR1, SPR0: SPI Clock Rate Select 1 and 0

These two bits control the SCK rate of the device configured as a Master. SPR1 and SPR0 have

no effect on the Slave. The relationship between SCK and the Oscillator Clock frequency fosc is

shown in the following table:

18.5.2 SPSR – SPI Status Register

• Bit 7 – SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if SPIE in

SPCR is set and global interrupts are enabled. If SS is an input and is driven low when the SPI is

in Master mode, this will also set the SPIF Flag. SPIF is cleared by hardware when executing the

corresponding interrupt handling vector. Alternatively, the SPIF bit is cleared by first reading the

SPI Status Register with SPIF set, then accessing the SPI Data Register (SPDR).

• Bit 6 – WCOL: Write COLlision Flag

The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The

WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register with WCOL set,

and then accessing the SPI Data Register.

• Bit 5..1 – Res: Reserved Bits

These bits are reserved and will always read as zero.

• Bit 0 – SPI2X: Double SPI Speed Bit

When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI

is in Master mode (see Table 18-5). This means that the minimum SCK period will be two CPU

clock periods. When the SPI is configured as Slave, the SPI is only guaranteed to work at fosc/4

or lower.

The SPI interface on the ATmega169P is also used for program memory and EEPROM down-

loading or uploading. See page 310 for serial programming and verification.

Table 18-5. Relationship Between SCK and the Oscillator Frequency

SPI2X SPR1 SPR0 SCK Frequency

0 0 0 fosc/4

0 0 1 fosc/16

0 1 0 fosc/64

0 1 1 fosc/128

1 0 0 fosc/2

1 0 1 fosc/8

1 1 0 fosc/32

1 1 1 fosc/64

Bit 7 6 5 4 3 2 1 0

0x2D (0x4D) SPIF WCOL – – – – – SPI2X SPSR

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

167

8018P–AVR–08/10

ATmega169P

18.5.3 SPDR – SPI Data Register

The SPI Data Register is a read/write register used for data transfer between the Register File

and the SPI Shift Register. Writing to the register initiates data transmission. Reading the regis-

ter causes the Shift Register Receive buffer to be read.

Bit 7 6 5 4 3 2 1 0

0x2E (0x4E) MSB LSB SPDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X Undefined

168

8018P–AVR–08/10

ATmega169P

19. USART

19.1 Features

• Full Duplex Operation (Independent Serial Receive and Transmit Registers)

• Asynchronous or Synchronous Operation

• Master or Slave Clocked Synchronous Operation

• High Resolution Baud Rate Generator

• Supports Serial Frames with 5, 6, 7, 8, or 9 Data Bits and 1 or 2 Stop Bits

• Odd or Even Parity Generation and Parity Check Supported by Hardware

• Data OverRun Detection

• Framing Error Detection

• Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter

• Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete

• Multi-processor Communication Mode

• Double Speed Asynchronous Communication Mode

19.2 Overview

The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a

highly flexible serial communication device.

The PRUSART0 bit in ”PRR – Power Reduction Register” on page 45 must be written to zero to

enable USART0 module.

A simplified block diagram of the USART Transmitter is shown in Figure 19-1 on page 169. CPU

accessible I/O Registers and I/O pins are shown in bold.

169

8018P–AVR–08/10

ATmega169P

Figure 19-1. USART Block Diagram(1)

Note: 1. Refer to Figure 1-1 on page 2, Table 13-13 on page 80, and Table 13-7 on page 76 for USART
pin placement.

The dashed boxes in the block diagram separate the three main parts of the USART (listed from

the top): Clock Generator, Transmitter and Receiver. Control Registers are shared by all units.

The Clock Generation logic consists of synchronization logic for external clock input used by

synchronous slave operation, and the baud rate generator. The XCK (Transfer Clock) pin is only

used by synchronous transfer mode. The Transmitter consists of a single write buffer, a serial

Shift Register, Parity Generator and Control logic for handling different serial frame formats. The

write buffer allows a continuous transfer of data without any delay between frames. The

Receiver is the most complex part of the USART module due to its clock and data recovery

units. The recovery units are used for asynchronous data reception. In addition to the recovery

units, the Receiver includes a Parity Checker, Control logic, a Shift Register and a two level

receive buffer (UDRn). The Receiver supports the same frame formats as the Transmitter, and

can detect Frame Error, Data OverRun and Parity Errors.

PARITYGENERATOR

UBRR[H:L]

UDR (Transmit)

UCSRA UCSRB UCSRC

BAUD RATE GENERATOR

TRANSMIT SHIFT REGISTER
RECEIVE SHIFT REGISTER RxD

TxDPINCONTROL

UDR (Receive)
PINCONTROL

XCK

DATARECOVERY
CLOCKRECOVERY

PINCONTROL
TXCONTROL
RXCONTROL

PARITYCHECKER

DATA BUS
OSC

SYNC LOGIC
Clock Generator

Transmitter

Receiver

170

8018P–AVR–08/10

ATmega169P

19.2.1 AVR USART vs. AVR UART – Compatibility

The USART is fully compatible with the AVR UART regarding:

• Bit locations inside all USART Registers.

• Baud Rate Generation.

• Transmitter Operation.

• Transmit Buffer Functionality.

• Receiver Operation.

However, the receive buffering has two improvements that will affect the compatibility in some

special cases:

• A second Buffer Register has been added. The two Buffer Registers operate as a circular FIFO

buffer. Therefore the UDRn must only be read once for each incoming data! More important is

the fact that the Error Flags (FEn and DORn) and the ninth data bit (RXB8n) are buffered with

the data in the receive buffer. Therefore the status bits must always be read before the UDRn

Register is read. Otherwise the error status will be lost since the buffer state is lost.

• The Receiver Shift Register can now act as a third buffer level. This is done by allowing the

received data to remain in the serial Shift Register (see Figure 19-1 on page 169) if the Buffer

Registers are full, until a new start bit is detected. The USART is therefore more resistant to

Data OverRun (DORn) error conditions.

The following control bits have changed name, but have same functionality and register location:

• CHR9 is changed to UCSZn2.

• OR is changed to DORn.

19.3 Clock Generation

The Clock Generation logic generates the base clock for the Transmitter and Receiver. The

USART supports four modes of clock operation: Normal asynchronous, Double Speed asyn-

chronous, Master synchronous and Slave synchronous mode. The UMSELn bit in USART

Control and Status Register C (UCSRnC) selects between asynchronous and synchronous

operation. Double Speed (asynchronous mode only) is controlled by the U2Xn found in the

UCSRnA Register. When using synchronous mode (UMSELn = 1), the Data Direction Register

for the XCK pin (DDR_XCK) controls whether the clock source is internal (Master mode) or

external (Slave mode). The XCK pin is only active when using synchronous mode.

Figure 19-2 on page 171 shows a block diagram of the clock generation logic.

171

8018P–AVR–08/10

ATmega169P

Figure 19-2. Clock Generation Logic, Block Diagram

Signal description:

txclk Transmitter clock (Internal Signal).

rxclk Receiver base clock (Internal Signal).

xcki Input from XCK pin (internal Signal). Used for synchronous slave

operation.

xcko Clock output to XCK pin (Internal Signal). Used for synchronous master

operation.

fosc XTAL pin frequency (System Clock).

19.3.1 Internal Clock Generation – The Baud Rate Generator

Internal clock generation is used for the asynchronous and the synchronous master modes of

operation. The description in this section refers to Figure 19-2.

The USART Baud Rate Register (UBRRn) and the down-counter connected to it function as a

programmable prescaler or baud rate generator. The down-counter, running at system clock

(fosc), is loaded with the UBRRn value each time the counter has counted down to zero or when

the UBRRLn Register is written. A clock is generated each time the counter reaches zero. This

clock is the baud rate generator clock output (= fosc/(UBRRn+1)). The Transmitter divides the

baud rate generator clock output by 2, 8 or 16 depending on mode. The baud rate generator out-

put is used directly by the Receiver’s clock and data recovery units. However, the recovery units

use a state machine that uses 2, 8 or 16 states depending on mode set by the state of the

UMSELn, U2Xn and DDR_XCK bits.

Table 19-1 on page 172 contains equations for calculating the baud rate (in bits per second) and

for calculating the UBRRn value for each mode of operation using an internally generated clock

source.

PrescalingDown-Counter /2UBRR /4 /2foscUBRR+1
SyncRegister

OSC
XCKPin

txclk
U2X

UMSEL
DDR_XCK

01 01
xckixcko

DDR_XCK rxclk01
10EdgeDetector

UCPOL

172

8018P–AVR–08/10

ATmega169P

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)

BAUD Baud rate (in bits per second, bps).

fOSC System Oscillator clock frequency.

UBRRn Contents of the UBRRHn and UBRRLn Registers, (0-4095).

Some examples of UBRRn values for some system clock frequencies are found in Table 19-4 on

page 190.

19.3.2 Double Speed Operation (U2Xn)

The transfer rate can be doubled by setting the U2Xn bit in UCSRnA. Setting this bit only has

effect for the asynchronous operation. Set this bit to zero when using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling

the transfer rate for asynchronous communication. Note however that the Receiver will in this

case only use half the number of samples (reduced from 16 to 8) for data sampling and clock

recovery, and therefore a more accurate baud rate setting and system clock are required when

this mode is used. For the Transmitter, there are no downsides.

19.3.3 External Clock

External clocking is used by the synchronous slave modes of operation. The description in this

section refers to Figure 19-2 on page 171 for details.

External clock input from the XCK pin is sampled by a synchronization register to minimize the

chance of meta-stability. The output from the synchronization register must then pass through

an edge detector before it can be used by the Transmitter and Receiver. This process intro-

duces a two CPU clock period delay and therefore the maximum external XCK clock frequency

is limited by the following equation:

Note that fosc depends on the stability of the system clock source. It is therefore recommended to

add some margin to avoid possible loss of data due to frequency variations.

Table 19-1. Equations for Calculating Baud Rate Register Setting

Operating Mode

Equation for Calculating Baud

Rate(1)
Equation for Calculating UBRRn

Value

Asynchronous Normal
mode (U2Xn = 0)

Asynchronous Double
Speed mode (U2Xn = 1)

Synchronous Master
mode

BAUD
fOSC

16 UBRRn 1+()
--= UBRRn

fOSC

16BAUD
------------------------ 1–=

BAUD
fOSC

8 UBRRn 1+()
---------------------------------------= UBRRn

fOSC

8BAUD
-------------------- 1–=

BAUD
fOSC

2 UBRRn 1+()
---------------------------------------= UBRRn

fOSC

2BAUD
-------------------- 1–=

fXCK

fOSC

4
-----------<

173

8018P–AVR–08/10

ATmega169P

19.3.4 Synchronous Clock Operation

When synchronous mode is used (UMSELn = 1), the XCK pin will be used as either clock input

(Slave) or clock output (Master). The dependency between the clock edges and data sampling

or data change is the same. The basic principle is that data input (on RxD) is sampled at the

opposite XCK clock edge of the edge the data output (TxD) is changed.

Figure 19-3. Synchronous Mode XCK Timing.

The UCPOLn bit UCRSC selects which XCK clock edge is used for data sampling and which is

used for data change. As Figure 19-3 shows, when UCPOLn is zero the data will be changed at

rising XCK edge and sampled at falling XCK edge. If UCPOLn is set, the data will be changed at

falling XCK edge and sampled at rising XCK edge.

19.4 Frame Formats

A serial frame is defined to be one character of data bits with synchronization bits (start and stop

bits), and optionally a parity bit for error checking. The USART accepts all 30 combinations of

the following as valid frame formats:

• 1 start bit

• 5, 6, 7, 8, or 9 data bits

• no, even or odd parity bit

• 1 or 2 stop bits

A frame starts with the start bit followed by the least significant data bit. Then the next data bits,

up to a total of nine, are succeeding, ending with the most significant bit. If enabled, the parity bit

is inserted after the data bits, before the stop bits. When a complete frame is transmitted, it can

be directly followed by a new frame, or the communication line can be set to an idle (high) state.

Figure 19-4 on page 174 illustrates the possible combinations of the frame formats. Bits inside

brackets are optional.

RxD / TxDXCK
RxD / TxDXCKUCPOL = 0

UCPOL = 1
Sample
Sample

174

8018P–AVR–08/10

ATmega169P

Figure 19-4. Frame Formats

St Start bit, always low.

(n) Data bits (0 to 8).

P Parity bit. Can be odd or even.

Sp Stop bit, always high.

IDLE No transfers on the communication line (RxD or TxD). An IDLE line must

be high.

The frame format used by the USART is set by the UCSZn2:0, UPM1n:0 and USBSn bits in

UCSRnB and UCSRnC. The Receiver and Transmitter use the same setting. Note that changing

the setting of any of these bits will corrupt all ongoing communication for both the Receiver and

Transmitter.

The USART Character SiZe (UCSZn2:0) bits select the number of data bits in the frame. The

USART Parity mode (UPM1n:0) bits enable and set the type of parity bit. The selection between

one or two stop bits is done by the USART Stop Bit Select (USBSn) bit. The Receiver ignores

the second stop bit. An FEn (Frame Error FEn) will therefore only be detected in the cases

where the first stop bit is zero.

19.4.1 Parity Bit Calculation

The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is used, the

result of the exclusive or is inverted. The relation between the parity bit and data bits is as

follows:

Peven Parity bit using even parity.

Podd Parity bit using odd parity.

dn Data bit n of the character.

If used, the parity bit is located between the last data bit and first stop bit of a serial frame.

10 2 3 4 [5] [6] [7] [8] [P]St Sp1 [Sp2] (St / IDLE)(IDLE) FRAME

Peven dn 1–
… d3 d2 d1 d0 0

Podd

⊕ ⊕ ⊕ ⊕ ⊕ ⊕
dn 1–

… d3 d2 d1 d0 1⊕ ⊕ ⊕ ⊕ ⊕ ⊕
=

=

175

8018P–AVR–08/10

ATmega169P

19.5 USART Initialization

The USART has to be initialized before any communication can take place. The initialization pro-

cess normally consists of setting the baud rate, setting frame format and enabling the

Transmitter or the Receiver depending on the usage. For interrupt driven USART operation, the

Global Interrupt Flag should be cleared (and interrupts globally disabled) when doing the

initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that there are no

ongoing transmissions during the period the registers are changed. The TXCn Flag can be used

to check that the Transmitter has completed all transfers, and the RXCn Flag can be used to

check that there are no unread data in the receive buffer. Note that the TXCn Flag must be

cleared before each transmission (before UDRn is written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C func-

tion that are equal in functionality. The examples assume asynchronous operation using polling

(no interrupts enabled) and a fixed frame format. The baud rate is given as a function parameter.

176

8018P–AVR–08/10

ATmega169P

For the assembly code, the baud rate parameter is assumed to be stored in the r17:r16

Registers.

Note: 1. See ”About Code Examples” on page 10.

More advanced initialization routines can be made that include frame format as parameters, dis-

able interrupts and so on. However, many applications use a fixed setting of the baud and

control registers, and for these types of applications the initialization code can be placed directly

in the main routine, or be combined with initialization code for other I/O modules.

Assembly Code Example(1)

USART_Init:

; Set baud rate

sts UBRRH0, r17

sts UBRRL0, r16

; Enable receiver and transmitter

ldi r16, (1<<RXEN0)|(1<<TXEN0)

sts UCSR0B,r16

; Set frame format: 8data, 2stop bit

ldi r16, (1<<USBS0)|(3<<UCSZ00)

sts UCSR0C,r16

ret

C Code Example(1)

#define FOSC 1843200// Clock Speed

#define BAUD 9600

#define MYUBRR FOSC/16/BAUD-1

void main(void)

{

...

USART_Init (MYUBRR);

...

}

void USART_Init(unsigned int ubrr)

{

/* Set baud rate */

UBRRH0 = (unsigned char)(ubrr>>8);

UBRRL0 = (unsigned char)ubrr;

/* Enable receiver and transmitter */

UCSR0B = (1<<RXEN0)|(1<<TXEN0);

/* Set frame format: 8data, 2stop bit */

UCSRnC = (1<<USBS0)|(3<<UCSZ00);

}

177

8018P–AVR–08/10

ATmega169P

19.6 Data Transmission – The USART Transmitter

The USART Transmitter is enabled by setting the Transmit Enable (TXENn) bit in the UCSRnB

Register. When the Transmitter is enabled, the normal port operation of the TxD pin is overrid-

den by the USART and given the function as the Transmitter’s serial output. The baud rate,

mode of operation and frame format must be set up once before doing any transmissions. If syn-

chronous operation is used, the clock on the XCK pin will be overridden and used as

transmission clock.

19.6.1 Sending Frames with 5 to 8 Data Bit

A data transmission is initiated by loading the transmit buffer with the data to be transmitted. The

CPU can load the transmit buffer by writing to the UDRn I/O location. The buffered data in the

transmit buffer will be moved to the Shift Register when the Shift Register is ready to send a new

frame. The Shift Register is loaded with new data if it is in idle state (no ongoing transmission) or

immediately after the last stop bit of the previous frame is transmitted. When the Shift Register is

loaded with new data, it will transfer one complete frame at the rate given by the Baud Register,

U2Xn bit or by XCK depending on mode of operation.

The following code examples show a simple USART transmit function based on polling of the

Data Register Empty (UDREn) Flag. When using frames with less than eight bits, the most sig-

nificant bits written to the UDRn are ignored. The USART has to be initialized before the function

can be used. For the assembly code, the data to be sent is assumed to be stored in Register

R16.

Note: 1. See ”About Code Examples” on page 10.

The function simply waits for the transmit buffer to be empty by checking the UDREn Flag,

before loading it with new data to be transmitted. If the Data Register Empty interrupt is utilized,

the interrupt routine writes the data into the buffer.

Assembly Code Example(1)

USART_Transmit:

; Wait for empty transmit buffer

sbis UCSR0A,UDREn

rjmp USART_Transmit

; Put data (r16) into buffer, sends the data

sts UDR0,r16

ret

C Code Example(1)

void USART_Transmit(unsigned char data)

{

/* Wait for empty transmit buffer */

while (!(UCSR0A & (1<<UDRE0)))

;

/* Put data into buffer, sends the data */

UDR0 = data;

}

178

8018P–AVR–08/10

ATmega169P

19.6.2 Sending Frames with 9 Data Bit

If 9-bit characters are used (UCSZ = 7), the ninth bit must be written to the TXB8n bit in

UCSRnB before the low byte of the character is written to UDRn. The following code examples

show a transmit function that handles 9-bit characters. For the assembly code, the data to be

sent is assumed to be stored in registers R17:R16.

Notes: 1. These transmit functions are written to be general functions. They can be optimized if the con-
tents of the UCSRnB is static. For example, only the TXB8n bit of the UCSRnB Register is
used after initialization.

2. See ”About Code Examples” on page 10.

The ninth bit can be used for indicating an address frame when using multi processor communi-

cation mode or for other protocol handling as for example synchronization.

Assembly Code Example(1)(2)

USART_Transmit:

; Wait for empty transmit buffer

sbis UCSR0A,UDRE0

rjmp USART_Transmit

; Copy 9th bit from r17 to TXB80

cbi UCSR0B,TXB80

sbrc r17,0

sbi UCSR0B,TXB80

; Put LSB data (r16) into buffer, sends the data

sts UDR0,r16

ret

C Code Example(1)(2)

void USART_Transmit(unsigned int data)

{

/* Wait for empty transmit buffer */

while (!(UCSR0A & (1<<UDRE0))))

;

/* Copy 9th bit to TXB8n */

UCSR0B &= ~(1<<TXB80);

if (data & 0x0100)

UCSR0B |= (1<<TXB80);

/* Put data into buffer, sends the data */

UDR0 = data;

}

179

8018P–AVR–08/10

ATmega169P

19.6.3 Transmitter Flags and Interrupts

The USART Transmitter has two flags that indicate its state: USART Data Register Empty

(UDREn) and Transmit Complete (TXCn). Both flags can be used for generating interrupts.

The Data Register Empty (UDREn) Flag indicates whether the transmit buffer is ready to receive

new data. This bit is set when the transmit buffer is empty, and cleared when the transmit buffer

contains data to be transmitted that has not yet been moved into the Shift Register. For compat-

ibility with future devices, always write this bit to zero when writing the UCSRnA Register.

When the Data Register Empty Interrupt Enable (UDRIEn) bit in UCSRnB is written to one, the

USART Data Register Empty Interrupt will be executed as long as UDREn is set (provided that

global interrupts are enabled). UDREn is cleared by writing UDRn. When interrupt-driven data

transmission is used, the Data Register Empty interrupt routine must either write new data to

UDRn in order to clear UDREn or disable the Data Register Empty interrupt, otherwise a new

interrupt will occur once the interrupt routine terminates.

The Transmit Complete (TXCn) Flag bit is set one when the entire frame in the Transmit Shift

Register has been shifted out and there are no new data currently present in the transmit buffer.

The TXCn Flag bit is automatically cleared when a transmit complete interrupt is executed, or it

can be cleared by writing a one to its bit location. The TXCn Flag is useful in half-duplex commu-

nication interfaces (like the RS-485 standard), where a transmitting application must enter

receive mode and free the communication bus immediately after completing the transmission.

When the Transmit Compete Interrupt Enable (TXCIEn) bit in UCSRnB is set, the USART

Transmit Complete Interrupt will be executed when the TXCn Flag becomes set (provided that

global interrupts are enabled). When the transmit complete interrupt is used, the interrupt han-

dling routine does not have to clear the TXCn Flag, this is done automatically when the interrupt

is executed.

19.6.4 Parity Generator

The Parity Generator calculates the parity bit for the serial frame data. When parity bit is enabled

(UPM1n = 1), the transmitter control logic inserts the parity bit between the last data bit and the

first stop bit of the frame that is sent.

19.6.5 Disabling the Transmitter

The disabling of the Transmitter (setting the TXENn to zero) will not become effective until ongo-

ing and pending transmissions are completed, that is, when the Transmit Shift Register and

Transmit Buffer Register do not contain data to be transmitted. When disabled, the Transmitter

will no longer override the TxD pin.

180

8018P–AVR–08/10

ATmega169P

19.7 Data Reception – The USART Receiver

The USART Receiver is enabled by writing the Receive Enable (RXENn) bit in the UCSRnB

Register to one. When the Receiver is enabled, the normal pin operation of the RxD pin is over-

ridden by the USART and given the function as the Receiver’s serial input. The baud rate, mode

of operation and frame format must be set up once before any serial reception can be done. If

synchronous operation is used, the clock on the XCK pin will be used as transfer clock.

19.7.1 Receiving Frames with 5 to 8 Data Bits

The Receiver starts data reception when it detects a valid start bit. Each bit that follows the start

bit will be sampled at the baud rate or XCK clock, and shifted into the Receive Shift Register until

the first stop bit of a frame is received. A second stop bit will be ignored by the Receiver. When

the first stop bit is received, that is, a complete serial frame is present in the Receive Shift Regis-

ter, the contents of the Shift Register will be moved into the receive buffer. The receive buffer

can then be read by reading the UDRn I/O location.

The following code example shows a simple USART receive function based on polling of the

Receive Complete (RXCn) Flag. When using frames with less than eight bits the most significant

bits of the data read from the UDRn will be masked to zero. The USART has to be initialized

before the function can be used.

Note: 1. See ”About Code Examples” on page 10.

The function simply waits for data to be present in the receive buffer by checking the RXCn Flag,

before reading the buffer and returning the value.

Assembly Code Example(1)

USART_Receive:

; Wait for data to be received

sbis UCSR0A, RXC0

rjmp USART_Receive

; Get and return received data from buffer

in r16, UDR0

ret

C Code Example(1)

unsigned char USART_Receive(void)

{

/* Wait for data to be received */

while (!(UCSR0A & (1<<RXC0)))

;

/* Get and return received data from buffer */

return UDR0;

}

181

8018P–AVR–08/10

ATmega169P

19.7.2 Receiving Frames with 9 Data Bits

If 9-bit characters are used (UCSZ=7) the ninth bit must be read from the RXB8n bit in UCSRnB

before reading the low bits from the UDRn. This rule applies to the FEn, DORn and UPEn Sta-

tus Flags as well. Read status from UCSRnA, then data from UDRn. Reading the UDRn I/O

location will change the state of the receive buffer FIFO and consequently the TXB8n, FEn,

DORn and UPEn bits, which all are stored in the FIFO, will change.

The following code example shows a simple USART receive function that handles both nine bit

characters and the status bits.

182

8018P–AVR–08/10

ATmega169P

Note: 1. ”About Code Examples” on page 10.

The receive function example reads all the I/O Registers into the Register File before any com-

putation is done. This gives an optimal receive buffer utilization since the buffer location read will

be free to accept new data as early as possible.

Assembly Code Example(1)

USART_Receive:

; Wait for data to be received

sbis UCSR0A, RXC0

rjmp USART_Receive

; Get status and 9th bit, then data from buffer

in r18, UCSR0A

in r17, UCSR0B

in r16, UDR0

; If error, return -1

andi r18,(1<<FE0)|(1<<DOR0)|(1<<UPE0)

breq USART_ReceiveNoError

ldi r17, HIGH(-1)

ldi r16, LOW(-1)

USART_ReceiveNoError:

; Filter the 9th bit, then return

lsr r17

andi r17, 0x01

ret

C Code Example(1)

unsigned int USART_Receive(void)

{

unsigned char status, resh, resl;

/* Wait for data to be received */

while (!(UCSRnA & (1<<RXCn)))

;

/* Get status and 9th bit, then data */

/* from buffer */

status = UCSR0A;

resh = UCSR0B;

resl = UDR0;

/* If error, return -1 */

if (status & (1<<FE0)|(1<<DOR0)|(1<<UPE0))

return -1;

/* Filter the 9th bit, then return */

resh = (resh >> 1) & 0x01;

return ((resh << 8) | resl);

}

183

8018P–AVR–08/10

ATmega169P

19.7.3 Receive Compete Flag and Interrupt

The USART Receiver has one flag that indicates the Receiver state.

The Receive Complete (RXCn) Flag indicates if there are unread data present in the receive buf-

fer. This flag is one when unread data exist in the receive buffer, and zero when the receive

buffer is empty (that is, does not contain any unread data). If the Receiver is disabled (RXENn =

0), the receive buffer will be flushed and consequently the RXCn bit will become zero.

When the Receive Complete Interrupt Enable (RXCIEn) in UCSRnB is set, the USART Receive

Complete interrupt will be executed as long as the RXCn Flag is set (provided that global inter-

rupts are enabled). When interrupt-driven data reception is used, the receive complete routine

must read the received data from UDRn in order to clear the RXCn Flag, otherwise a new inter-

rupt will occur once the interrupt routine terminates.

19.7.4 Receiver Error Flags

The USART Receiver has three Error Flags: Frame Error (FEn), Data OverRun (DORn) and

Parity Error (UPEn). All can be accessed by reading UCSRnA. Common for the Error Flags is

that they are located in the receive buffer together with the frame for which they indicate the

error status. Due to the buffering of the Error Flags, the UCSRnA must be read before the

receive buffer (UDRn), since reading the UDRn I/O location changes the buffer read location.

Another equality for the Error Flags is that they can not be altered by software doing a write to

the flag location. However, all flags must be set to zero when the UCSRnA is written for upward

compatibility of future USART implementations. None of the Error Flags can generate interrupts.

The Frame Error (FEn) Flag indicates the state of the first stop bit of the next readable frame

stored in the receive buffer. The FEn Flag is zero when the stop bit was correctly read (as one),

and the FEn Flag will be one when the stop bit was incorrect (zero). This flag can be used for

detecting out-of-sync conditions, detecting break conditions and protocol handling. The FEn

Flag is not affected by the setting of the USBSn bit in UCSRnC since the Receiver ignores all,

except for the first, stop bits. For compatibility with future devices, always set this bit to zero

when writing to UCSRnA.

The Data OverRun (DORn) Flag indicates data loss due to a receiver buffer full condition. A

Data OverRun occurs when the receive buffer is full (two characters), it is a new character wait-

ing in the Receive Shift Register, and a new start bit is detected. If the DORn Flag is set there

was one or more serial frame lost between the frame last read from UDRn, and the next frame

read from UDRn. For compatibility with future devices, always write this bit to zero when writing

to UCSRnA. The DORn Flag is cleared when the frame received was successfully moved from

the Shift Register to the receive buffer.

The Parity Error (UPEn) Flag indicates that the next frame in the receive buffer had a Parity

Error when received. If Parity Check is not enabled the UPEn bit will always be read zero. For

compatibility with future devices, always set this bit to zero when writing to UCSRnA. For more

details see ”Parity Bit Calculation” on page 174 and ”Parity Checker” on page 184.

184

8018P–AVR–08/10

ATmega169P

19.7.5 Parity Checker

The Parity Checker is active when the high USART Parity mode (UPM1n) bit is set. Type of Par-

ity Check to be performed (odd or even) is selected by the UPM0n bit. When enabled, the Parity

Checker calculates the parity of the data bits in incoming frames and compares the result with

the parity bit from the serial frame. The result of the check is stored in the receive buffer together

with the received data and stop bits. The Parity Error (UPEn) Flag can then be read by software

to check if the frame had a Parity Error.

The UPEn bit is set if the next character that can be read from the receive buffer had a Parity

Error when received and the Parity Checking was enabled at that point (UPM1n = 1). This bit is

valid until the receive buffer (UDRn) is read.

19.7.6 Disabling the Receiver

In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from ongoing

receptions will therefore be lost. When disabled (that is, the RXENn is set to zero) the Receiver

will no longer override the normal function of the RxD port pin. The Receiver buffer FIFO will be

flushed when the Receiver is disabled. Remaining data in the buffer will be lost.

19.7.7 Flushing the Receive Buffer

The receiver buffer FIFO will be flushed when the Receiver is disabled, that is, the buffer will be

emptied of its contents. Unread data will be lost. If the buffer has to be flushed during normal

operation, due to for instance an error condition, read the UDRn I/O location until the RXCn Flag

is cleared. The following code example shows how to flush the receive buffer.

Note: 1. See ”About Code Examples” on page 10.

Assembly Code Example(1)

USART_Flush:

sbis UCSR0A, RXC0

ret

in r16, UDR0

rjmp USART_Flush

C Code Example(1)

void USART_Flush(void)

{

unsigned char dummy;

while (UCSR0A & (1<<RXC0)) dummy = UDR0;

}

185

8018P–AVR–08/10

ATmega169P

19.8 Asynchronous Data Reception

The USART includes a clock recovery and a data recovery unit for handling asynchronous data

reception. The clock recovery logic is used for synchronizing the internally generated baud rate

clock to the incoming asynchronous serial frames at the RxD pin. The data recovery logic sam-

ples and low pass filters each incoming bit, thereby improving the noise immunity of the

Receiver. The asynchronous reception operational range depends on the accuracy of the inter-

nal baud rate clock, the rate of the incoming frames, and the frame size in number of bits.

19.8.1 Asynchronous Clock Recovery

The clock recovery logic synchronizes internal clock to the incoming serial frames. Figure 19-5

illustrates the sampling process of the start bit of an incoming frame. The sample rate is 16 times

the baud rate for Normal mode, and eight times the baud rate for Double Speed mode. The hor-

izontal arrows illustrate the synchronization variation due to the sampling process. Note the

larger time variation when using the Double Speed mode (U2Xn = 1) of operation. Samples

denoted zero are samples done when the RxD line is idle (that is, no communication activity).

Figure 19-5. Start Bit Sampling

When the clock recovery logic detects a high (idle) to low (start) transition on the RxD line, the

start bit detection sequence is initiated. Let sample 1 denote the first zero-sample as shown in

the figure. The clock recovery logic then uses samples 8, 9, and 10 for Normal mode, and sam-

ples 4, 5, and 6 for Double Speed mode (indicated with sample numbers inside boxes on the

figure), to decide if a valid start bit is received. If two or more of these three samples have logical

high levels (the majority wins), the start bit is rejected as a noise spike and the Receiver starts

looking for the next high to low-transition. If however, a valid start bit is detected, the clock recov-

ery logic is synchronized and the data recovery can begin. The synchronization process is

repeated for each start bit.

19.8.2 Asynchronous Data Recovery

When the receiver clock is synchronized to the start bit, the data recovery can begin. The data

recovery unit uses a state machine that has 16 states for each bit in Normal mode and eight

states for each bit in Double Speed mode. Figure 19-6 on page 186 shows the sampling of the

data bits and the parity bit. Each of the samples is given a number that is equal to the state of

the recovery unit.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2
STARTIDLE

00
BIT 0

31 2 3 4 5 6 7 8 1 20
RxDSample(U2X = 0)Sample(U2X = 1)

186

8018P–AVR–08/10

ATmega169P

Figure 19-6. Sampling of Data and Parity Bit

The decision of the logic level of the received bit is taken by doing a majority voting of the logic

value to the three samples in the center of the received bit. The center samples are emphasized

on the figure by having the sample number inside boxes. The majority voting process is done as

follows: If two or all three samples have high levels, the received bit is registered to be a logic 1.

If two or all three samples have low levels, the received bit is registered to be a logic 0. This

majority voting process acts as a low pass filter for the incoming signal on the RxD pin. The

recovery process is then repeated until a complete frame is received. Including the first stop bit.

Note that the Receiver only uses the first stop bit of a frame.

Figure 19-7 shows the sampling of the stop bit and the earliest possible beginning of the start bit

of the next frame.

Figure 19-7. Stop Bit Sampling and Next Start Bit Sampling

The same majority voting is done to the stop bit as done for the other bits in the frame. If the stop

bit is registered to have a logic 0 value, the Frame Error (FEn) Flag will be set.

A new high to low transition indicating the start bit of a new frame can come right after the last of

the bits used for majority voting. For Normal Speed mode, the first low level sample can be at

point marked (A) in Figure 19-7. For Double Speed mode the first low level must be delayed to

(B). (C) marks a stop bit of full length. The early start bit detection influences the operational

range of the Receiver.

19.8.3 Asynchronous Operational Range

The operational range of the Receiver is dependent on the mismatch between the received bit

rate and the internally generated baud rate. If the Transmitter is sending frames at too fast or too

slow bit rates, or the internally generated baud rate of the Receiver does not have a similar (see

Table 19-2 on page 187) base frequency, the Receiver will not be able to synchronize the

frames to the start bit.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1
BIT n

1 2 3 4 5 6 7 8 1
RxDSample(U2X = 0)Sample(U2X = 1)

1 2 3 4 5 6 7 8 9 10 0/1 0/1 0/1
STOP 1

1 2 3 4 5 6 0/1
RxDSample(U2X = 0)Sample(U2X = 1)

(A) (B) (C)

187

8018P–AVR–08/10

ATmega169P

The following equations can be used to calculate the ratio of the incoming data rate and internal

receiver baud rate.

D Sum of character size and parity size (D = 5 to 10 bit).

S Samples per bit. S = 16 for Normal Speed mode and S = 8 for Double Speed

mode.

SF First sample number used for majority voting. SF = 8 for normal speed and SF = 4

for Double Speed mode.

SM Middle sample number used for majority voting. SM = 9 for normal speed and

SM = 5 for Double Speed mode.

Rslow is the ratio of the slowest incoming data rate that can be accepted in relation to the

receiver baud rate. Rfast is the ratio of the fastest incoming data rate that can be

accepted in relation to the receiver baud rate.

Table 19-2 and Table 19-3 list the maximum receiver baud rate error that can be tolerated. Note

that Normal Speed mode has higher toleration of baud rate variations.

Table 19-2. Recommended Maximum Receiver Baud Rate Error for Normal Speed Mode
(U2Xn = 0)

D

(Data+Parity Bit) Rslow (%) Rfast (%) Max Total Error (%)

Recommended Max

Receiver Error (%)

5 93.20 106.67 +6.67/-6.8 ±3.0

6 94.12 105.79 +5.79/-5.88 ±2.5

7 94.81 105.11 +5.11/-5.19 ±2.0

8 95.36 104.58 +4.58/-4.54 ±2.0

9 95.81 104.14 +4.14/-4.19 ±1.5

10 96.17 103.78 +3.78/-3.83 ±1.5

Table 19-3. Recommended Maximum Receiver Baud Rate Error for Double Speed Mode
(U2Xn = 1)

D

(Data+Parity Bit) Rslow (%) Rfast (%) Max Total Error (%)

Recommended Max

Receiver Error (%)

5 94.12 105.66 +5.66/-5.88 ±2.5

6 94.92 104.92 +4.92/-5.08 ±2.0

7 95.52 104.35 +4.35/-4.48 ±1.5

8 96.00 103.90 +3.90/-4.00 ±1.5

9 96.39 103.53 +3.53/-3.61 ±1.5

10 96.70 103.23 +3.23/-3.30 ±1.0

Rslow
D 1+()S

S 1– D S⋅ SF+ +

---= Rfast
D 2+()S

D 1+()S SM+

-----------------------------------=

188

8018P–AVR–08/10

ATmega169P

The recommendations of the maximum receiver baud rate error was made under the assump-

tion that the Receiver and Transmitter equally divides the maximum total error.

There are two possible sources for the receivers baud rate error. The Receiver’s system clock

(XTAL) will always have some minor instability over the supply voltage range and the tempera-

ture range. When using a crystal to generate the system clock, this is rarely a problem, but for a

resonator the system clock may differ more than 2% depending of the resonators tolerance. The

second source for the error is more controllable. The baud rate generator can not always do an

exact division of the system frequency to get the baud rate wanted. In this case an UBRRn value

that gives an acceptable low error can be used if possible.

19.9 Multi-processor Communication Mode

Setting the Multi-processor Communication mode (MPCMn) bit in UCSRnA enables a filtering

function of incoming frames received by the USART Receiver. Frames that do not contain

address information will be ignored and not put into the receive buffer. This effectively reduces

the number of incoming frames that has to be handled by the CPU, in a system with multiple

MCUs that communicate via the same serial bus. The Transmitter is unaffected by the MPCMn

setting, but has to be used differently when it is a part of a system utilizing the Multi-processor

Communication mode.

If the Receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop bit indi-

cates if the frame contains data or address information. If the Receiver is set up for frames with

nine data bits, then the ninth bit (RXB8n) is used for identifying address and data frames. When

the frame type bit (the first stop or the ninth bit) is one, the frame contains an address. When the

frame type bit is zero the frame is a data frame.

The Multi-processor Communication mode enables several slave MCUs to receive data from a

master MCU. This is done by first decoding an address frame to find out which MCU has been

addressed. If a particular slave MCU has been addressed, it will receive the following data

frames as normal, while the other slave MCUs will ignore the received frames until another

address frame is received.

19.9.1 Using MPCMn

For an MCU to act as a master MCU, it can use a 9-bit character frame format (UCSZ = 7). The

ninth bit (TXB8n) must be set when an address frame (TXB8n = 1) or cleared when a data frame

(TXB = 0) is being transmitted. The slave MCUs must in this case be set to use a 9-bit character

frame format.

The following procedure should be used to exchange data in Multi-processor Communication

mode:

1. All Slave MCUs are in Multi-processor Communication mode (MPCMn in UCSRnA is
set).

2. The Master MCU sends an address frame, and all slaves receive and read this frame. In
the Slave MCUs, the RXCn Flag in UCSRnA will be set as normal.

3. Each Slave MCU reads the UDRn Register and determines if it has been selected. If so,
it clears the MPCMn bit in UCSRnA, otherwise it waits for the next address byte and
keeps the MPCMn setting.

4. The addressed MCU will receive all data frames until a new address frame is received.
The other Slave MCUs, which still have the MPCMn bit set, will ignore the data frames.

189

8018P–AVR–08/10

ATmega169P

5. When the last data frame is received by the addressed MCU, the addressed MCU sets
the MPCMn bit and waits for a new address frame from master. The process then
repeats from 2.

Using any of the 5-bit to 8-bit character frame formats is possible, but impractical since the

Receiver must change between using n and n+1 character frame formats. This makes full-

duplex operation difficult since the Transmitter and Receiver uses the same character size set-

ting. If 5-bit to 8-bit character frames are used, the Transmitter must be set to use two stop bit

(USBSn = 1) since the first stop bit is used for indicating the frame type.

Do not use Read-Modify-Write instructions (SBI and CBI) to set or clear the MPCMn bit. The

MPCMn bit shares the same I/O location as the TXCn Flag and this might accidentally be

cleared when using SBI or CBI instructions.

190

8018P–AVR–08/10

ATmega169P

19.10 Examples of Baud Rate Setting

For standard crystal and resonator frequencies, the most commonly used baud rates for asyn-

chronous operation can be generated by using the UBRRn settings in Table 19-4. UBRRn

values which yield an actual baud rate differing less than 0.5% from the target baud rate, are

bold in the table. Higher error ratings are acceptable, but the Receiver will have less noise resis-

tance when the error ratings are high, especially for large serial frames (see ”Asynchronous

Operational Range” on page 186). The error values are calculated using the following equation:

Note: 1. UBRRn = 0, Error = 0%.

Error[%]
BaudRateClosest Match

BaudRate
-- 1–⎝ ⎠

⎛ ⎞ 100%•=

Table 19-4. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies

Baud

Rate

(bps)

fosc = 1.0000 MHz fosc = 1.8432 MHz fosc = 2.0000 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%

4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%

9600 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%

14.4k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%

19.2k 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 6 -7.0% 12 0.2%

28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%

38.4k 1 -18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 -7.0%

57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%

76.8k – – 1 -18.6% 1 -25.0% 2 0.0% 1 -18.6% 2 8.5%

115.2k – – 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%

230.4k – – – – – – 0 0.0% – – – –

250k – – – – – – – – – – 0 0.0%

Max.(1) 62.5 Kbps 125 Kbps 115.2 Kbps 230.4 Kbps 125 Kbps 250 Kbps

191

8018P–AVR–08/10

ATmega169P

Note: 1. UBRRn = 0, Error = 0.0%

Table 19-5. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies (Continued)

Baud

Rate

(bps)

fosc = 3.6864 MHz fosc = 4.0000 MHz fosc = 7.3728 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 95 0.0% 191 0.0% 103 0.2% 207 0.2% 191 0.0% 383 0.0%

4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%

9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%

14.4k 15 0.0% 31 0.0% 16 2.1% 34 -0.8% 31 0.0% 63 0.0%

19.2k 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%

28.8k 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 15 0.0% 31 0.0%

38.4k 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 11 0.0% 23 0.0%

57.6k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0%

76.8k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 11 0.0%

115.2k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%

230.4k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%

250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%

0.5M – – 0 -7.8% – – 0 0.0% 0 -7.8% 1 -7.8%

1M – – – – – – – – – – 0 -7.8%

Max.(1) 230.4 Kbps 460.8 Kbps 250 Kbps 0.5 Mbps 460.8 Kbps 921.6 Kbps

192

8018P–AVR–08/10

ATmega169P

Note: 1. UBRRn = 0, Error = 0.0%

Table 19-6. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies (Continued)

Baud

Rate

(bps)

fosc = 8.0000 MHz fosc = 11.0592 MHz fosc = 14.7456 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 207 0.2% 416 -0.1% 287 0.0% 575 0.0% 383 0.0% 767 0.0%

4800 103 0.2% 207 0.2% 143 0.0% 287 0.0% 191 0.0% 383 0.0%

9600 51 0.2% 103 0.2% 71 0.0% 143 0.0% 95 0.0% 191 0.0%

14.4k 34 -0.8% 68 0.6% 47 0.0% 95 0.0% 63 0.0% 127 0.0%

19.2k 25 0.2% 51 0.2% 35 0.0% 71 0.0% 47 0.0% 95 0.0%

28.8k 16 2.1% 34 -0.8% 23 0.0% 47 0.0% 31 0.0% 63 0.0%

38.4k 12 0.2% 25 0.2% 17 0.0% 35 0.0% 23 0.0% 47 0.0%

57.6k 8 -3.5% 16 2.1% 11 0.0% 23 0.0% 15 0.0% 31 0.0%

76.8k 6 -7.0% 12 0.2% 8 0.0% 17 0.0% 11 0.0% 23 0.0%

115.2k 3 8.5% 8 -3.5% 5 0.0% 11 0.0% 7 0.0% 15 0.0%

230.4k 1 8.5% 3 8.5% 2 0.0% 5 0.0% 3 0.0% 7 0.0%

250k 1 0.0% 3 0.0% 2 -7.8% 5 -7.8% 3 -7.8% 6 5.3%

0.5M 0 0.0% 1 0.0% – – 2 -7.8% 1 -7.8% 3 -7.8%

1M – – 0 0.0% – – – – 0 -7.8% 1 -7.8%

Max.(1) 0.5 Mbps 1 Mbps 691.2 Kbps 1.3824 Mbps 921.6 Kbps 1.8432 Mbps

193

8018P–AVR–08/10

ATmega169P

Note: 1. UBRRn = 0, Error = 0.0%

Table 19-7. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies (Continued)

Baud

Rate

(bps)

fosc = 16.0000 MHz fosc = 18.4320 MHz fosc = 20.0000 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 416 -0.1% 832 0.0% 479 0.0% 959 0.0% 520 0.0% 1041 0.0%

4800 207 0.2% 416 -0.1% 239 0.0% 479 0.0% 259 0.2% 520 0.0%

9600 103 0.2% 207 0.2% 119 0.0% 239 0.0% 129 0.2% 259 0.2%

14.4k 68 0.6% 138 -0.1% 79 0.0% 159 0.0% 86 -0.2% 173 -0.2%

19.2k 51 0.2% 103 0.2% 59 0.0% 119 0.0% 64 0.2% 129 0.2%

28.8k 34 -0.8% 68 0.6% 39 0.0% 79 0.0% 42 0.9% 86 -0.2%

38.4k 25 0.2% 51 0.2% 29 0.0% 59 0.0% 32 -1.4% 64 0.2%

57.6k 16 2.1% 34 -0.8% 19 0.0% 39 0.0% 21 -1.4% 42 0.9%

76.8k 12 0.2% 25 0.2% 14 0.0% 29 0.0% 15 1.7% 32 -1.4%

115.2k 8 -3.5% 16 2.1% 9 0.0% 19 0.0% 10 -1.4% 21 -1.4%

230.4k 3 8.5% 8 -3.5% 4 0.0% 9 0.0% 4 8.5% 10 -1.4%

250k 3 0.0% 7 0.0% 4 -7.8% 8 2.4% 4 0.0% 9 0.0%

0.5M 1 0.0% 3 0.0% – – 4 -7.8% – – 4 0.0%

1M 0 0.0% 1 0.0% – – – – – – – –

Max.(1) 1 Mbps 2 Mbps 1.152 Mbps 2.304 Mbps 1.25 Mbps 2.5 Mbps

194

8018P–AVR–08/10

ATmega169P

19.11 USART Register Description

19.11.1 UDRn – USART I/O Data Register

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers share the

same I/O address referred to as USART Data Register or UDRn. The Transmit Data Buffer Reg-

ister (TXB) will be the destination for data written to the UDRn Register location. Reading the

UDRn Register location will return the contents of the Receive Data Buffer Register (RXB).

For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the Transmitter and set to

zero by the Receiver.

The transmit buffer can only be written when the UDREn Flag in the UCSRnA Register is set.

Data written to UDRn when the UDREn Flag is not set, will be ignored by the USART Transmit-

ter. When data is written to the transmit buffer, and the Transmitter is enabled, the Transmitter

will load the data into the Transmit Shift Register when the Shift Register is empty. Then the

data will be serially transmitted on the TxD pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever the

receive buffer is accessed. Due to this behavior of the receive buffer, do not use Read-Modify-

Write instructions (SBI and CBI) on this location. Be careful when using bit test instructions

(SBIC and SBIS), since these also will change the state of the FIFO.

19.11.2 UCSRnA – USART Control and Status Register A

• Bit 7 – RXCn: USART Receive Complete n

This flag bit is set when there are unread data in the receive buffer and cleared when the receive

buffer is empty (that is, does not contain any unread data). If the Receiver is disabled, the

receive buffer will be flushed and consequently the RXCn bit will become zero. The RXCn Flag

can be used to generate a Receive Complete interrupt (see description of the RXCIEn bit).

• Bit 6 – TXCn: USART Transmit Complete n

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and

there are no new data currently present in the transmit buffer (UDRn). The TXC Flag bit is auto-

matically cleared when a transmit complete interrupt is executed, or it can be cleared by writing

a one to its bit location. The TXC Flag can generate a Transmit Complete interrupt (see descrip-

tion of the TXCIE bit).

• Bit 5 – UDREn: USART Data Register Empty n

The UDREn Flag indicates if the transmit buffer (UDRn) is ready to receive new data. If UDREn

is one, the buffer is empty, and therefore ready to be written. The UDREn Flag can generate a

Data Register Empty interrupt (see description of the UDRIEn bit).

Bit 7 6 5 4 3 2 1 0

(0xC6)
RXB[7:0] UDRn (Read)

TXB[7:0] UDRn (Write)

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xC0) RXCn TXCn UDREn FEn DORn UPEn U2Xn MPCMn UCSRnA

Read/Write R R/W R R R R R/W R/W

Initial Value 0 0 1 0 0 0 0 0

195

8018P–AVR–08/10

ATmega169P

UDREn is set after a reset to indicate that the Transmitter is ready.

• Bit 4 – FEn: Frame Error n

This bit is set if the next character in the receive buffer had a Frame Error when received, that is,

when the first stop bit of the next character in the receive buffer is zero. This bit is valid until the

receive buffer (UDRn) is read. The FEn bit is zero when the stop bit of received data is one.

Always set this bit to zero when writing to UCSRnA.

• Bit 3 – DORn: Data OverRun n

This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the receive

buffer is full (two characters), it is a new character waiting in the Receive Shift Register, and a

new start bit is detected. This bit is valid until the receive buffer (UDRn) is read. Always set this

bit to zero when writing to UCSRnA.

• Bit 2 – UPEn: USART Parity Error n

This bit is set if the next character in the receive buffer had a Parity Error when received and the

Parity Checking was enabled at that point (UPM1n = 1). This bit is valid until the receive buffer

(UDRn) is read. Always set this bit to zero when writing to UCSRnA.

• Bit 1 – U2Xn: Double the USART Transmission Speed n

This bit only has effect for the asynchronous operation. Write this bit to zero when using syn-

chronous operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effectively dou-

bling the transfer rate for asynchronous communication.

• Bit 0 – MPCMn: Multi-processor Communication Mode n

This bit enables the Multi-processor Communication mode. When the MPCMn bit is written to

one, all the incoming frames received by the USART Receiver that do not contain address infor-

mation will be ignored. The Transmitter is unaffected by the MPCMn setting. For more detailed

information see ”Multi-processor Communication Mode” on page 188.

19.11.3 UCSRnB – USART Control and Status Register n B

• Bit 7 – RXCIEn: RX Complete Interrupt Enable n

Writing this bit to one enables interrupt on the RXC Flag. A USART Receive Complete interrupt

will be generated only if the RXCIE bit is written to one, the Global Interrupt Flag in SREG is writ-

ten to one and the RXC bit in UCSRnA is set.

• Bit 6 – TXCIEn: TX Complete Interrupt Enable n

Writing this bit to one enables interrupt on the TXCn Flag. A USART Transmit Complete interrupt

will be generated only if the TXCIEn bit is written to one, the Global Interrupt Flag in SREG is

written to one and the TXCn bit in UCSRnA is set.

Bit 7 6 5 4 3 2 1 0

(0xC1) RXCIEn TXCIEn UDRIEn RXENn TXENn UCSZn2 RXB8n TXB8n UCSRnB

Read/Write R/W R/W R/W R/W R/W R/W R R/W

Initial Value 0 0 0 0 0 0 0 0

196

8018P–AVR–08/10

ATmega169P

• Bit 5 – UDRIEn: USART Data Register Empty Interrupt Enable

Writing this bit to one enables interrupt on the UDREn Flag. A Data Register Empty interrupt will

be generated only if the UDRIEn bit is written to one, the Global Interrupt Flag in SREG is written

to one and the UDREn bit in UCSRnA is set.

• Bit 4 – RXENn: Receiver Enable n

Writing this bit to one enables the USART Receiver. The Receiver will override normal port oper-

ation for the RxD pin when enabled. Disabling the Receiver will flush the receive buffer

invalidating the FEn, DORn, and UPEn Flags.

• Bit 3 – TXENn: Transmitter Enable n

Writing this bit to one enables the USART Transmitter. The Transmitter will override normal port

operation for the TxD pin when enabled. The disabling of the Transmitter (writing TXENn to

zero) will not become effective until ongoing and pending transmissions are completed, that is,

when the Transmit Shift Register and Transmit Buffer Register do not contain data to be trans-

mitted. When disabled, the Transmitter will no longer override the TxD port.

• Bit 2 – UCSZn2: Character Size n

The UCSZn2 bits combined with the UCSZ1n:0 bit in UCSRnC sets the number of data bits

(Character SiZe) in a frame the Receiver and Transmitter use.

• Bit 1 – RXB8n: Receive Data Bit 8 n

RXB8n is the ninth data bit of the received character when operating with serial frames with nine

data bits. Must be read before reading the low bits from UDRn.

• Bit 0 – TXB8n: Transmit Data Bit 8 n

TXB8n is the ninth data bit in the character to be transmitted when operating with serial frames

with nine data bits. Must be written before writing the low bits to UDRn.

19.11.4 UCSRnC – USART Control and Status Register n C

• Bit 6 – UMSELn: USART Mode Select n

This bit selects between asynchronous and synchronous mode of operation.

• Bit 5:4 – UPMn[1:0]: Parity Mode

These bits enable and set type of parity generation and check. If enabled, the Transmitter will

automatically generate and send the parity of the transmitted data bits within each frame. The

Bit 7 6 5 4 3 2 1 0

(0xC2) – UMSELn UPMn1 UPMn0 USBSn UCSZn1 UCSZn0 UCPOLn UCSRnC

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 1 1 0

Table 19-8. UMSELn Bit Settings

UMSELn Mode

0 Asynchronous Operation

1 Synchronous Operation

197

8018P–AVR–08/10

ATmega169P

Receiver will generate a parity value for the incoming data and compare it to the UPM0n setting.

If a mismatch is detected, the UPEn Flag in UCSRnA will be set.

• Bit 3 – USBSn: Stop Bit Select

This bit selects the number of stop bits to be inserted by the Transmitter. The Receiver ignores

this setting.

• Bit 2:1 – UCSZn[1:0]: Character Size

The UCSZn[1:0] bits combined with the UCSZn2 bit in UCSRnB sets the number of data bits

(Character SiZe) in a frame the Receiver and Transmitter use.

• Bit 0 – UCPOLn: Clock Polarity

This bit is used for synchronous mode only. Write this bit to zero when asynchronous mode is

used. The UCPOLn bit sets the relationship between data output change and data input sample,

and the synchronous clock (XCK).

Table 19-9. UPM Bits Settings

UPMn1 UPMn0 Parity Mode

0 0 Disabled

0 1 Reserved

1 0 Enabled, Even Parity

1 1 Enabled, Odd Parity

Table 19-10. USBSn Bit Settings

USBSn Stop Bit(s)

0 1-bit

1 2-bit

Table 19-11. UCSZ Bits Settings

UCSZn2 UCSZn1 UCSZn0 Character Size

0 0 0 5-bit

0 0 1 6-bit

0 1 0 7-bit

0 1 1 8-bit

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Reserved

1 1 1 9-bit

Table 19-12. UCPOLn Bit Settings

UCPOLn

Transmitted Data Changed

(Output of TxD Pin)

Received Data Sampled (Input on RxD

Pin)

0 Rising XCK Edge Falling XCK Edge

1 Falling XCK Edge Rising XCK Edge

198

8018P–AVR–08/10

ATmega169P

19.11.5 UBRRLn and UBRRHn – USART Baud Rate Registers

• Bit 15:12 – Reserved Bits

These bits are reserved for future use. For compatibility with future devices, these bit must be

written to zero when UBRRHn is written.

• Bit 11:0 – UBRR11:0: USART Baud Rate Register

This is a 12-bit register which contains the USART baud rate. The UBRRHn contains the four

most significant bits, and the UBRRLn contains the eight least significant bits of the USART

baud rate. Ongoing transmissions by the Transmitter and Receiver will be corrupted if the baud

rate is changed. Writing UBRRLn will trigger an immediate update of the baud rate prescaler.

Bit 15 14 13 12 11 10 9 8

(0xC5) – – – – UBRRn[11:8] UBRRHn

(0xC4) UBRRn[7:0] UBRRLn

7 6 5 4 3 2 1 0

Read/Write R R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

199

8018P–AVR–08/10

ATmega169P

20. USI – Universal Serial Interface

The Universal Serial Interface, or USI, provides the basic hardware resources needed for serial

communication. Combined with a minimum of control software, the USI allows significantly

higher transfer rates and uses less code space than solutions based on software only. Interrupts

are included to minimize the processor load. The main features of the USI are:

• Two-wire Synchronous Data Transfer (Master or Slave)

• Three-wire Synchronous Data Transfer (Master or Slave)

• Data Received Interrupt

• Wakeup from Idle Mode

• In Two-wire Mode: Wake-up from All Sleep Modes, Including Power-down Mode

• Two-wire Start Condition Detector with Interrupt Capability

20.1 Overview

A simplified block diagram of the USI is shown on Figure 20-1. For the actual placement of I/O

pins, refer to Figure 1-1 on page 2. CPU accessible I/O Registers, including I/O bits and I/O pins,

are shown in bold. The device-specific I/O Register and bit locations are listed in the ”USI Regis-

ter Descriptions” on page 207.

Figure 20-1. Universal Serial Interface, Block Diagram

The 8-bit Shift Register is directly accessible via the data bus and contains the incoming and

outgoing data. The register has no buffering so the data must be read as quickly as possible to

ensure that no data is lost. The most significant bit is connected to one of two output pins

depending of the wire mode configuration. A transparent latch is inserted between the Serial

Register Output and output pin, which delays the change of data output to the opposite clock

edge of the data input sampling. The serial input is always sampled from the Data Input (DI) pin

independent of the configuration.

The 4-bit counter can be both read and written via the data bus, and can generate an overflow

interrupt. Both the Serial Register and the counter are clocked simultaneously by the same clock

source. This allows the counter to count the number of bits received or transmitted and generate

D
A

T
A

 B
U

S

U
S

IP
F

U
S

IT
C

U
S

IC
L
K

U
S

IC
S

0

U
S

IC
S

1

U
S

IO
IF

U
S

IO
IE

U
S

ID
C

U
S

IS
IF

U
S

IW
M

0

U
S

IW
M

1

U
S

IS
IE

B
it
7

Two-wire Clock

Control Unit

DO (Output only)

DI/SDA (Input/Open Drain)

USCK/SCL (Input/Open Drain)
4-bit Counter

USIDR

USISR

D Q

LE

USICR

CLOCK

HOLD

TIM0 COMP

B
it
0

[1]

3

0
1

2

3

0
1

2

0

1

2

200

8018P–AVR–08/10

ATmega169P

an interrupt when the transfer is complete. Note that when an external clock source is selected

the counter counts both clock edges. In this case the counter counts the number of edges, and

not the number of bits. The clock can be selected from three different sources: The USCK pin,

Timer/Counter0 Compare Match or from software.

The Two-wire clock control unit can generate an interrupt when a start condition is detected on

the Two-wire bus. It can also generate wait states by holding the clock pin low after a start con-

dition is detected, or after the counter overflows.

20.2 Functional Descriptions

20.2.1 Three-wire Mode

The USI Three-wire mode is compliant to the Serial Peripheral Interface (SPI) mode 0 and 1, but

does not have the slave select (SS) pin functionality. However, this feature can be implemented

in software if necessary. Pin names used by this mode are: DI, DO, and USCK.

Figure 20-2. Three-wire Mode Operation, Simplified Diagram

Figure 20-2 shows two USI units operating in Three-wire mode, one as Master and one as

Slave. The two Shift Registers are interconnected in such way that after eight USCK clocks, the

data in each register are interchanged. The same clock also increments the USI’s 4-bit counter.

The Counter Overflow (interrupt) Flag, or USIOIF, can therefore be used to determine when a

transfer is completed. The clock is generated by the Master device software by toggling the

USCK pin via the PORT Register or by writing a one to the USITC bit in USICR.

SLAVE

MASTER

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
DO
DI

USCK

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
DO
DI

USCKPORTxn

201

8018P–AVR–08/10

ATmega169P

Figure 20-3. Three-wire Mode, Timing Diagram

The Three-wire mode timing is shown in Figure 20-3 At the top of the figure is a USCK cycle ref-

erence. One bit is shifted into the USI Shift Register (USIDR) for each of these cycles. The

USCK timing is shown for both external clock modes. In External Clock mode 0 (USICS0 = 0), DI

is sampled at positive edges, and DO is changed (Data Register is shifted by one) at negative

edges. External Clock mode 1 (USICS0 = 1) uses the opposite edges versus mode 0, that is,

samples data at negative and changes the output at positive edges. The USI clock modes corre-

sponds to the SPI data mode 0 and 1.

Referring to the timing diagram (Figure 20-3), a bus transfer involves the following steps:

1. The Slave device and Master device sets up its data output and, depending on the proto-
col used, enables its output driver (mark A and B). The output is set up by writing the
data to be transmitted to the Serial Data Register. Enabling of the output is done by set-
ting the corresponding bit in the port Data Direction Register. Note that point A and B
does not have any specific order, but both must be at least one half USCK cycle before
point C where the data is sampled. This must be done to ensure that the data setup
requirement is satisfied. The 4-bit counter is reset to zero.

2. The Master generates a clock pulse by software toggling the USCK line twice (C and D).
The bit value on the slave and master’s data input (DI) pin is sampled by the USI on the
first edge (C), and the data output is changed on the opposite edge (D). The 4-bit counter
will count both edges.

3. Step 2. is repeated eight times for a complete register (byte) transfer.

4. After eight clock pulses (that is, 16 clock edges) the counter will overflow and indicate
that the transfer is completed. The data bytes transferred must now be processed before
a new transfer can be initiated. The overflow interrupt will wake up the processor if it is
set to Idle mode. Depending of the protocol used the slave device can now set its output
to high impedance.

20.2.2 SPI Master Operation Example

The following code demonstrates how to use the USI module as a SPI Master:

SPITransfer:

sts USIDR,r16

ldi r16,(1<<USIOIF)

sts USISR,r16

ldi r16,(1<<USIWM0)|(1<<USICS1)|(1<<USICLK)|(1<<USITC)

SPITransfer_loop:

sts USICR,r16

lds r16, USISR

sbrs r16, USIOIF

MSBMSB 6 5 4 3 2 1 LSB
1 2 3 4 5 6 7 8

6 5 4 3 2 1 LSB
USCKUSCKDODI

DCBA E

CYCLE (Reference)

202

8018P–AVR–08/10

ATmega169P

rjmp SPITransfer_loop

lds r16,USIDR

ret

The code is size optimized using only eight instructions (+ ret). The code example assumes that

the DO and USCK pins are enabled as output in the DDRE Register. The value stored in register

r16 prior to the function is called is transferred to the Slave device, and when the transfer is com-

pleted the data received from the Slave is stored back into the r16 Register.

The second and third instructions clears the USI Counter Overflow Flag and the USI counter

value. The fourth and fifth instruction set Three-wire mode, positive edge Shift Register clock,

count at USITC strobe, and toggle USCK. The loop is repeated 16 times.

The following code demonstrates how to use the USI module as a SPI Master with maximum

speed (fsck = fck/4):

SPITransfer_Fast:

sts USIDR,r16

ldi r16,(1<<USIWM0)|(0<<USICS0)|(1<<USITC)

ldi r17,(1<<USIWM0)|(0<<USICS0)|(1<<USITC)|(1<<USICLK)

sts USICR,r16 ; MSB

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16

sts USICR,r17

sts USICR,r16 ; LSB

sts USICR,r17

lds r16,USIDR

ret

203

8018P–AVR–08/10

ATmega169P

20.2.3 SPI Slave Operation Example

The following code demonstrates how to use the USI module as a SPI Slave:

init:

ldi r16,(1<<USIWM0)|(1<<USICS1)

sts USICR,r16

...

SlaveSPITransfer:

sts USIDR,r16

ldi r16,(1<<USIOIF)

sts USISR,r16

SlaveSPITransfer_loop:

lds r16, USISR

sbrs r16, USIOIF

rjmp SlaveSPITransfer_loop

lds r16,USIDR

ret

The code is size optimized using only eight instructions (+ ret). The code example assumes that

the DO is configured as output and USCK pin is configured as input in the DDR Register. The

value stored in register r16 prior to the function is called is transferred to the master device, and

when the transfer is completed the data received from the Master is stored back into the r16

Register.

Note that the first two instructions is for initialization only and needs only to be executed

once.These instructions sets Three-wire mode and positive edge Shift Register clock. The loop

is repeated until the USI Counter Overflow Flag is set.

204

8018P–AVR–08/10

ATmega169P

20.2.4 Two-wire Mode

The USI Two-wire mode is compliant to the Inter IC (TWI) bus protocol, but without slew rate lim-

iting on outputs and input noise filtering. Pin names used by this mode are SCL and SDA.

Figure 20-4. Two-wire Mode Operation, Simplified Diagram

Figure 20-4 shows two USI units operating in Two-wire mode, one as Master and one as Slave.

It is only the physical layer that is shown since the system operation is highly dependent of the

communication scheme used. The main differences between the Master and Slave operation at

this level, is the serial clock generation which is always done by the Master, and only the Slave

uses the clock control unit. Clock generation must be implemented in software, but the shift

operation is done automatically by both devices. Note that only clocking on negative edge for

shifting data is of practical use in this mode. The slave can insert wait states at start or end of

transfer by forcing the SCL clock low. This means that the Master must always check if the SCL

line was actually released after it has generated a positive edge.

Since the clock also increments the counter, a counter overflow can be used to indicate that the

transfer is completed. The clock is generated by the master by toggling the USCK pin via the

PORT Register.

The data direction is not given by the physical layer. A protocol, like the one used by the TWI-

bus, must be implemented to control the data flow.

MASTER

SLAVE
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SDA

SCL

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
Two-wire ClockControl Unit HOLD

SCL

PORTxn

SDA
SCL

VCC

205

8018P–AVR–08/10

ATmega169P

Figure 20-5. Two-wire Mode, Typical Timing Diagram

Referring to the timing diagram (Figure 20-5), a bus transfer involves the following steps:

1. The a start condition is generated by the Master by forcing the SDA low line while the
SCL line is high (A). SDA can be forced low either by writing a zero to bit 7 of the Shift
Register, or by setting the corresponding bit in the PORT Register to zero. Note that the
Data Direction Register bit must be set to one for the output to be enabled. The slave
device’s start detector logic (Figure 20-6) detects the start condition and sets the USISIF
Flag. The flag can generate an interrupt if necessary.

2. In addition, the start detector will hold the SCL line low after the Master has forced an
negative edge on this line (B). This allows the Slave to wake up from sleep or complete
its other tasks before setting up the Shift Register to receive the address. This is done by
clearing the start condition flag and reset the counter.

3. The Master set the first bit to be transferred and releases the SCL line (C). The Slave
samples the data and shift it into the Serial Register at the positive edge of the SCL
clock.

4. After eight bits are transferred containing slave address and data direction (read or
write), the Slave counter overflows and the SCL line is forced low (D). If the slave is not
the one the Master has addressed, it releases the SCL line and waits for a new start
condition.

5. If the Slave is addressed it holds the SDA line low during the acknowledgment cycle
before holding the SCL line low again (that is, the Counter Register must be set to 14
before releasing SCL at (D)). Depending of the R/W bit the Master or Slave enables its
output. If the bit is set, a master read operation is in progress (that is, the slave drives the
SDA line) The slave can hold the SCL line low after the acknowledge (E).

6. Multiple bytes can now be transmitted, all in same direction, until a stop condition is given
by the Master (F). Or a new start condition is given.

If the Slave is not able to receive more data it does not acknowledge the data byte it has last

received. When the Master does a read operation it must terminate the operation by force the

acknowledge bit low after the last byte transmitted.

Figure 20-6. Start Condition Detector, Logic Diagram

PS ADDRESS1 - 7 8 9R/W ACK ACK1 - 8 9DATA ACK1 - 8 9DATA
SDASCL

A B D EC F

SDASCLWrite(USISIF)
CLOCKHOLDUSISIFD QCLR D QCLR

206

8018P–AVR–08/10

ATmega169P

20.2.5 Start Condition Detector

The start condition detector is shown in Figure 20-6 on page 205 The SDA line is delayed (in the

range of 50 to 300 ns) to ensure valid sampling of the SCL line. The start condition detector is

only enabled in Two-wire mode.

The start condition detector is working asynchronously and can therefore wake up the processor

from the Power-down sleep mode. However, the protocol used might have restrictions on the

SCL hold time. Therefore, when using this feature in this case the Oscillator start-up time set by

the CKSEL Fuses (see ”Clock Systems and their Distribution” on page 30) must also be taken

into the consideration. Refer to the ”Bit 7 – USISIF: Start Condition Interrupt Flag” on page 207

for further details.

20.2.6 Clock speed considerations.

Maximum frequency for SCL and SCK is f_CK /4. This is also the maximum data transmit and

receieve rate in both two- and three-wire mode. In two-wire slave mode the Two-wire Clock Con-

trol Unit will hold the SCL low until the slave is ready to receive more data. This may reduce the

actual data rate in two-wire mode.

20.3 Alternative USI Usage

When the USI unit is not used for serial communication, it can be set up to do alternative tasks

due to its flexible design.

20.3.1 Half-duplex Asynchronous Data Transfer

By utilizing the Shift Register in Three-wire mode, it is possible to implement a more compact

and higher performance UART than by software only.

20.3.2 4-bit Counter

The 4-bit counter can be used as a stand-alone counter with overflow interrupt. Note that if the

counter is clocked externally, both clock edges will generate an increment.

20.3.3 12-bit Timer/Counter

Combining the USI 4-bit counter and Timer/Counter0 allows them to be used as a 12-bit

counter.

20.3.4 Edge Triggered External Interrupt

By setting the counter to maximum value (F) it can function as an additional external interrupt.

The Overflow Flag and Interrupt Enable bit are then used for the external interrupt. This feature

is selected by the USICS1 bit.

20.3.5 Software Interrupt

The counter overflow interrupt can be used as a software interrupt triggered by a clock strobe.

207

8018P–AVR–08/10

ATmega169P

20.4 USI Register Descriptions

20.4.1 USIDR – USI Data Register

The USI uses no buffering of the Serial Register, that is, when accessing the Data Register

(USIDR) the Serial Register is accessed directly. If a serial clock occurs at the same cycle the

register is written, the register will contain the value written and no shift is performed. A (left) shift

operation is performed depending of the USICS1..0 bits setting. The shift operation can be con-

trolled by an external clock edge, by a Timer/Counter0 Compare Match, or directly by software

using the USICLK strobe bit. Note that even when no wire mode is selected (USIWM1..0 = 0)

both the external data input (DI/SDA) and the external clock input (USCK/SCL) can still be used

by the Shift Register.

The output pin in use, DO or SDA depending on the wire mode, is connected via the output latch

to the most significant bit (bit 7) of the Data Register. The output latch is open (transparent) dur-

ing the first half of a serial clock cycle when an external clock source is selected (USICS1 = 1),

and constantly open when an internal clock source is used (USICS1 = 0). The output will be

changed immediately when a new MSB written as long as the latch is open. The latch ensures

that data input is sampled and data output is changed on opposite clock edges.

Note that the corresponding Data Direction Register to the pin must be set to one for enabling

data output from the Shift Register.

20.4.2 USISR – USI Status Register

The Status Register contains Interrupt Flags, line Status Flags and the counter value.

• Bit 7 – USISIF: Start Condition Interrupt Flag

When Two-wire mode is selected, the USISIF Flag is set (to one) when a start condition is

detected. When output disable mode or Three-wire mode is selected and (USICSx = 0b11 &

USICLK = 0) or (USICS = 0b10 & USICLK = 0), any edge on the SCK pin sets the flag.

An interrupt will be generated when the flag is set while the USISIE bit in USICR and the Global

Interrupt Enable Flag are set. The flag will only be cleared by writing a logical one to the USISIF

bit. Clearing this bit will release the start detection hold of USCL in Two-wire mode.

A start condition interrupt will wakeup the processor from all sleep modes.

• Bit 6 – USIOIF: Counter Overflow Interrupt Flag

This flag is set (one) when the 4-bit counter overflows (that is, at the transition from 15 to 0). An

interrupt will be generated when the flag is set while the USIOIE bit in USICR and the Global

Interrupt Enable Flag are set. The flag will only be cleared if a one is written to the USIOIF bit.

Clearing this bit will release the counter overflow hold of SCL in Two-wire mode.

Bit 7 6 5 4 3 2 1 0

(0xBA) MSB LSB USIDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xB9) USISIF USIOIF USIPF USIDC USICNT3 USICNT2 USICNT1 USICNT0 USISR

Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

208

8018P–AVR–08/10

ATmega169P

A counter overflow interrupt will wakeup the processor from Idle sleep mode.

• Bit 5 – USIPF: Stop Condition Flag

When Two-wire mode is selected, the USIPF Flag is set (one) when a stop condition is detected.

The flag is cleared by writing a one to this bit. Note that this is not an Interrupt Flag. This signal is

useful when implementing Two-wire bus master arbitration.

• Bit 4 – USIDC: Data Output Collision

This bit is logical one when bit 7 in the Shift Register differs from the physical pin value. The flag

is only valid when Two-wire mode is used. This signal is useful when implementing Two-wire

bus master arbitration.

• Bits 3..0 – USICNT3:0: Counter Value

These bits reflect the current 4-bit counter value. The 4-bit counter value can directly be read or

written by the CPU.

The 4-bit counter increments by one for each clock generated either by the external clock edge

detector, by a Timer/Counter0 Compare Match, or by software using USICLK or USITC strobe

bits. The clock source depends of the setting of the USICS1:0 bits. For external clock operation

a special feature is added that allows the clock to be generated by writing to the USITC strobe

bit. This feature is enabled by write a one to the USICLK bit while setting an external clock

source (USICS1 = 1).

Note that even when no wire mode is selected (USIWM1:0 = 0) the external clock input

(USCK/SCL) are can still be used by the counter.

20.4.3 USICR – USI Control Register

The Control Register includes interrupt enable control, wire mode setting, Clock Select setting,

and clock strobe.

• Bit 7 – USISIE: Start Condition Interrupt Enable

Setting this bit to one enables the Start Condition detector interrupt. If there is a pending inter-

rupt when the USISIE and the Global Interrupt Enable Flag is set to one, this will immediately be

executed. Refer to the ”Bit 7 – USISIF: Start Condition Interrupt Flag” on page 207 for further

details.

• Bit 6 – USIOIE: Counter Overflow Interrupt Enable

Setting this bit to one enables the Counter Overflow interrupt. If there is a pending interrupt when

the USIOIE and the Global Interrupt Enable Flag is set to one, this will immediately be executed.

Refer to the ”Bit 6 – USIOIF: Counter Overflow Interrupt Flag” on page 207 for further details.

• Bit 5:4 – USIWM1:0: Wire Mode

These bits set the type of wire mode to be used. Basically only the function of the outputs are

affected by these bits. Data and clock inputs are not affected by the mode selected and will

always have the same function. The counter and Shift Register can therefore be clocked exter-

Bit 7 6 5 4 3 2 1 0

(0xB8) USISIE USIOIE USIWM1 USIWM0 USICS1 USICS0 USICLK USITC USICR

Read/Write R/W R/W R/W R/W R/W R/W W W

Initial Value 0 0 0 0 0 0 0 0

209

8018P–AVR–08/10

ATmega169P

nally, and data input sampled, even when outputs are disabled. The relations between

USIWM1:0 and the USI operation is summarized in Table 20-1 on page 210.

210

8018P–AVR–08/10

ATmega169P

Note: 1. The DI and USCK pins are renamed to Serial Data (SDA) and Serial Clock (SCL) respectively
to avoid confusion between the modes of operation.

• Bit 3:2 – USICS1:0: Clock Source Select

These bits set the clock source for the Shift Register and counter. The data output latch ensures

that the output is changed at the opposite edge of the sampling of the data input (DI/SDA) when

using external clock source (USCK/SCL). When software strobe or Timer/Counter0 Compare

Match clock option is selected, the output latch is transparent and therefore the output is

changed immediately. Clearing the USICS1..0 bits enables software strobe option. When using

this option, writing a one to the USICLK bit clocks both the Shift Register and the counter. For

external clock source (USICS1 = 1), the USICLK bit is no longer used as a strobe, but selects

between external clocking and software clocking by the USITC strobe bit.

Table 20-1. Relations between USIWM1:0 and the USI Operation

USIWM1 USIWM0 Description

0 0
Outputs, clock hold, and start detector disabled. Port pins operates as
normal.

0 1

Three-wire mode. Uses DO, DI, and USCK pins.

The Data Output (DO) pin overrides the corresponding bit in the PORT
Register in this mode. However, the corresponding DDR bit still controls the
data direction. When the port pin is set as input the pins pull-up is controlled
by the PORT bit.

The Data Input (DI) and Serial Clock (USCK) pins do not affect the normal
port operation. When operating as master, clock pulses are software
generated by toggling the PORT Register, while the data direction is set to
output. The USITC bit in the USICR Register can be used for this purpose.

1 0

Two-wire mode. Uses SDA (DI) and SCL (USCK) pins(1).

The Serial Data (SDA) and the Serial Clock (SCL) pins are bi-directional and
uses open-collector output drives. The output drivers are enabled by setting
the corresponding bit for SDA and SCL in the DDR Register.

When the output driver is enabled for the SDA pin, the output driver will force
the line SDA low if the output of the Shift Register or the corresponding bit in
the PORT Register is zero. Otherwise the SDA line will not be driven (that is, it
is released). When the SCL pin output driver is enabled the SCL line will be
forced low if the corresponding bit in the PORT Register is zero, or by the start
detector. Otherwise the SCL line will not be driven.

The SCL line is held low when a start detector detects a start condition and
the output is enabled. Clearing the Start Condition Flag (USISIF) releases the
line. The SDA and SCL pin inputs is not affected by enabling this mode. Pull-
ups on the SDA and SCL port pin are disabled in Two-wire mode.

1 1

Two-wire mode. Uses SDA and SCL pins.

Same operation as for the Two-wire mode described above, except that the
SCL line is also held low when a counter overflow occurs, and is held low until
the Counter Overflow Flag (USIOIF) is cleared.

211

8018P–AVR–08/10

ATmega169P

Table 20-2 shows the relationship between the USICS1:0 and USICLK setting and clock source

used for the Shift Register and the 4-bit counter.

• Bit 1 – USICLK: Clock Strobe

Writing a one to this bit location strobes the Shift Register to shift one step and the counter to

increment by one, provided that the USICS1..0 bits are set to zero and by doing so the software

clock strobe option is selected. The output will change immediately when the clock strobe is exe-

cuted, that is, in the same instruction cycle. The value shifted into the Shift Register is sampled

the previous instruction cycle. The bit will be read as zero.

When an external clock source is selected (USICS1 = 1), the USICLK function is changed from

a clock strobe to a Clock Select Register. Setting the USICLK bit in this case will select the

USITC strobe bit as clock source for the 4-bit counter (see Table 20-2).

• Bit 0 – USITC: Toggle Clock Port Pin

Writing a one to this bit location toggles the USCK/SCL value either from 0 to 1, or from 1 to 0.

The toggling is independent of the setting in the Data Direction Register, but if the PORT value is

to be shown on the pin the DDRE4 must be set as output (to one). This feature allows easy clock

generation when implementing master devices. The bit will be read as zero.

When an external clock source is selected (USICS1 = 1) and the USICLK bit is set to one, writ-

ing to the USITC strobe bit will directly clock the 4-bit counter. This allows an early detection of

when the transfer is done when operating as a master device.

Table 20-2. Relations between the USICS1:0 and USICLK Setting

USICS1 USICS0 USICLK Shift Register Clock Source 4-bit Counter Clock Source

0 0 0 No Clock No Clock

0 0 1
Software clock strobe
(USICLK)

Software clock strobe
(USICLK)

0 1 X
Timer/Counter0 Compare
Match

Timer/Counter0 Compare
Match

1 0 0 External, positive edge External, both edges

1 1 0 External, negative edge External, both edges

1 0 1 External, positive edge Software clock strobe (USITC)

1 1 1 External, negative edge Software clock strobe (USITC)

212

8018P–AVR–08/10

ATmega169P

21. AC - Analog Comparator

The Analog Comparator compares the input values on the positive pin AIN0 and negative pin

AIN1. When the voltage on the positive pin AIN0 is higher than the voltage on the negative pin

AIN1, the Analog Comparator output, ACO, is set. The comparator’s output can be set to trigger

the Timer/Counter1 Input Capture function. In addition, the comparator can trigger a separate

interrupt, exclusive to the Analog Comparator. The user can select Interrupt triggering on com-

parator output rise, fall or toggle. A block diagram of the comparator and its surrounding logic is

shown in Figure 21-1.The Power Reduction ADC bit, PRADC, in ”PRR – Power Reduction Register” on page 45 must

be disabled by writing a logical zero to be able to use the ADC input MUX.
Figure 21-1. Analog Comparator Block Diagram(2)

Notes: 1. See Table 21-1 on page 213.
2. Refer to Figure 1-1 on page 2 and Table 13-5 on page 74 for Analog Comparator pin

placement.

ACBG

BANDGAP
REFERENCE

ADC MULTIPLEXER
OUTPUT

ACME

ADEN

(1)

213

8018P–AVR–08/10

ATmega169P

21.1 Analog Comparator Multiplexed Input

It is possible to select any of the ADC7:0 pins to replace the negative input to the Analog Com-

parator. The ADC multiplexer is used to select this input, and consequently, the ADC must be

switched off to utilize this feature. If the Analog Comparator Multiplexer Enable bit (ACME in

ADCSRB) is set and the ADC is switched off (ADEN in ADCSRA is zero), MUX2:0 in ADMUX

select the input pin to replace the negative input to the Analog Comparator, as shown in Table

21-1. If ACME is cleared or ADEN is set, AIN1 is applied to the negative input to the Analog

Comparator.

Table 21-1. Analog Comparator Multiplexed Input

ACME ADEN MUX2:0 Analog Comparator Negative Input

0 x xxx AIN1

1 1 xxx AIN1

1 0 000 ADC0

1 0 001 ADC1

1 0 010 ADC2

1 0 011 ADC3

1 0 100 ADC4

1 0 101 ADC5

1 0 110 ADC6

1 0 111 ADC7

214

8018P–AVR–08/10

ATmega169P

21.2 Analog Comparator Register Description

21.2.1 ADCSRB – ADC Control and Status Register B

• Bit 6 – ACME: Analog Comparator Multiplexer Enable

When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is zero), the

ADC multiplexer selects the negative input to the Analog Comparator. When this bit is written

logic zero, AIN1 is applied to the negative input of the Analog Comparator. For a detailed

description of this bit, see ”Analog Comparator Multiplexed Input” on page 213.

21.2.2 ACSR – Analog Comparator Control and Status Register

• Bit 7 – ACD: Analog Comparator Disable

When this bit is written logic one, the power to the Analog Comparator is switched off. This bit

can be set at any time to turn off the Analog Comparator. This will reduce power consumption in

Active and Idle mode. When changing the ACD bit, the Analog Comparator Interrupt must be

disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt can occur when the bit is

changed.

• Bit 6 – ACBG: Analog Comparator Bandgap Select

When this bit is set, a fixed bandgap reference voltage replaces the positive input to the Analog

Comparator. When this bit is cleared, AIN0 is applied to the positive input of the Analog Compar-

ator. See ”Internal Voltage Reference” on page 51.

• Bit 5 – ACO: Analog Comparator Output

The output of the Analog Comparator is synchronized and then directly connected to ACO. The

synchronization introduces a delay of 1 - 2 clock cycles.

• Bit 4 – ACI: Analog Comparator Interrupt Flag

This bit is set by hardware when a comparator output event triggers the interrupt mode defined

by ACIS1 and ACIS0. The Analog Comparator interrupt routine is executed if the ACIE bit is set

and the I-bit in SREG is set. ACI is cleared by hardware when executing the corresponding inter-

rupt handling vector. Alternatively, ACI is cleared by writing a logic one to the flag.

• Bit 3 – ACIE: Analog Comparator Interrupt Enable

When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Analog Com-

parator interrupt is activated. When written logic zero, the interrupt is disabled.

• Bit 2 – ACIC: Analog Comparator Input Capture Enable

When written logic one, this bit enables the Input Capture function in Timer/Counter1 to be trig-

gered by the Analog Comparator. The comparator output is in this case directly connected to the

Bit 7 6 5 4 3 2 1 0

(0x7B) – ACME – – – ADTS2 ADTS1 ADTS0 ADCSRB

Read/Write R R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x30 (0x50) ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 ACSR

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 N/A 0 0 0 0 0

215

8018P–AVR–08/10

ATmega169P

Input Capture front-end logic, making the comparator utilize the noise canceler and edge select

features of the Timer/Counter1 Input Capture interrupt. When written logic zero, no connection

between the Analog Comparator and the Input Capture function exists. To make the comparator

trigger the Timer/Counter1 Input Capture interrupt, the ICIE1 bit in the Timer Interrupt Mask

Register (TIMSK1) must be set.

• Bits 1, 0 – ACIS1, ACIS0: Analog Comparator Interrupt Mode Select

These bits determine which comparator events that trigger the Analog Comparator interrupt. The

different settings are shown in Table 21-2 on page 215.

When changing the ACIS1/ACIS0 bits, the Analog Comparator Interrupt must be disabled by

clearing its Interrupt Enable bit in the ACSR Register. Otherwise an interrupt can occur when the

bits are changed.

21.2.3 DIDR1 – Digital Input Disable Register 1

• Bit 1, 0 – AIN1D, AIN0D: AIN1, AIN0 Digital Input Disable

When this bit is written logic one, the digital input buffer on the AIN1/0 pin is disabled. The corre-

sponding PIN Register bit will always read as zero when this bit is set. When an analog signal is

applied to the AIN1/0 pin and the digital input from this pin is not needed, this bit should be writ-

ten logic one to reduce power consumption in the digital input buffer.

Table 21-2. ACIS1/ACIS0 Settings

ACIS1 ACIS0 Interrupt Mode

0 0 Comparator Interrupt on Output Toggle.

0 1 Reserved

1 0 Comparator Interrupt on Falling Output Edge.

1 1 Comparator Interrupt on Rising Output Edge.

Bit 7 6 5 4 3 2 1 0

(0x7F) – – – – – – AIN1D AIN0D DIDR1

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

216

8018P–AVR–08/10

ATmega169P

22. ADC - Analog to Digital Converter

22.1 Features

• 10-bit Resolution

• 0.5 LSB Integral Non-linearity

• ±2 LSB Absolute Accuracy

• 13 µs - 260 µs Conversion Time (50 kHz to 1 MHz ADC clock)

• Up to 15 ksps at Maximum Resolution (200 kHz ADC clock)

• Eight Multiplexed Single Ended Input Channels

• Optional Left Adjustment for ADC Result Readout

• 0 - VCC ADC Input Voltage Range

• Selectable 1.1V ADC Reference Voltage

• Free Running or Single Conversion Mode

• ADC Start Conversion by Auto Triggering on Interrupt Sources

• Interrupt on ADC Conversion Complete

• Sleep Mode Noise Canceler

22.2 Overview

The ATmega169P features a 10-bit successive approximation ADC. The ADC is connected to

an 8-channel Analog Multiplexer which allows eight single-ended voltage inputs constructed

from the pins of Port F. The single-ended voltage inputs refer to 0V (GND).

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the ADC is

held at a constant level during conversion. A block diagram of the ADC is shown in Figure 22-1

on page 217.

The ADC has a separate analog supply voltage pin, AVCC. AVCC must not differ more than

±0.3V from VCC. See the paragraph ”ADC Noise Canceler” on page 222 on how to connect this

pin.

Internal reference voltages of nominally 1.1V or AVCC are provided On-chip. The voltage refer-

ence may be externally decoupled at the AREF pin by a capacitor for better noise performance.

The Power Reduction ADC bit, PRADC, in ”PRR – Power Reduction Register” on page 45 must

be written to zero to enable the ADC module.

217

8018P–AVR–08/10

ATmega169P

Figure 22-1. Analog to Digital Converter Block Schematic

22.3 Operation

The ADC converts an analog input voltage to a 10-bit digital value through successive approxi-

mation. The minimum value represents GND and the maximum value represents the voltage on

the AREF pin minus 1 LSB. Optionally, AVCC or an internal 1.1V reference voltage may be con-

nected to the AREF pin by writing to the REFSn bits in the ADMUX Register. The internal

voltage reference may thus be decoupled by an external capacitor at the AREF pin to improve

noise immunity.

The analog input channel is selected by writing to the MUX bits in ADMUX. Any of the ADC input

pins, as well as GND and a fixed bandgap voltage reference, can be selected as single ended

inputs to the ADC. The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSRA. Volt-

age reference and input channel selections will not go into effect until ADEN is set. The ADC

does not consume power when ADEN is cleared, so it is recommended to switch off the ADC

before entering power saving sleep modes.

The ADC generates a 10-bit result which is presented in the ADC Data Registers, ADCH and

ADCL. By default, the result is presented right adjusted, but can optionally be presented left

adjusted by setting the ADLAR bit in ADMUX.

ADC CONVERSION
COMPLETE IRQ

8-BIT DATA BUS

15 0

ADC MULTIPLEXER
SELECT (ADMUX)

ADC CTRL. & STATUS
REGISTER (ADCSRA)

ADC DATA REGISTER
(ADCH/ADCL)

M
U

X
2

A
D

IE

A
D

A
T

E

A
D

S
C

A
D

E
N

A
D

IF
A

D
IF

M
U

X
1

M
U

X
0

A
D

P
S

0

A
D

P
S

1

A
D

P
S

2

M
U

X
3

CONVERSION LOGIC

10-BIT DAC

+

-

SAMPLE & HOLD
COMPARATOR

INTERNAL
REFERENCE

MUX DECODER

M
U

X
4

AVCC

ADC7

ADC6

ADC5

ADC4

ADC3

ADC2

ADC1

ADC0

R
E

F
S

0

R
E

F
S

1

A
D

L
A

R

+

-

C
H

A
N

N
E

L
 S

E
L
E

C
T

IO
N

A
D

C
[9

:0
]

ADC MULTIPLEXER
OUTPUT

DIFFERENTIAL
AMPLIFIER

AREF

BANDGAP
REFERENCE

PRESCALER

SINGLE ENDED / DIFFERENTIAL SELECTION

GND

POS.INPUTMUX

NEG.INPUTMUX

TRIGGER
SELECT

ADTS[2:0]

INTERRUPT
FLAGS

START

218

8018P–AVR–08/10

ATmega169P

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read

ADCH. Otherwise, ADCL must be read first, then ADCH, to ensure that the content of the Data

Registers belongs to the same conversion. Once ADCL is read, ADC access to Data Registers

is blocked. This means that if ADCL has been read, and a conversion completes before ADCH is

read, neither register is updated and the result from the conversion is lost. When ADCH is read,

ADC access to the ADCH and ADCL Registers is re-enabled.

The ADC has its own interrupt which can be triggered when a conversion completes. When ADC

access to the Data Registers is prohibited between reading of ADCH and ADCL, the interrupt

will trigger even if the result is lost.

22.4 Starting a Conversion

A single conversion is started by writing a logical one to the ADC Start Conversion bit, ADSC.

This bit stays high as long as the conversion is in progress and will be cleared by hardware

when the conversion is completed. If a different data channel is selected while a conversion is in

progress, the ADC will finish the current conversion before performing the channel change.

Alternatively, a conversion can be triggered automatically by various sources. Auto Triggering is

enabled by setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The trigger source is

selected by setting the ADC Trigger Select bits, ADTS in ADCSRB (See description of the ADTS

bits for a list of the trigger sources). When a positive edge occurs on the selected trigger signal,

the ADC prescaler is reset and a conversion is started. This provides a method of starting con-

versions at fixed intervals. If the trigger signal still is set when the conversion completes, a new

conversion will not be started. If another positive edge occurs on the trigger signal during con-

version, the edge will be ignored. Note that an Interrupt Flag will be set even if the specific

interrupt is disabled or the Global Interrupt Enable bit in SREG is cleared. A conversion can thus

be triggered without causing an interrupt. However, the Interrupt Flag must be cleared in order to

trigger a new conversion at the next interrupt event.

Figure 22-2. ADC Auto Trigger Logic

Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion as soon

as the ongoing conversion has finished. The ADC then operates in Free Running mode, con-

stantly sampling and updating the ADC Data Register. The first conversion must be started by

writing a logical one to the ADSC bit in ADCSRA. In this mode the ADC will perform successive

conversions independently of whether the ADC Interrupt Flag, ADIF is cleared or not.

ADSC

ADIF

SOURCE 1

SOURCE n

ADTS[2:0]

CONVERSION
LOGIC

PRESCALER

START CLK
ADC

.

.

.

. EDGE
DETECTOR

ADATE

219

8018P–AVR–08/10

ATmega169P

If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to

one. ADSC can also be used to determine if a conversion is in progress. The ADSC bit will be

read as one during a conversion, independently of how the conversion was started.

22.5 Prescaling and Conversion Timing

Figure 22-3. ADC Prescaler

By default, the successive approximation circuitry requires an input clock frequency between 50

kHz and 200 kHz to get maximum resolution. If a lower resolution than 10 bits is needed, the

input clock frequency to the ADC can be higher than 200 kHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency

from any CPU frequency above 100 kHz. The prescaling is set by the ADPS bits in ADCSRA.

The prescaler starts counting from the moment the ADC is switched on by setting the ADEN bit

in ADCSRA. The prescaler keeps running for as long as the ADEN bit is set, and is continuously

reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion

starts at the following rising edge of the ADC clock cycle.

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is switched

on (ADEN in ADCSRA is set) takes 25 ADC clock cycles in order to initialize the analog circuitry.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal conver-

sion and 13.5 ADC clock cycles after the start of an first conversion. When a conversion is

complete, the result is written to the ADC Data Registers, and ADIF is set. In Single Conversion

mode, ADSC is cleared simultaneously. The software may then set ADSC again, and a new

conversion will be initiated on the first rising ADC clock edge.

When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This assures

a fixed delay from the trigger event to the start of conversion. In this mode, the sample-and-hold

takes place two ADC clock cycles after the rising edge on the trigger source signal. Three addi-

tional CPU clock cycles are used for synchronization logic. When using Differential mode, along

with Auto triggering from a source other than the ADC Conversion Complete, each conversion

will require 25 ADC clocks. This is because the ADC must be disabled and re-enabled after

every conversion.

7-BIT ADC PRESCALER

ADC CLOCK SOURCE

CK

ADPS0

ADPS1

ADPS2

C
K

/1
2
8

C
K

/2

C
K

/4

C
K

/8

C
K

/1
6

C
K

/3
2

C
K

/6
4

Reset
ADEN

START

220

8018P–AVR–08/10

ATmega169P

In Free Running mode, a new conversion will be started immediately after the conversion com-

pletes, while ADSC remains high. For a summary of conversion times, see Table 22-1 on page

221.

Figure 22-4. ADC Timing Diagram, First Conversion (Single Conversion Mode)

Figure 22-5. ADC Timing Diagram, Single Conversion

Figure 22-6. ADC Timing Diagram, Auto Triggered Conversion

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

Sample & Hold

ADIF

ADCH

ADCL

Cycle Number

ADEN

1 2 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2

First Conversion
Next
Conversion

3

MUX and REFS
Update

MUX and REFS
Update

Conversion
Complete

1 2 3 4 5 6 7 8 9 10 11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

3

Sample & Hold

MUX and REFS
Update

Conversion
Complete

MUX and REFS
Update

1 2 3 4 5 6 7 8 9 10 11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

Trigger
Source

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

Conversion
Complete

Prescaler
Reset

ADATE

Prescaler
Reset

Sample &
Hold

MUX and REFS
Update

221

8018P–AVR–08/10

ATmega169P

Figure 22-7. ADC Timing Diagram, Free Running Conversion

22.6 Changing Channel or Reference Selection

The MUXn and REFS1:0 bits in the ADMUX Register are single buffered through a temporary

register to which the CPU has random access. This ensures that the channels and reference

selection only takes place at a safe point during the conversion. The channel and reference

selection is continuously updated until a conversion is started. Once the conversion starts, the

channel and reference selection is locked to ensure a sufficient sampling time for the ADC. Con-

tinuous updating resumes in the last ADC clock cycle before the conversion completes (ADIF in

ADCSRA is set). Note that the conversion starts on the following rising ADC clock edge after

ADSC is written. The user is thus advised not to write new channel or reference selection values

to ADMUX until one ADC clock cycle after ADSC is written.

If Auto Triggering is used, the exact time of the triggering event can be indeterministic. Special

care must be taken when updating the ADMUX Register, in order to control which conversion

will be affected by the new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the

ADMUX Register is changed in this period, the user cannot tell if the next conversion is based

on the old or the new settings. ADMUX can be safely updated in the following ways:

a. When ADATE or ADEN is cleared.

b. During conversion, minimum one ADC clock cycle after the trigger event.

c. After a conversion, before the Interrupt Flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next ADC

conversion.

Table 22-1. ADC Conversion Time

Condition

Sample & Hold (Cycles from

Start of Conversion) Conversion Time (Cycles)

First conversion 13.5 25

Normal conversions, single ended 1.5 13

Auto Triggered conversions 2 13.5

11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number
1 2

One Conversion Next Conversion

3 4

Conversion
Complete

Sample & Hold

MUX and REFS
Update

222

8018P–AVR–08/10

ATmega169P

22.6.1 ADC Input Channels

When changing channel selections, the user should observe the following guidelines to ensure

that the correct channel is selected:

In Single Conversion mode, always select the channel before starting the conversion. The chan-

nel selection may be changed one ADC clock cycle after writing one to ADSC. However, the

simplest method is to wait for the conversion to complete before changing the channel selection.

In Free Running mode, always select the channel before starting the first conversion. The chan-

nel selection may be changed one ADC clock cycle after writing one to ADSC. However, the

simplest method is to wait for the first conversion to complete, and then change the channel

selection. Since the next conversion has already started automatically, the next result will reflect

the previous channel selection. Subsequent conversions will reflect the new channel selection.

22.6.2 ADC Voltage Reference

The reference voltage for the ADC (VREF) indicates the conversion range for the ADC. Single

ended channels that exceed VREF will result in codes close to 0x3FF. VREF can be selected as

either AVCC, internal 1.1V reference, or external AREF pin.

AVCC is connected to the ADC through a passive switch. The internal 1.1V reference is gener-

ated from the internal bandgap reference (VBG) through an internal buffer. In either case, the

external AREF pin is directly connected to the ADC, and the reference voltage can be made

more immune to noise by connecting a capacitor between the AREF pin and ground. VREF can

also be measured at the AREF pin with a high impedant voltmeter. Note that VREF is a high

impedant source, and only a capacitive load should be connected in a system.

If the user has a fixed voltage source connected to the AREF pin, the user may not use the other

reference voltage options in the application, as they will be shorted to the external voltage. If no

external voltage is applied to the AREF pin, the user may switch between AVCC and 1.1V as

reference selection. The first ADC conversion result after switching reference voltage source

may be inaccurate, and the user is advised to discard this result.

22.7 ADC Noise Canceler

The ADC features a noise canceler that enables conversion during sleep mode to reduce noise

induced from the CPU core and other I/O peripherals. The noise canceler can be used with ADC

Noise Reduction and Idle mode. To make use of this feature, the following procedure should be

used:

a. Make sure that the ADC is enabled and is not busy converting. Single Conversion
mode must be selected and the ADC conversion complete interrupt must be enabled.

b. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conversion
once the CPU has been halted.

c. If no other interrupts occur before the ADC conversion completes, the ADC interrupt
will wake up the CPU and execute the ADC Conversion Complete interrupt routine. If
another interrupt wakes up the CPU before the ADC conversion is complete, that
interrupt will be executed, and an ADC Conversion Complete interrupt request will be
generated when the ADC conversion completes. The CPU will remain in active mode
until a new sleep command is executed.

Note that the ADC will not be automatically turned off when entering other sleep modes than Idle

mode and ADC Noise Reduction mode. The user is advised to write zero to ADEN before enter-

ing such sleep modes to avoid excessive power consumption.

223

8018P–AVR–08/10

ATmega169P

22.7.1 Analog Input Circuitry

The analog input circuitry for single ended channels is illustrated in Figure 22-8 An analog

source applied to ADCn is subjected to the pin capacitance and input leakage of that pin, regard-

less of whether that channel is selected as input for the ADC. When the channel is selected, the

source must drive the S/H capacitor through the series resistance (combined resistance in the

input path).

The ADC is optimized for analog signals with an output impedance of approximately 10 kΩ or

less. If such a source is used, the sampling time will be negligible. If a source with higher imped-

ance is used, the sampling time will depend on how long time the source needs to charge the

S/H capacitor, with can vary widely. The user is recommended to only use low impedant sources

with slowly varying signals, since this minimizes the required charge transfer to the S/H

capacitor.

Signal components higher than the Nyquist frequency (fADC/2) should not be present for either

kind of channels, to avoid distortion from unpredictable signal convolution. The user is advised

to remove high frequency components with a low-pass filter before applying the signals as

inputs to the ADC.

Figure 22-8. Analog Input Circuitry

ADCn

IIH

1..100 kΩ

CS/H= 14 pF

VCC/2

IIL

224

8018P–AVR–08/10

ATmega169P

22.7.2 Analog Noise Canceling Techniques

Digital circuitry inside and outside the device generates EMI which might affect the accuracy of

analog measurements. If conversion accuracy is critical, the noise level can be reduced by

applying the following techniques:

a. Keep analog signal paths as short as possible. Make sure analog tracks run over the
analog ground plane, and keep them well away from high-speed switching digital
tracks.

b. The AVCC pin on the device should be connected to the digital VCC supply voltage
via an LC network as shown in Figure 22-9.

c. Use the ADC noise canceler function to reduce induced noise from the CPU.

d. If any ADC port pins are used as digital outputs, it is essential that these do not
switch while a conversion is in progress.

Figure 22-9. ADC Power Connections

VCC

GND

100 nF

Ground Plane

(ADC0) PF0

(ADC7) PF7

(ADC1) PF1

(ADC2) PF2

(ADC3) PF3

(ADC4) PF4

(ADC5) PF5

(ADC6) PF6

AREF

GND

AVCC

52

53

54

55

56

57

58

59

60

6161

6262

6363

6464

1

51

L
C

D
C

A
P

PA0

10 µH

225

8018P–AVR–08/10

ATmega169P

22.7.3 ADC Accuracy Definitions

An n-bit single-ended ADC converts a voltage linearly between GND and VREF in 2n steps

(LSBs). The lowest code is read as 0, and the highest code is read as 2n-1.

Several parameters describe the deviation from the ideal behavior:

• Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal transition (at

0.5 LSB). Ideal value: 0 LSB.

Figure 22-10. Offset Error

• Gain Error: After adjusting for offset, the Gain Error is found as the deviation of the last

transition (0x3FE to 0x3FF) compared to the ideal transition (at 1.5 LSB below maximum).

Ideal value: 0 LSB.

Figure 22-11. Gain Error

• Integral Non-linearity (INL): After adjusting for offset and gain error, the INL is the maximum

deviation of an actual transition compared to an ideal transition for any code. Ideal value: 0

LSB.

Output Code

VREF Input Voltage

Ideal ADC

Actual ADC

Offset
Error

Output Code

VREF Input Voltage

Ideal ADC

Actual ADC

Gain
Error

226

8018P–AVR–08/10

ATmega169P

Figure 22-12. Integral Non-linearity (INL)

• Differential Non-linearity (DNL): The maximum deviation of the actual code width (the interval

between two adjacent transitions) from the ideal code width (1 LSB). Ideal value: 0 LSB.

Figure 22-13. Differential Non-linearity (DNL)

• Quantization Error: Due to the quantization of the input voltage into a finite number of codes, a

range of input voltages (1 LSB wide) will code to the same value. Always ±0.5 LSB.

• Absolute Accuracy: The maximum deviation of an actual (unadjusted) transition compared to

an ideal transition for any code. This is the compound effect of offset, gain error, differential

error, non-linearity, and quantization error. Ideal value: ±0.5 LSB.

Output Code

VREF Input Voltage

Ideal ADC

Actual ADC

IN
L

Output Code

0x3FF

0x000

0 VREF Input Voltage

DNL

1 LSB

227

8018P–AVR–08/10

ATmega169P

22.8 ADC Conversion Result

After the conversion is complete (ADIF is high), the conversion result can be found in the ADC

Result Registers (ADCL, ADCH).

For single ended conversion, the result is

where VIN is the voltage on the selected input pin and VREF the selected voltage reference (see

Table 22-3 on page 229 and Table 22-4 on page 230). 0x000 represents analog ground, and

0x3FF represents the selected reference voltage minus one LSB.

Figure 22-14. Differential Measurement Range

ADC
VIN 1024⋅
VREF

--------------------------=

ADC
VPOS VNEG–() 512⋅

VREF
---=

0

Output Code

0x1FF

0x000

V
REF

Differential Input
Voltage (Volts)

0x3FF

0x200

- V
REF

228

8018P–AVR–08/10

ATmega169P

ADMUX = 0xFB (ADC3 - ADC2, 1.1V reference, left adjusted result).

Voltage on ADC3 is 300 mV, voltage on ADC2 is 500 mV.

ADCR = 512 × (300 - 500) / 1100 = -93 = 0x3A3.

ADCL will thus read 0xC0, and ADCH will read 0xD8. Writing zero to ADLAR right adjusts the

result: ADCL = 0xA3, ADCH = 0x03.

Table 22-2. Correlation Between Input Voltage and Output Codes

VADCn Read Code Corresponding Decimal Value

 VADCm + VREF 0x1FF 511

VADCm + 511/512 VREF 0x1FF 511

VADCm + 510/512 VREF 0x1FE 510

...

VADCm + 1/512 VREF 0x001 1

VADCm 0x000 0

VADCm - 1/512 VREF 0x3FF -1

...

VADCm - 511/512 VREF 0x201 -511

VADCm - VREF 0x200 -512

229

8018P–AVR–08/10

ATmega169P

22.9 ADC Register Description

22.9.1 ADMUX – ADC Multiplexer Selection Register

• Bit 7:6 – REFS1:0: Reference Selection Bits

These bits select the voltage reference for the ADC, as shown in Table 22-3. If these bits are

changed during a conversion, the change will not go in effect until this conversion is complete

(ADIF in ADCSRA is set). The internal voltage reference options may not be used if an external

reference voltage is being applied to the AREF pin.

• Bit 5 – ADLAR: ADC Left Adjust Result

The ADLAR bit affects the presentation of the ADC conversion result in the ADC Data Register.

Write one to ADLAR to left adjust the result. Otherwise, the result is right adjusted. Changing the

ADLAR bit will affect the ADC Data Register immediately, regardless of any ongoing conver-

sions. For a complete description of this bit, see ”ADCL and ADCH – ADC Data Register” on

page 232.

• Bits 4:0 – MUX4:0: Analog Channel Selection Bits

The value of these bits selects which combination of analog inputs are connected to the ADC.

See Table 22-4 on page 230 for details. If these bits are changed during a conversion, the

change will not go in effect until this conversion is complete (ADIF in ADCSRA is set).

Bit 7 6 5 4 3 2 1 0

(0x7C) REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 ADMUX

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 22-3. Voltage Reference Selections for ADC

REFS1 REFS0 Voltage Reference Selection

0 0 AREF, Internal Vref turned off

0 1 AVCC with external capacitor at AREF pin

1 0 Reserved

1 1 Internal 1.1V Voltage Reference with external capacitor at AREF pin

230

8018P–AVR–08/10

ATmega169P

Table 22-4. Input Channel Selections

MUX4..0 Single Ended Input Positive Differential Input Negative Differential Input

00000 ADC0

N/A

00001 ADC1

00010 ADC2

00011 ADC3

00100 ADC4

00101 ADC5

00110 ADC6

00111 ADC7

01000

01001

01010

01011

01100

01101

01110

01111

10000 ADC0 ADC1

10001 ADC1 ADC1

10010 N/A ADC2 ADC1

10011 ADC3 ADC1

10100 ADC4 ADC1

10101 ADC5 ADC1

10110 ADC6 ADC1

10111 ADC7 ADC1

11000 ADC0 ADC2

11001 ADC1 ADC2

11010 ADC2 ADC2

11011 ADC3 ADC2

11100 ADC4 ADC2

11101 ADC5 ADC2

11110 1.1V (VBG)
N/A

11111 0V (GND)

231

8018P–AVR–08/10

ATmega169P

22.9.2 ADCSRA – ADC Control and Status Register A

• Bit 7 – ADEN: ADC Enable

Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turning the

ADC off while a conversion is in progress, will terminate this conversion.

• Bit 6 – ADSC: ADC Start Conversion

In Single Conversion mode, write this bit to one to start each conversion. In Free Running mode,

write this bit to one to start the first conversion. The first conversion after ADSC has been written

after the ADC has been enabled, or if ADSC is written at the same time as the ADC is enabled,

will take 25 ADC clock cycles instead of the normal 13. This first conversion performs initializa-

tion of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is complete,

it returns to zero. Writing zero to this bit has no effect.

• Bit 5 – ADATE: ADC Auto Trigger Enable

When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start a con-

version on a positive edge of the selected trigger signal. The trigger source is selected by setting

the ADC Trigger Select bits, ADTS in ADCSRB.

• Bit 4 – ADIF: ADC Interrupt Flag

This bit is set when an ADC conversion completes and the Data Registers are updated. The

ADC Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in SREG are set.

ADIF is cleared by hardware when executing the corresponding interrupt handling vector. Alter-

natively, ADIF is cleared by writing a logical one to the flag. Beware that if doing a Read-Modify-

Write on ADCSRA, a pending interrupt can be disabled. This also applies if the SBI and CBI

instructions are used.

• Bit 3 – ADIE: ADC Interrupt Enable

When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Complete Inter-

rupt is activated.

• Bits 2:0 – ADPS2:0: ADC Prescaler Select Bits

These bits determine the division factor between the XTAL frequency and the input clock to the

ADC.

Bit 7 6 5 4 3 2 1 0

(0x7A) ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 ADCSRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

232

8018P–AVR–08/10

ATmega169P

22.9.3 ADCL and ADCH – ADC Data Register

22.9.3.1 ADLAR = 0

22.9.3.2 ADLAR = 1

When an ADC conversion is complete, the result is found in these two registers.When ADCL is

read, the ADC Data Register is not updated until ADCH is read. Consequently, if the result is left

adjusted and no more than 8-bit precision is required, it is sufficient to read ADCH. Otherwise,

ADCL must be read first, then ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is read from

the registers. If ADLAR is set, the result is left adjusted. If ADLAR is cleared (default), the result

is right adjusted.

• ADC9:0: ADC Conversion Result

These bits represent the result from the conversion, as detailed in ”ADC Conversion Result” on

page 227.

Table 22-5. ADC Prescaler Selections

ADPS2 ADPS1 ADPS0 Division Factor

0 0 0 2

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128

Bit 15 14 13 12 11 10 9 8

(0x79) – – – – – – ADC9 ADC8 ADCH

(0x78) ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH

ADC1 ADC0 – – – – – – ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

233

8018P–AVR–08/10

ATmega169P

22.9.4 ADCSRB – ADC Control and Status Register B

• Bit 7 – Res: Reserved Bit

This bit is reserved for future use. To ensure compatibility with future devices, this bit must be

written to zero when ADCSRB is written.

• Bit 2:0 – ADTS2:0: ADC Auto Trigger Source

If ADATE in ADCSRA is written to one, the value of these bits selects which source will trigger

an ADC conversion. If ADATE is cleared, the ADTS2:0 settings will have no effect. A conversion

will be triggered by the rising edge of the selected Interrupt Flag. Note that switching from a trig-

ger source that is cleared to a trigger source that is set, will generate a positive edge on the

trigger signal. If ADEN in ADCSRA is set, this will start a conversion. Switching to Free Running

mode (ADTS[2:0]=0) will not cause a trigger event, even if the ADC Interrupt Flag is set.

22.9.5 DIDR0 – Digital Input Disable Register 0

• Bit 7:0 – ADC7D..ADC0D: ADC7:0 Digital Input Disable

When this bit is written logic one, the digital input buffer on the corresponding ADC pin is dis-

abled. The corresponding PIN Register bit will always read as zero when this bit is set. When an

analog signal is applied to the ADC7:0 pin and the digital input from this pin is not needed, this

bit should be written logic one to reduce power consumption in the digital input buffer.

Bit 7 6 5 4 3 2 1 0

(0x7B) – ACME – – – ADTS2 ADTS1 ADTS0 ADCSRB

Read/Write R R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 22-6. ADC Auto Trigger Source Selections

ADTS2 ADTS1 ADTS0 Trigger Source

0 0 0 Free Running mode

0 0 1 Analog Comparator

0 1 0 External Interrupt Request 0

0 1 1 Timer/Counter0 Compare Match

1 0 0 Timer/Counter0 Overflow

1 0 1 Timer/Counter Compare Match B

1 1 0 Timer/Counter1 Overflow

1 1 1 Timer/Counter1 Capture Event

Bit 7 6 5 4 3 2 1 0

(0x7E) ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D DIDR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

234

8018P–AVR–08/10

ATmega169P

23. LCD Controller

23.1 Features

• Display Capacity of 25 Segments and Four Common Terminals

• Support Static, 1/2, 1/3 and 1/4 Duty

• Support Static, 1/2, 1/3 Bias

• On-chip LCD Power Supply, only One External Capacitor needed

• Display Possible in Power-save Mode for Low Power Consumption

• Software Selectable Low Power Waveform Capability

• Flexible Selection of Frame Frequency

• Software Selection between System Clock or an External Asynchronous Clock Source

• Equal Source and Sink Capability to maximize LCD Life Time

• LCD Interrupt Can be Used for Display Data Update or Wake-up from Sleep Mode

• Segment and Common Pins not Needed for Driving the Display Can be Used as Ordinary I/O Pins

• Latching of Display Data gives Full Freedom in Register Update

23.2 Overview

The LCD Controller/driver is intended for monochrome passive liquid crystal display (LCD) with

up to four common terminals and up to 25 segment terminals.

A simplified block diagram of the LCD Controller/Driver is shown in Figure 23-1 on page 235. For

the actual placement of I/O pins, see ”64A (TQFP) and 64M1 (QFN/MLF) Pinout ATmega169P”

on page 2.

An LCD consists of several segments (pixels or complete symbols) which can be visible or non

visible. A segment has two electrodes with liquid crystal between them. When a voltage above a

threshold voltage is applied across the liquid crystal, the segment becomes visible.

The voltage must alternate to avoid an electrophoresis effect in the liquid crystal, which

degrades the display. Hence the waveform across a segment must not have a DC-component.

The PRLCD bit in ”PRR – Power Reduction Register” on page 45 must be written to zero to

enable the LCD module.

23.2.1 Definitions

Several terms are used when describing LCD. The definitions in Table 23-1 are used throughout

this document.

Table 23-1. Definitions

LCD A passive display panel with terminals leading directly to a segment

Segment The least viewing element (pixel) which can be on or off

Common Denotes how many segments are connected to a segment terminal

Duty 1/(Number of common terminals on a actual LCD display)

Bias 1/(Number of voltage levels used driving a LCD display -1)

Frame Rate Number of times the LCD segments is energized per second.

235

8018P–AVR–08/10

ATmega169P

Figure 23-1. LCD Module Block Diagram

23.2.2 LCD Clock Sources

The LCD Controller can be clocked by an internal synchronous or an external asynchronous

clock source. The clock source clkLCD is by default equal to the system clock, clkI/O. When the

LCDCS bit in the LCDCRB Register is written to logic one, the clock source is taken from the

TOSC1 pin.

The clock source must be stable to obtain accurate LCD timing and hence minimize DC voltage

offset across LCD segments.

23.2.3 LCD Prescaler

The prescaler consist of a 12-bit ripple counter and a 1- to 8-clock divider. The LCDPS2:0 bits

selects clkLCD divided by 16, 64, 128, 256, 512, 1024, 2048, or 4096.

If a finer resolution rate is required, the LCDCD2:0 bits can be used to divide the clock further by

1 to 8.

Output from the clock divider clkLCD_PS is used as clock source for the LCD timing.

23.2.4 LCD Memory

The display memory is available through I/O Registers grouped for each common terminal.

When a bit in the display memory is written to one, the corresponding segment is energized (on),

and non-energized when a bit in the display memory is written to zero.

Clock
Multiplexer

12-bit Prescaler
0

1

Divide by 1 to 8

LCD
Timing

LCDCRB

LCDFRR

clk
i/o

TOSC

LCDCRA

D
A
T
A

B
U
S

c
lk

L
C

D /4
0

9
6

c
lk

L
C

D /2
0

4
8

c
lk

L
C

D /1
2

8

c
lk

L
C

D /1
0

2
4

c
lk

L
C

D /5
1

2

c
lk

L
C

D /2
5

6

c
lk

L
C

D /6
4

c
lk

L
C

D /1
6

Analog
Switch
Array

lcdcs

lcdcd2:0

lcdps2:0

clk
LCD

SEG0

SEG1

SEG2

SEG3

SEG4

SEG5

SEG6

SEG7

SEG8

SEG9

SEG10

SEG11

SEG12

SEG13

SEG14

SEG15

SEG16

SEG17

SEG18

SEG19

SEG20

SEG21

SEG22

SEG23

SEG24

COM0

COM1

COM2

COM3

LCD Buffer/
Driver

V
LCD

LCDDR 18 -15

LCDDR 13 -10

LCDDR 8 - 5

LCDDR 3 - 0

LATCH
array

LCD Ouput
Decoder

LCDCCR
lcdcc3:0

Contrast Controller/
Power Supply

clk
LCD_PS

LCD
CAP

25 x
4:1

MUX

LCD_voltage_ok

2/3 V
LCD

1/2 V
LCD

1/3 V
LCD

Display
Configuration

236

8018P–AVR–08/10

ATmega169P

To energize a segment, an absolute voltage above a certain threshold must be applied. This is

done by letting the output voltage on corresponding COM pin and SEG pin have opposite phase.

For display with more than one common, one (1/2 bias) or two (1/3 bias) additional voltage lev-

els must be applied. Otherwise, non-energized segments on COM0 would be energized for all

non-selected common.

Addressing COM0 starts a frame by driving opposite phase with large amplitude out on COM0

compared to none addressed COM lines. Non-energized segments are in phase with the

addressed COM0, and energized segments have opposite phase and large amplitude. For

waveform figures refer to ”Mode of Operation” on page 237. Latched data from LCDDR4 -

LCDDR0 is multiplexed into the decoder. The decoder is controlled from the LCD timing and

sets up signals controlling the analog switches to produce an output waveform. Next, COM1 is

addressed, and latched data from LCDDR9 - LCDDR5 is input to decoder. Addressing continu-

ous until all COM lines are addressed according to number of common (duty). The display data

are latched before a new frame start.

23.2.5 LCD Contrast Controller/Power Supply

The peak value (VLCD) on the output waveform determines the LCD Contrast. VLCD is controlled

by software from 2.6V to 3.35V independent of VCC. An internal signal inhibits output to the LCD

until VLCD has reached its target value.

23.2.6 LCDCAP

An external capacitor (typical > 470 nF) must be connected to the LCDCAP pin as shown in Fig-

ure 23-2. This capacitor acts as a reservoir for LCD power (VLCD). A large capacitance reduces

ripple on VLCD but increases the time until VLCD reaches its target value.

It is possible to use an external power supply. This power can be applied to LCDCAP before

VCC. Externally applied VLCD can be both above and below VCC. Maximum VLCD is 5.5V.

Figure 23-2. LCDCAP Connection

23.2.7 LCD Buffer Driver

Intermediate voltage levels are generated from buffers/drivers. The buffers are active the

amount of time specified by LCDDC[2:0] in ”LCDCCR – LCD Contrast Control Register” on page

250. Then LCD output pins are tri-stated and buffers are switched off. Shortening the drive time

will reduce power consumption, but displays with high internal resistance or capacitance may

need longer drive time to achieve sufficient contrast.

321

64

63

62

LCDCAP

V
LCD

(Optional)

237

8018P–AVR–08/10

ATmega169P

23.2.8 Minimizing Power Consumption

By keeping the percentage of the time the LCD drivers are turned on at a minimum, the power

consumption of the LCD driver can be minimized. This can be achieved by using the lowest

acceptable frame rate, and using low power waveform if possible. The drive time should be kept

at the lowest setting that achieves satisfactory contrast for a particular display, while allowing

some headroom for production variations between individual LCD drivers and displays. Note

that some of the highest LCD voltage settings may result in high power consumption when VCC

is below 2.0V. The recommended maximum LCD voltage is 2*(VCC - 0.2V).

23.3 Mode of Operation

23.3.1 Static Duty and Bias

If all segments on a LCD have one electrode common, then each segment must have a unique

terminal.

This kind of display is driven with the waveform shown in Figure 23-3. SEG0 - COM0 is the volt-

age across a segment that is on, and SEG1 - COM0 is the voltage across a segment that is off.

Figure 23-3. Driving a LCD with One Common Terminal

23.3.2 1/2 Duty and 1/2 Bias

For LCD with two common terminals (1/2 duty) a more complex waveform must be used to indi-

vidually control segments. Although 1/3 bias can be selected 1/2 bias is most common for these

displays. Waveform is shown in Figure 23-4 on page 238. SEG0 - COM0 is the voltage across a

segment that is on, and SEG0 - COM1 is the voltage across a segment that is off.

VLCD

GND

VLCD

GND

VLCD

GND

-VLCD

SEG0

COM0

SEG0 - COM0

Frame Frame

VLCD

GND

VLCD

GND

GND

SEG1

COM0

SEG1 - COM0

Frame Frame

238

8018P–AVR–08/10

ATmega169P

Figure 23-4. Driving a LCD with Two Common Terminals

VLCD

GND

VLCD
1/2VLCD

GND

VLCD
1/2VLCD

GND
-1/2VLCD

-VLCD

SEG0

COM0

SEG0 - COM0

Frame Frame

VLCD

GND

VLCD
1/2VLCD

GND

 VLCD
1/2VLCD

GND
-1/2VLCD

-VLCD

SEG0

COM1

SEG0 - COM1

Frame Frame

239

8018P–AVR–08/10

ATmega169P

23.3.3 1/3 Duty and 1/3 Bias

1/3 bias is usually recommended for LCD with three common terminals (1/3 duty). Waveform is

shown in Figure 23-5. SEG0 - COM0 is the voltage across a segment that is on and SEG0-

COM1 is the voltage across a segment that is off.

Figure 23-5. Driving a LCD with Three Common Terminals

23.3.4 1/4 Duty and 1/3 Bias

1/3 bias is optimal for LCD displays with four common terminals (1/4 duty). Waveform is shown

in Figure 23-6. SEG0 - COM0 is the voltage across a segment that is on and SEG0 - COM1 is

the voltage across a segment that is off.

Figure 23-6. Driving a LCD with Four Common Terminals

VLCD
2/3VLCD
1/3VLCD

GND

VLCD
2/3VLCD
1/3VLCD

GND

VLCD
2/3VLCD
1/3VLCD

 GND

-1/3VLCD

-2/3VLCD

-VLCD

SEG0

COM0

SEG0 - COM0

Frame Frame

VLCD
2/3VLCD
1/3VLCD

GND

VLCD
2/3VLCD
1/3VLCD

GND

VLCD
2/3VLCD
1/3VLCD

 GND

-1/3VLCD

-2/3VLCD

-VLCD

SEG0

COM1

SEG0 - COM1

Frame Frame

VLCD
2/3VLCD
1/3VLCD

GND

VLCD
2/3VLCD
1/3VLCD

GND

VLCD
2/3VLCD
1/3VLCD

 GND

-1/3VLCD

-2/3VLCD

-VLCD

SEG0

COM0

SEG0 - COM0

Frame Frame

VLCD
2/3VLCD
1/3VLCD

GND

VLCD
2/3VLCD
1/3VLCD

GND

VLCD
2/3VLCD
1/3VLCD

 GND

-1/3VLCD

-2/3VLCD

-VLCD

SEG0

COM1

SEG0 - COM1

Frame Frame

240

8018P–AVR–08/10

ATmega169P

23.3.5 Low Power Waveform

To reduce toggle activity and hence power consumption a low power waveform can be selected

by writing LCDAB to one. Low power waveform requires two subsequent frames with the same

display data to obtain zero DC voltage. Consequently data latching and Interrupt Flag is only set

every second frame. Default and low power waveform is shown in Figure 23-7 for 1/3 duty and

1/3 bias. For other selections of duty and bias, the effect is similar.

Figure 23-7. Default and Low Power Waveform

23.3.6 Operation in Sleep Mode

When synchronous LCD clock is selected (LCDCS = 0) the LCD display will operate in Idle

mode and Power-save mode with any clock source.

An asynchronous clock from TOSC1 can be selected as LCD clock by writing the LCDCS bit to

one when Calibrated Internal RC Oscillator is selected as system clock source. The LCD will

then operate in Idle mode, ADC Noise Reduction mode and Power-save mode.

When EXCLK in ASSR Register is written to one, and asynchronous clock is selected, the exter-

nal clock input buffer is enabled and an external clock can be input on Timer Oscillator 1

(TOSC1) pin instead of a 32 kHz crystal. See ”Asynchronous operation of the Timer/Counter” on

page 150 for further details.

Before entering Power-down mode, Standby mode or ADC Noise Reduction mode with synchro-

nous LCD clock selected, the user have to disable the LCD. Refer to ”Disabling the LCD” on

page 244.

23.3.7 Display Blanking

When LCDBL is written to one, the LCD is blanked after completing the current frame. All seg-

ments and common pins are connected to GND, discharging the LCD. Display memory is

preserved. Display blanking should be used before disabling the LCD to avoid DC voltage

across segments, and a slowly fading image.

VLCD
2/3VLCD
1/3VLCD

GND

VLCD
2/3VLCD
1/3VLCD

GND

VLCD
2/3VLCD
1/3VLCD

 GND

-1/3VLCD

-2/3VLCD

-VLCD

SEG0

COM0

SEG0 - COM0

Frame Frame

VLCD
2/3VLCD
1/3VLCD

GND

VLCD
2/3VLCD
1/3VLCD

GND

VLCD
2/3VLCD
1/3VLCD

 GND

-1/3VLCD

-2/3VLCD

-VLCD

SEG0

COM0

SEG0 - COM0

Frame Frame

241

8018P–AVR–08/10

ATmega169P

23.3.8 Port Mask

For LCD with less than 25 segment terminals, it is possible to mask some of the unused pins

and use them as ordinary port pins instead. Refer to Table 23-3 on page 247 for details. Unused

common pins are automatically configured as port pins.

242

8018P–AVR–08/10

ATmega169P

23.4 LCD Usage

The following section describes how to use the LCD.

23.4.1 LCD Initialization

Prior to enabling the LCD some initialization must be preformed. The initialization process nor-

mally consists of setting the frame rate, duty, bias and port mask. LCD contrast is set initially, but

can also be adjusted during operation.

Consider the following LCD as an example:

Figure 23-8. LCD usage example.

Display: TN Positive, Reflective

Number of common terminals: 3

Number of segment terminals: 21

Bias system: 1/3 Bias

Drive system: 1/3 Duty

Operating voltage: 3.0 ±0.3V

1b

1c

2a

2b

2c2e

2f

2d

2g

COM3

COM0 COM1 COM2

SEG0

SEG1

SEG2

1b,1c

2c

2f

2a

2d

2g

2b

2e

..

C
O

M
2

SEG0

SEG1

SEG2

ATmega169

C
O

M
1

C
O

M
0

Connection table

LCD

51 50 49

48

47

46

45

243

8018P–AVR–08/10

ATmega169P

Note: 1. See ”About Code Examples” on page 10.

Before a re-initialization is done, the LCD controller/driver should be disabled.

23.4.2 Updating the LCD

Display memory (LCDDR0, LCDDR1, ..), LCD Blanking (LCDBL), Low power waveform

(LCDAB) and contrast control (LCDCCR) are latched prior to every new frame. There are no

restrictions on writing these LCD Register locations, but an LCD data update may be split

between two frames if data are latched while an update is in progress. To avoid this, an interrupt

routine can be used to update Display memory, LCD Blanking, Low power waveform, and con-

trast control, just after data are latched.

Assembly Code Example(1)

LCD_Init:

; Use 32 kHz crystal oscillator

; 1/3 Bias and 1/3 duty, SEG21:SEG24 is used as port pins

ldi r16, (1<<LCDCS) | (1<<LCDMUX1)| (1<<LCDPM2)

 sts LCDCRB, r16

; Using 16 as prescaler selection and 7 as LCD Clock Divide

; gives a frame rate of 49 Hz

ldi r16, (1<<LCDCD2) | (1<<LCDCD1)

sts LCDFRR, r16

; Set segment drive time to 125 µs and output voltage to 3.3 V

ldi r16, (1<<LCDDC1) | (1<<LCDCC3) | (1<<LCDCC2) | (1<<LCDCC1)

sts LCDCCR, r16

; Enable LCD, default waveform and no interrupt enabled

ldi r16, (1<<LCDEN)

sts LCDCRA, r16

ret

C Code Example(1)

Void LCD_Init(void);

{

/* Use 32 kHz crystal oscillator */

/* 1/3 Bias and 1/3 duty, SEG21:SEG24 is used as port pins */

LCDCRB = (1<<LCDCS) | (1<<LCDMUX1)| (1<<LCDPM2);

/* Using 16 as prescaler selection and 7 as LCD Clock Divide */

/* gives a frame rate of 49 Hz */

LCDFRR = (1<<LCDCD2) | (1<<LCDCD1);

/* Set segment drive time to 125 µs and output voltage to 3.3 V*/

LCDCCR = (1<<LCDDC1) | (1<<LCDCC3) | (1<<LCDCC2) | (1<<LCDCC1);

/* Enable LCD, default waveform and no interrupt enabled */

LCDCRA = (1<<LCDEN);

}

244

8018P–AVR–08/10

ATmega169P

In the example below we assume SEG10 and COM1 and SEG4 in COM0 are the only segments

changed from frame to frame. Data are stored in r20 and r21 for simplicity

Note: 1. See ”About Code Examples” on page 10.

23.4.3 Disabling the LCD

In some application it may be necessary to disable the LCD. This is the case if the MCU enters

Power-down mode where no clock source is present.

The LCD should be completely discharged before being disabled. No DC voltage should be left

across any segment. The best way to achieve this is to use the LCD Blanking feature that drives

all segment pins and common pins to GND.

When the LCD is disabled, port function is activated again. Therefore, the user must check that

port pins connected to a LCD terminal are either tri-state or output low (sink).

Assembly Code Example(1)

LCD_update:

; LCD Blanking and Low power waveform are unchanged.

; Update Display memory.

sts LCDDR0, r20

sts LCDDR6, r21

ret

C Code Example(1)

Void LCD_update(unsigned char data1, data2);

{

/* LCD Blanking and Low power waveform are unchanged. */

/* Update Display memory. */

LCDDR0 = data1;

LCDDR6 = data2;

}

245

8018P–AVR–08/10

ATmega169P

Note: 1. See ”About Code Examples” on page 10.

Assembly Code Example(1)

LCD_disable:

; Wait until a new frame is started.

Wait_1:

lds r16, LCDCRA

sbrs r16, LCDIF

rjmp Wait_1

; Set LCD Blanking and clear interrupt flag

; by writing a logical one to the flag.

ldi r16, (1<<LCDEN)|(1<<LCDIF)|(1<<LCDBL)

sts LCDCRA, r16

; Wait until LCD Blanking is effective.

Wait_2:

lds r16, LCDCRA

sbrs r16, LCDIF

rjmp Wait_2

; Disable LCD.

ldi r16, (0<<LCDEN)

sts LCDCRA, r16

ret

C Code Example(1)

Void LCD_disable(void);

{

/* Wait until a new frame is started. */

while (!(LCDCRA & (1<<LCDIF)))

;

/* Set LCD Blanking and clear interrupt flag */

/* by writing a logical one to the flag. */

LCDCRA = (1<<LCDEN)|(1<<LCDIF)|(1<<LCDBL);

/* Wait until LCD Blanking is effective. */

while (!(LCDCRA & (1<<LCDIF)))

;

/* Disable LCD */

LCDCRA = (0<<LCDEN);

}

246

8018P–AVR–08/10

ATmega169P

23.5 LCD Register Description

23.5.1 LCDCRA – LCD Control and Status Register A

• Bit 7 – LCDEN: LCD Enable

Writing this bit to one enables the LCD Controller/Driver. By writing it to zero, the LCD is turned

off immediately. Turning the LCD Controller/Driver off while driving a display, enables ordinary

port function, and DC voltage can be applied to the display if ports are configured as output. It is

recommended to drive output to ground if the LCD Controller/Driver is disabled to discharge the

display.

• Bit 6 – LCDAB: LCD Low Power Waveform

When LCDAB is written logic zero, the default waveform is output on the LCD pins. When

LCDAB is written logic one, the Low Power Waveform is output on the LCD pins. If this bit is

modified during display operation the change takes place at the beginning of a new frame.

• Bit 5 – Res: Reserved Bit

This bit is reserved and will always read as zero.

• Bit 4 – LCDIF: LCD Interrupt Flag

This bit is set by hardware at the beginning of a new frame, at the same time as the display data

is updated. The LCD Start of Frame Interrupt is executed if the LCDIE bit and the I-bit in SREG

are set. LCDIF is cleared by hardware when executing the corresponding Interrupt Handling

Vector. Alternatively, writing a logical one to the flag clears LCDIF. Beware that if doing a Read-

Modify-Write on LCDCRA, a pending interrupt can be disabled. If Low Power Waveform is

selected the Interrupt Flag is set every second frame.

• Bit 3 – LCDIE: LCD Interrupt Enable

When this bit is written to one and the I-bit in SREG is set, the LCD Start of Frame Interrupt is

enabled.

• Bit 2 – LCDBD: LCD Buffer Disable

The intermediate voltage levels in the LCD are generated by an internal resistive voltage divider

and passed through buffer to increase the current driving capability. By writing this bit to one the

buffers are turned off and bypassed, resulting in decreased power consumption. The total resis-

tance of the voltage divider is nominally 400 kΩ between LCDCAP and GND.

• Bit 1 – LCDCCD: LCD Contrast Control Disable

Writing this bit to one disables the internal power supply for the LCD driver. The desired voltage

must be applied to the LCDCAP pin from an external power supply. To avoid conflict between

internal and external power supply, this bit must be written as '1' prior to or simultaneously with

writing '1' to the LCDEN bit.

Bit 7 6 5 4 3 2 1 0

(0xE4) LCDEN LCDAB – LCDIF LCDIE LCDBD LCDCCD LCDBL LCDCRA

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

247

8018P–AVR–08/10

ATmega169P

• Bit 0 – LCDBL: LCD Blanking

When this bit is written to one, the display will be blanked after completion of a frame. All seg-

ment and common pins will be driven to ground.

23.5.2 LCDCRB – LCD Control and Status Register B

• Bit 7 – LCDCS: LCD Clock Select

When this bit is written to zero, the system clock is used. When this bit is written to one, the

external asynchronous clock source is used. The asynchronous clock source is either

Timer/Counter Oscillator or external clock, depending on EXCLK in ASSR. See ”Asynchronous

operation of the Timer/Counter” on page 150 for further details.

• Bit 6 – LCD2B: LCD 1/2 Bias Select

When this bit is written to zero, 1/3 bias is used. When this bit is written to one, ½ bias is used.

Refer to the LCD Manufacture for recommended bias selection.

• Bit 5:4 – LCDMUX1:0: LCD Mux Select

The LCDMUX1:0 bits determine the duty cycle. Common pins that are not used are ordinary port

pins. The different duty selections are shown in Table 23-2.

Note: 1. 1/2 bias when LCD2B is written to one and 1/3 otherwise.

• Bit 3 – Res: Reserved Bit

This bit is reserved and will always read as zero.

• Bits 2:0 – LCDPM2:0: LCD Port Mask

The LCDPM2:0 bits determine the number of port pins to be used as segment drivers. The dif-

ferent selections are shown in Table 23-3. Unused pins can be used as ordinary port pins.

Bit 7 6 5 4 3 2 1 0

(0xE5) LCDCS LCD2B LCDMUX1 LCDMUX0 – LCDPM2 LCDPM1 LCDPM0 LCDCRB

Read/Write R/W R/W R/W R/W R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 23-2. LCD Duty Select

LCDMUX1 LCDMUX0 Duty Bias COM Pin I/O Port Pin

0 0 Static Static COM0 COM1:3

0 1 1/2 1/2 or 1/3(1) COM0:1 COM2:3

1 0 1/3 1/2 or 1/3(1) COM0:2 COM3

1 1 1/4 1/2 or 1/3(1) COM0:3 None

Table 23-3. LCD Port Mask

LCDPM2 LCDPM1 LCDPM0

I/O Port in Use as Segment

Driver

Maximum Number of

Segments

0 0 0 SEG0:12 13

0 0 1 SEG0:14 15

0 1 0 SEG0:16 17

0 1 1 SEG0:18 19

248

8018P–AVR–08/10

ATmega169P

23.5.3 LCDFRR – LCD Frame Rate Register

• Bit 7 – Res: Reserved Bit

This bit is reserved and will always read as zero.

• Bits 6:4 – LCDPS2:0: LCD Prescaler Select

The LCDPS2:0 bits selects tap point from a prescaler. The prescaled output can be further

divided by setting the clock divide bits (LCDCD2:0). The different selections are shown in Table

23-4. Together they determine the prescaled LCD clock (clkLCD_PS), which is clocking the LCD

module.

1 0 0 SEG0:20 21

1 0 1 SEG0:22 23

1 1 0 SEG0:23 24

1 1 1 SEG0:24 25

Table 23-3. LCD Port Mask (Continued)

LCDPM2 LCDPM1 LCDPM0

I/O Port in Use as Segment

Driver

Maximum Number of

Segments

Bit 7 6 5 4 3 2 1 0

(0xE6) – LCDPS2 LCDPS1 LCDPS0 – LCDCD2 LCDCD1 LCDCD0 LCDFRR

Read/Write R R/W R/W R/W R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 23-4. LCD Prescaler Select

LCDPS2 LCDPS1 LCDPS0

Output from

Prescaler

clkLCD/N

Applied Prescaled LCD Clock Frequency

when LCDCD2:0 = 0, Duty = 1/4, and

Frame Rate = 64Hz

0 0 0 clkLCD/16 8.1 kHz

0 0 1 clkLCD/64 33 kHz

0 1 0 clkLCD/128 66 kHz

0 1 1 clkLCD/256 130 kHz

1 0 0 clkLCD/512 260 kHz

1 0 1 clkLCD/1024 520 kHz

1 1 0 clkLCD/2048 1 MHz

1 1 1 clkLCD/4096 2 MHz

249

8018P–AVR–08/10

ATmega169P

• Bit 3 – Res: Reserved Bit

This bit is reserved and will always read as zero.

• Bits 2:0 – LCDCD2:0: LCD Clock Divide 2, 1, and 0

The LCDCD2:0 bits determine division ratio in the clock divider. The various selections are

shown in Table 23-5. This Clock Divider gives extra flexibility in frame rate selection.

The frame frequency can be calculated by the following equation:

Where:

N = prescaler divider (16, 64, 128, 256, 512, 1024, 2048, or 4096).

K = 8 for duty = 1/4, 1/2, and static.

K = 6 for duty = 1/3.

D = Division factor (see Table 23-5).

This is a very flexible scheme, and users are encouraged to calculate their own table to investi-

gate the possible frame rates from the formula above. Note when using 1/3 duty the frame rate

is increased with 33% when Frame Rate Register is constant. Example of frame rate calculation

is shown in Table 23-6.

Table 23-5. LCD Clock Divide

LCDCD2 LCDCD1 LCDCD0

Output from Prescaler

divided by (D):

clkLCD = 32.768 kHz, N = 16, and

Duty = 1/4, gives a frame rate of:

0 0 0 1 256Hz

0 0 1 2 128Hz

0 1 0 3 85.3Hz

0 1 1 4 64Hz

1 0 0 5 51.2Hz

1 0 1 6 42.7Hz

1 1 0 7 36.6Hz

1 1 1 8 32Hz

Table 23-6. Example of frame rate calculation

clkLCD duty K N LCDCD2:0 D Frame Rate

4 MHz 1/4 8 2048 011 4 4000000/(8*2048*4) = 61Hz

4 MHz 1/3 6 2048 011 4 4000000/(6*2048*4) = 81Hz

32.768 kHz Static 8 16 000 1 32768/(8*16*1) = 256Hz

32.768 kHz 1/2 8 16 100 5 32768/(8*16*5) = 51Hz

fframe

fclkLCD
K N D⋅ ⋅()

--------------------------=

250

8018P–AVR–08/10

ATmega169P

23.5.4 LCDCCR – LCD Contrast Control Register

• Bits 7:5 – LCDDC2:0: LDC Display Configuration

The LCDDC2:0 bits determine the amount of time the LCD drivers are turned on for each volt-

age transition on segment and common pins. A short drive time will lead to lower power

consumption, but displays with high internal resistance may need longer drive time to achieve

satisfactory contrast. Note that the drive time will never be longer than one half prescaled LCD

clock period, even if the selected drive time is longer. When using static bias or blanking, drive

time will always be one half prescaled LCD clock period.

• Bit 4 – LCDMDT: LCD Maximum Drive Time

Writing this bit to one turns the LCD drivers on 100% on the time, regardless of the drive time

configured by LCDDC2:0.

• Bits 3:0 – LCDCC3:0: LCD Contrast Control

The LCDCC3:0 bits determine the maximum voltage VLCD on segment and common pins. The

different selections are shown in Table 23-8 on page 251. New values take effect every begin-

ning of a new frame.

Bit 7 6 5 4 3 2 1 0

(0xE7) LCDDC2 LCDDC1 LCDDC0 LCDMDT LCDCC3 LCDCC2 LCDCC1 LCDCC0 LCDCCR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 23-7. LCD Display Configuration

LCDDC2 LCDDC1 LCDDC0 Nominal drive time

0 0 0 300 µs

0 0 1 70 µs

0 1 0 150 µs

0 1 1 450 µs

1 0 0 575 µs

1 0 1 850 µs

1 1 0 1150 µs

1 1 1 50% of clkLCD_PS

251

8018P–AVR–08/10

ATmega169P

23.5.5 LCD Memory Mapping

Write a LCD memory bit to one and the corresponding segment will be energized (visible).

Unused LCD Memory bits for the actual display can be used freely as storage.

Table 23-8. LCD Contrast Control

LCDCC3 LCDCC2 LCDCC1 LCDCC0 Maximum Voltage VLCD

0 0 0 0 2.60V

0 0 0 1 2.65V

0 0 1 0 2.70V

0 0 1 1 2.75V

0 1 0 0 2.80V

0 1 0 1 2.85V

0 1 1 0 2.90V

0 1 1 1 2.95V

1 0 0 0 3.00V

1 0 0 1 3.05V

1 0 1 0 3.10V

1 0 1 1 3.15V

1 1 0 0 3.20V

1 1 0 1 3.25V

1 1 1 0 3.30V

1 1 1 1 3.35V

Bit 7 6 5 4 3 2 1 0

– – – – – – – – LCDDR19

COM3 – – – – – – – SEG324 LCDDR18

COM3 SEG323 SEG322 SEG321 SEG320 SEG319 SEG318 SEG317 SEG316 LCDDR17

COM3 SEG315 SEG314 SEG313 SEG312 SEG311 SEG310 SEG309 SEG308 LCDDR16

COM3 SEG307 SEG306 SEG305 SEG304 SEG303 SEG302 SEG301 SEG300 LCDDR15

– – – – – – – – LCDDR14

COM2 – – – – – – – SEG224 LCDDR13

COM2 SEG223 SEG222 SEG221 SEG220 SEG219 SEG218 SEG217 SEG216 LCDDR12

COM2 SEG215 SEG214 SEG213 SEG212 SEG211 SEG210 SEG209 SEG208 LCDDR11

COM2 SEG207 SEG206 SEG205 SEG204 SEG203 SEG202 SEG201 SEG200 LCDDR10

– – – – – – – – LCDDR9

COM1 – – – – – – – SEG124 LCDDR8

COM1 SEG123 SEG122 SEG121 SEG120 SEG119 SEG118 SEG117 SEG116 LCDDR7

COM1 SEG115 SEG114 SEG113 SEG112 SEG111 SEG110 SEG109 SEG108 LCDDR6

COM1 SEG107 SEG106 SEG105 SEG104 SEG103 SEG102 SEG101 SEG100 LCDDR5

– – – – – – – – LCDDR4

COM0 – – – – – – – SEG024 LCDDR3

COM0 SEG023 SEG022 SEG021 SEG020 SEG019 SEG018 SEG017 SEG016 LCDDR2

COM0 SEG015 SEG014 SEG013 SEG012 SEG011 SEG010 SEG009 SEG008 LCDDR1

COM0 SEG007 SEG006 SEG005 SEG004 SEG003 SEG002 SEG001 SEG000 LCDDR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

252

8018P–AVR–08/10

ATmega169P

24. JTAG Interface and On-chip Debug System

24.0.1 Features

• JTAG (IEEE std. 1149.1 Compliant) Interface

• Boundary-scan Capabilities According to the IEEE std. 1149.1 (JTAG) Standard

• Debugger Access to:

– All Internal Peripheral Units

– Internal and External RAM

– The Internal Register File

– Program Counter

– EEPROM and Flash Memories

• Extensive On-chip Debug Support for Break Conditions, Including

– AVR Break Instruction

– Break on Change of Program Memory Flow

– Single Step Break

– Program Memory Break Points on Single Address or Address Range

– Data Memory Break Points on Single Address or Address Range

• Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface

• On-chip Debugging Supported by AVR Studio®

24.1 Overview

The AVR IEEE std. 1149.1 compliant JTAG interface can be used for:

• Testing PCBs by using the JTAG Boundary-scan capability.

• Programming the non-volatile memories, Fuses and Lock bits.

• On-chip debugging.

A brief description is given in the following sections. Detailed descriptions for Programming via

the JTAG interface, and using the Boundary-scan Chain can be found in the sections ”Program-

ming via the JTAG Interface” on page 316 and ”IEEE 1149.1 (JTAG) Boundary-scan” on page

259, respectively. The On-chip Debug support is considered being private JTAG instructions,

and distributed within ATMEL and to selected third party vendors only.

Figure 24-1 on page 254 shows a block diagram of the JTAG interface and the On-chip Debug

system. The TAP Controller is a state machine controlled by the TCK and TMS signals. The TAP

Controller selects either the JTAG Instruction Register or one of several Data Registers as the

scan chain (Shift Register) between the TDI – input and TDO – output. The Instruction Register

holds JTAG instructions controlling the behavior of a Data Register.

The ID-Register, Bypass Register, and the Boundary-scan Chain are the Data Registers used

for board-level testing. The JTAG Programming Interface (actually consisting of several physical

and virtual Data Registers) is used for serial programming via the JTAG interface. The Internal

Scan Chain and Break Point Scan Chain are used for On-chip debugging only.

253

8018P–AVR–08/10

ATmega169P

24.2 TAP – Test Access Port

The JTAG interface is accessed through four of the AVR’s pins. In JTAG terminology, these pins

constitute the Test Access Port – TAP. These pins are:

• TMS: Test mode select. This pin is used for navigating through the TAP-controller state

machine.

• TCK: Test Clock. JTAG operation is synchronous to TCK.

• TDI: Test Data In. Serial input data to be shifted in to the Instruction Register or Data Register

(Scan Chains).

• TDO: Test Data Out. Serial output data from Instruction Register or Data Register.

The IEEE std. 1149.1 also specifies an optional TAP signal; TRST – Test ReSeT – which is not

provided.

When the JTAGEN fuse is unprogrammed, these four TAP pins are normal port pins and the

TAP controller is in reset. When programmed and the JTD bit in MCUCSR is cleared, the TAP

pins are internally pulled high and the JTAG is enabled for Boundary-scan and programming.

The device is shipped with this fuse programmed.

For the On-chip Debug system, in addition to the JTAG interface pins, the RESET pin is moni-

tored by the debugger to be able to detect external reset sources. The debugger can also pull

the RESET pin low to reset the whole system, assuming only open collectors on the reset line

are used in the application.

254

8018P–AVR–08/10

ATmega169P

Figure 24-1. Block Diagram

TAP
CONTROLLER

TDI

TDO

TCK

TMS

FLASH
MEMORY

AVR CPU

DIGITAL
PERIPHERAL

UNITS

JTAG / AVR CORE
COMMUNICATION

INTERFACE

BREAKPOINT
UNIT

FLOW CONTROL
UNIT

OCD STATUS
AND CONTROL

INTERNAL
SCAN
CHAIN

M
U
X

INSTRUCTION
REGISTER

ID
REGISTER

BYPASS
REGISTER

JTAG PROGRAMMING
INTERFACE

PC
Instruction

Address
Data

BREAKPOINT
SCAN CHAIN

ADDRESS
DECODER

ANALOG
PERIPHERIAL

UNITS

I/O PORT 0

I/O PORT n

BOUNDARY SCAN CHAIN

Analog inputs

Control & Clock lines

DEVICE BOUNDARY

255

8018P–AVR–08/10

ATmega169P

Figure 24-2. TAP Controller State Diagram

24.3 TAP Controller

The TAP controller is a 16-state finite state machine that controls the operation of the Boundary-

scan circuitry, JTAG programming circuitry, or On-chip Debug system. The state transitions

depicted in Figure 24-2 depend on the signal present on TMS (shown adjacent to each state

transition) at the time of the rising edge at TCK. The initial state after a Power-on Reset is Test-

Logic-Reset.

As a definition in this document, the LSB is shifted in and out first for all Shift Registers.

Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG interface is:

• At the TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter the Shift

Instruction Register – Shift-IR state. While in this state, shift the four bits of the JTAG

instructions into the JTAG Instruction Register from the TDI input at the rising edge of TCK.

The TMS input must be held low during input of the 3 LSBs in order to remain in the Shift-IR

state. The MSB of the instruction is shifted in when this state is left by setting TMS high. While

the instruction is shifted in from the TDI pin, the captured IR-state 0x01 is shifted out on the

TDO pin. The JTAG Instruction selects a particular Data Register as path between TDI and

TDO and controls the circuitry surrounding the selected Data Register.

Test-Logic-Reset

Run-Test/Idle

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Select-DR Scan

Capture-DR

0

1

0 1 1 1

0 0

0 0

1 1

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

00

11

256

8018P–AVR–08/10

ATmega169P

• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction is latched

onto the parallel output from the Shift Register path in the Update-IR state. The Exit-IR, Pause-

IR, and Exit2-IR states are only used for navigating the state machine.

• At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the Shift Data

Register – Shift-DR state. While in this state, upload the selected Data Register (selected by

the present JTAG instruction in the JTAG Instruction Register) from the TDI input at the rising

edge of TCK. In order to remain in the Shift-DR state, the TMS input must be held low during

input of all bits except the MSB. The MSB of the data is shifted in when this state is left by

setting TMS high. While the Data Register is shifted in from the TDI pin, the parallel inputs to

the Data Register captured in the Capture-DR state is shifted out on the TDO pin.

• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected Data

Register has a latched parallel-output, the latching takes place in the Update-DR state. The

Exit-DR, Pause-DR, and Exit2-DR states are only used for navigating the state machine.

As shown in the state diagram, the Run-Test/Idle state need not be entered between selecting

JTAG instruction and using Data Registers, and some JTAG instructions may select certain

functions to be performed in the Run-Test/Idle, making it unsuitable as an Idle state.

Note: Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can always be
entered by holding TMS high for five TCK clock periods.

For detailed information on the JTAG specification, refer to the literature listed in ”Bibliography”

on page 258.

24.4 Using the Boundary-scan Chain

A complete description of the Boundary-scan capabilities are given in the section ”IEEE 1149.1

(JTAG) Boundary-scan” on page 259.

24.5 Using the On-chip Debug System

As shown in Figure 24-1 on page 254, the hardware support for On-chip Debugging consists

mainly of:

• A scan chain on the interface between the internal AVR CPU and the internal peripheral units.

• Break Point unit.

• Communication interface between the CPU and JTAG system.

All read or modify/write operations needed for implementing the Debugger are done by applying

AVR instructions via the internal AVR CPU Scan Chain. The CPU sends the result to an I/O

memory mapped location which is part of the communication interface between the CPU and the

JTAG system.

The Break Point Unit implements Break on Change of Program Flow, Single Step Break, two

Program Memory Break Points, and two combined Break Points. Together, the four Break

Points can be configured as either:

• 4 single Program Memory Break Points.

• 3 Single Program Memory Break Point + 1 single Data Memory Break Point.

• 2 single Program Memory Break Points + 2 single Data Memory Break Points.

• 2 single Program Memory Break Points + 1 Program Memory Break Point with mask (“range

Break Point”).

• 2 single Program Memory Break Points + 1 Data Memory Break Point with mask (“range Break

Point”).

257

8018P–AVR–08/10

ATmega169P

A debugger, like the AVR Studio, may however use one or more of these resources for its inter-

nal purpose, leaving less flexibility to the end-user.

A list of the On-chip Debug specific JTAG instructions is given in ”On-chip Debug Specific JTAG

Instructions” on page 257.

The JTAGEN Fuse must be programmed to enable the JTAG Test Access Port. In addition, the

OCDEN Fuse must be programmed and no Lock bits must be set for the On-chip debug system

to work. As a security feature, the On-chip debug system is disabled when either of the LB1 or

LB2 Lock bits are set. Otherwise, the On-chip debug system would have provided a back-door

into a secured device.

The AVR Studio enables the user to fully control execution of programs on an AVR device with

On-chip Debug capability, AVR In-Circuit Emulator, or the built-in AVR Instruction Set Simulator.

AVR Studio supports source level execution of Assembly programs assembled with Atmel Cor-

poration’s AVR Assembler and C programs compiled with third party vendors’ compilers.

AVR Studio runs under Microsoft® Windows® 95/98/2000, Windows NT® and Windows XP®.

For a full description of the AVR Studio, please refer to the AVR Studio User Guide. Only high-

lights are presented in this document.

All necessary execution commands are available in AVR Studio, both on source level and on

disassembly level. The user can execute the program, single step through the code either by

tracing into or stepping over functions, step out of functions, place the cursor on a statement and

execute until the statement is reached, stop the execution, and reset the execution target. In

addition, the user can have an unlimited number of code Break Points (using the BREAK

instruction) and up to two data memory Break Points, alternatively combined as a mask (range)

Break Point.

24.6 On-chip Debug Specific JTAG Instructions

The On-chip debug support is considered being private JTAG instructions, and distributed within

ATMEL and to selected third party vendors only. Instruction opcodes are listed for reference.

24.6.1 PRIVATE0; 0x8

Private JTAG instruction for accessing On-chip debug system.

24.6.2 PRIVATE1; 0x9

Private JTAG instruction for accessing On-chip debug system.

24.6.3 PRIVATE2; 0xA

Private JTAG instruction for accessing On-chip debug system.

24.6.4 PRIVATE3; 0xB

Private JTAG instruction for accessing On-chip debug system.

258

8018P–AVR–08/10

ATmega169P

24.7 On-chip Debug Related Register in I/O Memory

24.7.1 OCDR – On-chip Debug Register

The OCDR Register provides a communication channel from the running program in the micro-

controller to the debugger. The CPU can transfer a byte to the debugger by writing to this

location. At the same time, an internal flag; I/O Debug Register Dirty – IDRD – is set to indicate

to the debugger that the register has been written. When the CPU reads the OCDR Register the

7 LSB will be from the OCDR Register, while the MSB is the IDRD bit. The debugger clears the

IDRD bit when it has read the information.

In some AVR devices, this register is shared with a standard I/O location. In this case, the OCDR

Register can only be accessed if the OCDEN Fuse is programmed, and the debugger enables

access to the OCDR Register. In all other cases, the standard I/O location is accessed.

Refer to the debugger documentation for further information on how to use this register.

24.8 Using the JTAG Programming Capabilities

Programming of AVR parts via JTAG is performed via the 4-pin JTAG port, TCK, TMS, TDI, and

TDO. These are the only pins that need to be controlled/observed to perform JTAG program-

ming (in addition to power pins). It is not required to apply 12V externally. The JTAGEN Fuse

must be programmed and the JTD bit in the MCUCR Register must be cleared to enable the

JTAG Test Access Port. See ”Boundary-scan Related Register in I/O Memory” on page 279.

The JTAG programming capability supports:

• Flash programming and verifying.

• EEPROM programming and verifying.

• Fuse programming and verifying.

• Lock bit programming and verifying.

The Lock bit security is exactly as in parallel programming mode. If the Lock bits LB1 or LB2 are

programmed, the OCDEN Fuse cannot be programmed unless first doing a chip erase. This is a

security feature that ensures no back-door exists for reading out the content of a secured

device.

The details on programming through the JTAG interface and programming specific JTAG

instructions are given in the section ”Programming via the JTAG Interface” on page 316.

24.9 Bibliography

For more information about general Boundary-scan, the following literature can be consulted:

• IEEE: IEEE Std. 1149.1-1990. IEEE Standard Test Access Port and Boundary-scan

Architecture, IEEE, 1993.

• Colin Maunder: The Board Designers Guide to Testable Logic Circuits, Addison-Wesley, 1992.

Bit 7 6 5 4 3 2 1 0

0x31 (0x51) MSB/IDRD LSB OCDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

259

8018P–AVR–08/10

ATmega169P

25. IEEE 1149.1 (JTAG) Boundary-scan

25.1 Features

• JTAG (IEEE std. 1149.1 compliant) Interface

• Boundary-scan Capabilities According to the JTAG Standard

• Full Scan of all Port Functions as well as Analog Circuitry having Off-chip Connections

• Supports the Optional IDCODE Instruction

• Additional Public AVR_RESET Instruction to Reset the AVR

25.2 System Overview

The Boundary-scan chain has the capability of driving and observing the logic levels on the digi-

tal I/O pins, as well as the boundary between digital and analog logic for analog circuitry having

off-chip connections. At system level, all ICs having JTAG capabilities are connected serially by

the TDI/TDO signals to form a long Shift Register. An external controller sets up the devices to

drive values at their output pins, and observe the input values received from other devices. The

controller compares the received data with the expected result. In this way, Boundary-scan pro-

vides a mechanism for testing interconnections and integrity of components on Printed Circuits

Boards by using the four TAP signals only.

The four IEEE 1149.1 defined mandatory JTAG instructions IDCODE, BYPASS, SAMPLE/PRE-

LOAD, and EXTEST, as well as the AVR specific public JTAG instruction AVR_RESET can be

used for testing the Printed Circuit Board. Initial scanning of the Data Register path will show the

ID-Code of the device, since IDCODE is the default JTAG instruction. It may be desirable to

have the AVR device in reset during test mode. If not reset, inputs to the device may be deter-

mined by the scan operations, and the internal software may be in an undetermined state when

exiting the test mode. Entering reset, the outputs of any port pin will instantly enter the high

impedance state, making the HIGHZ instruction redundant. If needed, the BYPASS instruction

can be issued to make the shortest possible scan chain through the device. The device can be

set in the reset state either by pulling the external RESET pin low, or issuing the AVR_RESET

instruction with appropriate setting of the Reset Data Register.

The EXTEST instruction is used for sampling external pins and loading output pins with data.

The data from the output latch will be driven out on the pins as soon as the EXTEST instruction

is loaded into the JTAG IR-Register. Therefore, the SAMPLE/PRELOAD should also be used for

setting initial values to the scan ring, to avoid damaging the board when issuing the EXTEST

instruction for the first time. SAMPLE/PRELOAD can also be used for taking a snapshot of the

external pins during normal operation of the part.

The JTAGEN Fuse must be programmed and the JTD bit in the I/O Register MCUCR must be

cleared to enable the JTAG Test Access Port.

When using the JTAG interface for Boundary-scan, using a JTAG TCK clock frequency higher

than the internal chip frequency is possible. The chip clock is not required to run.

260

8018P–AVR–08/10

ATmega169P

25.3 Data Registers

The Data Registers relevant for Boundary-scan operations are:

• Bypass Register

• Device Identification Register

• Reset Register

• Boundary-scan Chain

25.3.1 Bypass Register

The Bypass Register consists of a single Shift Register stage. When the Bypass Register is

selected as path between TDI and TDO, the register is reset to 0 when leaving the Capture-DR

controller state. The Bypass Register can be used to shorten the scan chain on a system when

the other devices are to be tested.

25.3.2 Device Identification Register

Figure 25-1 shows the structure of the Device Identification Register.

Figure 25-1. The Format of the Device Identification Register.

25.3.2.1 Version

Version is a 4-bit number identifying the revision of the component. The JTAG version number

follows the revision of the device. Revision A is 0x0, revision B is 0x1 and so on.

25.3.2.2 Part Number

The part number is a 16-bit code identifying the component. The JTAG Part Number for

ATmega169P is listed in Table 27-6 on page 299.

25.3.2.3 Manufacturer ID

The Manufacturer ID is a 11-bit code identifying the manufacturer. The JTAG manufacturer ID

for ATMEL is listed in Table 27-6 on page 299.

25.3.3 Reset Register

The Reset Register is a test Data Register used to reset the part. Since the AVR tri-states Port

Pins when reset, the Reset Register can also replace the function of the unimplemented optional

JTAG instruction HIGHZ.

A high value in the Reset Register corresponds to pulling the external Reset low. The part is

reset as long as there is a high value present in the Reset Register. Depending on the fuse set-

tings for the clock options, the part will remain reset for a reset time-out period (refer to ”Clock

Sources” on page 31) after releasing the Reset Register. The output from this Data Register is

not latched, so the reset will take place immediately, as shown in Figure 25-2 on page 261.

MSB LSB

Bit 31 28 27 12 11 1 0
Device ID Version Part Number Manufacturer ID 1

4 bits 16 bits 11 bits 1-bit

261

8018P–AVR–08/10

ATmega169P

Figure 25-2. Reset Register

25.3.4 Boundary-scan Chain

The Boundary-scan Chain has the capability of driving and observing the logic levels on the dig-

ital I/O pins, as well as the boundary between digital and analog logic for analog circuitry having

off-chip connections.

See ”Boundary-scan Chain” on page 262 for a complete description.

25.4 Boundary-scan Specific JTAG Instructions

The Instruction Register is 4-bit wide, supporting up to 16 instructions. Listed below are the

JTAG instructions useful for Boundary-scan operation. Note that the optional HIGHZ instruction

is not implemented, but all outputs with tri-state capability can be set in high-impedant state by

using the AVR_RESET instruction, since the initial state for all port pins is tri-state.

As a definition in this datasheet, the LSB is shifted in and out first for all Shift Registers.

The OPCODE for each instruction is shown behind the instruction name in hex format. The text

describes which Data Register is selected as path between TDI and TDO for each instruction.

25.4.1 EXTEST; 0x0

Mandatory JTAG instruction for selecting the Boundary-scan Chain as Data Register for testing

circuitry external to the AVR package. For port-pins, Pull-up Disable, Output Control, Output

Data, and Input Data are all accessible in the scan chain. For Analog circuits having off-chip

connections, the interface between the analog and the digital logic is in the scan chain. The con-

tents of the latched outputs of the Boundary-scan chain is driven out as soon as the JTAG IR-

Register is loaded with the EXTEST instruction.

The active states are:

• Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.

• Shift-DR: The Internal Scan Chain is shifted by the TCK input.

• Update-DR: Data from the scan chain is applied to output pins.

25.4.2 IDCODE; 0x1

Optional JTAG instruction selecting the 32-bit ID-Register as Data Register. The ID-Register

consists of a version number, a device number and the manufacturer code chosen by JEDEC.

This is the default instruction after power-up.

D Q
From

TDI

ClockDR · AVR_RESET

To

TDO

From Other Internal and

External Reset Sources

Internal reset

262

8018P–AVR–08/10

ATmega169P

The active states are:

• Capture-DR: Data in the IDCODE Register is sampled into the Boundary-scan Chain.

• Shift-DR: The IDCODE scan chain is shifted by the TCK input.

25.4.3 SAMPLE_PRELOAD; 0x2

Mandatory JTAG instruction for pre-loading the output latches and taking a snap-shot of the

input/output pins without affecting the system operation. However, the output latches are not

connected to the pins. The Boundary-scan Chain is selected as Data Register.

The active states are:

• Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.

• Shift-DR: The Boundary-scan Chain is shifted by the TCK input.

• Update-DR: Data from the Boundary-scan chain is applied to the output latches. However, the

output latches are not connected to the pins.

25.4.4 AVR_RESET; 0xC

The AVR specific public JTAG instruction for forcing the AVR device into the Reset mode or

releasing the JTAG reset source. The TAP controller is not reset by this instruction. The one bit

Reset Register is selected as Data Register. Note that the reset will be active as long as there is

a logic “one” in the Reset Chain. The output from this chain is not latched.

The active states are:

• Shift-DR: The Reset Register is shifted by the TCK input.

25.4.5 BYPASS; 0xF

Mandatory JTAG instruction selecting the Bypass Register for Data Register.

The active states are:

• Capture-DR: Loads a logic “0” into the Bypass Register.

• Shift-DR: The Bypass Register cell between TDI and TDO is shifted.

25.5 Boundary-scan Chain

The Boundary-scan chain has the capability of driving and observing the logic levels on the digi-

tal I/O pins, as well as the boundary between digital and analog logic for analog circuitry having

off-chip connection.

25.5.1 Scanning the Digital Port Pins

Figure 25-3 on page 263 shows the Boundary-scan Cell for a bi-directional port pin with pull-up

function. The cell consists of a standard Boundary-scan cell for the Pull-up Enable – PUExn –

function, and a bi-directional pin cell that combines the three signals Output Control – OCxn,

Output Data – ODxn, and Input Data – IDxn, into only a two-stage Shift Register. The port and

pin indexes are not used in the following description:

The Boundary-scan logic is not included in the figures in the datasheet. Figure 25-4 on page 264

shows a simple digital port pin as described in the section ”I/O-Ports” on page 65. The Bound-

ary-scan details from Figure 25-3 on page 263 replaces the dashed box in Figure 25-4 on page

264.

When no alternate port function is present, the Input Data – ID – corresponds to the PINxn Reg-

ister value (but ID has no synchronizer), Output Data corresponds to the PORT Register, Output

263

8018P–AVR–08/10

ATmega169P

Control corresponds to the Data Direction – DD Register, and the Pull-up Enable – PUExn – cor-

responds to logic expression PUD · DDxn · PORTxn.

Digital alternate port functions are connected outside the dotted box in Figure 25-4 on page 264

to make the scan chain read the actual pin value. For Analog function, there is a direct connec-

tion from the external pin to the analog circuit, and a scan chain is inserted on the interface

between the digital logic and the analog circuitry.

Figure 25-3. Boundary-scan Cell for Bi-directional Port Pin with Pull-up Function.

D Q D Q

G

0

1
0

1

D Q D Q

G

0

1
0

1

0

1

0

1
D Q D Q

G

0

1

P
o

rt
 P

in
 (

P
X

n
)

VccEXTESTTo Next CellShiftDR

Output Control (OC)

Pullup Enable (PUE)

Output Data (OD)

Input Data (ID)

From Last Cell UpdateDRClockDR

FF2 LD2

FF1 LD1

LD0FF0

264

8018P–AVR–08/10

ATmega169P

Figure 25-4. General Port Pin Schematic Diagram

CLK

RPx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WRx: WRITE PORTx
RRx: READ PORTx REGISTER

WPx: WRITE PINx REGISTER

PUD: PULLUP DISABLE

CLK : I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

RESET

Q

QD

Q

Q D

CLR

DDxn

PINxn

D
A
T
A

 B
U

S

SLEEP

SLEEP: SLEEP CONTROL

Pxn

I/O

I/O

See Boundary-scan
Description for Details!

PUExn

OCxn

ODxn
IDxn

PUExn: PULLUP ENABLE for pin Pxn
OCxn: OUTPUT CONTROL for pin Pxn
ODxn: OUTPUT DATA to pin Pxn
IDxn: INPUT DATA from pin Pxn RPx: READ PORTx PIN

RRx

RESET

Q

Q D

CLR

PORTxn

WPx

0

1

WRx

265

8018P–AVR–08/10

ATmega169P

25.5.2 Scanning the RESET Pin

The RESET pin accepts 5V active low logic for standard reset operation, and 12V active high

logic for High Voltage Parallel programming. An observe-only cell as shown in Figure 25-5 is

inserted both for the 5V reset signal; RSTT, and the 12V reset signal; RSTHV.

Figure 25-5. Observe-only Cell

25.5.3 Scanning the Clock Pins

The AVR devices have many clock options selectable by fuses. These are: Internal RC Oscilla-

tor, External Clock, (High Frequency) Crystal Oscillator, Low-frequency Crystal Oscillator, and

Ceramic Resonator.

Figure 25-6 shows how each Oscillator with external connection is supported in the scan chain.

The Enable signal is supported with a general Boundary-scan cell, while the Oscillator/clock out-

put is attached to an observe-only cell. In addition to the main clock, the timer Oscillator is

scanned in the same way. The output from the internal RC Oscillator is not scanned, as this

Oscillator does not have external connections.

Figure 25-6. Boundary-scan Cells for Oscillators and Clock Options

0

1
D Q

From

Previous

Cell

ClockDR

ShiftDR

To

Next

Cell

From System Pin To System Logic

FF1

0

1
D Q

From

Previous

Cell

ClockDR

ShiftDR

To

Next

Cell

To System Logic

FF10

1
D Q D Q

G

0

1

From

Previous

Cell

ClockDR UpdateDR

ShiftDR

To

Next

Cell EXTEST

From Digital Logic

XTAL1/TOSC1 XTAL2/TOSC2

Oscillator

ENABLE OUTPUT

266

8018P–AVR–08/10

ATmega169P

Table 25-1 summaries the scan registers for the external clock pin XTAL1, oscillators with

XTAL1/XTAL2 connections as well as 32 kHz Timer Oscillator.

Notes: 1. Do not enable more than one clock source as main clock at a time.
2. Scanning an Oscillator output gives unpredictable results as there is a frequency drift between

the internal Oscillator and the JTAG TCK clock. If possible, scanning an external clock is
preferred.

3. The clock configuration is programmed by fuses. As a fuse is not changed run-time, the clock
configuration is considered fixed for a given application. The user is advised to scan the same
clock option as to be used in the final system. The enable signals are supported in the scan
chain because the system logic can disable clock options in sleep modes, thereby disconnect-
ing the Oscillator pins from the scan path if not provided.

25.5.4 Scanning the Analog Comparator

The relevant Comparator signals regarding Boundary-scan are shown in Figure 25-7. The

Boundary-scan cell from Figure 25-8 on page 267 is attached to each of these signals. The sig-

nals are described in Table 25-2 on page 267.

The Comparator need not be used for pure connectivity testing, since all analog inputs are

shared with a digital port pin as well.

Figure 25-7. Analog Comparator

Table 25-1. Scan Signals for the Oscillator(1)(2)(3)

Enable Signal

Scanned

Clock Line Clock Option

Scanned Clock Line

when not Used

EXTCLKEN EXTCLK (XTAL1) External Clock 0

OSCON OSCCK
External Crystal

External Ceramic Resonator
1

OSC32EN OSC32CK Low Freq. External Crystal 1

ACBG

BANDGAP
REFERENCE

ADC MULTIPLEXER
OUTPUT

ACME

AC_IDLE

ACO

ADCEN

ACD

267

8018P–AVR–08/10

ATmega169P

Figure 25-8. General Boundary-scan cell Used for Signals for Comparator and ADC

Table 25-2. Boundary-scan Signals for the Analog Comparator

Signal

Name

Direction as

Seen from the

Comparator Description

Recommended

Input when Not

in Use

Output Values when

Recommended Inputs

are Used

AC_IDLE input
Turns off Analog
Comparator when
true

1
Depends upon µC code
being executed

ACO output
Analog Comparator
Output

Will become input
to µC code being
executed

0

ACME input
Uses output signal
from ADC mux when
true

0
Depends upon µC code
being executed

ACBG input
Bandgap Reference
enable

0
Depends upon µC code
being executed

0

1
D Q D Q

G

0

1

From

Previous

Cell

ClockDR UpdateDR

ShiftDR

To

Next

Cell EXTEST

To Analog Circuitry/

To Digital Logic

From Digital Logic/

From Analog Ciruitry

268

8018P–AVR–08/10

ATmega169P

25.5.5 Scanning the ADC

Figure 25-9 shows a block diagram of the ADC with all relevant control and observe signals. The

Boundary-scan cell from Figure 25-5 on page 265 is attached to each of these signals. The ADC

need not be used for pure connectivity testing, since all analog inputs are shared with a digital

port pin as well.

Figure 25-9. Analog to Digital Converter.

The signals are described briefly in Table 25-3 on page 269.

10-bit DAC +

-

AREF

PRECH

DACOUT

COMP

MUXEN_7

ADC_7

MUXEN_6

ADC_6

MUXEN_5

ADC_5

MUXEN_4

ADC_4

MUXEN_3

ADC_3

MUXEN_2

ADC_2

MUXEN_1

ADC_1

MUXEN_0

ADC_0

NEGSEL_2
ADC_2

NEGSEL_1
ADC_1

NEGSEL_0

ADC_0

EXTCH

+

-
1x

ST

ACLK

AMPEN

1.11V

ref

IREFEN

AREF

VCCREN

DAC_9..0

ADCEN

HOLD

PRECH

GNDEN

PASSEN

COMP

SCTEST
ADCBGEN

To Comparator

1.22V

ref

ACTEN

AREF

269

8018P–AVR–08/10

ATmega169P

Table 25-3. Boundary-scan Signals for the ADC(1)

Signal

Name

Direction

as Seen

from the

ADC Description

Recommen-

ded Input

when not in

use

Output Values when

Recommended Inputs

are Used, and CPU is

not Using the ADC

COMP Output Comparator Output 0 0

ACLK Input

Clock signal to
differential amplifier
implemented as Switch-
cap filters

0 0

ACTEN Input
Enable path from
differential amplifier to
the comparator

0 0

ADCBGEN Input
Enable Band-gap
reference as negative
input to comparator

0 0

ADCEN Input
Power-on signal to the
ADC

0 0

AMPEN Input
Power-on signal to the
differential amplifier

0 0

DAC_9 Input
Bit 9 of digital value to
DAC

1 1

DAC_8 Input
Bit 8 of digital value to
DAC

0 0

DAC_7 Input
Bit 7 of digital value to
DAC

0 0

DAC_6 Input
Bit 6 of digital value to
DAC

0 0

DAC_5 Input
Bit 5 of digital value to
DAC

0 0

DAC_4 Input
Bit 4 of digital value to
DAC

0 0

DAC_3 Input
Bit 3 of digital value to
DAC

0 0

DAC_2 Input
Bit 2 of digital value to
DAC

0 0

DAC_1 Input
Bit 1 of digital value to
DAC

0 0

DAC_0 Input
Bit 0 of digital value to
DAC

0 0

EXTCH Input

Connect ADC channels 0
- 3 to by-pass path
around differential
amplifier

1 1

GNDEN Input
Ground the negative
input to comparator when
true

0 0

270

8018P–AVR–08/10

ATmega169P

HOLD Input

Sample & Hold signal.
Sample analog signal
when low. Hold signal
when high. If differential
amplifier is used, this
signal must go active
when ACLK is high.

1 1

IREFEN Input
Enables Band-gap
reference as AREF
signal to DAC

0 0

MUXEN_7 Input Input Mux bit 7 0 0

MUXEN_6 Input Input Mux bit 6 0 0

MUXEN_5 Input Input Mux bit 5 0 0

MUXEN_4 Input Input Mux bit 4 0 0

MUXEN_3 Input Input Mux bit 3 0 0

MUXEN_2 Input Input Mux bit 2 0 0

MUXEN_1 Input Input Mux bit 1 0 0

MUXEN_0 Input Input Mux bit 0 1 1

NEGSEL_2 Input
Input Mux for negative
input for differential
signal, bit 2

0 0

NEGSEL_1 Input
Input Mux for negative
input for differential
signal, bit 1

0 0

NEGSEL_0 Input
Input Mux for negative
input for differential
signal, bit 0

0 0

PASSEN Input
Enable pass-gate of
differential amplifier.

1 1

PRECH Input
Precharge output latch of
comparator. (Active low)

1 1

SCTEST Input

Switch-cap TEST enable.
Output from differential
amplifier is sent out to
Port Pin having ADC_4

0 0

ST Input

Output of differential
amplifier will settle faster
if this signal is high first
two ACLK periods after
AMPEN goes high.

0 0

VCCREN Input
Selects Vcc as the ACC
reference voltage.

0 0

Table 25-3. Boundary-scan Signals for the ADC(1)

Signal

Name

Direction

as Seen

from the

ADC Description

Recommen-

ded Input

when not in

use

Output Values when

Recommended Inputs

are Used, and CPU is

not Using the ADC

271

8018P–AVR–08/10

ATmega169P

Note: 1. Incorrect setting of the switches in Figure 25-9 on page 268 will make signal contention and
may damage the part. There are several input choices to the S&H circuitry on the negative
input of the output comparator in Figure 25-9 on page 268. Make sure only one path is
selected from either one ADC pin, Bandgap reference source, or Ground.

If the ADC is not to be used during scan, the recommended input values from Table 25-3 on

page 269 should be used. The user is recommended not to use the Differential Amplifier during

scan. Switch-Cap based differential amplifier requires fast operation and accurate timing which

is difficult to obtain when used in a scan chain. Details concerning operations of the differential

amplifier is therefore not provided.

The AVR ADC is based on the analog circuitry shown in Figure 25-9 on page 268 with a succes-

sive approximation algorithm implemented in the digital logic. When used in Boundary-scan, the

problem is usually to ensure that an applied analog voltage is measured within some limits. This

can easily be done without running a successive approximation algorithm: apply the lower limit

on the digital DAC[9:0] lines, make sure the output from the comparator is low, then apply the

upper limit on the digital DAC[9:0] lines, and verify the output from the comparator to be high.

The ADC need not be used for pure connectivity testing, since all analog inputs are shared with

a digital port pin as well.

When using the ADC, remember the following:

• The port pin for the ADC channel in use must be configured to be an input with pull-up disabled

to avoid signal contention.

• In Normal mode, a dummy conversion (consisting of 10 comparisons) is performed when

enabling the ADC. The user is advised to wait at least 200 ns after enabling the ADC before

controlling/observing any ADC signal, or perform a dummy conversion before using the first

result.

• The DAC values must be stable at the midpoint value 0x200 when having the HOLD signal low

(Sample mode).

As an example, consider the task of verifying a 1.5V ±5% input signal at ADC channel 3 when

the power supply is 5.0V and AREF is externally connected to VCC.

The recommended values from Table 25-3 on page 269 are used unless other values are given

in the algorithm in Table 25-4 on page 272. Only the DAC and port pin values of the Scan Chain

are shown. The column “Actions” describes what JTAG instruction to be used before filling the

Boundary-scan Register with the succeeding columns. The verification should be done on the

data scanned out when scanning in the data on the same row in the table.

The lower limit is: 1024 1.5V 0,95 5V⁄⋅ ⋅ 291 0x123= =
The upper limit is: 1024 1.5V 1.05 5V⁄⋅ ⋅ 323 0x143= =

272

8018P–AVR–08/10

ATmega169P

Using this algorithm, the timing constraint on the HOLD signal constrains the TCK clock fre-

quency. As the algorithm keeps HOLD high for five steps, the TCK clock frequency has to be at

least five times the number of scan bits divided by the maximum hold time, thold,max

25.6 Boundary-scan Order

Table 25-5 shows the Scan order between TDI and TDO when the Boundary-scan chain is

selected as data path. Bit 0 is the LSB; the first bit scanned in, and the first bit scanned out. The

scan order follows the pin-out order as far as possible. Therefore, the bits of Port A is scanned in

the opposite bit order of the other ports. Exceptions from the rules are the Scan chains for the

analog circuits, which constitute the most significant bits of the scan chain regardless of which

physical pin they are connected to. In Figure 25-3 on page 263, PXn. Data corresponds to FF0,

PXn. Control corresponds to FF1, and PXn. Pull-up_enable corresponds to FF2. Bit 4, bit 5, bit

6, and bit 7 of Port F is not in the scan chain, since these pins constitute the TAP pins when the

JTAG is enabled.

Table 25-4. Algorithm for Using the ADC

Step Actions ADCEN DAC MUXEN HOLD PRECH

PA3.

Data

PA3.

Control

PA3.

Pull-up_

Enable

1
SAMPLE_P

RELOAD
1 0x200 0x08 1 1 0 0 0

2 EXTEST 1 0x200 0x08 0 1 0 0 0

3 1 0x200 0x08 1 1 0 0 0

4 1 0x123 0x08 1 1 0 0 0

5 1 0x123 0x08 1 0 0 0 0

6

Verify the

COMP bit

scanned out

to be 0

1 0x200 0x08 1 1 0 0 0

7 1 0x200 0x08 0 1 0 0 0

8 1 0x200 0x08 1 1 0 0 0

9 1 0x143 0x08 1 1 0 0 0

10 1 0x143 0x08 1 0 0 0 0

11

Verify the

COMP bit

scanned out

to be 1

1 0x200 0x08 1 1 0 0 0

Table 25-5. ATmega169P Boundary-scan Order

Bit Number Signal Name Module

197 AC_IDLE

Comparator
196 ACO

195 ACME

194 AINBG

273

8018P–AVR–08/10

ATmega169P

193 COMP

ADC

192 ACLK

191 ACTEN

190 PRIVATE_SIGNAL1(1)

189 ADCBGEN

188 ADCEN

187 AMPEN

186 DAC_9

185 DAC_8

184 DAC_7

183 DAC_6

182 DAC_5

181 DAC_4

180 DAC_3

179 DAC_2

178 DAC_1

177 DAC_0

176 EXTCH

175 GNDEN

174 HOLD

173 IREFEN

172 MUXEN_7

171 MUXEN_6

170 MUXEN_5

169 MUXEN_4

168 MUXEN_3

ADC

167 MUXEN_2

166 MUXEN_1

165 MUXEN_0

164 NEGSEL_2

163 NEGSEL_1

162 NEGSEL_0

161 PASSEN

160 PRECH

159 ST

158 VCCREN

Table 25-5. ATmega169P Boundary-scan Order

Bit Number Signal Name Module

274

8018P–AVR–08/10

ATmega169P

157 PE0.Data

Port E

156 PE0.Control

155 PE0.Pull-up_Enable

154 PE1.Data

153 PE1.Control

152 PE1.Pull-up_Enable

151 PE2.Data

150 PE2.Control

149 PE2.Pull-up_Enable

148 PE3.Data

147 PE3.Control

146 PE3.Pull-up_Enable

145 PE4.Data

144 PE4.Control

143 PE4.Pull-up_Enable

142 PE5.Data

141 PE5.Control

140 PE5.Pull-up_Enable

139 PE6.Data

138 PE6.Control

137 PE6.Pull-up_Enable

136 PE7.Data

135 PE7.Control

134 PE7.Pull-up_Enable

133 PB0.Data Port B

Table 25-5. ATmega169P Boundary-scan Order

Bit Number Signal Name Module

275

8018P–AVR–08/10

ATmega169P

132 PB0.Control

Port B

131 PB0.Pull-up_Enable

130 PB1.Data

129 PB1.Control

128 PB1.Pull-up_Enable

127 PB2.Data

126 PB2.Control

125 PB2.Pull-up_Enable

124 PB3.Data

123 PB3.Control

122 PB3.Pull-up_Enable

121 PB4.Data

120 PB4.Control

119 PB4.Pull-up_Enable

118 PB5.Data

117 PB5.Control

116 PB5.Pull-up_Enable

115 PB6.Data

114 PB6.Control

113 PB6.Pull-up_Enable

112 PB7.Data

111 PB7.Control

110 PB7.Pull-up_Enable

109 PG3.Data

Port G

108 PG3.Control

107 PG3.Pull-up_Enable

106 PG4.Data

105 PG4.Control

104 PG4.Pull-up_Enable

103 PG5 (Observe Only)

102 RSTT Reset Logic
(Observe-only)101 RSTHV

100 EXTCLKEN

Enable signals for main Clock/Oscillators
99 OSCON

98 RCOSCEN

97 OSC32EN

Table 25-5. ATmega169P Boundary-scan Order

Bit Number Signal Name Module

276

8018P–AVR–08/10

ATmega169P

96 EXTCLK (XTAL1)

Clock input and Oscillators for the main clock
(Observe-only)

95 OSCCK

94 RCCK

93 OSC32CK

92 PD0.Data

Port D

91 PD0.Control

90 PD0.Pull-up_Enable

89 PD1.Data

88 PD1.Control

87 PD1.Pull-up_Enable

86 PD2.Data

85 PD2.Control

84 PD2.Pull-up_Enable

83 PD3.Data

82 PD3.Control

81 PD3.Pull-up_Enable

80 PD4.Data

79 PD4.Control

78 PD4.Pull-up_Enable

77 PD5.Data

76 PD5.Control

75 PD5.Pull-up_Enable

74 PD6.Data

73 PD6.Control

72 PD6.Pull-up_Enable

71 PD7.Data

70 PD7.Control

69 PD7.Pull-up_Enable

68 PG0.Data

Port G

67 PG0.Control

66 PG0.Pull-up_Enable

65 PG1.Data

64 PG1.Control

63 PG1.Pull-up_Enable

62 PC0.Data
Port C

61 PC0.Control

Table 25-5. ATmega169P Boundary-scan Order

Bit Number Signal Name Module

277

8018P–AVR–08/10

ATmega169P

60 PC0.Pull-up_Enable

Port C

59 PC1.Data

58 PC1.Control

57 PC1.Pull-up_Enable

56 PC2.Data

55 PC2.Control

54 PC2.Pull-up_Enable

53 PC3.Data

52 PC3.Control

51 PC3.Pull-up_Enable

50 PC4.Data

49 PC4.Control

48 PC4.Pull-up_Enable

47 PC5.Data

46 PC5.Control

45 PC5.Pull-up_Enable

44 PC6.Data

43 PC6.Control

42 PC6.Pull-up_Enable

41 PC7.Data

40 PC7.Control

39 PC7.Pull-up_Enable

38 PG2.Data

Port G37 PG2.Control

36 PG2.Pull-up_Enable

35 PA7.Data

Port A

34 PA7.Control

33 PA7.Pull-up_Enable

32 PA6.Data

31 PA6.Control

30 PA6.Pull-up_Enable

29 PA5.Data

28 PA5.Control

27 PA5.Pull-up_Enable

26 PA4.Data

25 PA4.Control

Table 25-5. ATmega169P Boundary-scan Order

Bit Number Signal Name Module

278

8018P–AVR–08/10

ATmega169P

Note: 1. PRIVATE_SIGNAL1 should always be scanned in as zero.

25.7 Boundary-scan Description Language Files

Boundary-scan Description Language (BSDL) files describe Boundary-scan capable devices in

a standard format used by automated test-generation software. The order and function of bits in

the Boundary-scan Data Register are included in this description. A BSDL file for ATmega169P

is available.

24 PA4.Pull-up_Enable

Port A

23 PA3.Data

22 PA3.Control

21 PA3.Pull-up_Enable

20 PA2.Data

19 PA2.Control

18 PA2.Pull-up_Enable

17 PA1.Data

16 PA1.Control

15 PA1.Pull-up_Enable

14 PA0.Data

13 PA0.Control

12 PA0.Pull-up_Enable

11 PF3.Data

Port F

10 PF3.Control

9 PF3.Pull-up_Enable

8 PF2.Data

7 PF2.Control

6 PF2.Pull-up_Enable

5 PF1.Data

4 PF1.Control

3 PF1.Pull-up_Enable

2 PF0.Data

1 PF0.Control

0 PF0.Pull-up_Enable

Table 25-5. ATmega169P Boundary-scan Order

Bit Number Signal Name Module

279

8018P–AVR–08/10

ATmega169P

25.8 Boundary-scan Related Register in I/O Memory

25.8.1 MCUCR – MCU Control Register

The MCU Control Register contains control bits for general MCU functions.

• Bit 7 – JTD: JTAG Interface Disable

When this bit is zero, the JTAG interface is enabled if the JTAGEN Fuse is programmed. If this

bit is one, the JTAG interface is disabled. In order to avoid unintentional disabling or enabling of

the JTAG interface, a timed sequence must be followed when changing this bit: The application

software must write this bit to the desired value twice within four cycles to change its value. Note

that this bit must not be altered when using the On-chip Debug system.

If the JTAG interface is left unconnected to other JTAG circuitry, the JTD bit should be set to

one. The reason for this is to avoid static current at the TDO pin in the JTAG interface.

25.8.2 MCUSR – MCU Status Register

The MCU Status Register provides information on which reset source caused an MCU reset.

• Bit 4 – JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by

the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic

zero to the flag.

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) JTD - - PUD – – IVSEL IVCE MCUCR

Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x34 (0x54) – – – JTRF WDRF BORF EXTRF PORF MCUSR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description

280

8018P–AVR–08/10

ATmega169P

26. Boot Loader Support – Read-While-Write Self-Programming

26.1 Features

• Read-While-Write Self-Programming

• Flexible Boot Memory Size

• High Security (Separate Boot Lock Bits for a Flexible Protection)

• Separate Fuse to Select Reset Vector

• Optimized Page(1) Size

• Code Efficient Algorithm

• Efficient Read-Modify-Write Support

Note: 1. A page is a section in the Flash consisting of several bytes (see Table 27-7 on page 299) used
during programming. The page organization does not affect normal operation.

26.2 Overview

The Boot Loader Support provides a real Read-While-Write Self-Programming mechanism for

downloading and uploading program code by the MCU itself. This feature allows flexible applica-

tion software updates controlled by the MCU using a Flash-resident Boot Loader program. The

Boot Loader program can use any available data interface and associated protocol to read code

and write (program) that code into the Flash memory, or read the code from the program mem-

ory. The program code within the Boot Loader section has the capability to write into the entire

Flash, including the Boot Loader memory. The Boot Loader can thus even modify itself, and it

can also erase itself from the code if the feature is not needed anymore. The size of the Boot

Loader memory is configurable with fuses and the Boot Loader has two separate sets of Boot

Lock bits which can be set independently. This gives the user a unique flexibility to select differ-

ent levels of protection.

26.3 Application and Boot Loader Flash Sections

The Flash memory is organized in two main sections, the Application section and the Boot

Loader section (see Figure 26-2 on page 283). The size of the different sections is configured by

the BOOTSZ Fuses as shown in Table 26-6 on page 292 and Figure 26-2 on page 283. These

two sections can have different level of protection since they have different sets of Lock bits.

26.3.1 Application Section

The Application section is the section of the Flash that is used for storing the application code.

The protection level for the Application section can be selected by the application Boot Lock bits

(Boot Lock bits 0), see Table 26-2 on page 284. The Application section can never store any

Boot Loader code since the SPM instruction is disabled when executed from the Application

section.

26.3.2 BLS – Boot Loader Section

While the Application section is used for storing the application code, the The Boot Loader soft-

ware must be located in the BLS since the SPM instruction can initiate a programming when

executing from the BLS only. The SPM instruction can access the entire Flash, including the

BLS itself. The protection level for the Boot Loader section can be selected by the Boot Loader

Lock bits (Boot Lock bits 1), see Table 26-3 on page 284.

281

8018P–AVR–08/10

ATmega169P

26.4 Read-While-Write and No Read-While-Write Flash Sections

Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot Loader soft-

ware update is dependent on which address that is being programmed. In addition to the two

sections that are configurable by the BOOTSZ Fuses as described above, the Flash is also

divided into two fixed sections, the Read-While-Write (RWW) section and the No Read-While-

Write (NRWW) section. The limit between the RWW- and NRWW sections is given in Table 26-

7 on page 293 and Figure 26-2 on page 283. The main difference between the two sections is:

• When erasing or writing a page located inside the RWW section, the NRWW section can be

read during the operation.

• When erasing or writing a page located inside the NRWW section, the CPU is halted during the

entire operation.

Note that the user software can never read any code that is located inside the RWW section dur-

ing a Boot Loader software operation. The syntax “Read-While-Write section” refers to which

section that is being programmed (erased or written), not which section that actually is being

read during a Boot Loader software update.

26.4.1 RWW – Read-While-Write Section

If a Boot Loader software update is programming a page inside the RWW section, it is possible

to read code from the Flash, but only code that is located in the NRWW section. During an on-

going programming, the software must ensure that the RWW section never is being read. If the

user software is trying to read code that is located inside the RWW section (that is, by a

call/jmp/lpm or an interrupt) during programming, the software might end up in an unknown

state. To avoid this, the interrupts should either be disabled or moved to the Boot Loader sec-

tion. The Boot Loader section is always located in the NRWW section. The RWW Section Busy

bit (RWWSB) in the Store Program Memory Control and Status Register (SPMCSR) will be read

as logical one as long as the RWW section is blocked for reading. After a programming is com-

pleted, the RWWSB must be cleared by software before reading code located in the RWW

section. See ”SPMCSR – Store Program Memory Control and Status Register” on page 294. for

details on how to clear RWWSB.

26.4.2 NRWW – No Read-While-Write Section

The code located in the NRWW section can be read when the Boot Loader software is updating

a page in the RWW section. When the Boot Loader code updates the NRWW section, the CPU

is halted during the entire Page Erase or Page Write operation.

Table 26-1. Read-While-Write Features

Which Section does the Z-pointer

Address During the Programming?

Which Section Can be

Read During Programming?

Is the

CPU Halted?

Read-While-Write

Supported?

RWW Section NRWW Section No Yes

NRWW Section None Yes No

282

8018P–AVR–08/10

ATmega169P

Figure 26-1. Read-While-Write vs. No Read-While-Write

Read-While-Write

(RWW) Section

No Read-While-Write

(NRWW) Section

Z-pointer

Addresses RWW

Section

Z-pointer

Addresses NRWW

Section

CPU is Halted

During the Operation
Code Located in

NRWW Section

Can be Read During

the Operation

283

8018P–AVR–08/10

ATmega169P

Figure 26-2. Memory Sections

Note: 1. The parameters in the figure above are given in Table 26-6 on page 292.

0x0000

Flashend

Program Memory

BOOTSZ = '11'

Application Flash Section

Boot Loader Flash Section
Flashend

Program Memory

BOOTSZ = '10'

0x0000

Program Memory

BOOTSZ = '01'

Program Memory

BOOTSZ = '00'

Application Flash Section

Boot Loader Flash Section

0x0000

Flashend

Application Flash Section

Flashend

End RWW

Start NRWW

Application Flash Section

Boot Loader Flash Section

Boot Loader Flash Section

End RWW

Start NRWW

End RWW

Start NRWW

0x0000

End RWW, End Application

Start NRWW, Start Boot Loader

Application Flash SectionApplication Flash Section

Application Flash Section

R
e
a
d
-W

h
ile

-W
ri

te
 S

e
c
ti
o
n

N
o
 R

e
a
d
-W

h
ile

-W
ri

te
 S

e
c
ti
o
n

R
e
a
d
-W

h
ile

-W
ri

te
 S

e
c
ti
o
n

N
o
 R

e
a
d
-W

h
ile

-W
ri

te
 S

e
c
ti
o
n

R
e
a
d
-W

h
ile

-W
ri

te
 S

e
c
ti
o
n

N
o
 R

e
a
d
-W

h
ile

-W
ri

te
 S

e
c
ti
o
n

R
e
a
d
-W

h
ile

-W
ri

te
 S

e
c
ti
o
n

N
o
 R

e
a
d
-W

h
ile

-W
ri

te
 S

e
c
ti
o
n

End Application

Start Boot Loader

End Application

Start Boot Loader

End Application

Start Boot Loader

284

8018P–AVR–08/10

ATmega169P

26.5 Boot Loader Lock Bits

If no Boot Loader capability is needed, the entire Flash is available for application code. The

Boot Loader has two separate sets of Boot Lock bits which can be set independently. This gives

the user a unique flexibility to select different levels of protection.

The user can select:

• To protect the entire Flash from a software update by the MCU.

• To protect only the Boot Loader Flash section from a software update by the MCU.

• To protect only the Application Flash section from a software update by the MCU.

• Allow software update in the entire Flash.

See Table 26-2 and Table 26-3 for further details. The Boot Lock bits and general Lock bits can

be set in software and in Serial or Parallel Programming mode, but they can be cleared by a

Chip Erase command only. The general Write Lock (Lock Bit mode 2) does not control the pro-

gramming of the Flash memory by SPM instruction. Similarly, the general Read/Write Lock

(Lock Bit mode 1) does not control reading nor writing by LPM/SPM, if it is attempted.

Note: 1. “1” means unprogrammed, “0” means programmed

Note: 1. “1” means unprogrammed, “0” means programmed

Table 26-2. Boot Lock Bit0 Protection Modes (Application Section)(1)

BLB0 Mode BLB02 BLB01 Protection

1 1 1
No restrictions for SPM or LPM accessing the Application
section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and LPM
executing from the Boot Loader section is not allowed to read
from the Application section. If Interrupt Vectors are placed in
the Boot Loader section, interrupts are disabled while executing
from the Application section.

4 0 1

LPM executing from the Boot Loader section is not allowed to
read from the Application section. If Interrupt Vectors are placed
in the Boot Loader section, interrupts are disabled while
executing from the Application section.

Table 26-3. Boot Lock Bit1 Protection Modes (Boot Loader Section)(1)

BLB1 Mode BLB12 BLB11 Protection

1 1 1
No restrictions for SPM or LPM accessing the Boot Loader
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0

SPM is not allowed to write to the Boot Loader section, and LPM
executing from the Application section is not allowed to read
from the Boot Loader section. If Interrupt Vectors are placed in
the Application section, interrupts are disabled while executing
from the Boot Loader section.

4 0 1

LPM executing from the Application section is not allowed to
read from the Boot Loader section. If Interrupt Vectors are
placed in the Application section, interrupts are disabled while
executing from the Boot Loader section.

285

8018P–AVR–08/10

ATmega169P

26.6 Entering the Boot Loader Program

Entering the Boot Loader takes place by a jump or call from the application program. This may

be initiated by a trigger such as a command received via USART, or SPI interface. Alternatively,

the Boot Reset Fuse can be programmed so that the Reset Vector is pointing to the Boot Flash

start address after a reset. In this case, the Boot Loader is started after a reset. After the applica-

tion code is loaded, the program can start executing the application code. Note that the fuses

cannot be changed by the MCU itself. This means that once the Boot Reset Fuse is pro-

grammed, the Reset Vector will always point to the Boot Loader Reset and the fuse can only be

changed through the serial or parallel programming interface.

Note: 1. “1” means unprogrammed, “0” means programmed

Table 26-4. Boot Reset Fuse(1)

BOOTRST Reset Address

1 Reset Vector = Application Reset (address 0x0000)

0 Reset Vector = Boot Loader Reset (see Table 26-6 on page 292)

286

8018P–AVR–08/10

ATmega169P

26.7 Addressing the Flash During Self-Programming

The Z-pointer is used to address the SPM commands.

Since the Flash is organized in pages (see Table 27-7 on page 299), the Program Counter can

be treated as having two different sections. One section, consisting of the least significant bits, is

addressing the words within a page, while the most significant bits are addressing the pages.

This is shown in Figure 26-3. Note that the Page Erase and Page Write operations are

addressed independently. Therefore it is of major importance that the Boot Loader software

addresses the same page in both the Page Erase and Page Write operation. Once a program-

ming operation is initiated, the address is latched and the Z-pointer can be used for other

operations.

The only SPM operation that does not use the Z-pointer is Setting the Boot Loader Lock bits.

The content of the Z-pointer is ignored and will have no effect on the operation. The LPM

instruction does also use the Z-pointer to store the address. Since this instruction addresses the

Flash byte-by-byte, also the LSB (bit Z0) of the Z-pointer is used.

Figure 26-3. Addressing the Flash During SPM(1)

Note: 1. The different variables used in Figure 26-3 are listed in Table 26-8 on page 293.

2. PCPAGE and PCWORD are listed in Table 27-7 on page 299.

Bit 15 14 13 12 11 10 9 8

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8

ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0

PROGRAM MEMORY

0115

Z - REGISTER

BIT

0

ZPAGEMSB

WORD ADDRESS

WITHIN A PAGE

PAGE ADDRESS

WITHIN THE FLASH

ZPCMSB

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM

COUNTER

287

8018P–AVR–08/10

ATmega169P

26.8 Self-Programming the Flash

The program memory is updated in a page by page fashion. Before programming a page with

the data stored in the temporary page buffer, the page must be erased. The temporary page buf-

fer is filled one word at a time using SPM and the buffer can be filled either before the Page

Erase command or between a Page Erase and a Page Write operation:

Alternative 1, fill the buffer before a Page Erase

• Fill temporary page buffer

• Perform a Page Erase

• Perform a Page Write

Alternative 2, fill the buffer after Page Erase

• Perform a Page Erase

• Fill temporary page buffer

• Perform a Page Write

If only a part of the page needs to be changed, the rest of the page must be stored (for example

in the temporary page buffer) before the erase, and then be rewritten. When using alternative 1,

the Boot Loader provides an effective Read-Modify-Write feature which allows the user software

to first read the page, do the necessary changes, and then write back the modified data. If alter-

native 2 is used, it is not possible to read the old data while loading since the page is already

erased. The temporary page buffer can be accessed in a random sequence. It is essential that

the page address used in both the Page Erase and Page Write operation is addressing the same

page. See ”Boot Loader: Simple Assembly Code Example” on page 291 for an assembly code

example.

26.8.1 Performing Page Erase by SPM

To execute Page Erase, set up the address in the Z-pointer, write “X0000011” to SPMCSR and

execute SPM within four clock cycles after writing SPMCSR.(1) The data in R1 and R0 is ignored.

The page address must be written to PCPAGE in the Z-register. Other bits in the Z-pointer will

be ignored during this operation.

• Page Erase to the RWW section: The NRWW section can be read during the Page Erase.

• Page Erase to the NRWW section: The CPU is halted during the operation.

Note: 1. If an interrupt occurs in the timed sequence the four cycle access cannot be guaranteed. In
order to ensure atomic operation you must disable interrupes before writing to SPMCSR.

26.8.2 Filling the Temporary Buffer (Page Loading)

To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write

“00000001” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The

content of PCWORD in the Z-register is used to address the data in the temporary buffer. The

temporary buffer will auto-erase after a Page Write operation or by writing the RWWSRE bit in

SPMCSR. It is also erased after a system reset. Note that it is not possible to write more than

one time to each address without erasing the temporary buffer.

If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded will be

lost.

288

8018P–AVR–08/10

ATmega169P

26.8.3 Performing a Page Write

To execute Page Write, set up the address in the Z-pointer, write “X0000101” to SPMCSR and

execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored.

The page address must be written to PCPAGE. Other bits in the Z-pointer must be written to

zero during this operation.

• Page Write to the RWW section: The NRWW section can be read during the Page Write.

• Page Write to the NRWW section: The CPU is halted during the operation.

26.8.4 Using the SPM Interrupt

If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the

SPMEN bit in SPMCSR is cleared. This means that the interrupt can be used instead of polling

the SPMCSR Register in software. When using the SPM interrupt, the Interrupt Vectors should

be moved to the BLS section to avoid that an interrupt is accessing the RWW section when it is

blocked for reading. How to move the interrupts is described in ”Interrupts” on page 56.

26.8.5 Consideration While Updating BLS

Special care must be taken if the user allows the Boot Loader section to be updated by leaving

Boot Lock bit11 unprogrammed. An accidental write to the Boot Loader itself can corrupt the

entire Boot Loader, and further software updates might be impossible. If it is not necessary to

change the Boot Loader software itself, it is recommended to program the Boot Lock bit11 to

protect the Boot Loader software from any internal software changes.

26.8.6 Prevent Reading the RWW Section During Self-Programming

During Self-Programming (either Page Erase or Page Write), the RWW section is always

blocked for reading. The user software itself must prevent that this section is addressed during

the self programming operation. The RWWSB in the SPMCSR will be set as long as the RWW

section is busy. During Self-Programming the Interrupt Vector table should be moved to the BLS

as described in ”Interrupts” on page 56, or the interrupts must be disabled. Before addressing

the RWW section after the programming is completed, the user software must clear the

RWWSB by writing the RWWSRE. See ”Boot Loader: Simple Assembly Code Example” on

page 291 for an example.

26.8.7 Setting the Boot Loader Lock Bits by SPM

To set the Boot Loader Lock bits and general Lock bits, write the desired data to R0, write

“X0001001” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR.

See Table 26-2 on page 284 and Table 26-3 on page 284 for how the different settings of the

Boot Loader bits affect the Flash access.

If bits 5..0 in R0 are cleared (zero), the corresponding Lock bit will be programmed if an SPM

instruction is executed within four cycles after BLBSET and SPMEN are set in SPMCSR. The Z-

pointer is don’t care during this operation, but for future compatibility it is recommended to load

the Z-pointer with 0x0001 (same as used for reading the Lock bits). For future compatibility it is

also recommended to set bit 7 and bit 6 in R0 to “1” when writing the Lock bits. When program-

ming the Lock bits the entire Flash can be read during the operation.

Bit 7 6 5 4 3 2 1 0

R0 1 1 BLB12 BLB11 BLB02 BLB01 LB2 LB1

289

8018P–AVR–08/10

ATmega169P

26.8.8 EEPROM Write Prevents Writing to SPMCSR

Note that an EEPROM write operation will block all software programming to Flash. Reading the

Fuses and Lock bits from software will also be prevented during the EEPROM write operation. It

is recommended that the user checks the status bit (EEWE) in the EECR Register and verifies

that the bit is cleared before writing to the SPMCSR Register.

26.8.9 Reading the Fuse and Lock Bits from Software

It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the

Z-pointer with 0x0001 and set the BLBSET and SPMEN bits in SPMCSR. When an LPM instruc-

tion is executed within three CPU cycles after the BLBSET and SPMEN bits are set in SPMCSR,

the value of the Lock bits will be loaded in the destination register. The BLBSET and SPMEN

bits will auto-clear upon completion of reading the Lock bits or if no LPM instruction is executed

within three CPU cycles or no SPM instruction is executed within four CPU cycles. When BLB-

SET and SPMEN are cleared, LPM will work as described in the Instruction set Manual.

The algorithm for reading the Fuse Low byte is similar to the one described above for reading

the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and set the BLBSET

and SPMEN bits in SPMCSR. When an LPM instruction is executed within three cycles after the

BLBSET and SPMEN bits are set in the SPMCSR, the value of the Fuse Low byte (FLB) will be

loaded in the destination register as shown below. Refer to Table 27-5 on page 298 for a

detailed description and mapping of the Fuse Low byte.

Similarly, when reading the Fuse High byte, load 0x0003 in the Z-pointer. When an LPM instruc-

tion is executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR,

the value of the Fuse High byte (FHB) will be loaded in the destination register as shown below.

Refer to Table 27-4 on page 298 for detailed description and mapping of the Fuse High byte.

When reading the Extended Fuse byte, load 0x0002 in the Z-pointer. When an LPM instruction

is executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR, the

value of the Extended Fuse byte (EFB) will be loaded in the destination register as shown below.

Refer to Table 27-3 on page 297 for detailed description and mapping of the Extended Fuse

byte.

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are

unprogrammed, will be read as one.

Bit 7 6 5 4 3 2 1 0

Rd – – BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0

Bit 7 6 5 4 3 2 1 0

Rd – – – – EFB3 EFB2 EFB1 EFB0

290

8018P–AVR–08/10

ATmega169P

26.8.10 Preventing Flash Corruption

During periods of low VCC, the Flash program can be corrupted because the supply voltage is

too low for the CPU and the Flash to operate properly. These issues are the same as for board

level systems using the Flash, and the same design solutions should be applied.

A Flash program corruption can be caused by two situations when the voltage is too low. First, a

regular write sequence to the Flash requires a minimum voltage to operate correctly. Secondly,

the CPU itself can execute instructions incorrectly, if the supply voltage for executing instructions

is too low.

Flash corruption can easily be avoided by following these design recommendations (one is

sufficient):

1. If there is no need for a Boot Loader update in the system, program the Boot Loader Lock
bits to prevent any Boot Loader software updates.

2. Keep the AVR RESET active (low) during periods of insufficient power supply voltage.
This can be done by enabling the internal Brown-out Detector (BOD) if the operating volt-
age matches the detection level. If not, an external low VCC reset protection circuit can be
used. If a reset occurs while a write operation is in progress, the write operation will be
completed provided that the power supply voltage is sufficient.

3. Keep the AVR core in Power-down sleep mode during periods of low VCC. This will pre-
vent the CPU from attempting to decode and execute instructions, effectively protecting
the SPMCSR Register and thus the Flash from unintentional writes.

26.8.11 Programming Time for Flash when Using SPM

The calibrated RC Oscillator is used to time Flash accesses. Table 26-5 shows the typical pro-

gramming time for Flash accesses from the CPU.

Table 26-5. SPM Programming Time

Symbol Min Programming Time Max Programming Time

Flash write (Page Erase, Page Write, and
write Lock bits by SPM)

3.7 ms 4.5 ms

291

8018P–AVR–08/10

ATmega169P

26.8.12 Boot Loader: Simple Assembly Code Example

;-the routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y pointer
; the first data location in Flash is pointed to by the Z-pointer
;-error handling is not included
;-the routine must be placed inside the Boot space
; (at least the Do_spm sub routine). Only code inside NRWW section can
; be read during Self-Programming (Page Erase and Page Write).
;-registers used: r0, r1, temp1 (r16), temp2 (r17), looplo (r24),
; loophi (r25), spmcrval (r20)
; storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size
;-It is assumed that either the interrupt table is moved to the Boot
; loader section or that the interrupts are disabled.

.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is page size in BYTES, not words

.org SMALLBOOTSTART
Write_page:
; Page Erase
ldi spmcrval, (1<<PGERS) | (1<<SPMEN)
call Do_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm

; transfer data from RAM to Flash page buffer
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256

Wrloop:
ld r0, Y+
ld r1, Y+
ldi spmcrval, (1<<SPMEN)
call Do_spm
adiw ZH:ZL, 2
sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256
brne Wrloop

; execute Page Write
subi ZL, low(PAGESIZEB) ;restore pointer
sbci ZH, high(PAGESIZEB) ;not required for PAGESIZEB<=256
ldi spmcrval, (1<<PGWRT) | (1<<SPMEN)
call Do_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm

; read back and check, optional
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256
subi YL, low(PAGESIZEB) ;restore pointer
sbci YH, high(PAGESIZEB)

Rdloop:
lpm r0, Z+
ld r1, Y+
cpse r0, r1
jmp Error

292

8018P–AVR–08/10

ATmega169P

sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256
brne Rdloop

; return to RWW section
; verify that RWW section is safe to read

Return:
in temp1, SPMCSR
sbrs temp1, RWWSB ; If RWWSB is set, the RWW section is not ready yet
ret
; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm
rjmp Return

Do_spm:
; check for previous SPM complete

Wait_spm:
in temp1, SPMCSR
sbrc temp1, SPMEN
rjmp Wait_spm
; input: spmcrval determines SPM action
; disable interrupts if enabled, store status
in temp2, SREG
cli
; check that no EEPROM write access is present

Wait_ee:
sbic EECR, EEWE
rjmp Wait_ee
; SPM timed sequence
out SPMCSR, spmcrval
spm
; restore SREG (to enable interrupts if originally enabled)
out SREG, temp2
ret

26.8.13 ATmega169P Boot Loader Parameters

In Table 26-6 through Table 26-8 on page 293, the parameters used in the description of the

Self-Programming are given.

Note: 1. The different BOOTSZ Fuse configurations are shown in Figure 26-2 on page 283.

Table 26-6. Boot Size Configuration(1)

B
O

O
T

S
Z

1

B
O

O
T

S
Z

0

B
o

o
t

S
iz

e

P
a
g

e
s

Application Flash

Section

Boot Loader

Flash

Section

End

Application

Section

Boot Reset

Address

(Start Boot

Loader

Section)

1 1
128

words
2 0x0000 - 0x1F7F 0x1F80 - 0x1FFF 0x1F7F 0x1F80

1 0
256

words
4 0x0000 - 0x1EFF 0x1F00 - 0x1FFF 0x1EFF 0x1F00

0 1
512

words
8 0x0000 - 0x1DFF 0x1E00 - 0x1FFF 0x1DFF 0x1E00

0 0
1024

words
16 0x0000 - 0x1BFF 0x1C00 - 0x1FFF 0x1BFF 0x1C00

293

8018P–AVR–08/10

ATmega169P

Note: 1. For details about these two section, see ”NRWW – No Read-While-Write Section” on page
281 and ”RWW – Read-While-Write Section” on page 281.

Note: 1. Z15:Z14: always ignored
Z0: should be zero for all SPM commands, byte select for the LPM instruction.
See ”Addressing the Flash During Self-Programming” on page 286 for details about the use of
Z-pointer during Self-Programming.

Table 26-7. Read-While-Write Limit(1)

Section Pages Address

Read-While-Write section (RWW) 112 0x0000 - 0x1BFF

No Read-While-Write section (NRWW) 16 0x1C00 - 0x1FFF

Table 26-8. Explanation of different variables used in Figure 26-3 on page 286 and the map-
ping to the Z-pointer(1)

Variable

Corresponding

Z-value Description

PCMSB 12
Most significant bit in the Program Counter. (The
Program Counter is 13 bits PC[12:0])

PAGEMSB 5
Most significant bit which is used to address the words
within one page (64 words in a page requires six bits PC
[5:0]).

ZPCMSB Z13
Bit in Z-register that is mapped to PCMSB. Because Z0
is not used, the ZPCMSB equals PCMSB + 1.

ZPAGEMSB Z6
Bit in Z-register that is mapped to PAGEMSB. Because
Z0 is not used, the ZPAGEMSB equals PAGEMSB + 1.

PCPAGE PC[12:6] Z13:Z7
Program Counter page address: Page select, for Page
Erase and Page Write

PCWORD PC[5:0] Z6:Z1
Program Counter word address: Word select, for filling
temporary buffer (must be zero during Page Write
operation)

294

8018P–AVR–08/10

ATmega169P

26.9 Register Description

26.9.1 SPMCSR – Store Program Memory Control and Status Register

The Store Program Memory Control and Status Register contains the control bits needed to con-

trol the Boot Loader operations.

• Bit 7 – SPMIE: SPM Interrupt Enable

When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the SPM

ready interrupt will be enabled. The SPM ready Interrupt will be executed as long as the SPMEN

bit in the SPMCSR Register is cleared.

• Bit 6 – RWWSB: Read-While-Write Section Busy

When a Self-Programming (Page Erase or Page Write) operation to the RWW section is initi-

ated, the RWWSB will be set (one) by hardware. When the RWWSB bit is set, the RWW section

cannot be accessed. The RWWSB bit will be cleared if the RWWSRE bit is written to one after a

Self-Programming operation is completed. Alternatively the RWWSB bit will automatically be

cleared if a page load operation is initiated.

• Bit 5 – Res: Reserved Bit

This bit is a reserved bit in the ATmega169P and always read as zero.

• Bit 4 – RWWSRE: Read-While-Write Section Read Enable

When programming (Page Erase or Page Write) to the RWW section, the RWW section is

blocked for reading (the RWWSB will be set by hardware). To re-enable the RWW section, the

user software must wait until the programming is completed (SPMEN will be cleared). Then, if

the RWWSRE bit is written to one at the same time as SPMEN, the next SPM instruction within

four clock cycles re-enables the RWW section. The RWW section cannot be re-enabled while

the Flash is busy with a Page Erase or a Page Write (SPMEN is set). If the RWWSRE bit is writ-

ten while the Flash is being loaded, the Flash load operation will abort and the data loaded will

be lost.

• Bit 3 – BLBSET: Boot Lock Bit Set

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock

cycles sets Boot Lock bits and general Lock bits, according to the data in R0. The data in R1 and

the address in the Z-pointer are ignored. The BLBSET bit will automatically be cleared upon

completion of the Lock bit set, or if no SPM instruction is executed within four clock cycles.

An LPM instruction within three cycles after BLBSET and SPMEN are set in the SPMCSR Reg-

ister, will read either the Lock bits or the Fuse bits (depending on Z0 in the Z-pointer) into the

destination register. See ”Reading the Fuse and Lock Bits from Software” on page 289 for

details.

Bit 7 6 5 4 3 2 1 0

0x37 (0x57) SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SPMEN SPMCSR

Read/Write R/W R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

295

8018P–AVR–08/10

ATmega169P

• Bit 2 – PGWRT: Page Write

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock

cycles executes Page Write, with the data stored in the temporary buffer. The page address is

taken from the high part of the Z-pointer. The data in R1 and R0 are ignored. The PGWRT bit

will auto-clear upon completion of a Page Write, or if no SPM instruction is executed within four

clock cycles. The CPU is halted during the entire Page Write operation if the NRWW section is

addressed.

• Bit 1 – PGERS: Page Erase

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock

cycles executes Page Erase. The page address is taken from the high part of the Z-pointer. The

data in R1 and R0 are ignored. The PGERS bit will auto-clear upon completion of a Page Erase,

or if no SPM instruction is executed within four clock cycles. The CPU is halted during the entire

Page Write operation if the NRWW section is addressed.

• Bit 0 – SPMEN: Store Program Memory Enable

This bit enables the SPM instruction for the next four clock cycles. If written to one together with

either RWWSRE, BLBSET, PGWRT’ or PGERS, the following SPM instruction will have a spe-

cial meaning, see description above. If only SPMEN is written, the following SPM instruction will

store the value in R1:R0 in the temporary page buffer addressed by the Z-pointer. The LSB of

the Z-pointer is ignored. The SPMEN bit will auto-clear upon completion of an SPM instruction,

or if no SPM instruction is executed within four clock cycles. During Page Erase and Page Write,

the SPMEN bit remains high until the operation is completed.

Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the lower

five bits will have no effect.

296

8018P–AVR–08/10

ATmega169P

27. Memory Programming

27.1 Program And Data Memory Lock Bits

The ATmega169P provides six Lock bits which can be left unprogrammed (“1”) or can be pro-

grammed (“0”) to obtain the additional features listed in Table 27-2. The Lock bits can only be

erased to “1” with the Chip Erase command.

Note: 1. “1” means unprogrammed, “0” means programmed.

Table 27-1. Lock Bit Byte(1)

Lock Bit Byte Bit No Description Default Value

7 – 1 (unprogrammed)

6 – 1 (unprogrammed)

BLB12 5 Boot Lock bit 1 (unprogrammed)

BLB11 4 Boot Lock bit 1 (unprogrammed)

BLB02 3 Boot Lock bit 1 (unprogrammed)

BLB01 2 Boot Lock bit 1 (unprogrammed)

LB2 1 Lock bit 1 (unprogrammed)

LB1 0 Lock bit 1 (unprogrammed)

Table 27-2. Lock Bit Protection Modes(1)(2)

Memory Lock Bits Protection Type

LB Mode LB2 LB1

1 1 1 No memory lock features enabled.

2 1 0
Further programming of the Flash and EEPROM is disabled in
Parallel and Serial Programming mode. The Fuse bits are
locked in both Serial and Parallel Programming mode.(1)

3 0 0

Further programming and verification of the Flash and EEPROM
is disabled in Parallel and Serial Programming mode. The Boot
Lock bits and Fuse bits are locked in both Serial and Parallel
Programming mode.(1)

BLB0 Mode BLB02 BLB01

1 1 1
No restrictions for SPM or LPM accessing the Application
section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and LPM
executing from the Boot Loader section is not allowed to read
from the Application section. If Interrupt Vectors are placed in
the Boot Loader section, interrupts are disabled while executing
from the Application section.

4 0 1

LPM executing from the Boot Loader section is not allowed to
read from the Application section. If Interrupt Vectors are placed
in the Boot Loader section, interrupts are disabled while
executing from the Application section.

297

8018P–AVR–08/10

ATmega169P

Notes: 1. Program the Fuse bits and Boot Lock bits before programming the LB1 and LB2.
2. “1” means unprogrammed, “0” means programmed.

27.2 Fuse Bits

The ATmega169P has three Fuse bytes. Table 27-3 to Table 27-5 on page 298 describe briefly

the functionality of all the fuses and how they are mapped into the Fuse bytes. Note that the

fuses are read as logical zero, “0”, if they are programmed.

Notes: 1. See Table 28-5 on page 334 for BODLEVEL Fuse decoding.
2. Port G, PG5 is input only. Pull-up is always on. See ”Alternate Functions of Port G” on page

85.

BLB1 Mode BLB12 BLB11

1 1 1
No restrictions for SPM or LPM accessing the Boot Loader
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0

SPM is not allowed to write to the Boot Loader section, and LPM
executing from the Application section is not allowed to read
from the Boot Loader section. If Interrupt Vectors are placed in
the Application section, interrupts are disabled while executing
from the Boot Loader section.

4 0 1

LPM executing from the Application section is not allowed to
read from the Boot Loader section. If Interrupt Vectors are
placed in the Application section, interrupts are disabled while
executing from the Boot Loader section.

Table 27-2. Lock Bit Protection Modes(1)(2) (Continued)

Memory Lock Bits Protection Type

Table 27-3. Extended Fuse Byte

Fuse Low Byte Bit No Description Default Value

– 7 – 1

– 6 – 1

– 5 – 1

– 4 – 1

BODLEVEL2(1) 3 Brown-out Detector trigger level 1 (unprogrammed)

BODLEVEL1(1) 2 Brown-out Detector trigger level 1 (unprogrammed)

BODLEVEL0(1) 1 Brown-out Detector trigger level 1 (unprogrammed)

RSTDISBL(2) 0 External Reset Disable 1 (unprogrammed)

298

8018P–AVR–08/10

ATmega169P

Note: 1. The SPIEN Fuse is not accessible in serial programming mode.

2. The default value of BOOTSZ1..0 results in maximum Boot Size. See Table 26-6 on page 292
for details.

3. See ”WDTCR – Watchdog Timer Control Register” on page 54 for details.
4. Never ship a product with the OCDEN Fuse programmed regardless of the setting of Lock bits

and JTAGEN Fuse. A programmed OCDEN Fuse enables some parts of the clock system to
be running in all sleep modes. This may increase the power consumption.

5. If the JTAG interface is left unconnected, the JTAGEN fuse should if possible be disabled. This
to avoid static current at the TDO pin in the JTAG interface.

.

Note: 1. The default value of SUT1..0 results in maximum start-up time for the default clock source.
See Table 28-4 on page 333 for details.

2. The default setting of CKSEL3..0 results in internal RC Oscillator @ 8 MHz. See Table 8-9 on
page 35 for details.

3. The CKOUT Fuse allow the system clock to be output on PORTE7. See ”Clock Output Buffer”
on page 37 for details.

4. See ”System Clock Prescaler” on page 37 for details.

The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are locked if

Lock bit1 (LB1) is programmed. Program the Fuse bits before programming the Lock bits.

Table 27-4. Fuse High Byte

Fuse High Byte Bit No Description Default Value

OCDEN(4) 7 Enable OCD 1 (unprogrammed, OCD disabled)

JTAGEN(5) 6 Enable JTAG 0 (programmed, JTAG enabled)

SPIEN(1) 5
Enable Serial Program and Data
Downloading

0 (programmed, SPI prog.
enabled)

WDTON(3) 4 Watchdog Timer always on 1 (unprogrammed)

EESAVE 3
EEPROM memory is preserved
through the Chip Erase

1 (unprogrammed, EEPROM not
preserved)

BOOTSZ1 2
Select Boot Size (see Table 26-6
on page 292 for details)

0 (programmed)(2)

BOOTSZ0 1
Select Boot Size (see Table 26-6
on page 292 for details)

0 (programmed)(2)

BOOTRST 0 Select Reset Vector 1 (unprogrammed)

Table 27-5. Fuse Low Byte

Fuse Low Byte Bit No Description Default Value

CKDIV8(4) 7 Divide clock by 8 0 (programmed)

CKOUT(3) 6 Clock output 1 (unprogrammed)

SUT1 5 Select start-up time 1 (unprogrammed)(1)

SUT0 4 Select start-up time 0 (programmed)(1)

CKSEL3 3 Select Clock source 0 (programmed)(2)

CKSEL2 2 Select Clock source 0 (programmed)(2)

CKSEL1 1 Select Clock source 1 (unprogrammed)(2)

CKSEL0 0 Select Clock source 0 (programmed)(2)

299

8018P–AVR–08/10

ATmega169P

27.2.1 Latching of Fuses

The fuse values are latched when the device enters programming mode and changes of the

fuse values will have no effect until the part leaves Programming mode. This does not apply to

the EESAVE Fuse which will take effect once it is programmed. The fuses are also latched on

Power-up in Normal mode.

27.3 Signature Bytes

All Atmel microcontrollers have a three-byte signature code which identifies the device. This

code can be read in both serial and parallel mode, also when the device is locked. The three

bytes reside in a separate address space. The signature bytes are given in Table 27-6.

27.4 Calibration Byte

The ATmega169P has a byte calibration value for the internal RC Oscillator. This byte resides in

the high byte of address 0x000 in the signature address space. During reset, this byte is auto-

matically written into the OSCCAL Register to ensure correct frequency of the calibrated RC

Oscillator.

27.5 Page Size

27.6 Parallel Programming Parameters, Pin Mapping, and Commands

This section describes how to parallel program and verify Flash Program memory, EEPROM

Data memory, Memory Lock bits, and Fuse bits in the ATmega169P. Pulses are assumed to be

at least 250 ns unless otherwise noted.

27.6.1 Signal Names

In this section, some pins of the ATmega169P are referenced by signal names describing their

functionality during parallel programming, see Figure 27-1 on page 300 and Table 27-9 on page

300. Pins not described in Table 27-9 on page 300 are referenced by pin names.

The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a positive pulse.

The bit coding is shown in Table 27-11 on page 301.

Table 27-6. Device and JTAG ID

Part

Signature Bytes Address JTAG

0x000 0x001 0x002 Part Number Manufacture ID

ATmega169P 0x1E 0x94 0x05 9405 0x1F

Table 27-7. No. of Words in a Page and No. of Pages in the Flash

Flash Size Page Size PCWORD No. of Pages PCPAGE PCMSB

8K words (16 Kbytes) 64 words PC[5:0] 128 PC[12:6] 12

Table 27-8. No. of Words in a Page and No. of Pages in the EEPROM

EEPROM Size Page Size PCWORD No. of Pages PCPAGE EEAMSB

512 bytes 4 bytes EEA[1:0] 128 EEA[8:2] 8

300

8018P–AVR–08/10

ATmega169P

When pulsing WR or OE, the command loaded determines the action executed. The different

Commands are shown in Table 27-12 on page 301.

Figure 27-1. Parallel Programming

Table 27-9. Pin Name Mapping

Signal Name

in Programming Mode Pin Name I/O Function

RDY/BSY PD1 O
0: Device is busy programming, 1: Device is ready for
new command.

OE PD2 I Output Enable (Active low).

WR PD3 I Write Pulse (Active low).

BS1 PD4 I
Byte Select 1 (“0” selects low byte, “1” selects high
byte).

XA0 PD5 I XTAL Action Bit 0

XA1 PD6 I XTAL Action Bit 1

PAGEL PD7 I Program Memory and EEPROM data Page Load.

BS2 PA0 I
Byte Select 2 (“0” selects low byte, “1” selects 2’nd high
byte).

DATA PB7-0 I/O Bi-directional Data bus (Output when OE is low).

VCC

+5V

GND

XTAL1

PD1

PD2

PD3

PD4

PD5

PD6

 PB7 - PB0 DATA

RESET

PD7

+12V

BS1

XA0

XA1

OE

RDY/BSY

PAGEL

PA0

WR

BS2

AVCC

+5V

Table 27-10. Pin Values Used to Enter Programming Mode

Pin Symbol Value

PAGEL Prog_enable[3] 0

XA1 Prog_enable[2] 0

XA0 Prog_enable[1] 0

BS1 Prog_enable[0] 0

301

8018P–AVR–08/10

ATmega169P

Table 27-11. XA1 and XA0 Coding

XA1 XA0 Action when XTAL1 is Pulsed

0 0
Load Flash or EEPROM Address (High or low address byte determined by
BS1).

0 1 Load Data (High or Low data byte for Flash determined by BS1).

1 0 Load Command

1 1 No Action, Idle

Table 27-12. Command Byte Bit Coding

Command Byte Command Executed

1000 0000 Chip Erase

0100 0000 Write Fuse bits

0010 0000 Write Lock bits

0001 0000 Write Flash

0001 0001 Write EEPROM

0000 1000 Read Signature Bytes and Calibration byte

0000 0100 Read Fuse and Lock bits

0000 0010 Read Flash

0000 0011 Read EEPROM

302

8018P–AVR–08/10

ATmega169P

27.7 Parallel Programming

27.7.1 Enter Programming Mode

The following algorithm puts the device in parallel programming mode:

1. Apply 4.5V - 5.5V between VCC and GND.

2. Set RESET to “0” and toggle XTAL1 at least six times.

3. Set the Prog_enable pins listed in Table 27-10 on page 300 to “0000” and wait at least
100 ns.

4. Apply 11.5V - 12.5V to RESET. Any activity on Prog_enable pins within 100 ns after
+12V has been applied to RESET, will cause the device to fail entering programming
mode.

5. Wait at least 50 µs before sending a new command.

27.7.2 Considerations for Efficient Programming

The loaded command and address are retained in the device during programming. For efficient

programming, the following should be considered.

• The command needs only be loaded once when writing or reading multiple memory locations.

• Skip writing the data value 0xFF, that is the contents of the entire EEPROM (unless the

EESAVE Fuse is programmed) and Flash after a Chip Erase.

• Address high byte needs only be loaded before programming or reading a new 256 word

window in Flash or 256 byte EEPROM. This consideration also applies to Signature bytes

reading.

27.7.3 Chip Erase

The Chip Erase will erase the Flash and EEPROM(1) memories plus Lock bits. The Lock bits are

not reset until the program memory has been completely erased. The Fuse bits are not

changed. A Chip Erase must be performed before the Flash and/or EEPROM are

reprogrammed.

Note: 1. The EEPRPOM memory is preserved during Chip Erase if the EESAVE Fuse is programmed.

Load Command “Chip Erase”:

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “1000 0000”. This is the command for Chip Erase.

4. Give XTAL1 a positive pulse. This loads the command.

5. Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.

6. Wait until RDY/BSY goes high before loading a new command.

27.7.4 Programming the Flash

The Flash is organized in pages, see Table 27-7 on page 299. When programming the Flash,

the program data is latched into a page buffer. This allows one page of program data to be pro-

grammed simultaneously. The following procedure describes how to program the entire Flash

memory:

303

8018P–AVR–08/10

ATmega169P

A. Load Command “Write Flash”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “0001 0000”. This is the command for Write Flash.

4. Give XTAL1 a positive pulse. This loads the command.

B. Load Address Low byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “0”. This selects low address.

3. Set DATA = Address low byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the address low byte.

C. Load Data Low Byte

1. Set XA1, XA0 to “01”. This enables data loading.

2. Set DATA = Data low byte (0x00 - 0xFF).

3. Give XTAL1 a positive pulse. This loads the data byte.

D. Load Data High Byte

1. Set BS1 to “1”. This selects high data byte.

2. Set XA1, XA0 to “01”. This enables data loading.

3. Set DATA = Data high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the data byte.

E. Latch Data

1. Set BS1 to “1”. This selects high data byte.

2. Give PAGEL a positive pulse. This latches the data bytes. (See Figure 27-3 on page 304
for signal waveforms)

F. Repeat B through E until the entire buffer is filled or until all data within the page is loaded

While the lower bits in the address are mapped to words within the page, the higher bits address

the pages within the FLASH. This is illustrated in Figure 27-2 on page 304. Note that if less than

eight bits are required to address words in the page (pagesize < 256), the most significant bit(s)

in the address low byte are used to address the page when performing a Page Write.

G. Load Address High byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “1”. This selects high address.

3. Set DATA = Address high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the address high byte.

H. Program Page

1. Give WR a negative pulse. This starts programming of the entire page of data. RDY/BSY
goes low.

2. Wait until RDY/BSY goes high (See Figure 27-3 on page 304 for signal waveforms).

I. Repeat B through H until the entire Flash is programmed or until all data has been

programmed.

304

8018P–AVR–08/10

ATmega169P

J. End Page Programming

1. 1. Set XA1, XA0 to “10”. This enables command loading.

2. Set DATA to “0000 0000”. This is the command for No Operation.

3. Give XTAL1 a positive pulse. This loads the command, and the internal write signals are
reset.

Figure 27-2. Addressing the Flash Which is Organized in Pages(1)

Note: 1. PCPAGE and PCWORD are listed in Table 27-7 on page 299.

Figure 27-3. Programming the Flash Waveforms(1)

Note: 1. “XX” is don’t care. The letters refer to the programming description above.

PROGRAM MEMORY

WORD ADDRESS

WITHIN A PAGE

PAGE ADDRESS

WITHIN THE FLASH

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM

COUNTER

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x10 ADDR. LOW ADDR. HIGH
DATA

DATA LOW DATA HIGH ADDR. LOW DATA LOW DATA HIGH

XA1

XA0

BS1

XTAL1

XX XX XX

A B C D E B C D E G H

F

305

8018P–AVR–08/10

ATmega169P

27.7.5 Programming the EEPROM

The EEPROM is organized in pages, see Table 27-8 on page 299. When programming the

EEPROM, the program data is latched into a page buffer. This allows one page of data to be

programmed simultaneously. The programming algorithm for the EEPROM data memory is as

follows (refer to ”Programming the Flash” on page 302 for details on Command, Address and

Data loading):

1. A: Load Command “0001 0001”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. C: Load Data (0x00 - 0xFF).

5. E: Latch data (give PAGEL a positive pulse).

K: Repeat 3 through 5 until the entire buffer is filled.

L: Program EEPROM page

1. Set BS to “0”.

2. Give WR a negative pulse. This starts programming of the EEPROM page. RDY/BSY
goes low.

3. Wait until to RDY/BSY goes high before programming the next page (See Figure 27-4 for
signal waveforms).

Figure 27-4. Programming the EEPROM Waveforms

27.7.6 Reading the Flash

The algorithm for reading the Flash memory is as follows (refer to ”Programming the Flash” on

page 302 for details on Command and Address loading):

1. A: Load Command “0000 0010”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The Flash word low byte can now be read at DATA.

5. Set BS to “1”. The Flash word high byte can now be read at DATA.

6. Set OE to “1”.

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x11 ADDR. HIGH
DATA

ADDR. LOW DATA ADDR. LOW DATA XX

XA1

XA0

BS1

XTAL1

XX

A G B C E B C E L

K

306

8018P–AVR–08/10

ATmega169P

27.7.7 Reading the EEPROM

The algorithm for reading the EEPROM memory is as follows (refer to ”Programming the Flash”

on page 302 for details on Command and Address loading):

1. A: Load Command “0000 0011”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at DATA.

5. Set OE to “1”.

27.7.8 Programming the Fuse Low Bits

The algorithm for programming the Fuse Low bits is as follows (refer to ”Programming the Flash”

on page 302 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

27.7.9 Programming the Fuse High Bits

The algorithm for programming the Fuse High bits is as follows (refer to ”Programming the

Flash” on page 302 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Set BS1 to “1” and BS2 to “0”. This selects high fuse byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS1 to “0”. This selects low data byte.

27.7.10 Programming the Extended Fuse Bits

The algorithm for programming the Extended Fuse bits is as follows (refer to ”Programming the

Flash” on page 302 for details on Command and Data loading):

1. 1. A: Load Command “0100 0000”.

2. 2. C: Load Data Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. 3. Set BS1 to “0” and BS2 to “1”. This selects extended fuse byte.

4. 4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. 5. Set BS2 to “0”. This selects low data byte.

307

8018P–AVR–08/10

ATmega169P

Figure 27-5. Programming the FUSES Waveforms

27.7.11 Programming the Lock Bits

The algorithm for programming the Lock bits is as follows (refer to ”Programming the Flash” on

page 302 for details on Command and Data loading):

1. A: Load Command “0010 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs the Lock bit. If LB mode 3 is programmed
(LB1 and LB2 is programmed), it is not possible to program the Boot Lock bits by any
External Programming mode.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

The Lock bits can only be cleared by executing Chip Erase.

27.7.12 Reading the Fuse and Lock Bits

The algorithm for reading the Fuse and Lock bits is as follows (refer to ”Programming the Flash”

on page 302 for details on Command loading):

1. A: Load Command “0000 0100”.

2. Set OE to “0”, BS2 to “0” and BS1 to “0”. The status of the Fuse Low bits can now be
read at DATA (“0” means programmed).

3. Set OE to “0”, BS2 to “1” and BS1 to “1”. The status of the Fuse High bits can now be
read at DATA (“0” means programmed).

4. Set OE to “0”, BS2 to “1”, and BS1 to “0”. The status of the Extended Fuse bits can now
be read at DATA (“0” means programmed).

5. Set OE to “0”, BS2 to “0” and BS1 to “1”. The status of the Lock bits can now be read at
DATA (“0” means programmed).

6. Set OE to “1”.

RDY/BSY

WR

OE

RESET +12V

PAGEL

0x40
DATA

DATA XX

XA1

XA0

BS1

XTAL1

A C

0x40 DATA XX

A C

Write Fuse Low byte Write Fuse high byte

0x40 DATA XX

A C

Write Extended Fuse byte

BS2

308

8018P–AVR–08/10

ATmega169P

Figure 27-6. Mapping Between BS1, BS2 and the Fuse and Lock Bits During Read

27.7.13 Reading the Signature Bytes

The algorithm for reading the Signature bytes is as follows (refer to ”Programming the Flash” on

page 302 for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte (0x00 - 0x02).

3. Set OE to “0”, and BS to “0”. The selected Signature byte can now be read at DATA.

4. Set OE to “1”.

27.7.14 Reading the Calibration Byte

The algorithm for reading the Calibration byte is as follows (refer to ”Programming the Flash” on

page 302 for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte, 0x00.

3. Set OE to “0”, and BS1 to “1”. The Calibration byte can now be read at DATA.

4. Set OE to “1”.

27.7.15 Parallel Programming Characteristics

Figure 27-7. Parallel Programming Timing, Including some General Timing Requirements

Lock Bits 0

1

BS2

Fuse High Byte

0

1

BS1

DATA

Fuse Low Byte 0

1

BS2

Extended Fuse Byte

Data & Contol
(DATA, XA0/1, BS1, BS2)

XTAL1
tXHXL

tWLWH

tDVXH tXLDX

tPLWL

tWLRH

WR

RDY/BSY

PAGEL tPHPL

tPLBXtBVPH

tXLWL

tWLBX
tBVWL

WLRL

309

8018P–AVR–08/10

ATmega169P

Figure 27-8. Parallel Programming Timing, Loading Sequence with Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 27-7 on page 308 (that is, tDVXH, tXHXL, and tXLDX)
also apply to loading operation.

Figure 27-9. Parallel Programming Timing, Reading Sequence (within the Same Page) with
Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 27-7 on page 308 (that is, tDVXH, tXHXL, and tXLDX)
also apply to reading operation.

Table 27-13. Parallel Programming Characteristics, VCC = 5V ±10%

Symbol Parameter Min Typ Max Units

VPP Programming Enable Voltage 11.5 12.5 V

IPP Programming Enable Current 250 μA

XTAL1

PAGEL

tPLXHXLXHt tXLPH

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

LOAD DATA
(LOW BYTE)

LOAD DATA
(HIGH BYTE)

LOAD DATA LOAD ADDRESS
(LOW BYTE)

XTAL1

OE

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

READ DATA
(LOW BYTE)

READ DATA
(HIGH BYTE)

LOAD ADDRESS
(LOW BYTE)

tBVDV

tOLDV

tXLOL

tOHDZ

310

8018P–AVR–08/10

ATmega169P

Notes: 1. tWLRH is valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock bits
commands.

2. tWLRH_CE is valid for the Chip Erase command.

27.8 Serial Downloading

Both the Flash and EEPROM memory arrays can be programmed using the serial SPI bus while

RESET is pulled to GND. The serial interface consists of pins SCK, MOSI (input) and MISO (out-

put). After RESET is set low, the Programming Enable instruction needs to be executed first

before program/erase operations can be executed. NOTE, in Table 27-14 on page 311, the pin

mapping for SPI programming is listed. Not all parts use the SPI pins dedicated for the internal

SPI interface.

tDVXH Data and Control Valid before XTAL1 High 67

ns

tXLXH XTAL1 Low to XTAL1 High 200

tXHXL XTAL1 Pulse Width High 150

tXLDX Data and Control Hold after XTAL1 Low 67

tXLWL XTAL1 Low to WR Low 0

tXLPH XTAL1 Low to PAGEL high 0

tPLXH PAGEL low to XTAL1 high 150

tBVPH BS1 Valid before PAGEL High 67

tPHPL PAGEL Pulse Width High 150

tPLBX BS1 Hold after PAGEL Low 67

tWLBX BS2/1 Hold after WR Low 67

tPLWL PAGEL Low to WR Low 67

tBVWL BS1 Valid to WR Low 67

tWLWH WR Pulse Width Low 150

tWLRL WR Low to RDY/BSY Low 0 1 μs

tWLRH WR Low to RDY/BSY High(1) 3.7 4.5
ms

tWLRH_CE WR Low to RDY/BSY High for Chip Erase(2) 7.5 9

tXLOL XTAL1 Low to OE Low 0

ns
tBVDV BS1 Valid to DATA valid 0 250

tOLDV OE Low to DATA Valid 250

tOHDZ OE High to DATA Tri-stated 250

Table 27-13. Parallel Programming Characteristics, VCC = 5V ±10%

Symbol Parameter Min Typ Max Units

311

8018P–AVR–08/10

ATmega169P

27.8.1 Serial Programming Pin Mapping

Figure 27-10. Serial Programming and Verify(1)

Notes: 1. If the device is clocked by the internal Oscillator, it is no need to connect a clock source to the
XTAL1 pin.

2. VCC - 0.3V < AVCC < VCC + 0.3V, however, AVCC should always be within 1.8V - 5.5V

When programming the EEPROM, an auto-erase cycle is built into the self-timed programming

operation (in the Serial mode ONLY) and there is no need to first execute the Chip Erase

instruction. The Chip Erase operation turns the content of every memory location in both the

Program and EEPROM arrays into 0xFF.

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and high periods

for the serial clock (SCK) input are defined as follows:

Low: > 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz

High: > 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz

27.8.2 Serial Programming Algorithm

When writing serial data to the ATmega169P, data is clocked on the rising edge of SCK.

When reading data from the ATmega169P, data is clocked on the falling edge of SCK. See Fig-

ure 27-11 on page 313 for timing details.

To program and verify the ATmega169P in the serial programming mode, the following

sequence is recommended (See four byte instruction formats in Table 27-16 on page 314):

1. Power-up sequence:
Apply power between VCC and GND while RESET and SCK are set to “0”. In some sys-
tems, the programmer can not guarantee that SCK is held low during power-up. In this

Table 27-14. Pin Mapping Serial Programming

Symbol Pins I/O Description

MOSI PB2 I Serial Data in

MISO PB3 O Serial Data out

SCK PB1 I Serial Clock

VCC

GND

XTAL1

SCK

MISO

MOSI

RESET

+1.8V - 5.5V

AVCC

+1.8V - 5.5V
(2)

312

8018P–AVR–08/10

ATmega169P

case, RESET must be given a positive pulse of at least two CPU clock cycles duration
after SCK has been set to “0”.

2. Wait for at least 20 ms and enable serial programming by sending the Programming
Enable serial instruction to pin MOSI.

3. The serial programming instructions will not work if the communication is out of synchro-
nization. When in sync. the second byte (0x53), will echo back when issuing the third
byte of the Programming Enable instruction. Whether the echo is correct or not, all four
bytes of the instruction must be transmitted. If the 0x53 did not echo back, give RESET a
positive pulse and issue a new Programming Enable command.

4. The Flash is programmed one page at a time. The page size is found in Table 27-7 on
page 299. The memory page is loaded one byte at a time by supplying the 6 LSB of the
address and data together with the Load Program Memory Page instruction. To ensure
correct loading of the page, the data low byte must be loaded before data high byte is
applied for a given address. The Program Memory Page is stored by loading the Write
Program Memory Page instruction with the 7 MSB of the address. If polling (RDY/BSY) is
not used, the user must wait at least tWD_FLASH before issuing the next page. (See Table
27-15.) Accessing the serial programming interface before the Flash write operation
completes can result in incorrect programming.

5. A: The EEPROM array is programmed one byte at a time by supplying the address and
data together with the appropriate Write instruction. An EEPROM memory location is first
automatically erased before new data is written. If polling (RDY/BSY) is not used, the
user must wait at least tWD_EEPROM before issuing the next byte (See Table 27-15). In a
chip erased device, no 0xFFs in the data file(s) need to be programmed.
B: The EEPROM array is programmed one page at a time. The Memory page is loaded
one byte at a time by supplying the 2 LSB of the address and data together with the Load
EEPROM Memory Page instruction. The EEPROM Memory Page is stored by loading
the Write EEPROM Memory Page Instruction with the 4 MSB of the address. When using
EEPROM page access only byte locations loaded with the Load EEPROM Memory Page
instruction is altered. The remaining locations remain unchanged. If polling (RDY/BSY) is
not used, the user must wait at least tWD_EEPROM before issuing the next page (See Table
27-15). In a chip erased device, no 0xFF in the data file(s) need to be programmed.

6. Any memory location can be verified by using the Read instruction which returns the con-
tent at the selected address at serial output MISO.

7. At the end of the programming session, RESET can be set high to commence normal
operation.

8. Power-off sequence (if needed):
Set RESET to “1”.
Turn VCC power off

Table 27-15. Minimum Wait Delay Before Writing the Next Flash or EEPROM Location

Symbol Minimum Wait Delay

tWD_FUSE 4.5 ms

tWD_FLASH 4.5 ms

tWD_EEPROM 3.6 ms

tWD_ERASE 9.0 ms

313

8018P–AVR–08/10

ATmega169P

Figure 27-11. Serial Programming Waveforms

MSB

MSB

LSB

LSB

SERIAL CLOCK INPUT
(SCK)

SERIAL DATA INPUT
 (MOSI)

(MISO)

SAMPLE

SERIAL DATA OUTPUT

314

8018P–AVR–08/10

ATmega169P

27.8.3 Serial Programming Instruction set

Table 27-16 and Figure 27-12 on page 315 describes the Instruction set.

Notes: 1. Not all instructions are applicable for all parts
2. a = address
3. Bits are programmed ‘0’, unprogrammed ‘1’.
4. To ensure future compatibility, unused Fuses and Lock bits should be unprogrammed (‘1’).
5. Refer to the corresponding section for Fuse and Lock bits, Calibration and Signature bytes and Page size.
6. Instructions accessing program memory use a word address. This address may be random within the page range.
7. See htt://www.atmel.com/avr for Application Notes regarding programming and programmers.

If the LSB in RDY/BSY data byte out is ‘1’, a programming operation is still pending. Wait until

this bit returns ‘0’ before the next instruction is carried out.

Table 27-16. Serial Programming Instruction Set

Instruction/Operation

Instruction Format

Byte 1 Byte 2 Byte 3 Byte 4

Programming Enable $AC $53 $00 $00

Chip Erase (Program Memory/EEPROM) $AC $80 $00 $00

Poll RDY/BSY $F0 $00 $00 data byte out

Load Instructions

Load Extended Address byte(1) $4D $00 Extended adr $00

Load Program Memory Page, High byte $48 $00 adr LSB high data byte in

Load Program Memory Page, Low byte $40 $00 adr LSB low data byte in

Load EEPROM Memory Page (page access) $C1 $00 0000 00aa data byte in

Read Instructions

Read Program Memory, High byte $28 adr MSB adr LSB high data byte out

Read Program Memory, Low byte $20 adr MSB adr LSB low data byte out

Read EEPROM Memory $A0 0000 00aa aaaa aaaa data byte out

Read Lock bits $58 $00 $00 data byte out

Read Signature Byte $30 $00 0000 00aa data byte out

Read Fuse bits $50 $00 $00 data byte out

Read Fuse High bits $58 $08 $00 data byte out

Read Extended Fuse Bits $50 $08 $00 data byte out

Read Calibration Byte $38 $00 $00 data byte out

Write Instructions(6)

Write Program Memory Page $4C adr MSB adr LSB $00

Write EEPROM Memory $C0 0000 00aa aaaa aaaa data byte in

Write EEPROM Memory Page (page access) $C2 0000 00aa aaaa aa00 $00

Write Lock bits $AC $E0 $00 data byte in

Write Fuse bits $AC $A0 $00 data byte in

Write Fuse High bits $AC $A8 $00 data byte in

Write Extended Fuse Bits $AC $A4 $00 data byte in

315

8018P–AVR–08/10

ATmega169P

Within the same page, the low data byte must be loaded prior to the high data byte.

After data is loaded to the page buffer, program the EEPROM page, see Figure 27-12.

Figure 27-12. Serial Programming Instruction example

27.8.4 SPI Serial Programming Characteristics

For characteristics of the SPI module, see ”SPI Timing Characteristics” on page 334.

Byte 1 Byte 2 Byte 3 Byte 4

Adr LSB

Bit 15 B 0

Serial Programming Instruction

Program Memory/
EEPROM Memory

Page 0

Page 1

Page 2

Page N-1

Page Buffer

Write Program Memory Page/
Write EEPROM Memory Page

Load Program Memory Page (High/Low Byte)/
Load EEPROM Memory Page (page access)

Byte 1 Byte 2 Byte 3 Byte 4

Bit 15 B 0

Adr MSB

Page Offset

Page Number

Adrdr Mr MSSBA AAdrdr LS LSBSB

316

8018P–AVR–08/10

ATmega169P

27.9 Programming via the JTAG Interface

Programming through the JTAG interface requires control of the four JTAG specific pins: TCK,

TMS, TDI, and TDO. Control of the reset and clock pins is not required.

To be able to use the JTAG interface, the JTAGEN Fuse must be programmed. The device is

default shipped with the fuse programmed. In addition, the JTD bit in MCUCSR must be cleared.

Alternatively, if the JTD bit is set, the external reset can be forced low. Then, the JTD bit will be

cleared after two chip clocks, and the JTAG pins are available for programming. This provides a

means of using the JTAG pins as normal port pins in Running mode while still allowing In-Sys-

tem Programming via the JTAG interface. Note that this technique can not be used when using

the JTAG pins for Boundary-scan or On-chip Debug. In these cases the JTAG pins must be ded-

icated for this purpose.

During programming the clock frequency of the TCK Input must be less than the maximum fre-

quency of the chip. The System Clock Prescaler can not be used to divide the TCK Clock Input

into a sufficiently low frequency.

As a definition in this datasheet, the LSB is shifted in and out first of all Shift Registers.

27.9.1 Programming Specific JTAG Instructions

The Instruction Register is 4-bit wide, supporting up to 16 instructions. The JTAG instructions

useful for programming are listed below.

The OPCODE for each instruction is shown behind the instruction name in hex format. The text

describes which Data Register is selected as path between TDI and TDO for each instruction.

The Run-Test/Idle state of the TAP controller is used to generate internal clocks. It can also be

used as an idle state between JTAG sequences. The state machine sequence for changing the

instruction word is shown in Figure 27-13 on page 317.

317

8018P–AVR–08/10

ATmega169P

Figure 27-13. State Machine Sequence for Changing the Instruction Word

27.9.2 AVR_RESET (0xC)

The AVR specific public JTAG instruction for setting the AVR device in the Reset mode or taking

the device out from the Reset mode. The TAP controller is not reset by this instruction. The one

bit Reset Register is selected as Data Register. Note that the reset will be active as long as there

is a logic “one” in the Reset Chain. The output from this chain is not latched.

The active states are:

• Shift-DR: The Reset Register is shifted by the TCK input.

27.9.3 PROG_ENABLE (0x4)

The AVR specific public JTAG instruction for enabling programming via the JTAG port. The 16-

bit Programming Enable Register is selected as Data Register. The active states are the

following:

• Shift-DR: The programming enable signature is shifted into the Data Register.

• Update-DR: The programming enable signature is compared to the correct value, and

Programming mode is entered if the signature is valid.

Test-Logic-Reset

Run-Test/Idle

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Select-DR Scan

Capture-DR

0

1

0 1 1 1

0 0

0 0

1 1

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

00

11

318

8018P–AVR–08/10

ATmega169P

27.9.4 PROG_COMMANDS (0x5)

The AVR specific public JTAG instruction for entering programming commands via the JTAG

port. The 15-bit Programming Command Register is selected as Data Register. The active

states are the following:

• Capture-DR: The result of the previous command is loaded into the Data Register.

• Shift-DR: The Data Register is shifted by the TCK input, shifting out the result of the previous

command and shifting in the new command.

• Update-DR: The programming command is applied to the Flash inputs.

• Run-Test/Idle: One clock cycle is generated, executing the applied command (not always

required, see Table 27-17 on page 321).

27.9.5 PROG_PAGELOAD (0x6)

The AVR specific public JTAG instruction to directly load the Flash data page via the JTAG port.

An 8-bit Flash Data Byte Register is selected as the Data Register. This is physically the 8 LSBs

of the Programming Command Register. The active states are the following:

• Shift-DR: The Flash Data Byte Register is shifted by the TCK input.

• Update-DR: The content of the Flash Data Byte Register is copied into a temporary register. A

write sequence is initiated that within 11 TCK cycles loads the content of the temporary

register into the Flash page buffer. The AVR automatically alternates between writing the low

and the high byte for each new Update-DR state, starting with the low byte for the first Update-

DR encountered after entering the PROG_PAGELOAD command. The Program Counter is

pre-incremented before writing the low byte, except for the first written byte. This ensures that

the first data is written to the address set up by PROG_COMMANDS, and loading the last

location in the page buffer does not make the program counter increment into the next page.

27.9.6 PROG_PAGEREAD (0x7)

The AVR specific public JTAG instruction to directly capture the Flash content via the JTAG port.

An 8-bit Flash Data Byte Register is selected as the Data Register. This is physically the 8 LSBs

of the Programming Command Register. The active states are the following:

• Capture-DR: The content of the selected Flash byte is captured into the Flash Data Byte

Register. The AVR automatically alternates between reading the low and the high byte for each

new Capture-DR state, starting with the low byte for the first Capture-DR encountered after

entering the PROG_PAGEREAD command. The Program Counter is post-incremented after

reading each high byte, including the first read byte. This ensures that the first data is captured

from the first address set up by PROG_COMMANDS, and reading the last location in the page

makes the program counter increment into the next page.

• Shift-DR: The Flash Data Byte Register is shifted by the TCK input.

319

8018P–AVR–08/10

ATmega169P

27.9.7 Data Registers

The Data Registers are selected by the JTAG instruction registers described in section ”Pro-

gramming Specific JTAG Instructions” on page 316. The Data Registers relevant for

programming operations are:

• Reset Register

• Programming Enable Register

• Programming Command Register

• Flash Data Byte Register

27.9.8 Reset Register

The Reset Register is a Test Data Register used to reset the part during programming. It is

required to reset the part before entering Programming mode.

A high value in the Reset Register corresponds to pulling the external reset low. The part is reset

as long as there is a high value present in the Reset Register. Depending on the Fuse settings

for the clock options, the part will remain reset for a Reset Time-out period (refer to ”Clock

Sources” on page 31) after releasing the Reset Register. The output from this Data Register is

not latched, so the reset will take place immediately, as shown in Figure 25-2 on page 261.

27.9.9 Programming Enable Register

The Programming Enable Register is a 16-bit register. The contents of this register is compared

to the programming enable signature, binary code 0b1010_0011_0111_0000. When the con-

tents of the register is equal to the programming enable signature, programming via the JTAG

port is enabled. The register is reset to 0 on Power-on Reset, and should always be reset when

leaving Programming mode.

Figure 27-14. Programming Enable Register

27.9.10 Programming Command Register

The Programming Command Register is a 15-bit register. This register is used to serially shift in

programming commands, and to serially shift out the result of the previous command, if any. The

JTAG Programming Instruction Set is shown in Table 27-17 on page 321. The state sequence

when shifting in the programming commands is illustrated in Figure 27-16 on page 324.

TDI

TDO

D

A

T

A

= D Q

ClockDR & PROG_ENABLE

Programming Enable

0xA370

320

8018P–AVR–08/10

ATmega169P

Figure 27-15. Programming Command Register
TDI

TDO

S

T

R

O

B

E

S

A

D

D

R

E

S

S

/

D

A

T

A

Flash
EEPROM

Fuses
Lock Bits

321

8018P–AVR–08/10

ATmega169P

Table 27-17. JTAG Programming Instruction Set
a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

Instruction TDI Sequence TDO Sequence Notes

1a. Chip Erase

0100011_10000000

0110001_10000000

0110011_10000000

0110011_10000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

1b. Poll for Chip Erase Complete 0110011_10000000 xxxxxox_xxxxxxxx (2)

2a. Enter Flash Write 0100011_00010000 xxxxxxx_xxxxxxxx

2b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

2c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

2d. Load Data Low Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

2e. Load Data High Byte 0010111_iiiiiiii xxxxxxx_xxxxxxxx

2f. Latch Data

0110111_00000000

1110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

2g. Write Flash Page

0110111_00000000

0110101_00000000

0110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

2h. Poll for Page Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

3a. Enter Flash Read 0100011_00000010 xxxxxxx_xxxxxxxx

3b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

3c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

3d. Read Data Low and High Byte

0110010_00000000

0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

xxxxxxx_oooooooo

Low byte

High byte

4a. Enter EEPROM Write 0100011_00010001 xxxxxxx_xxxxxxxx

4b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

4c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

4d. Load Data Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

4e. Latch Data

0110111_00000000

1110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

4f. Write EEPROM Page

0110011_00000000

0110001_00000000

0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

4g. Poll for Page Write Complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

5a. Enter EEPROM Read 0100011_00000011 xxxxxxx_xxxxxxxx

5b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

322

8018P–AVR–08/10

ATmega169P

5c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

5d. Read Data Byte

0110011_bbbbbbbb

0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

6a. Enter Fuse Write 0100011_01000000 xxxxxxx_xxxxxxxx

6b. Load Data Low Byte(6) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)

6c. Write Fuse Extended Byte

0111011_00000000

0111001_00000000

0111011_00000000

0111011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6d. Poll for Fuse Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

6e. Load Data Low Byte(7) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)

6f. Write Fuse High Byte

0110111_00000000

0110101_00000000

0110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6g. Poll for Fuse Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

6h. Load Data Low Byte(7) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)

6i. Write Fuse Low Byte

0110011_00000000

0110001_00000000

0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6j. Poll for Fuse Write Complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

7a. Enter Lock Bit Write 0100011_00100000 xxxxxxx_xxxxxxxx

7b. Load Data Byte(9) 0010011_11iiiiii xxxxxxx_xxxxxxxx (4)

7c. Write Lock Bits

0110011_00000000

0110001_00000000

0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

7d. Poll for Lock Bit Write complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

8a. Enter Fuse/Lock Bit Read 0100011_00000100 xxxxxxx_xxxxxxxx

8b. Read Extended Fuse Byte(6) 0111010_00000000

0111011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

8c. Read Fuse High Byte(7) 0111110_00000000

0111111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

8d. Read Fuse Low Byte(8) 0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

8e. Read Lock Bits(9) 0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxoooooo
(5)

Table 27-17. JTAG Programming Instruction Set
a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

Instruction TDI Sequence TDO Sequence Notes

323

8018P–AVR–08/10

ATmega169P

Notes: 1. This command sequence is not required if the seven MSB are correctly set by the previous command sequence (which is
normally the case).

2. Repeat until o = “1”.
3. Set bits to “0” to program the corresponding Fuse, “1” to unprogramme the Fuse.
4. Set bits to “0” to program the corresponding Lock bit, “1” to leave the Lock bit unchanged.
5. “0” = programmed, “1” = unprogrammed.
6. The bit mapping for Fuses Extended byte is listed in Table 27-3 on page 297.
7. The bit mapping for Fuses High byte is listed in Table 27-4 on page 298.
8. The bit mapping for Fuses Low byte is listed in Table 27-5 on page 298.
9. The bit mapping for Lock bits byte is listed in Table 27-1 on page 296.
10. Address bits exceeding PCMSB and EEAMSB (Table 27-7 on page 299 and Table 27-8 on page 299).
11. All TDI and TDO sequences are represented by binary digits (0b...).

8f. Read Fuses and Lock Bits

0111010_00000000

0111110_00000000

0110010_00000000

0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

xxxxxxx_oooooooo

xxxxxxx_oooooooo

xxxxxxx_oooooooo

(5)

Fuse Ext. byte

Fuse High byte

Fuse Low byte

Lock bits

9a. Enter Signature Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx

9b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

9c. Read Signature Byte
0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

10a. Enter Calibration Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx

10b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

10c. Read Calibration Byte
0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

11a. Load No Operation Command
0100011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

Table 27-17. JTAG Programming Instruction Set
a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

Instruction TDI Sequence TDO Sequence Notes

324

8018P–AVR–08/10

ATmega169P

Figure 27-16. State Machine Sequence for Changing/Reading the Data Word

27.9.11 Flash Data Byte Register

The Flash Data Byte Register provides an efficient way to load the entire Flash page buffer

before executing Page Write, or to read out/verify the content of the Flash. A state machine sets

up the control signals to the Flash and senses the strobe signals from the Flash, thus only the

data words need to be shifted in/out.

The Flash Data Byte Register actually consists of the 8-bit scan chain and a 8-bit temporary reg-

ister. During page load, the Update-DR state copies the content of the scan chain over to the

temporary register and initiates a write sequence that within 11 TCK cycles loads the content of

the temporary register into the Flash page buffer. The AVR automatically alternates between

writing the low and the high byte for each new Update-DR state, starting with the low byte for the

first Update-DR encountered after entering the PROG_PAGELOAD command. The Program

Counter is pre-incremented before writing the low byte, except for the first written byte. This

ensures that the first data is written to the address set up by PROG_COMMANDS, and loading

the last location in the page buffer does not make the Program Counter increment into the next

page.

During Page Read, the content of the selected Flash byte is captured into the Flash Data Byte

Register during the Capture-DR state. The AVR automatically alternates between reading the

low and the high byte for each new Capture-DR state, starting with the low byte for the first Cap-

Test-Logic-Reset

Run-Test/Idle

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Select-DR Scan

Capture-DR

0

1

0 1 1 1

0 0

0 0

1 1

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

00

11

325

8018P–AVR–08/10

ATmega169P

ture-DR encountered after entering the PROG_PAGEREAD command. The Program Counter is

post-incremented after reading each high byte, including the first read byte. This ensures that

the first data is captured from the first address set up by PROG_COMMANDS, and reading the

last location in the page makes the program counter increment into the next page.

Figure 27-17. Flash Data Byte Register

The state machine controlling the Flash Data Byte Register is clocked by TCK. During normal

operation in which eight bits are shifted for each Flash byte, the clock cycles needed to navigate

through the TAP controller automatically feeds the state machine for the Flash Data Byte Regis-

ter with sufficient number of clock pulses to complete its operation transparently for the user.

However, if too few bits are shifted between each Update-DR state during page load, the TAP

controller should stay in the Run-Test/Idle state for some TCK cycles to ensure that there are at

least 11 TCK cycles between each Update-DR state.

27.9.12 Programming Algorithm

All references below of type “1a”, “1b”, and so on, refer to Table 27-17 on page 321.

27.9.13 Entering Programming Mode

1. Enter JTAG instruction AVR_RESET and shift 1 in the Reset Register.

2. Enter instruction PROG_ENABLE and shift 0b1010_0011_0111_0000 in the Program-
ming Enable Register.

27.9.14 Leaving Programming Mode

1. Enter JTAG instruction PROG_COMMANDS.

2. Disable all programming instructions by using no operation instruction 11a.

3. Enter instruction PROG_ENABLE and shift 0b0000_0000_0000_0000 in the program-
ming Enable Register.

4. Enter JTAG instruction AVR_RESET and shift 0 in the Reset Register.

TDI

TDO

D

A

T

A

Flash
EEPROM

Fuses
Lock Bits

STROBES

ADDRESS

State

Machine

326

8018P–AVR–08/10

ATmega169P

27.9.15 Performing Chip Erase

1. Enter JTAG instruction PROG_COMMANDS.

2. Start Chip Erase using programming instruction 1a.

3. Poll for Chip Erase complete using programming instruction 1b, or wait for tWLRH_CE (refer
to Table 27-13 on page 309).

27.9.16 Programming the Flash

Before programming the Flash a Chip Erase must be performed, see “Performing Chip Erase”

on page 326.

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load address High byte using programming instruction 2b.

4. Load address Low byte using programming instruction 2c.

5. Load data using programming instructions 2d, 2e and 2f.

6. Repeat steps 4 and 5 for all instruction words in the page.

7. Write the page using programming instruction 2g.

8. Poll for Flash write complete using programming instruction 2h, or wait for tWLRH (refer to
Table 27-13 on page 309).

9. Repeat steps 3 to 7 until all data have been programmed.

A more efficient data transfer can be achieved using the PROG_PAGELOAD instruction:

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load the page address using programming instructions 2b and 2c. PCWORD (refer to
Table 27-7 on page 299) is used to address within one page and must be written as 0.

4. Enter JTAG instruction PROG_PAGELOAD.

5. Load the entire page by shifting in all instruction words in the page byte-by-byte, starting
with the LSB of the first instruction in the page and ending with the MSB of the last
instruction in the page. Use Update-DR to copy the contents of the Flash Data Byte Reg-
ister into the Flash page location and to auto-increment the Program Counter before
each new word.

6. Enter JTAG instruction PROG_COMMANDS.

7. Write the page using programming instruction 2g.

8. Poll for Flash write complete using programming instruction 2h, or wait for tWLRH (refer to
Table 27-13 on page 309).

9. Repeat steps 3 to 8 until all data have been programmed.

327

8018P–AVR–08/10

ATmega169P

27.9.17 Reading the Flash

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash read using programming instruction 3a.

3. Load address using programming instructions 3b and 3c.

4. Read data using programming instruction 3d.

5. Repeat steps 3 and 4 until all data have been read.

A more efficient data transfer can be achieved using the PROG_PAGEREAD instruction:

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash read using programming instruction 3a.

3. Load the page address using programming instructions 3b and 3c. PCWORD (refer to
Table 27-7 on page 299) is used to address within one page and must be written as 0.

4. Enter JTAG instruction PROG_PAGEREAD.

5. Read the entire page (or Flash) by shifting out all instruction words in the page (or Flash),
starting with the LSB of the first instruction in the page (Flash) and ending with the MSB
of the last instruction in the page (Flash). The Capture-DR state both captures the data
from the Flash, and also auto-increments the program counter after each word is read.
Note that Capture-DR comes before the shift-DR state. Hence, the first byte which is
shifted out contains valid data.

6. Enter JTAG instruction PROG_COMMANDS.

7. Repeat steps 3 to 6 until all data have been read.

27.9.18 Programming the EEPROM

Before programming the EEPROM a Chip Erase must be performed, see “Performing Chip

Erase” on page 326.

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable EEPROM write using programming instruction 4a.

3. Load address High byte using programming instruction 4b.

4. Load address Low byte using programming instruction 4c.

5. Load data using programming instructions 4d and 4e.

6. Repeat steps 4 and 5 for all data bytes in the page.

7. Write the data using programming instruction 4f.

8. Poll for EEPROM write complete using programming instruction 4g, or wait for tWLRH
(refer to Table 27-13 on page 309).

9. Repeat steps 3 to 8 until all data have been programmed.

Note that the PROG_PAGELOAD instruction can not be used when programming the EEPROM.

27.9.19 Reading the EEPROM

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable EEPROM read using programming instruction 5a.

3. Load address using programming instructions 5b and 5c.

4. Read data using programming instruction 5d.

5. Repeat steps 3 and 4 until all data have been read.

Note that the PROG_PAGEREAD instruction can not be used when reading the EEPROM.

328

8018P–AVR–08/10

ATmega169P

27.9.20 Programming the Fuses

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Fuse write using programming instruction 6a.

3. Load data high byte using programming instructions 6b. A bit value of “0” will program the
corresponding fuse, a “1” will unprogram the fuse.

4. Write Fuse High byte using programming instruction 6c.

5. Poll for Fuse write complete using programming instruction 6d, or wait for tWLRH (refer to
Table 27-13 on page 309).

6. Load data low byte using programming instructions 6e. A “0” will program the fuse, a “1”
will unprogram the fuse.

7. Write Fuse low byte using programming instruction 6f.

8. Poll for Fuse write complete using programming instruction 6g, or wait for tWLRH (refer to
Table 27-13 on page 309).

27.9.21 Programming the Lock Bits

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Lock bit write using programming instruction 7a.

3. Load data using programming instructions 7b. A bit value of “0” will program the corre-
sponding lock bit, a “1” will leave the lock bit unchanged.

4. Write Lock bits using programming instruction 7c.

5. Poll for Lock bit write complete using programming instruction 7d, or wait for tWLRH (refer
to Table 27-13 on page 309).

27.9.22 Reading the Fuses and Lock Bits

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Fuse/Lock bit read using programming instruction 8a.

3. To read all Fuses and Lock bits, use programming instruction 8e.
To only read Fuse High byte, use programming instruction 8b.
To only read Fuse Low byte, use programming instruction 8c.
To only read Lock bits, use programming instruction 8d.

27.9.23 Reading the Signature Bytes

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Signature byte read using programming instruction 9a.

3. Load address 0x00 using programming instruction 9b.

4. Read first signature byte using programming instruction 9c.

5. Repeat steps 3 and 4 with address 0x01 and address 0x02 to read the second and third
signature bytes, respectively.

27.9.24 Reading the Calibration Byte

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Calibration byte read using programming instruction 10a.

3. Load address 0x00 using programming instruction 10b.

4. Read the calibration byte using programming instruction 10c.

329

8018P–AVR–08/10

ATmega169P

28. Electrical Characteristics

28.1 Absolute Maximum Ratings*

28.2 DC Characteristics

Operating Temperature.................................. -55°C to +125°C *NOTICE: Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent dam-age to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Storage Temperature -65°C to +150°C

Voltage on any Pin except RESET
with respect to Ground-0.5V to VCC+0.5V

Voltage on RESET with respect to Ground......-0.5V to +13.0V

Maximum Operating Voltage .. 6.0V

DC Current per I/O Pin ... 40.0 mA

DC Current VCC and GND Pins................................ 400.0 mA

TA = -40°C to 85°C, VCC = 1.8V to 5.5V (unless otherwise noted)

Symbol Parameter Condition Min. Typ. Max. Units

VIL
Input Low Voltage except
XTAL1 and RESET pins

VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V

-0.5
-0.5

0.2VCC
(1)

0.3VCC
(1)

V

VIH
Input High Voltage except
XTAL1 and RESET pins

VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V

0.7VCC
(2)

0.6VCC
(2)

VCC + 0.5
VCC + 0.5

VIL1

Input Low Voltage

XTAL1 pins
VCC = 1.8V - 5.5V -0.5 0.1VCC

(1)

VIH1
Input High Voltage,
XTAL1 pin

VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V

0.8VCC
(2)

0.7VCC
(2)

VCC + 0.5
VCC + 0.5

VIL2
Input Low Voltage,
RESET pins

VCC = 1.8V - 5.5V -0.5 0.1VCC
(1)

VIH2
Input High Voltage,
RESET pins

VCC = 1.8V - 5.5V 0.9VCC
(2) VCC + 0.5

VOL
Output Low Voltage(3),
Port A, C, D, E, F, G

IOL = 10 mA, VCC = 5V
IOL = 5 mA, VCC = 3V

0.7
0.5

VOL1
Output Low Voltage(3),
Port B

IOL = 20 mA, VCC = 5V
IOL = 10 mA, VCC = 3V

0.7
0.5

VOH
Output High Voltage(4),
Port A, C, D, E, F, G

IOH = -10 mA, VCC = 5V
IOH = -5 mA, VCC = 3V

4.2
2.3

VOH1
Output High Voltage(4),
Port B

IOH = -20 mA, VCC = 5V
IOH = -10 mA, VCC = 3V

4.2
2.3

IIL
Input Leakage
Current I/O Pin

VCC = 5.5V, pin low
(absolute value)

1

µA

IIH
Input Leakage
Current I/O Pin

VCC = 5.5V, pin high
(absolute value)

1

RRST Reset Pull-up Resistor 30 60
kΩ

RPU I/O Pin Pull-up Resistor 20 50

330

8018P–AVR–08/10

ATmega169P

Note: 1. “Max” means the highest value where the pin is guaranteed to be read as low.

2. “Min” means the lowest value where the pin is guaranteed to be read as high.
3. Although each I/O port can sink more than the test conditions (20 mA at VCC = 5V, 10 mA at VCC = 3V for Port B and 10 mA

at VCC = 5V, 5 mA at VCC = 3V for all other ports) under steady state conditions (non-transient), the following must be
observed:
TQFP and QFN/MLF Package:
1] The sum of all IOL, for all ports, should not exceed 400 mA.
2] The sum of all IOL, for ports A0 - A7, C4 - C7, G2 should not exceed 100 mA.
3] The sum of all IOL, for ports B0 - B7, E0 - E7, G3 - G5 should not exceed 100 mA.
4] The sum of all IOL, for ports D0 - D7, C0 - C3, G0 - G1 should not exceed 100 mA.
5] The sum of all IOL, for ports F0 - F7, should not exceed 100 mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

4. Although each I/O port can source more than the test conditions (20 mA at VCC = 5V, 10 mA at VCC = 3V for Port B and 10
mA at VCC = 5V, 5 mA at VCC = 3V for all other ports) under steady state conditions (non-transient), the following must be
observed:
TQFP and QFN/MLF Package:
1] The sum of all IOH, for all ports, should not exceed 400 mA.
2] The sum of all IOH, for ports A0 - A7, C4 - C7, G2 should not exceed 100 mA.
3] The sum of all IOH, for ports B0 - B7, E0 - E7, G3 - G5 should not exceed 100 mA.
4] The sum of all IOH, for ports D0 - D7, C0 - C3, G0 - G1 should not exceed 100 mA.
5] The sum of all IOH, for ports F0 - F7, should not exceed 100 mA.
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

5. All bits set in the ”Power Reduction Register” on page 42.
6. Typical values at 25°C. Maximum values are characterized values and not test limits in production.

ICC

Power Supply Current(5)

Active 1 MHz, VCC = 2V 0.35 0.44

mA

Active 4 MHz, VCC = 3V 2.3 2.5

Active 8 MHz, VCC = 5V 8.4 9.5

Idle 1 MHz, VCC = 2V 0.1 0.2

Idle 4 MHz, VCC = 3V 0,7 0.8

Idle 8 MHz, VCC = 5V 3.0 3.3

Power-save mode(6)

32 kHz TOSC enabled,

VCC = 1.8V
0.55 1.6

µA
32 kHz TOSC enabled,

VCC = 3V
0.8 2.6

Power-down mode(6)
WDT enabled, VCC = 3V 6 10

WDT disabled, VCC = 3V 0.2 2

VACIO
Analog Comparator
Input Offset Voltage

VCC = 5V

Vin = VCC/2
<10 40 mV

IACLK
Analog Comparator
Input Leakage Current

VCC = 5V
Vin = VCC/2

-50 50 nA

tACPD
Analog Comparator
Propagation Delay

VCC = 2.7V
VCC = 4.0V

750
500

ns

TA = -40°C to 85°C, VCC = 1.8V to 5.5V (unless otherwise noted) (Continued)

Symbol Parameter Condition Min. Typ. Max. Units

331

8018P–AVR–08/10

ATmega169P

28.3 Speed Grades

Maximum frequency is depending on VCC. As shown in Figure 28-1 and Figure 28-2 on page

332, the Maximum Frequency vs. VCC curve is linear between 1.8V < VCC < 4.5V. To calculate

the maximum frequency at a given voltage in this interval, use this equation:

To calculate required voltage for a given frequency, use this equation::

At 3 Volt, this gives:

Thus, when VCC = 3V, maximum frequency will be 9.33 MHz.

At 6 MHz this gives:

Thus, a maximum frequency of 6 MHz requires VCC = 2.25V.

Figure 28-1. Maximum Frequency vs. VCC, ATmega169PV

Table 28-1. Constants used to calculate maximum speed vs. VCC

Voltage and Frequency range a b Vx Fy

2.7 < VCC < 4.5 or 8 < Frq < 16
8/1.8 1.8/8

2.7 8

1.8 < VCC < 2.7 or 4 < Frq < 8 1.8 4

Frequency a V Vx–()• Fy+=

Voltage b F Fy–()• Vx+=

Frequency
8

1.8
-------- 3 2.7–()• 8+ 9.33= =

Voltage
1.8
8

-------- 6 4–()• 1.8+ 2.25= =

8 MHz

4 MHz

1.8V 2.7V 5.5V

Safe Operating Area

332

8018P–AVR–08/10

ATmega169P

Figure 28-2. Maximum Frequency vs. VCC, ATmega169P

28.4 Clock Characteristics

28.4.1 Calibrated Internal RC Oscillator Accuracy

Notes: 1. Voltage range for ATmega169PV.
2. Voltage range for ATmega169P.

28.4.2 External Clock Drive Waveforms

Figure 28-3. External Clock Drive Waveforms

16 MHz

8 MHz

2.7V 4.5V 5.5V

Safe Operating Area

Table 28-2. Calibration Accuracy of Internal RC Oscillator

Frequency VCC Temperature Calibration Accuracy

Factory Calibration 8.0 MHz 3V 25°C ±10%

User Calibration
7.3 MHz - 8.1 MHz

1.8V - 5.5V(1)

2.7V - 5.5V(2) -40°C - 85°C ±1%

VIL1

VIH1

333

8018P–AVR–08/10

ATmega169P

28.4.3 External Clock Drive

28.5 System and Reset Characteristics

Note: 1. The Power-on Reset will not work unless the supply voltage has been below VPOT (falling)

Table 28-3. External Clock Drive

Symbol Parameter

VCC = 1.8V - 5.5V VCC = 2.7V - 5.5V VCC = 4.5V - 5.5V

UnitsMin. Max. Min. Max. Min. Max.

1/tCLCL
Oscillator
Frequency

0 1 0 8 0 16 MHz

tCLCL Clock Period 1000 125 62.5

nstCHCX High Time 400 50 25

tCLCX Low Time 400 50 25

tCLCH Rise Time 2.0 1.6 0.5
μs

tCHCL Fall Time 2.0 1.6 0.5

ΔtCLCL

Change in period
from one clock
cycle to the next

2 2 2 %

Table 28-4. Reset, Brown-out,and Internal Voltage Characteristics

Symbol Parameter Condition Min Typ Max Units

VPOT

Power-on Reset Threshold
Voltage (rising)

TA = -40°C
to 85°C

0.7 1.0 1.4

V
Power-on Reset Threshold
Voltage (falling)(1)

TA = -40°C
to 85°C

0.05 0.9 1.3

VPSR Power-on Reset Slope Rate 0.1 4.5 V/ms

VRST RESET Pin Threshold Voltage VCC = 3V 0.2VCC 0.9VCC V

tRST
Minimum pulse width on RESET
Pin

VCC = 3V 2.5 µs

VHYST Brown-out Detector Hysteresis 50 mV

tBOD
Min Pulse Width on Brown-out
Reset

2 µs

VBG Bandgap reference voltage
VCC = 2.7V,
TA = 25°C

1.0 1.1 1.2 V

tBG Bandgap reference start-up time
VCC = 2.7V,
TA = 25°C

40 70 µs

IBG
Bandgap reference current
consumption

VCC = 2.7V,
TA = 25°C

15 µA

334

8018P–AVR–08/10

ATmega169P

Note: 1. VBOT may be below nominal minimum operating voltage for some devices. For devices where
this is the case, the device is tested down to VCC = VBOT during the production test. This guar-
antees that a Brown-Out Reset will occur before VCC drops to a voltage where correct
operation of the microcontroller is no longer guaranteed. The test is performed using
BODLEVEL = 110 for ATmega169V.

28.6 SPI Timing Characteristics

See Figure 28-4 on page 335 and Figure 28-5 on page 335 for details.

Table 28-5. BODLEVEL Fuse Coding(1)

BODLEVEL 2..0 Fuses Min VBOT Typ VBOT Max VBOT Units

111 BOD Disabled

110 1.7 1.8 2.0

V101 2.5 2.7 2.9

100 4.1 4.3 4.5

011

Reserved
010

001

000

Table 28-6. SPI Timing Parameters

Description Mode Min Typ Max

1 SCK period Master
See Table 18-5 on

page 166

ns

2 SCK high/low Master 50% duty cycle

3 Rise/Fall time Master 3.6

4 Setup Master 10

5 Hold Master 10

6 Out to SCK Master 0.5 • tsck

7 SCK to out Master 10

8 SCK to out high Master 10

9 SS low to out Slave 15

10 SCK period Slave 4 • tck

11 SCK high/low(1) Slave 2 • tck

12 Rise/Fall time Slave 1.6 µs

13 Setup Slave 10

ns

14 Hold Slave tck

15 SCK to out Slave 15

16 SCK to SS high Slave 20

17 SS high to tri-state Slave 10

18 SS low to SCK Slave 20 • tck

335

8018P–AVR–08/10

ATmega169P

Note: 1. In SPI Programming mode the minimum SCK high/low period is:
- 2 tCLCL for fCK < 12 MHz
- 3 tCLCL for fCK > 12 MHz

Figure 28-4. SPI Interface Timing Requirements (Master Mode)

Figure 28-5. SPI Interface Timing Requirements (Slave Mode)

MOSI
(Data Output)

SCK
(CPOL = 1)

MISO
(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

6 1

2 2

34 5

87

MISO

(Data Output)

SCK
(CPOL = 1)

MOSI

(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

10

11 11

1213 14

1715

9

X

16

336

8018P–AVR–08/10

ATmega169P

28.7 ADC Characteristics – Preliminary Data

Table 28-7. ADC Characteristics

Symbol Parameter Condition Min Typ Max Units

Resolution
Single Ended Conversion 10

Bits
Differential Conversion 8

Absolute accuracy

(Including INL, DNL,

quantization error, gain and

offset error)

Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz

2 2.5

LSB

Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 1 MHz

4.5

Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz

Noise Reduction Mode

2

Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 1 MHz
Noise Reduction Mode

4.5

Integral Non-Linearity (INL)
Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz

0.5

Differential Non-Linearity (DNL)
Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz

0.25

Gain Error
Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz

2

Offset Error
Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz

2

Conversion Time Free Running Conversion 13 260 µs

Clock Frequency Single Ended Conversion 50 1000 kHz

AVCC Analog Supply Voltage VCC - 0.3 VCC + 0.3

V

VREF Reference Voltage
Single Ended Conversion 1.0 AVCC

Differential Conversion 1.0 AVCC - 0.5

VIN

Pin Input Voltage
Single Ended Channels GND VREF

Differential Channels GND AVCC

Input Range
Single Ended Channels GND VREF

Differential Channels(1) -0.85VREF VREF

Input Bandwidth
Single Ended Channels 38.5

kHz
Differential Channels 4

337

8018P–AVR–08/10

ATmega169P

Note: 1. Voltage difference between channels.

28.8 LCD Controller Characteristics

VINT Internal Voltage Reference 1.0 1.1 1.2 V

RREF Reference Input Resistance 32 kΩ

RAIN Analog Input Resistance 100 MΩ

Table 28-7. ADC Characteristics

Symbol Parameter Condition Min Typ Max Units

Table 28-8. LCD Controller Characteristics

Symbol Parameter Condition Min Typ Max Units

ILCD LCD Driver Current Total for All COM and SEG pins 6 µA

RSEG SEG Driver Output Impedance 10
kΩ

RCOM COM Driver Output Impedance 2

338

8018P–AVR–08/10

ATmega169P

29. Typical Characteristics

The following charts show typical behavior. These figures are not tested during manufacturing.

All current consumption measurements are performed with all I/O pins configured as inputs and

with internal pull-ups enabled. A sine wave generator with rail-to-rail output is used as clock

source.

All Active- and Idle current consumption measurements are done with all bits in the PRR register

set and thus, the corresponding I/O modules are turned off. Also the Analog Comparator is dis-

abled during these measurements. Table 29-1 on page 343 and Table 29-2 on page 343 show

the additional current consumption compared to ICC Active and ICC Idle for every I/O module con-

trolled by the Power Reduction Register. See ”Power Reduction Register” on page 42 for details.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating

frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient tempera-

ture. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as CL*VCC*f where

CL = load capacitance, VCC = operating voltage and f = average switching frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to

function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog Timer

enabled and Power-down mode with Watchdog Timer disabled represents the differential cur-

rent drawn by the Watchdog Timer.

29.1 Active Supply Current

Figure 29-1. Active Supply Current vs. Frequency (0.1 MHz - 1.0 MHz)

5.5V

5.0V

4.5V

4.0V

3.3V

2.7V

1.8V

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C
 (

m
A

)

339

8018P–AVR–08/10

ATmega169P

Figure 29-2. Active Supply Current vs. Frequency (1 MHz - 20 MHz)

Figure 29-3. Active Supply Current vs. VCC (Internal RC Oscillator, 8 MHz

1 MHz - 20 MHz

5.5V

5.0V

4.5V

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I C
C
 (

m
A

)

4.0V

3.3V

2.7V

1.8V

85°C
25°C

-40°C

0

1

2

3

4

5

6

7

8

9

10

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

340

8018P–AVR–08/10

ATmega169P

Figure 29-4. Active Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)

Figure 29-5. Active Supply Current vs. VCC (32 kHz Watch Crystal)

85°C

25°C

-40°C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

25°C

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C

 (
µ

A
)

341

8018P–AVR–08/10

ATmega169P

29.2 Idle Supply Current

Figure 29-6. Idle Supply Current vs. Frequency (0.1 MHz - 1.0 MHz)

Figure 29-7. Idle Supply Current vs. Frequency (1 MHz - 20 MHz)

0.1 MHz - 1.0 MHz

5.5V

5.0V

4.5V

4.0V

3.3V

2.7V

1.8V

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C
 (

m
A

)

1 MHz - 20 MHz

5.5V

5.0V

4.5V

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I C
C
 (

m
A

)

4.0V

3.3V

2.7V

1.8V

342

8018P–AVR–08/10

ATmega169P

Figure 29-8. Idle Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)

Figure 29-9. Idle Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)

85°C
25°C

-40°C

0

0.5

1

1.5

2

2.5

3

3.5

4

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

85°C
25°C

-40°C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

343

8018P–AVR–08/10

ATmega169P

Figure 29-10. Idle Supply Current vs. VCC (32 kHz Watch Crystal)

29.3 Supply Current of I/O modules

The tables and formulas below can be used to calculate the additional current consumption for

the different I/O modules in Active and Idle mode. The enabling or disabling of the I/O modules

are controlled by the Power Reduction Register. See ”Power Reduction Register” on page 42 for

details.

25°C

0

2

4

6

8

10

12

14

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C

 (
µ

A
)

Table 29-1. Additional Current Consumption for the different I/O modules (absolute values)

PRR bit Typical numbers

VCC = 2V, F = 1 MHz VCC = 3V, F = 4 MHz VCC = 5V, F = 8 MHz

PRADC 18 µA 116 µA 495 µA

PRUSART0 11 µA 79 µA 313 µA

PRSPI 10 µA 72 µA 283 µA

PRTIM1 19 µA 117 µA 481 µA

PRLCD 4 µA 32 µA 105 µA

Table 29-2. Additional Current Consumption (percentage) in Active and Idle mode

PRR bit

Additional Current consumption

compared to Active with external clock

(see Figure 29-1 on page 338 and

Figure 29-2 on page 339)

Additional Current consumption

compared to Idle with external clock

(see Figure 29-6 on page 341 and

Figure 29-7 on page 341)

PRADC 5.6% 18.7%

PRUSART0 3.7% 12.4%

344

8018P–AVR–08/10

ATmega169P

It is possible to calculate the typical current consumption based on the numbers from Table 29-2

on page 343 for other VCC and frequency settings than listed in Table 29-1 on page 343.

29.3.0.1 Example 1

Calculate the expected current consumption in idle mode with USART0, TIMER1, and SPI

enabled at VCC = 3.0V and F = 1 MHz. From Table 29-2 on page 343, second column, we see

that we need to add 12.4% for the USART0, 10.8% for the SPI, and 18.6% for the TIMER1 mod-

ule. Reading from Figure 29-6 on page 341, we find that the idle current consumption is ~0.18

mA at VCC = 3.0V and F = 1 MHz. The total current consumption in idle mode with USART0,

TIMER1, and SPI enabled, gives:

29.4 Power-down Supply Current

Figure 29-11. Power-down Supply Current vs. VCC (Watchdog Timer Disabled)

PRSPI 3.2% 10.8%

PRTIM1 5.6% 18.6%

PRLCD 12.5% 41.7%

Table 29-2. Additional Current Consumption (percentage) in Active and Idle mode

PRR bit

Additional Current consumption

compared to Active with external clock

(see Figure 29-1 on page 338 and

Figure 29-2 on page 339)

Additional Current consumption

compared to Idle with external clock

(see Figure 29-6 on page 341 and

Figure 29-7 on page 341)

ICC total 0.18mA 1 0.124 0.108 0.186+ + +()• 0.26mA≈ ≈

85°C

-40°C

25°C

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

VCC (V)

I C
C

 (
µ

A
)

345

8018P–AVR–08/10

ATmega169P

Figure 29-12. Power-down Supply Current vs. VCC (Watchdog Timer Enabled)

29.5 Power-save Supply Current

Figure 29-13. Power-save Supply Current vs. VCC (Watchdog Timer Disabled)

The differential current consumption between Power-save with WD disabled and 32 kHz TOSC

represents the current drawn by Timer/Counter2.

WATCHDOG TIMER ENABLED

0

2

4

6

8

10

12

14

16

18

20

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

µ
A

)

85°C25°C-40°C

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

VCC (V)

I C
C
 (

µ
A
)

85°C

25°C
-40°C

346

8018P–AVR–08/10

ATmega169P

29.6 Standby Supply Current

Figure 29-14. Standby Supply Current vs. VCC (32 kHz Watch Crystal, Watchdog Timer
Disabled)

Figure 29-15. Standby Supply Current vs. VCC (455 kHz Resonator, Watchdog Timer Disabled)

85°C

25°C

-40°C

0.00

0.50

1.00

1.50

2.00

2.50

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

VCC (V)

I C
C

 (
µ

A
)

0

10

20

30

40

50

60

70

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

µ
A

)

347

8018P–AVR–08/10

ATmega169P

Figure 29-16. Standby Supply Current vs. VCC (1 MHz Resonator, Watchdog Timer Disabled)

Figure 29-17. Standby Supply Current vs. VCC (2 MHz Resonator, Watchdog Timer Disabled)

0

10

20

30

40

50

60

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

µ
A

)

0

10

20

30

40

50

60

70

80

90

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C

 (
µ

A
)

348

8018P–AVR–08/10

ATmega169P

Figure 29-18. Standby Supply Current vs. VCC (2 MHz Xtal, Watchdog Timer Disabled)

Figure 29-19. Standby Supply Current vs. VCC (4 MHz Resonator, Watchdog Timer Disabled)

0

10

20

30

40

50

60

70

80

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C

 (
µ

A
)

0

20

40

60

80

100

120

140

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C

 (
µ

A
)

349

8018P–AVR–08/10

ATmega169P

Figure 29-20. Standby Supply Current vs. VCC (4 MHz Xtal, Watchdog Timer Disabled)

Figure 29-21. Standby Supply Current vs. VCC (6 MHz Resonator, Watchdog Timer Disabled)

0

20

40

60

80

100

120

140

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

µ
A

)

0

20

40

60

80

100

120

140

160

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

µ
A

)

350

8018P–AVR–08/10

ATmega169P

Figure 29-22. Standby Supply Current vs. VCC (6 MHz Xtal, Watchdog Timer Disabled)

29.7 Pin Pull-up

Figure 29-23. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 5V)

0

20

40

60

80

100

120

140

160

180

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

µ
A

)

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
Vcc = 5V

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5

VIO (V)

I IO
 (

µ
A

)

85°C 25°C-40°C

351

8018P–AVR–08/10

ATmega169P

Figure 29-24. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 2.7V)

Figure 29-25. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 1.8V)

0

10

20

30

40

50

60

70

80

90

0 0.5 1 1.5 2 2.5 3

VIO (V)

I IO
 (

µ
A

)

85°C 25°C-40°C

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

VOP (V)

I O
P

85°C 25°C-40°C

 (
µ

A
)

352

8018P–AVR–08/10

ATmega169P

Figure 29-26. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V)

Figure 29-27. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V)

Vcc = 5V

0

20

40

60

80

100

120

0 1 2 3 4 5

VRESET (V)

I R
E

S
E

T
 (

µ
A

)

-40°C 25°C85°C

0

10

20

30

40

50

60

70

0 0.5 1 1.5 2 2.5 3

VRESET (V)

I R
E

S
E

T
 (

µ
A

)

-40°C 25°C85°C

353

8018P–AVR–08/10

ATmega169P

Figure 29-28. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V)

29.8 Pin Driver Strength

Figure 29-29. I/O Pin Source Current vs. Output Voltage, Ports A, C, D, E, F, G (VCC = 5V)

0

5

10

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

VRESET (V)

I R
E

S
E

T
 (

µ
A

)

-40°C 25°C85°C

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6

VOH (V)

I O
H
 (

m
A

)

85°C

25°C

-40°C

354

8018P–AVR–08/10

ATmega169P

Figure 29-30. I/O Pin Source Current vs. Output Voltage, Ports A, C, D, E, F, G (VCC = 2.7V)

Figure 29-31. I/O Pin Source Current vs. Output Voltage, Ports A, C, D, E, F, G (VCC = 1.8V)

Vcc = 2.7V

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5 3

VOH (V)

I O
H
 (

m
A

)

85°C25°C-40°C

Vcc = 1.8V

0

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

VOH (V)

I O
H
 (

m
A

)

85°C25°C -40°C

355

8018P–AVR–08/10

ATmega169P

Figure 29-32. I/O Pin Source Current vs. Output Voltage, Port B (VCC= 5V)

Figure 29-33. I/O Pin Source Current vs. Output Voltage, Port B (VCC = 2.7V)

0

10

20

30

40

50

60

70

80

0 1 2 3 4

VOH (V)

I O
H
 (

m
A

)

85°C25°C-40°C

Vcc = 2.7V

0

5

10

15

20

25

30

35

0 0.5 1 1.5 2 2.5 3

VOH (V)

I O
H
 (

m
A

)

85°C25°C-40°C

356

8018P–AVR–08/10

ATmega169P

Figure 29-34. I/O Pin Source Current vs. Output Voltage, Port B (VCC = 1.8V)

Figure 29-35. I/O Pin Sink Current vs. Output Voltage, Ports A, C, D, E, F, G (VCC = 5V)

Vcc = 1.8V

0

1

2

3

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

VOH (V)

I O
H
 (

m
A

)

85°C25°C -40°C

0

5

10

15

20

25

30

35

40

45

50

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

VOL (V)

I O
L
 (

m
A

)

85°C25°C-40°C

357

8018P–AVR–08/10

ATmega169P

Figure 29-36. I/O Pin Sink Current vs. Output Voltage, Ports A, C, D, E, F, G (VCC = 2.7V)

Figure 29-37. I/O Pin Sink Current vs. Output Voltage, Ports A, C, D, E, F, G (VCC = 1.8V)

0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

VOL (V)

I O
L
 (

m
A

)

85°C25°C-40°C

0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

VOL (V)

I O
L
 (

m
A

)

85°C25°C-40°C

358

8018P–AVR–08/10

ATmega169P

Figure 29-38. I/O Pin Sink Current vs. Output Voltage, Port B (VCC = 5V)

Figure 29-39. I/O Pin Sink Current vs. Output Voltage, Port B (VCC = 2.7V)

0

10

20

30

40

50

60

70

80

90

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

VOL (V)

I O
L
 (

m
A

)
85°C25°C-40°C

0

5

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

VOL (V)

I O
L
 (

m
A

)

85°C25°C-40°C

359

8018P–AVR–08/10

ATmega169P

Figure 29-40. I/O Pin Sink Current vs. Output Voltage, Port B (VCC = 1.8V)

29.9 Pin Thresholds and Hysteresis

Figure 29-41. I/O Pin Input Threshold Voltage vs. VCC (VIH, I/O Pin Read as “1”)

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

VOL (V)

I O
L
 (

m
A

)
85°C25°C-40°C

0

0.5

1

1.5

2

2.5

3

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h

re
sh

o
ld

 (
V

)

85°C25°C-40°C

360

8018P–AVR–08/10

ATmega169P

Figure 29-42. I/O Pin Input Threshold Voltage vs. VCC (VIL, I/O Pin Read as “0”)

Figure 29-43. I/O Pin Input Hysteresis vs. VCC

VIL, I/O PIN READ AS '0'

0

0.5

1

1.5

2

2.5

3

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h

re
s
h

o
ld

 (
V

)

85°C25°C-40°C

0

0.1

0.2

0.3

0.4

0.5

0.6

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

In
p

u
t

h
y
s
te

re
s
is

 (
V

) 85°C25°C-40°C

361

8018P–AVR–08/10

ATmega169P

Figure 29-44. Reset Input Threshold Voltage vs. VCC (VIH,Reset Pin Read as “1”)

Figure 29-45. Reset Input Threshold Voltage vs. VCC (VIL,Reset Pin Read as “0”)

0

0.5

1

1.5

2

2.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h

re
sh

o
ld

 (
V

) 85°C25°C-40°C

RESET INPUT THRESHOLD VOLTAGE vs. VCC

VIL, RESET PIN READ AS '0'

0

0.5

1

1.5

2

2.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h

re
s
h

o
ld

 (
V

)

85°C25°C-40°C

0

0.5

1

1.5

2

2.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h

re
sh

o
ld

 (
V

) 85°C25°C-40°C

362

8018P–AVR–08/10

ATmega169P

Figure 29-46. Reset Input Pin Hysteresis vs. VCC

29.10 BOD Thresholds and Analog Comparator Offset

Figure 29-47. BOD Thresholds vs. Temperature (BOD Level is 4.3V)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

In
p

u
t

h
y
s
te

re
s
is

 (
V

)

85°C
25°C-40°C

4

4.1

4.2

4.3

4.4

4.5

4.6

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

Temperature (°C)

T
h

re
s

h
o

ld
 (

V
)

Rising VCCFalling VCC

363

8018P–AVR–08/10

ATmega169P

Figure 29-48. BOD Thresholds vs. Temperature (BOD Level is 2.7V)

Figure 29-49. BOD Thresholds vs. Temperature (BOD Level is 1.8V)

BODLEVEL IS 2.7V

2.4

2.5

2.6

2.7

2.8

2.9

3

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

Temperature (°C)

T
h

re
s

h
o

ld
 (

V
)

Rising VCCFalling VCC

BODLEVEL IS 1.8V

1.5

1.6

1.7

1.8

1.9

2

2.1

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

Temperature (°C)

T
h

re
s

h
o

ld
 (

V
)

Rising VCCFalling VCC

364

8018P–AVR–08/10

ATmega169P

Figure 29-50. Bandgap Voltage vs. VCC

Figure 29-51. Analog Comparator Offset Voltage vs. Common Mode Voltage (VCC = 5V)

CC

1.08

1.09

1.1

1.11

1.12

1.13

1.14

1.5 2 2.5 3 3.5 4 4.5 5 5.5

Vcc (V)

B
a

n
d

g
a

p
 V

o
lt

a
g

e
 (

V
) 85°C25°C-40°C

CC

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Common Mode Voltage (V)

C
o

m
p

a
ra

to
r
O

ff
s
e

t
V

o
lt

a
g

e
 (

V
)

85°C25°C-40°C

365

8018P–AVR–08/10

ATmega169P

Figure 29-52. Analog Comparator Offset Voltage vs. Common Mode Voltage (VCC = 2.7V)

29.11 Internal Oscillator Speed

Figure 29-53. Oscillator Current vs. VCC (32 kHz Watch Crystal)

CC

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0 0.5 1 1.5 2 2.5 3

Common Mode Voltage (V)

C
o

m
p

a
ra

to
r

O
ff

s
e

t
V

o
lt

a
g

e
 (

V
)

85°C25°C-40°C

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

VCC (V)

I C
C

 (
µ

A
)

85°C

25°C

-40°C

366

8018P–AVR–08/10

ATmega169P

Figure 29-54. Watchdog Oscillator Frequency vs. VCC

Figure 29-55. Calibrated 8 MHz RC Oscillator Frequency vs. Temperature

800

850

900

950

1000

1050

1100

1150

1200

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

F
R

C
 (

k
H

z
)

85°C25°C-40°C

CALIBRATED 8MHz RC OSCILLATOR FREQUENCY vs. TEMPERATURE

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

-60 -40 -20 0 20 40 60 80 100

Ta (°C)

F
R

C
 (

M
H

z)

5.5V4.0V2.7V1.8V

367

8018P–AVR–08/10

ATmega169P

Figure 29-56. Calibrated 8 MHz RC Oscillator Frequency vs. VCC

Figure 29-57. Calibrated 8 MHz RC Oscillator Frequency vs. Osccal Value

6

6.5

7

7.5

8

8.5

9

9.5

10

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

F
R

C
 (

M
H

z)
85°C25°C-40°C

CALIBRATED 8 MHz RC OSCILLATOR FREQUENCY vs. OSCCAL VALUE

85°C

25°C

-40°C

4

6

8

10

12

14

16

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

OSCCAL VALUE

F
R

C
 (

M
H

z
)

368

8018P–AVR–08/10

ATmega169P

29.12 Current Consumption of Peripheral Units

Figure 29-58. Brownout Detector Current vs. VCC

Figure 29-59. ADC Current vs. VCC (AREF = AVCC)

0

5

10

15

20

25

30

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

µ
A

)
25°C

85°C

-40°C

CC

0

50

100

150

200

250

300

350

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

µ
A

)

85°C25°C-40°C

369

8018P–AVR–08/10

ATmega169P

Figure 29-60. AREF External Reference Current vs. VCC

The differential current consumption between Power-save with WD disabled and 32 kHz TOSC

represents the current drawn by Timer/Counter2.

Figure 29-61. Watchdog Timer Current vs. VCC

CC

0

20

40

60

80

100

120

140

160

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I A
R

E
F
 (

µ
A

)

85°C25°C-40°C

0

2

4

6

8

10

12

14

16

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

µ
A

)

85°C25°C-40°C

370

8018P–AVR–08/10

ATmega169P

Figure 29-62. Analog Comparator Current vs. VCC

Figure 29-63. Programming Current vs. VCC

0

20

40

60

80

100

120

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C

 (
µ

A
)

85°C25°C-40°C

0

5

10

15

20

25

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

) 85°C25°C-40°C

371

8018P–AVR–08/10

ATmega169P

29.13 Current Consumption in Reset and Reset Pulsewidth

Figure 29-64. Reset Supply Current vs. VCC (0.1 MHz - 1.0 MHz, Excluding Current Through
The Reset Pull-up)

Figure 29-65. Reset Supply Current vs. VCC (1 MHz - 20 MHz, Excluding Current Through The
Reset Pull-up)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C

 (
m

A
)

5.5V4.5V4.0V3.3V2.7V1.8V
5.0V

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I C
C

 (
m

A
)

5.5V4.5V4.0V3.3V2.7V1.8V
5.0V

372

8018P–AVR–08/10

ATmega169P

Figure 29-66. Minimum Reset Pulse Width vs. VCC

0

500

1000

1500

2000

2500

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

P
u

ls
e

w
id

th
 (

n
s
)

85°C25°C-40°C

373

8018P–AVR–08/10

ATmega169P

30. Register Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

(0xFF) Reserved – – – – – – – –

(0xFE) LCDDR18 – – – – – – – SEG324 251

(0xFD) LCDDR17 SEG323 SEG322 SEG321 SEG320 SEG319 SEG318 SEG317 SEG316 251

(0xFC) LCDDR16 SEG315 SEG314 SEG313 SEG312 SEG311 SEG310 SEG309 SEG308 251

(0xFB) LCDDR15 SEG307 SEG306 SEG305 SEG304 SEG303 SEG302 SEG301 SEG300 251

(0xFA) Reserved – – – – – – – –

(0xF9) LCDDR13 – – – – – – – SEG224 251

(0xF8) LCDDR12 SEG223 SEG222 SEG221 SEG220 SEG219 SEG218 SEG217 SEG216 251

(0xF7) LCDDR11 SEG215 SEG214 SEG213 SEG212 SEG211 SEG210 SEG209 SEG208 251

(0xF6) LCDDR10 SEG207 SEG206 SEG205 SEG204 SEG203 SEG202 SEG201 SEG200 251

(0xF5) Reserved – – – – – – – –

(0xF4) LCDDR8 – – – – – – – SEG124 251

(0xF3) LCDDR7 SEG123 SEG122 SEG121 SEG120 SEG119 SEG118 SEG117 SEG116 251

(0xF2) LCDDR6 SEG115 SEG114 SEG113 SEG112 SEG111 SEG110 SEG109 SEG108 251

(0xF1) LCDDR5 SEG107 SEG106 SEG105 SEG104 SEG103 SEG102 SEG101 SEG100 251

(0xF0) Reserved – – – – – – – –

(0xEF) LCDDR3 – – – – – – – SEG024 251

(0xEE) LCDDR2 SEG023 SEG022 SEG021 SEG020 SEG019 SEG018 SEG017 SEG016 251

(0xED) LCDDR1 SEG015 SEG014 SEG013 SEG012 SEG011 SEG010 SEG09 SEG008 251

(0xEC) LCDDR0 SEG007 SEG006 SEG005 SEG004 SEG003 SEG002 SEG001 SEG000 251

(0xEB) Reserved – – – – – – – –

(0xEA) Reserved – – – – – – – –

(0xE9) Reserved – – – – – – – –

(0xE8) Reserved – – – – – – – –

(0xE7) LCDCCR LCDDC2 LCDDC1 LCDDC0 LCDMDT LCDCC3 LCDCC2 LCDCC1 LCDCC0 250

(0xE6) LCDFRR – LCDPS2 LCDPS1 LCDPS0 – LCDCD2 LCDCD1 LCDCD0 248

(0xE5) LCDCRB LCDCS LCD2B LCDMUX1 LCDMUX0 – LCDPM2 LCDPM1 LCDPM0 247

(0xE4) LCDCRA LCDEN LCDAB – LCDIF LCDIE LCDBD LCDCCD LCDBL 246

(0xE3) Reserved – – – – – – – –

(0xE2) Reserved – – – – – – – –

(0xE1) Reserved – – – – – – – –

(0xE0) Reserved – – – – – – – –

(0xDF) Reserved – – – – – – – –

(0xDE) Reserved – – – – – – – –

(0xDD) Reserved – – – – – – – –

(0xDC) Reserved – – – – – – – –

(0xDB) Reserved – – – – – – – –

(0xDA) Reserved – – – – – – – –

(0xD9) Reserved – – – – – – – –

(0xD8) Reserved – – – – – – – –

(0xD7) Reserved – – – – – – – –

(0xD6) Reserved – – – – – – – –

(0xD5) Reserved – – – – – – – –

(0xD4) Reserved – – – – – – – –

(0xD3) Reserved – – – – – – – –

(0xD2) Reserved – – – – – – – –

(0xD1) Reserved – – – – – – – –

(0xD0) Reserved – – – – – – – –

(0xCF) Reserved – – – – – – – –

(0xCE) Reserved – – – – – – – –

(0xCD) Reserved – – – – – – – –

(0xCC) Reserved – – – – – – – –

(0xCB) Reserved – – – – – – – –

(0xCA) Reserved – – – – – – – –

(0xC9) Reserved – – – – – – – –

(0xC8) Reserved – – – – – – – –

(0xC7) Reserved – – – – – – – –

(0xC6) UDR0 USART0 I/O Data Register 194

(0xC5) UBRRH0 USART0 Baud Rate Register High 198

(0xC4) UBRRL0 USART0 Baud Rate Register Low 198

(0xC3) Reserved – – – – – – – –

(0xC2) UCSR0C – UMSEL0 UPM01 UPM00 USBS0 UCSZ01 UCSZ00 UCPOL0 194

(0xC1) UCSR0B RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 194

(0xC0) UCSR0A RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0 194

374

8018P–AVR–08/10

ATmega169P

(0xBF) Reserved – – – – – – – –

(0xBE) Reserved – – – – – – – –

(0xBD) Reserved – – – – – – – –

(0xBC) Reserved – – – – – – – –

(0xBB) Reserved – – – – – – – –

(0xBA) USIDR USI Data Register 207

(0xB9) USISR USISIF USIOIF USIPF USIDC USICNT3 USICNT2 USICNT1 USICNT0 207

(0xB8) USICR USISIE USIOIE USIWM1 USIWM0 USICS1 USICS0 USICLK USITC 208

(0xB7) Reserved – – – – – – –

(0xB6) ASSR – – – EXCLK AS2 TCN2UB OCR2UB TCR2UB 156

(0xB5) Reserved – – – – – – – –

(0xB4) Reserved – – – – – – – –

(0xB3) OCR2A Timer/Counter2 Output Compare Register A 155

(0xB2) TCNT2 Timer/Counter2 (8-bit) 155

(0xB1) Reserved – – – – – – – –

(0xB0) TCCR2A FOC2A WGM20 COM2A1 COM2A0 WGM21 CS22 CS21 CS20 153

(0xAF) Reserved – – – – – – – –

(0xAE) Reserved – – – – – – – –

(0xAD) Reserved – – – – – – – –

(0xAC) Reserved – – – – – – – –

(0xAB) Reserved – – – – – – – –

(0xAA) Reserved – – – – – – – –

(0xA9) Reserved – – – – – – – –

(0xA8) Reserved – – – – – – – –

(0xA7) Reserved – – – – – – – –

(0xA6) Reserved – – – – – – – –

(0xA5) Reserved – – – – – – – –

(0xA4) Reserved – – – – – – – –

(0xA3) Reserved – – – – – – – –

(0xA2) Reserved – – – – – – – –

(0xA1) Reserved – – – – – – – –

(0xA0) Reserved – – – – – – – –

(0x9F) Reserved – – – – – – – –

(0x9E) Reserved – – – – – – – –

(0x9D) Reserved – – – – – – – –

(0x9C) Reserved – – – – – – – –

(0x9B) Reserved – – – – – – – –

(0x9A) Reserved – – – – – – – –

(0x99) Reserved – – – – – – – –

(0x98) Reserved – – – – – – – –

(0x97) Reserved – – – – – – – –

(0x96) Reserved – – – – – – – –

(0x95) Reserved – – – – – – – –

(0x94) Reserved – – – – – – – –

(0x93) Reserved – – – – – – – –

(0x92) Reserved – – – – – – – –

(0x91) Reserved – – – – – – – –

(0x90) Reserved – – – – – – – –

(0x8F) Reserved – – – – – – – –

(0x8E) Reserved – – – – – – – –

(0x8D) Reserved – – – – – – – –

(0x8C) Reserved – – – – – – – –

(0x8B) OCR1BH Timer/Counter1 - Output Compare Register B High Byte 132

 (0x8A) OCR1BL Timer/Counter1 - Output Compare Register B Low Byte 132

(0x89) OCR1AH Timer/Counter1 - Output Compare Register A High Byte 132

(0x88) OCR1AL Timer/Counter1 - Output Compare Register A Low Byte 132

(0x87) ICR1H Timer/Counter1 - Input Capture Register High Byte 133

(0x86) ICR1L Timer/Counter1 - Input Capture Register Low Byte 133

(0x85) TCNT1H Timer/Counter1 - Counter Register High Byte 132

(0x84) TCNT1L Timer/Counter1 - Counter Register Low Byte 132

(0x83) Reserved – – – – – – – –

(0x82) TCCR1C FOC1A FOC1B – – – – – – 131

(0x81) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 130

(0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10 128

(0x7F) DIDR1 – – – – – – AIN1D AIN0D 215

(0x7E) DIDR0 ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D 233

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

375

8018P–AVR–08/10

ATmega169P

(0x7D) Reserved – – – – – – – –

(0x7C) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 229

(0x7B) ADCSRB – ACME – – – ADTS2 ADTS1 ADTS0 214, 233

(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 231

(0x79) ADCH ADC Data Register High byte 232

(0x78) ADCL ADC Data Register Low byte 232

(0x77) Reserved – – – – – – – –

(0x76) Reserved – – – – – – – –

(0x75) Reserved – – – – – – – –

(0x74) Reserved – – – – – – – –

(0x73) Reserved – – – – – – – –

(0x72) Reserved – – – – – – – –

(0x71) Reserved – – – – – – – –

(0x70) TIMSK2 – – – – – – OCIE2A TOIE2 156

(0x6F) TIMSK1 – – ICIE1 – – OCIE1B OCIE1A TOIE1 133

(0x6E) TIMSK0 – – – – – – OCIE0A TOIE0 104

(0x6D) Reserved – – – – – – – –

(0x6C) PCMSK1 PCINT15 PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 63

(0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 64

(0x6A) Reserved – – – – – – – –

(0x69) EICRA – – – – – – ISC01 ISC00 62

(0x68) Reserved – – – – – – – –

(0x67) Reserved – – – – – – – –

(0x66) OSCCAL Oscillator Calibration Register 38

(0x65) Reserved – – – – – – – –

(0x64) PRR – – – PRLCD PRTIM1 PRSPI PRUSART0 PRADC 45

(0x63) Reserved – – – – – – – –

(0x62) Reserved – – – – – – – –

(0x61) CLKPR CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 38

(0x60) WDTCR – – – WDCE WDE WDP2 WDP1 WDP0 54

0x3F (0x5F) SREG I T H S V N Z C 13

0x3E (0x5E) SPH – – – – – SP10 SP9 SP8 13

0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 13

0x3C (0x5C) Reserved

0x3B (0x5B) Reserved

0x3A (0x5A) Reserved

0x39 (0x59) Reserved

0x38 (0x58) Reserved

0x37 (0x57) SPMCSR SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SPMEN 294

0x36 (0x56) Reserved – – – – – – – –

0x35 (0x55) MCUCR JTD – – PUD – – IVSEL IVCE 60, 88, 279

0x34 (0x54) MCUSR – – – JTRF WDRF BORF EXTRF PORF 279

0x33 (0x53) SMCR – – – – SM2 SM1 SM0 SE 45

0x32 (0x52) Reserved – – – – – – – –

0x31 (0x51) OCDR IDRD/OCDR7 OCDR6 OCDR5 OCDR4 OCDR3 OCDR2 OCDR1 OCDR0 258

0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 214

0x2F (0x4F) Reserved – – – – – – – –

0x2E (0x4E) SPDR SPI Data Register 167

0x2D (0x4D) SPSR SPIF WCOL – – – – – SPI2X 166

0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 165

0x2B (0x4B) GPIOR2 General Purpose I/O Register 2 28

0x2A (0x4A) GPIOR1 General Purpose I/O Register 1 28

0x29 (0x49) Reserved – – – – – – – –

0x28 (0x48) Reserved – – – – – – – –

0x27 (0x47) OCR0A Timer/Counter0 Output Compare Register A 104

0x26 (0x46) TCNT0 Timer/Counter0 (8 Bit) 104

0x25 (0x45) Reserved – – – – – – – –

0x24 (0x44) TCCR0A FOC0A WGM00 COM0A1 COM0A0 WGM01 CS02 CS01 CS00 102

0x23 (0x43) GTCCR TSM – – – – – PSR2 PSR10 137, 157

0x22 (0x42) EEARH – – – – – – – EEAR8 28

0x21 (0x41) EEARL EEPROM Address Register Low Byte 28

0x20 (0x40) EEDR EEPROM Data Register 29

0x1F (0x3F) EECR – – – – EERIE EEMWE EEWE EERE 29

0x1E (0x3E) GPIOR0 General Purpose I/O Register 0 28

0x1D (0x3D) EIMSK PCIE1 PCIE0 – – – – – INT0 62

0x1C (0x3C) EIFR PCIF1 PCIF0 – – – – – INTF0 63

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

376

8018P–AVR–08/10

ATmega169P

Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.

2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The
CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega169P is a com-
plex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN
and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.

0x1B (0x3B) Reserved – – – – – – – –

0x1A (0x3A) Reserved – – – – – – – –

0x19 (0x39) Reserved – – – – – – – –

0x18 (0x38) Reserved – – – – – – – –

0x17 (0x37) TIFR2 – – – – – – OCF2A TOV2 156

0x16 (0x36) TIFR1 – – ICF1 – – OCF1B OCF1A TOV1 134

0x15 (0x35) TIFR0 – – – – – – OCF0A TOV0 105

0x14 (0x34) PORTG – – PORTG5 PORTG4 PORTG3 PORTG2 PORTG1 PORTG0 90

0x13 (0x33) DDRG – – DDG5 DDG4 DDG3 DDG2 DDG1 DDG0 90

0x12 (0x32) PING – – PING5 PING4 PING3 PING2 PING1 PING0 90

0x11 (0x31) PORTF PORTF7 PORTF6 PORTF5 PORTF4 PORTF3 PORTF2 PORTF1 PORTF0 90

0x10 (0x30) DDRF DDF7 DDF6 DDF5 DDF4 DDF3 DDF2 DDF1 DDF0 90

0x0F (0x2F) PINF PINF7 PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINF0 90

0x0E (0x2E) PORTE PORTE7 PORTE6 PORTE5 PORTE4 PORTE3 PORTE2 PORTE1 PORTE0 89

0x0D (0x2D) DDRE DDE7 DDE6 DDE5 DDE4 DDE3 DDE2 DDE1 DDE0 89

0x0C (0x2C) PINE PINE7 PINE6 PINE5 PINE4 PINE3 PINE2 PINE1 PINE0 90

0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 89

0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 89

0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 89

0x08 (0x28) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 89

0x07 (0x27) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 89

0x06 (0x26) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 89

0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 88

0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 88

0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 88

0x02 (0x22) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 88

0x01 (0x21) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 88

0x00 (0x20) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 88

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

377

8018P–AVR–08/10

ATmega169P

31. Instruction Set Summary

Mnemonics Operands Description Operation Flags #Clocks

ARITHMETIC AND LOGIC INSTRUCTIONS

ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1

ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1

ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2

SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1

SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1

SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1

SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1

SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2

AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1

ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1

OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1

ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1

EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1

COM Rd One’s Complement Rd ← 0xFF − Rd Z,C,N,V 1

NEG Rd Two’s Complement Rd ← 0x00 − Rd Z,C,N,V,H 1

SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1

CBR Rd,K Clear Bit(s) in Register Rd ← Rd • (0xFF - K) Z,N,V 1

INC Rd Increment Rd ← Rd + 1 Z,N,V 1

DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1

TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1

CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1

SER Rd Set Register Rd ← 0xFF None 1

MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C 2

MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C 2

MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C 2

FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2

FMULS Rd, Rr Fractional Multiply Signed R1:R0 ← (Rd x Rr) << 1 Z,C 2

FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2

BRANCH INSTRUCTIONS

RJMP k Relative Jump PC ← PC + k + 1 None 2

IJMP Indirect Jump to (Z) PC ← Z None 2

JMP k Direct Jump PC ← k None 3

RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3

ICALL Indirect Call to (Z) PC ← Z None 3

CALL k Direct Subroutine Call PC ← k None 4

RET Subroutine Return PC ← STACK None 4

RETI Interrupt Return PC ← STACK I 4

CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1/2/3

CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1

CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1

CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1

SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3

SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3

SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1/2/3

SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3

BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1/2

BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1/2

BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2

BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2

BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2

BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2

BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2

BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2

BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2

BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1/2

BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1/2

BRLT k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1/2

BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1/2

BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1/2

BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1/2

BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1/2

BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1/2

378

8018P–AVR–08/10

ATmega169P

BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1/2

BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None 1/2

BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None 1/2

BIT AND BIT-TEST INSTRUCTIONS

SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2

CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2

LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1

LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1

ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1

ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1

ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1

BSET s Flag Set SREG(s) ← 1 SREG(s) 1

BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1

BST Rr, b Bit Store from Register to T T ← Rr(b) T 1

BLD Rd, b Bit load from T to Register Rd(b) ← T None 1

SEC Set Carry C ← 1 C 1

CLC Clear Carry C ← 0 C 1

SEN Set Negative Flag N ← 1 N 1

CLN Clear Negative Flag N ← 0 N 1

SEZ Set Zero Flag Z ← 1 Z 1

CLZ Clear Zero Flag Z ← 0 Z 1

SEI Global Interrupt Enable I ← 1 I 1

CLI Global Interrupt Disable I ← 0 I 1

SES Set Signed Test Flag S ← 1 S 1

CLS Clear Signed Test Flag S ← 0 S 1

SEV Set Twos Complement Overflow. V ← 1 V 1

CLV Clear Twos Complement Overflow V ← 0 V 1

SET Set T in SREG T ← 1 T 1

CLT Clear T in SREG T ← 0 T 1

SEH Set Half Carry Flag in SREG H ← 1 H 1

CLH Clear Half Carry Flag in SREG H ← 0 H 1

DATA TRANSFER INSTRUCTIONS

MOV Rd, Rr Move Between Registers Rd ← Rr None 1

MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1

LDI Rd, K Load Immediate Rd ← K None 1

LD Rd, X Load Indirect Rd ← (X) None 2

LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2

LD Rd, - X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None 2

LD Rd, Y Load Indirect Rd ← (Y) None 2

LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2

LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2

LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2

LD Rd, Z Load Indirect Rd ← (Z) None 2

LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2

LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2

LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2

LDS Rd, k Load Direct from SRAM Rd ← (k) None 2

ST X, Rr Store Indirect (X) ← Rr None 2

ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2

ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2

ST Y, Rr Store Indirect (Y) ← Rr None 2

ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2

ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2

STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2

ST Z, Rr Store Indirect (Z) ← Rr None 2

ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2

ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2

STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2

STS k, Rr Store Direct to SRAM (k) ← Rr None 2

LPM Load Program Memory R0 ← (Z) None 3

LPM Rd, Z Load Program Memory Rd ← (Z) None 3

LPM Rd, Z+ Load Program Memory and Post-Inc Rd ← (Z), Z ← Z+1 None 3

SPM Store Program Memory (Z) ← R1:R0 None -

IN Rd, P In Port Rd ← P None 1

OUT P, Rr Out Port P ← Rr None 1

Mnemonics Operands Description Operation Flags #Clocks

379

8018P–AVR–08/10

ATmega169P

PUSH Rr Push Register on Stack STACK ← Rr None 2

POP Rd Pop Register from Stack Rd ← STACK None 2

MCU CONTROL INSTRUCTIONS

NOP No Operation None 1

SLEEP Sleep (see specific descr. for Sleep function) None 1

WDR Watchdog Reset (see specific descr. for WDR/timer) None 1

BREAK Break For On-chip Debug Only None N/A

Mnemonics Operands Description Operation Flags #Clocks

380

8018P–AVR–08/10

ATmega169P

32. Ordering Information

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.

2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also
Halide free and fully Green.

3. For Speed vs. VCC, see Figure 28-1 on page 331 and Figure 28-2 on page 332.

Speed (MHz)(3) Power Supply Ordering Code Package(1)(2) Operation Range

8 1.8V - 5.5V

ATmega169PV-8AU

ATmega169PV-8MU

ATmega169PV-8MCH

64A

64M1

64MC

Industrial
(-40°C to 85°C)

16 2.7V - 5.5V

ATmega169P-16AU

ATmega169P-16MU

ATmega169P-16MCH

64A

64M1

64MC

Industrial
(-40°C to 85°C)

Package Type

64A 64-Lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)

64M1 64-pad, 9 × 9 × 1.0 mm body, lead pitch 0.50 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

64MC 64-lead (2-row Staggered), 7 × 7 × 1.0 mm body, 4.0 × 4.0 mm Exposed Pad, Quad Flat No-Lead Package (QFN)

381

8018P–AVR–08/10

ATmega169P

33. Packaging Information

33.1 64A

 2325 Orchard Parkway

 San Jose, CA 95131

TITLE DRAWING NO.

R

REV.

64A, 64-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness,

0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
B64A

10/5/2001

PIN 1 IDENTIFIER

0°~7°

PIN 1

L

C

A1 A2 A

D1

D

e E1 E

B

COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

Notes:

 1.This package conforms to JEDEC reference MS-026, Variation AEB.

 2. Dimensions D1 and E1 do not include mold protrusion. Allowable

 protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum

 plastic body size dimensions including mold mismatch.

 3. Lead coplanarity is 0.10 mm maximum.

 A – – 1.20

 A1 0.05 – 0.15

 A2 0.95 1.00 1.05

 D 15.75 16.00 16.25

 D1 13.90 14.00 14.10 Note 2

 E 15.75 16.00 16.25

 E1 13.90 14.00 14.10 Note 2

 B 0.30 – 0.45

 C 0.09 – 0.20

 L 0.45 – 0.75

 e 0.80 TYP

382

8018P–AVR–08/10

ATmega169P

33.2 64M1

 2325 Orchard Parkway

 San Jose, CA 95131

TITLE DRAWING NO.

R

REV.

64M1, 64-pad, 9 x 9 x 1.0 mm Body, Lead Pitch 0.50 mm,

G64M1

5/25/06

COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

 A 0.80 0.90 1.00

 A1 – 0.02 0.05

 b 0.18 0.25 0.30

 D

 D2 5.20 5.40 5.60

8.90 9.00 9.10

8.90 9.00 9.10 E

 E2 5.20 5.40 5.60

 e 0.50 BSC

L 0.35 0.40 0.45

Note: 1. JEDEC Standard MO-220, (SAW Singulation) Fig. 1, VMMD.

 2. Dimension and tolerance conform to ASMEY14.5M-1994.

TOP VIEW

SIDE VIEW

BOTTOM VIEW

D

E

Marked Pin# 1 ID

SEATING PLANE

A1

C

A

C0.08

1

2

3

K 1.25 1.40 1.55

E2

D2

b e

Pin #1 Corner
L

Pin #1
Triangle

Pin #1
Chamfer
(C 0.30)

Option A

Option B

Pin #1
Notch
(0.20 R)

Option C

K

K

5.40 mm Exposed Pad, Micro Lead Frame Package (MLF)

383

8018P–AVR–08/10

ATmega169P

33.3 64MC

TITLE DRAWING NO.GPC REV.

 Package Drawing Contact:
 packagedrawings@atmel.com 64MCZXC A

64MC, 64QFN (2-Row Staggered),

7 x 7 x 1.00 mm Body, 4.0 x 4.0 mm Exposed Pad,

Quad Flat No Lead Package

10/3/07

COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

 A 0.80 0.90 1.00

 A1 0.00 0.02 0.05

 b 0.18 0.23 0.28

 C 0.20 REF

 D 6.90 7.00 7.10

 D2 3.95 4.00 4.05

 E 6.90 7.00 7.10

 E2 3.95 4.00 4.05

 eT – 0.65 –

 eR – 0.65 –

 K 0.20 – – (REF)

 L 0.35 0.40 0.45

 y 0.00 – 0.075

SIDE VIEW

TOP VIEW

BOTTOM VIEW

Note: 1. The terminal #1 ID is a Laser-marked Feature.

Pin 1 ID

D

E
A1

A

y

C

eT/2

R0.20 0.40

B1

A1

B30

A34

b

A8

B7

eT

D2

B16

A18

B22

A25

E2 K (0.1) REF

B8

A9

(0.18) REF

L

B15

A17

L

e
R

A26

B23

eT

384

8018P–AVR–08/10

ATmega169P

34. Errata

34.1 ATmega169P Rev. G

No known errata.

34.2 ATmega169P Rev. A to F

Not sampled.

385

8018P–AVR–08/10

ATmega169P

35. Datasheet Revision History

Please note that the referring page numbers in this section are referring to this document. The

referring revision in this section are referring to the document revision.

35.1 Rev. 8018P 08/10

35.2 Rev. 8018O 10/09

35.3 Rev. 8018N 08/09

35.4 Rev. 8018M 07/09

35.5 Rev. L 08/08

35.6 Rev. K 06/08

1. Status changed to active

2. EEPROM minimum wait delay, Table 27-15 on page 312, has been changed from 9.0

ms to 3.6 ms

3. Datasheet layout and technical terminology updated

1. Changed datasheet status to “Mature”

2. Added Capacitance for Low-frequency Crystal Oscillator, Table 8-5 on page 33.

1. Updated ”Ordering Information” on page 380, MCU replaced by MCH.

1. Updated the last page with new Atmel’s addresses.

1. Updated package information in ”Features” on page 1.

2. Added ”Pinout - DRQFN” on page 3:

• The Staggered QFN is named Dual Row QFN (DRQFN).

1. Updated package information in ”Features” on page 1.

2. Removed “Disclaimer” from section ”Pin Configurations” on page 2

3. Added ”64MC (DRQFN) Pinout ATmega169P” on page 3

4. Added ”Data Retention” on page 9.

5. Updated ”Stack Pointer” on page 13.

6. Updated ”Low-frequency Crystal Oscillator” on page 34.

7. Updated ”USART Register Description” on page 194, register descriptions and tables.

8. Updated ”UCSRnB – USART Control and Status Register n B” on page 195.

9. Updated VIL2 in ”DC Characteristics” on page 329, by removing 0.2VCC from the table.

386

8018P–AVR–08/10

ATmega169P

35.7 Rev. J 08/07

35.8 Rev. I 11/06

35.9 Rev. H 09/06

35.10 Rev. G 08/06

35.11 Rev. F 08/06

35.12 Rev. E 08/06

10. Replaced Figure 29-36 on page 357 by a correct one.

11. Updated ”Ordering Information” on page 380.

12. Added ”64MC” on page 383 package to ”Packaging Information” on page 381.

1. Updated ”Features” on page 1.

2. Added ”Minimizing Power Consumption” on page 237 in the LCD section.

3. Updated ”System and Reset Characteristics” on page 333.

1. Updated ”Low-frequency Crystal Oscillator” on page 34.

2. Updated Table 8-8 on page 35, Table 8-9 on page 35, Table 8-10 on page 35, Table

28-7 on page 336.

3. Updated note in Table 28-7 on page 336.

1. All characterization data moved to ”Electrical Characteristics” on page 329.

2. Updated ”Calibrated Internal RC Oscillator” on page 32.

3. Updated ”System Control and Reset” on page 47.

4. Added note to Table 27-16 on page 314.

5. Updated ”LCD Controller Characteristics” on page 337.

1. Updated ”LCD Controller Characteristics” on page 337.

1. Updated ”DC Characteristics” on page 329.

2. Updated Table 13-19 on page 84.

1. Updated ”Low-frequency Crystal Oscillator” on page 34.

2. Updated ”Device Identification Register” on page 260.

3. Updated ”Signature Bytes” on page 299.

4. Added Table 27-6 on page 299.

387

8018P–AVR–08/10

ATmega169P

35.13 Rev. D 07/06

35.14 Rev. C 06/06

35.15 Rev. B 04/06

35.16 Rev. A 03/06

1. Updated ”Register Description for I/O-Ports” on page 88.

2. Updated ”Fast PWM Mode” on page 97.

3. Updated ”Fast PWM Mode” on page 120.

4. Updated Table 14-2 on page 102, Table 14-4 on page 103, Table 15-3 on page 129,

Table 15-4 on page 130, Table 17-2 on page 153 and Table 17-4 on page 154.

5 Updated ”UCSRnC – USART Control and Status Register n C” on page 196.

6. Updated Features in ”USI – Universal Serial Interface” on page 199.

7. Added ”Clock speed considerations.” on page 206.

8. Updated Features in ”LCD Controller” on page 234.

9. Updated ”Register Summary” on page 373.

1. Updated typos.

2. Updated ”Calibrated Internal RC Oscillator” on page 32.

3. Updated ”OSCCAL – Oscillator Calibration Register” on page 38.

4. Added Table 28-2 on page 332.

1. Updated ”Calibrated Internal RC Oscillator” on page 32.

1. Initial revision.

i

8018O–AVR–10/09

ATmega169P

Table of Contents

Features ... 1

1 Pin Configurations ... 2

1.1Pinout - TQFP/QFN/MLF ...2

1.2Pinout - DRQFN ..3

2 Overview ... 4

2.1Block Diagram ...4

2.2Pin Descriptions ..6

3 Resources ... 9

4 Data Retention .. 9

5 About Code Examples ... 10

6 AVR CPU Core .. 11

6.1Introduction ..11

6.2Architectural Overview ..11

6.3ALU – Arithmetic Logic Unit ..12

6.4Stack Pointer ...13

6.5Instruction Execution Timing ...14

6.6Reset and Interrupt Handling ..15

6.7Status Register ..17

6.8General Purpose Register File ..18

7 AVR Memories .. 20

7.1In-System Reprogrammable Flash Program Memory ...20

7.2SRAM Data Memory ...21

7.3EEPROM Data Memory ..23

7.4I/O Memory ..27

7.5General Purpose I/O Registers ...28

7.6EEPROM Register Description ..28

8 System Clock and Clock Options ... 30

8.1Clock Systems and their Distribution ...30

8.2Clock Sources ...31

8.3Default Clock Source ...32

8.4Calibrated Internal RC Oscillator ...32

8.5Crystal Oscillator ...33

ii

8018O–AVR–10/09

ATmega169P

8.6Low-frequency Crystal Oscillator ...34

8.7External Clock ...36

8.8Timer/Counter Oscillator ...37

8.9Clock Output Buffer ...37

8.10System Clock Prescaler ..37

8.11Register Description ..38

9 Power Management and Sleep Modes ... 40

9.1Sleep Modes ...40

9.2Idle Mode ...41

9.3ADC Noise Reduction Mode ...41

9.4Power-down Mode ..41

9.5Power-save Mode ...42

9.6Standby Mode ...42

9.7Power Reduction Register ...42

9.8Minimizing Power Consumption ..43

9.9Register Description ..45

10 System Control and Reset .. 47

10.1Resetting the AVR ...47

10.2Reset Sources ...47

10.3Internal Voltage Reference ..51

10.4Watchdog Timer ..51

10.5Register Description ..54

11 Interrupts .. 56

11.1Interrupt Vectors in ATmega169P ...56

11.2Moving Interrupts Between Application and Boot Space59

12 External Interrupts ... 61

12.1Pin Change Interrupt Timing ...61

12.2Register Description ..62

13 I/O-Ports .. 65

13.1Overview ...65

13.2Ports as General Digital I/O ...66

13.3Alternate Port Functions ..71

13.4Register Description for I/O-Ports ..88

14 8-bit Timer/Counter0 with PWM .. 91

iii

8018O–AVR–10/09

ATmega169P

14.1Features ..91

14.2Overview ...91

14.3Timer/Counter Clock Sources ...92

14.4Counter Unit ..92

14.5Output Compare Unit ..93

14.6Compare Match Output Unit ..95

14.7Modes of Operation ...96

14.8Timer/Counter Timing Diagrams ...100

14.98-bit Timer/Counter Register Description ..102

15 16-bit Timer/Counter1 .. 106

15.1Features ..106

15.2Overview ...106

15.3Accessing 16-bit Registers ..109

15.4Timer/Counter Clock Sources ...111

15.5Counter Unit ..112

15.6Input Capture Unit ...113

15.7Output Compare Units ...115

15.8Compare Match Output Unit ..117

15.9Modes of Operation ...118

15.10Timer/Counter Timing Diagrams ...126

15.1116-bit Timer/Counter Register Description ..128

16 Timer/Counter0 and Timer/Counter1 Prescalers 135

16.1Prescaler Reset ...135

16.2Internal Clock Source ..135

16.3External Clock Source ...135

16.4Register Description ..137

17 8-bit Timer/Counter2 with PWM and Asynchronous Operation 138

17.1Overview ...138

17.2Timer/Counter Clock Sources ...139

17.3Counter Unit ..139

17.4Output Compare Unit ..140

17.5Compare Match Output Unit ..142

17.6Modes of Operation ...143

17.7Timer/Counter Timing Diagrams ...148

17.8Asynchronous operation of the Timer/Counter ..150

iv

8018O–AVR–10/09

ATmega169P

17.9Timer/Counter Prescaler ...152

17.108-bit Timer/Counter Register Description ..153

18 SPI – Serial Peripheral Interface ... 158

18.1Features ..158

18.2Overview ...158

18.3SS Pin Functionality ..163

18.4Data Modes ...164

18.5Register Description ..165

19 USART ... 168

19.1Features ..168

19.2Overview ...168

19.3Clock Generation ...170

19.4Frame Formats ..173

19.5USART Initialization ..175

19.6Data Transmission – The USART Transmitter ..177

19.7Data Reception – The USART Receiver ...180

19.8Asynchronous Data Reception ..185

19.9Multi-processor Communication Mode ..188

19.10Examples of Baud Rate Setting ..190

19.11USART Register Description ...194

20 USI – Universal Serial Interface .. 199

20.1Overview ...199

20.2Functional Descriptions ...200

20.3Alternative USI Usage ...206

20.4USI Register Descriptions ...207

21 AC - Analog Comparator ... 212

21.1Analog Comparator Multiplexed Input ...213

21.2Analog Comparator Register Description ..214

22 ADC - Analog to Digital Converter ... 216

22.1Features ..216

22.2Overview ...216

22.3Operation ...217

22.4Starting a Conversion ..218

22.5Prescaling and Conversion Timing ..219

v

8018O–AVR–10/09

ATmega169P

22.6Changing Channel or Reference Selection ...221

22.7ADC Noise Canceler ...222

22.8ADC Conversion Result ..227

22.9ADC Register Description ...229

23 LCD Controller ... 234

23.1Features ..234

23.2Overview ...234

23.3Mode of Operation ...237

23.4LCD Usage ..242

23.5LCD Register Description ..246

24 JTAG Interface and On-chip Debug System 252

24.1Overview ...252

24.2TAP – Test Access Port ..253

24.3TAP Controller ...255

24.4Using the Boundary-scan Chain ..256

24.5Using the On-chip Debug System ...256

24.6On-chip Debug Specific JTAG Instructions ...257

24.7On-chip Debug Related Register in I/O Memory ...258

24.8Using the JTAG Programming Capabilities ...258

24.9Bibliography ...258

25 IEEE 1149.1 (JTAG) Boundary-scan ... 259

25.1Features ..259

25.2System Overview ..259

25.3Data Registers ...260

25.4Boundary-scan Specific JTAG Instructions ...261

25.5Boundary-scan Chain ..262

25.6Boundary-scan Order ..272

25.7Boundary-scan Description Language Files ..278

25.8Boundary-scan Related Register in I/O Memory ...279

26 Boot Loader Support – Read-While-Write Self-Programming 280

26.1Features ..280

26.2Overview ...280

26.3Application and Boot Loader Flash Sections ...280

26.4Read-While-Write and No Read-While-Write Flash Sections281

26.5Boot Loader Lock Bits ...284

vi

8018O–AVR–10/09

ATmega169P

26.6Entering the Boot Loader Program ..285

26.7Addressing the Flash During Self-Programming ...286

26.8Self-Programming the Flash ..287

26.9Register Description ..294

27 Memory Programming ... 296

27.1Program And Data Memory Lock Bits ...296

27.2Fuse Bits ...297

27.3Signature Bytes ...299

27.4Calibration Byte ...299

27.5Page Size ..299

27.6Parallel Programming Parameters, Pin Mapping, and Commands299

27.7Parallel Programming ..302

27.8Serial Downloading ...310

27.9Programming via the JTAG Interface ..316

28 Electrical Characteristics .. 329

28.1Absolute Maximum Ratings* ...329

28.2DC Characteristics ..329

28.3Speed Grades ...331

28.4Clock Characteristics ...332

28.5System and Reset Characteristics ..333

28.6SPI Timing Characteristics ..334

28.7ADC Characteristics – Preliminary Data ..336

28.8LCD Controller Characteristics ..337

29 Typical Characteristics .. 338

29.1Active Supply Current ..338

29.2Idle Supply Current ..341

29.3Supply Current of I/O modules ..343

29.4Power-down Supply Current ...344

29.5Power-save Supply Current ..345

29.6Standby Supply Current ..346

29.7Pin Pull-up ...350

29.8Pin Driver Strength ..353

29.9Pin Thresholds and Hysteresis ..359

29.10BOD Thresholds and Analog Comparator Offset ..362

29.11Internal Oscillator Speed ...365

vii

8018O–AVR–10/09

ATmega169P

29.12Current Consumption of Peripheral Units ..368

29.13Current Consumption in Reset and Reset Pulsewidth371

30 Register Summary ... 373

31 Instruction Set Summary .. 377

32 Ordering Information ... 380

33 Packaging Information .. 381

33.164A ..381

33.264M1 ...382

33.364MC ...383

34 Errata ... 384

34.1ATmega169P Rev. G ..384

34.2ATmega169P Rev. A to F ...384

35 Datasheet Revision History .. 385

35.1Rev. 8018P 08/10 ..385

35.2Rev. 8018O 10/09 ...385

35.3Rev. 8018N 08/09 ...385

35.4Rev. 8018M 07/09 ...385

35.5Rev. L 08/08 ..385

35.6Rev. K 06/08 ..385

35.7Rev. J 08/07 ..386

35.8Rev. I 11/06 ...386

35.9Rev. H 09/06 ...386

35.10Rev. G 08/06 ...386

35.11Rev. F 08/06 ..386

35.12Rev. E 08/06 ..386

35.13Rev. D 07/06 ...387

35.14Rev. C 06/06 ...387

35.15Rev. B 04/06 ..387

35.16Rev. A 03/06 ..387

Table of Contents... i

8018O–AVR–10/09

Headquarters International

Atmel Corporation

2325 Orchard Parkway

San Jose, CA 95131

USA

Tel: 1(408) 441-0311

Fax: 1(408) 487-2600

Atmel Asia

Unit 1-5 & 16, 19/F

BEA Tower, Millennium City 5

418 Kwun Tong Road

Kwun Tong, Kowloon

Hong Kong

Tel: (852) 2245-6100

Fax: (852) 2722-1369

Atmel Europe

Le Krebs

8, Rue Jean-Pierre Timbaud

BP 309

78054 Saint-Quentin-en-

Yvelines Cedex

France

Tel: (33) 1-30-60-70-00

Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg.

1-24-8 Shinkawa

Chuo-ku, Tokyo 104-0033

Japan

Tel: (81) 3-3523-3551

Fax: (81) 3-3523-7581

Product Contact

Web Site

www.atmel.com

Technical Support

avr@atmel.com

Sales Contact

www.atmel.com/contacts

Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2010 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR®, AVR® logo, and others are registered trade-

marks or trademarks of Atmel Corporation or its subsidiaries. Windows® and others are registered trademarks or trademarks of Microsoft® Cor-

poration in the US and/or other countries. Other terms and product names may be trademarks of others.

	Features
	1. Pin Configurations
	1.1 Pinout - TQFP/QFN/MLF
	1.2 Pinout - DRQFN

	2. Overview
	2.1 Block Diagram
	2.2 Pin Descriptions
	2.2.1 VCC
	2.2.2 GND
	2.2.3 Port A (PA7:PA0)
	2.2.4 Port B (PB7:PB0)
	2.2.5 Port C (PC7:PC0)
	2.2.6 Port D (PD7:PD0)
	2.2.7 Port E (PE7:PE0)
	2.2.8 Port F (PF7:PF0)
	2.2.9 Port G (PG5:PG0)
	2.2.10 RESET
	2.2.11 XTAL1
	2.2.12 XTAL2
	2.2.13 AVCC
	2.2.14 AREF
	2.2.15 LCDCAP

	3. Resources
	4. Data Retention
	5. About Code Examples
	6. AVR CPU Core
	6.1 Introduction
	6.2 Architectural Overview
	6.3 ALU – Arithmetic Logic Unit
	6.4 Stack Pointer
	6.4.1 SPH and SPL – Stack Pointer

	6.5 Instruction Execution Timing
	6.6 Reset and Interrupt Handling
	6.6.1 Interrupt Response Time

	6.7 Status Register
	6.7.1 SREG – AVR Status Register

	6.8 General Purpose Register File
	6.8.1 The X-register, Y-register, and Z-register

	7. AVR Memories
	7.1 In-System Reprogrammable Flash Program Memory
	7.2 SRAM Data Memory
	7.2.1 Data Memory Access Times

	7.3 EEPROM Data Memory
	7.3.1 EEPROM Read/Write Access
	7.3.2 EEPROM Write During Power-down Sleep Mode
	7.3.3 Preventing EEPROM Corruption

	7.4 I/O Memory
	7.5 General Purpose I/O Registers
	7.5.1 GPIOR2 – General Purpose I/O Register 2
	7.5.2 GPIOR1 – General Purpose I/O Register 1
	7.5.3 GPIOR0 – General Purpose I/O Register 0

	7.6 EEPROM Register Description
	7.6.1 EEARH and EEARL – EEPROM Address Register
	7.6.2 EEDR – EEPROM Data Register
	7.6.3 EECR – EEPROM Control Register

	8. System Clock and Clock Options
	8.1 Clock Systems and their Distribution
	8.1.1 CPU Clock – clkCPU
	8.1.2 I/O Clock – clkI/O
	8.1.3 Flash Clock – clkFLASH
	8.1.4 Asynchronous Timer Clock – clkASY
	8.1.5 ADC Clock – clkADC

	8.2 Clock Sources
	8.3 Default Clock Source
	8.4 Calibrated Internal RC Oscillator
	8.5 Crystal Oscillator
	8.6 Low-frequency Crystal Oscillator
	8.7 External Clock
	8.8 Timer/Counter Oscillator
	8.9 Clock Output Buffer
	8.10 System Clock Prescaler
	8.11 Register Description
	8.11.1 OSCCAL – Oscillator Calibration Register
	8.11.2 CLKPR – Clock Prescale Register

	9. Power Management and Sleep Modes
	9.1 Sleep Modes
	9.2 Idle Mode
	9.3 ADC Noise Reduction Mode
	9.4 Power-down Mode
	9.5 Power-save Mode
	9.6 Standby Mode
	9.7 Power Reduction Register
	9.8 Minimizing Power Consumption
	9.8.1 Analog to Digital Converter
	9.8.2 Analog Comparator
	9.8.3 Brown-out Detector
	9.8.4 Internal Voltage Reference
	9.8.5 Watchdog Timer
	9.8.6 Port Pins
	9.8.7 JTAG Interface and On-chip Debug System

	9.9 Register Description
	9.9.1 SMCR – Sleep Mode Control Register
	9.9.2 PRR – Power Reduction Register

	10. System Control and Reset
	10.1 Resetting the AVR
	10.2 Reset Sources
	10.2.1 Power-on Reset
	10.2.2 External Reset
	10.2.3 Brown-out Detection
	10.2.4 Watchdog Reset

	10.3 Internal Voltage Reference
	10.3.1 Voltage Reference Enable Signals and Start-up Time

	10.4 Watchdog Timer
	10.4.1 Timed Sequences for Changing the Configuration of the Watchdog Timer
	10.4.1.1 Safety Level 1
	10.4.1.2 Safety Level 2

	10.5 Register Description
	10.5.1 MCUSR – MCU Status Register
	10.5.2 WDTCR – Watchdog Timer Control Register

	11. Interrupts
	11.1 Interrupt Vectors in ATmega169P
	11.2 Moving Interrupts Between Application and Boot Space
	11.2.1 MCUCR – MCU Control Register

	12. External Interrupts
	12.1 Pin Change Interrupt Timing
	12.2 Register Description
	12.2.1 EICRA – External Interrupt Control Register A
	12.2.2 EIMSK – External Interrupt Mask Register
	12.2.3 EIFR – External Interrupt Flag Register
	12.2.4 PCMSK1 – Pin Change Mask Register 1
	12.2.5 PCMSK0 – Pin Change Mask Register 0

	13. I/O-Ports
	13.1 Overview
	13.2 Ports as General Digital I/O
	13.2.1 Configuring the Pin
	13.2.2 Toggling the Pin
	13.2.3 Switching Between Input and Output
	13.2.4 Reading the Pin Value
	13.2.5 Digital Input Enable and Sleep Modes
	13.2.6 Unconnected Pins

	13.3 Alternate Port Functions
	13.3.1 Alternate Functions of Port A
	13.3.2 Alternate Functions of Port B
	13.3.3 Alternate Functions of Port C
	13.3.4 Alternate Functions of Port D
	13.3.5 Alternate Functions of Port E
	13.3.6 Alternate Functions of Port F
	13.3.7 Alternate Functions of Port G

	13.4 Register Description for I/O-Ports
	13.4.1 MCUCR – MCU Control Register
	13.4.2 PORTA – Port A Data Register
	13.4.3 DDRA – Port A Data Direction Register
	13.4.4 PINA – Port A Input Pins Address
	13.4.5 PORTB – Port B Data Register
	13.4.6 DDRB – Port B Data Direction Register
	13.4.7 PINB – Port B Input Pins Address
	13.4.8 PORTC – Port C Data Register
	13.4.9 DDRC – Port C Data Direction Register
	13.4.10 PINC – Port C Input Pins Address
	13.4.11 PORTD – Port D Data Register
	13.4.12 DDRD – Port D Data Direction Register
	13.4.13 PIND – Port D Input Pins Address
	13.4.14 PORTE – Port E Data Register
	13.4.15 DDRE – Port E Data Direction Register
	13.4.16 PINE – Port E Input Pins Address
	13.4.17 PORTF – Port F Data Register
	13.4.18 DDRF – Port F Data Direction Register
	13.4.19 PINF – Port F Input Pins Address
	13.4.20 PORTG – Port G Data Register
	13.4.21 DDRG – Port G Data Direction Register
	13.4.22 PING – Port G Input Pins Address

	14. 8-bit Timer/Counter0 with PWM
	14.1 Features
	14.2 Overview
	14.2.1 Registers
	14.2.2 Definitions

	14.3 Timer/Counter Clock Sources
	14.4 Counter Unit
	14.5 Output Compare Unit
	14.5.1 Force Output Compare
	14.5.2 Compare Match Blocking by TCNT0 Write
	14.5.3 Using the Output Compare Unit

	14.6 Compare Match Output Unit
	14.6.1 Compare Output Mode and Waveform Generation

	14.7 Modes of Operation
	14.7.1 Normal Mode
	14.7.2 Clear Timer on Compare Match (CTC) Mode
	14.7.3 Fast PWM Mode
	14.7.4 Phase Correct PWM Mode

	14.8 Timer/Counter Timing Diagrams
	14.9 8-bit Timer/Counter Register Description
	14.9.1 TCCR0A – Timer/Counter Control Register A
	14.9.2 TCNT0 – Timer/Counter Register
	14.9.3 OCR0A – Output Compare Register A
	14.9.4 TIMSK0 – Timer/Counter 0 Interrupt Mask Register
	14.9.5 TIFR0 – Timer/Counter 0 Interrupt Flag Register

	15. 16-bit Timer/Counter1
	15.1 Features
	15.2 Overview
	15.2.1 Registers
	15.2.2 Definitions
	15.2.3 Compatibility

	15.3 Accessing 16-bit Registers
	15.3.1 Reusing the Temporary High Byte Register

	15.4 Timer/Counter Clock Sources
	15.5 Counter Unit
	15.6 Input Capture Unit
	15.6.1 Input Capture Trigger Source
	15.6.2 Noise Canceler
	15.6.3 Using the Input Capture Unit

	15.7 Output Compare Units
	15.7.1 Force Output Compare
	15.7.2 Compare Match Blocking by TCNT1 Write
	15.7.3 Using the Output Compare Unit

	15.8 Compare Match Output Unit
	15.8.1 Compare Output Mode and Waveform Generation

	15.9 Modes of Operation
	15.9.1 Normal Mode
	15.9.2 Clear Timer on Compare Match (CTC) Mode
	15.9.3 Fast PWM Mode
	15.9.4 Phase Correct PWM Mode
	15.9.5 Phase and Frequency Correct PWM Mode

	15.10 Timer/Counter Timing Diagrams
	15.11 16-bit Timer/Counter Register Description
	15.11.1 TCCR1A – Timer/Counter1 Control Register A
	15.11.2 TCCR1B – Timer/Counter1 Control Register B
	15.11.3 TCCR1C – Timer/Counter1 Control Register C
	15.11.4 TCNT1H and TCNT1L – Timer/Counter1
	15.11.5 OCR1AH and OCR1AL – Output Compare Register 1 A
	15.11.6 OCR1BH and OCR1BL – Output Compare Register 1 B
	15.11.7 ICR1H and ICR1L – Input Capture Register 1
	15.11.8 TIMSK1 – Timer/Counter1 Interrupt Mask Register
	15.11.9 TIFR1 – Timer/Counter1 Interrupt Flag Register

	16. Timer/Counter0 and Timer/Counter1 Prescalers
	16.1 Prescaler Reset
	16.2 Internal Clock Source
	16.3 External Clock Source
	16.4 Register Description
	16.4.1 GTCCR – General Timer/Counter Control Register

	17. 8-bit Timer/Counter2 with PWM and Asynchronous Operation
	17.1 Overview
	17.1.1 Registers
	17.1.2 Definitions

	17.2 Timer/Counter Clock Sources
	17.3 Counter Unit
	17.4 Output Compare Unit
	17.4.1 Force Output Compare
	17.4.2 Compare Match Blocking by TCNT2 Write
	17.4.3 Using the Output Compare Unit

	17.5 Compare Match Output Unit
	17.5.1 Compare Output Mode and Waveform Generation

	17.6 Modes of Operation
	17.6.1 Normal Mode
	17.6.2 Clear Timer on Compare Match (CTC) Mode
	17.6.3 Fast PWM Mode
	17.6.4 Phase Correct PWM Mode

	17.7 Timer/Counter Timing Diagrams
	17.8 Asynchronous operation of the Timer/Counter
	17.8.1 Asynchronous Operation of Timer/Counter2

	17.9 Timer/Counter Prescaler
	17.10 8-bit Timer/Counter Register Description
	17.10.1 TCCR2A – Timer/Counter Control Register A
	17.10.2 TCNT2 – Timer/Counter Register
	17.10.3 OCR2A – Output Compare Register A
	17.10.4 TIMSK2 – Timer/Counter2 Interrupt Mask Register
	17.10.5 TIFR2 – Timer/Counter2 Interrupt Flag Register
	17.10.6 ASSR – Asynchronous Status Register
	17.10.7 GTCCR – General Timer/Counter Control Register

	18. SPI – Serial Peripheral Interface
	18.1 Features
	18.2 Overview
	18.3 SS Pin Functionality
	18.3.1 Slave Mode
	18.3.2 Master Mode

	18.4 Data Modes
	18.5 Register Description
	18.5.1 SPCR – SPI Control Register
	18.5.2 SPSR – SPI Status Register
	18.5.3 SPDR – SPI Data Register

	19. USART
	19.1 Features
	19.2 Overview
	19.2.1 AVR USART vs. AVR UART – Compatibility

	19.3 Clock Generation
	19.3.1 Internal Clock Generation – The Baud Rate Generator
	19.3.2 Double Speed Operation (U2Xn)
	19.3.3 External Clock
	19.3.4 Synchronous Clock Operation

	19.4 Frame Formats
	19.4.1 Parity Bit Calculation

	19.5 USART Initialization
	19.6 Data Transmission – The USART Transmitter
	19.6.1 Sending Frames with 5 to 8 Data Bit
	19.6.2 Sending Frames with 9 Data Bit
	19.6.3 Transmitter Flags and Interrupts
	19.6.4 Parity Generator
	19.6.5 Disabling the Transmitter

	19.7 Data Reception – The USART Receiver
	19.7.1 Receiving Frames with 5 to 8 Data Bits
	19.7.2 Receiving Frames with 9 Data Bits
	19.7.3 Receive Compete Flag and Interrupt
	19.7.4 Receiver Error Flags
	19.7.5 Parity Checker
	19.7.6 Disabling the Receiver
	19.7.7 Flushing the Receive Buffer

	19.8 Asynchronous Data Reception
	19.8.1 Asynchronous Clock Recovery
	19.8.2 Asynchronous Data Recovery
	19.8.3 Asynchronous Operational Range

	19.9 Multi-processor Communication Mode
	19.9.1 Using MPCMn

	19.10 Examples of Baud Rate Setting
	19.11 USART Register Description
	19.11.1 UDRn – USART I/O Data Register
	19.11.2 UCSRnA – USART Control and Status Register A
	19.11.3 UCSRnB – USART Control and Status Register n B
	19.11.4 UCSRnC – USART Control and Status Register n C
	19.11.5 UBRRLn and UBRRHn – USART Baud Rate Registers

	20. USI – Universal Serial Interface
	20.1 Overview
	20.2 Functional Descriptions
	20.2.1 Three-wire Mode
	20.2.2 SPI Master Operation Example
	20.2.3 SPI Slave Operation Example
	20.2.4 Two-wire Mode
	20.2.5 Start Condition Detector
	20.2.6 Clock speed considerations.

	20.3 Alternative USI Usage
	20.3.1 Half-duplex Asynchronous Data Transfer
	20.3.2 4-bit Counter
	20.3.3 12-bit Timer/Counter
	20.3.4 Edge Triggered External Interrupt
	20.3.5 Software Interrupt

	20.4 USI Register Descriptions
	20.4.1 USIDR – USI Data Register
	20.4.2 USISR – USI Status Register
	20.4.3 USICR – USI Control Register

	21. AC - Analog Comparator
	21.1 Analog Comparator Multiplexed Input
	21.2 Analog Comparator Register Description
	21.2.1 ADCSRB – ADC Control and Status Register B
	21.2.2 ACSR – Analog Comparator Control and Status Register
	21.2.3 DIDR1 – Digital Input Disable Register 1

	22. ADC - Analog to Digital Converter
	22.1 Features
	22.2 Overview
	22.3 Operation
	22.4 Starting a Conversion
	22.5 Prescaling and Conversion Timing
	22.6 Changing Channel or Reference Selection
	22.6.1 ADC Input Channels
	22.6.2 ADC Voltage Reference

	22.7 ADC Noise Canceler
	22.7.1 Analog Input Circuitry
	22.7.2 Analog Noise Canceling Techniques
	22.7.3 ADC Accuracy Definitions

	22.8 ADC Conversion Result
	22.9 ADC Register Description
	22.9.1 ADMUX – ADC Multiplexer Selection Register
	22.9.2 ADCSRA – ADC Control and Status Register A
	22.9.3 ADCL and ADCH – ADC Data Register
	22.9.3.1 ADLAR = 0
	22.9.3.2 ADLAR = 1

	22.9.4 ADCSRB – ADC Control and Status Register B
	22.9.5 DIDR0 – Digital Input Disable Register 0

	23. LCD Controller
	23.1 Features
	23.2 Overview
	23.2.1 Definitions
	23.2.2 LCD Clock Sources
	23.2.3 LCD Prescaler
	23.2.4 LCD Memory
	23.2.5 LCD Contrast Controller/Power Supply
	23.2.6 LCDCAP
	23.2.7 LCD Buffer Driver
	23.2.8 Minimizing Power Consumption

	23.3 Mode of Operation
	23.3.1 Static Duty and Bias
	23.3.2 1/2 Duty and 1/2 Bias
	23.3.3 1/3 Duty and 1/3 Bias
	23.3.4 1/4 Duty and 1/3 Bias
	23.3.5 Low Power Waveform
	23.3.6 Operation in Sleep Mode
	23.3.7 Display Blanking
	23.3.8 Port Mask

	23.4 LCD Usage
	23.4.1 LCD Initialization
	23.4.2 Updating the LCD
	23.4.3 Disabling the LCD

	23.5 LCD Register Description
	23.5.1 LCDCRA – LCD Control and Status Register A
	23.5.2 LCDCRB – LCD Control and Status Register B
	23.5.3 LCDFRR – LCD Frame Rate Register
	23.5.4 LCDCCR – LCD Contrast Control Register
	23.5.5 LCD Memory Mapping

	24. JTAG Interface and On-chip Debug System
	24.0.1 Features
	24.1 Overview
	24.2 TAP – Test Access Port
	24.3 TAP Controller
	24.4 Using the Boundary-scan Chain
	24.5 Using the On-chip Debug System
	24.6 On-chip Debug Specific JTAG Instructions
	24.6.1 PRIVATE0; 0x8
	24.6.2 PRIVATE1; 0x9
	24.6.3 PRIVATE2; 0xA
	24.6.4 PRIVATE3; 0xB

	24.7 On-chip Debug Related Register in I/O Memory
	24.7.1 OCDR – On-chip Debug Register

	24.8 Using the JTAG Programming Capabilities
	24.9 Bibliography

	25. IEEE 1149.1 (JTAG) Boundary-scan
	25.1 Features
	25.2 System Overview
	25.3 Data Registers
	25.3.1 Bypass Register
	25.3.2 Device Identification Register
	25.3.2.1 Version
	25.3.2.2 Part Number
	25.3.2.3 Manufacturer ID

	25.3.3 Reset Register
	25.3.4 Boundary-scan Chain

	25.4 Boundary-scan Specific JTAG Instructions
	25.4.1 EXTEST; 0x0
	25.4.2 IDCODE; 0x1
	25.4.3 SAMPLE_PRELOAD; 0x2
	25.4.4 AVR_RESET; 0xC
	25.4.5 BYPASS; 0xF

	25.5 Boundary-scan Chain
	25.5.1 Scanning the Digital Port Pins
	25.5.2 Scanning the RESET Pin
	25.5.3 Scanning the Clock Pins
	25.5.4 Scanning the Analog Comparator
	25.5.5 Scanning the ADC

	25.6 Boundary-scan Order
	25.7 Boundary-scan Description Language Files
	25.8 Boundary-scan Related Register in I/O Memory
	25.8.1 MCUCR – MCU Control Register
	25.8.2 MCUSR – MCU Status Register

	26. Boot Loader Support – Read-While-Write Self-Programming
	26.1 Features
	26.2 Overview
	26.3 Application and Boot Loader Flash Sections
	26.3.1 Application Section
	26.3.2 BLS – Boot Loader Section

	26.4 Read-While-Write and No Read-While-Write Flash Sections
	26.4.1 RWW – Read-While-Write Section
	26.4.2 NRWW – No Read-While-Write Section

	26.5 Boot Loader Lock Bits
	26.6 Entering the Boot Loader Program
	26.7 Addressing the Flash During Self-Programming
	26.8 Self-Programming the Flash
	26.8.1 Performing Page Erase by SPM
	26.8.2 Filling the Temporary Buffer (Page Loading)
	26.8.3 Performing a Page Write
	26.8.4 Using the SPM Interrupt
	26.8.5 Consideration While Updating BLS
	26.8.6 Prevent Reading the RWW Section During Self-Programming
	26.8.7 Setting the Boot Loader Lock Bits by SPM
	26.8.8 EEPROM Write Prevents Writing to SPMCSR
	26.8.9 Reading the Fuse and Lock Bits from Software
	26.8.10 Preventing Flash Corruption
	26.8.11 Programming Time for Flash when Using SPM
	26.8.12 Boot Loader: Simple Assembly Code Example
	26.8.13 ATmega169P Boot Loader Parameters

	26.9 Register Description
	26.9.1 SPMCSR – Store Program Memory Control and Status Register

	27. Memory Programming
	27.1 Program And Data Memory Lock Bits
	27.2 Fuse Bits
	27.2.1 Latching of Fuses

	27.3 Signature Bytes
	27.4 Calibration Byte
	27.5 Page Size
	27.6 Parallel Programming Parameters, Pin Mapping, and Commands
	27.6.1 Signal Names

	27.7 Parallel Programming
	27.7.1 Enter Programming Mode
	27.7.2 Considerations for Efficient Programming
	27.7.3 Chip Erase
	27.7.4 Programming the Flash
	27.7.5 Programming the EEPROM
	27.7.6 Reading the Flash
	27.7.7 Reading the EEPROM
	27.7.8 Programming the Fuse Low Bits
	27.7.9 Programming the Fuse High Bits
	27.7.10 Programming the Extended Fuse Bits
	27.7.11 Programming the Lock Bits
	27.7.12 Reading the Fuse and Lock Bits
	27.7.13 Reading the Signature Bytes
	27.7.14 Reading the Calibration Byte
	27.7.15 Parallel Programming Characteristics

	27.8 Serial Downloading
	27.8.1 Serial Programming Pin Mapping
	27.8.2 Serial Programming Algorithm
	27.8.3 Serial Programming Instruction set
	27.8.4 SPI Serial Programming Characteristics

	27.9 Programming via the JTAG Interface
	27.9.1 Programming Specific JTAG Instructions
	27.9.2 AVR_RESET (0xC)
	27.9.3 PROG_ENABLE (0x4)
	27.9.4 PROG_COMMANDS (0x5)
	27.9.5 PROG_PAGELOAD (0x6)
	27.9.6 PROG_PAGEREAD (0x7)
	27.9.7 Data Registers
	27.9.8 Reset Register
	27.9.9 Programming Enable Register
	27.9.10 Programming Command Register
	27.9.11 Flash Data Byte Register
	27.9.12 Programming Algorithm
	27.9.13 Entering Programming Mode
	27.9.14 Leaving Programming Mode
	27.9.15 Performing Chip Erase
	27.9.16 Programming the Flash
	27.9.17 Reading the Flash
	27.9.18 Programming the EEPROM
	27.9.19 Reading the EEPROM
	27.9.20 Programming the Fuses
	27.9.21 Programming the Lock Bits
	27.9.22 Reading the Fuses and Lock Bits
	27.9.23 Reading the Signature Bytes
	27.9.24 Reading the Calibration Byte

	28. Electrical Characteristics
	28.1 Absolute Maximum Ratings*
	28.2 DC Characteristics
	28.3 Speed Grades
	28.4 Clock Characteristics
	28.4.1 Calibrated Internal RC Oscillator Accuracy
	28.4.2 External Clock Drive Waveforms
	28.4.3 External Clock Drive

	28.5 System and Reset Characteristics
	28.6 SPI Timing Characteristics
	28.7 ADC Characteristics – Preliminary Data
	28.8 LCD Controller Characteristics

	29. Typical Characteristics
	29.1 Active Supply Current
	29.2 Idle Supply Current
	29.3 Supply Current of I/O modules
	29.3.0.1 Example 1

	29.4 Power-down Supply Current
	29.5 Power-save Supply Current
	29.6 Standby Supply Current
	29.7 Pin Pull-up
	29.8 Pin Driver Strength
	29.9 Pin Thresholds and Hysteresis
	29.10 BOD Thresholds and Analog Comparator Offset
	29.11 Internal Oscillator Speed
	29.12 Current Consumption of Peripheral Units
	29.13 Current Consumption in Reset and Reset Pulsewidth

	30. Register Summary
	31. Instruction Set Summary
	32. Ordering Information
	33. Packaging Information
	33.1 64A
	33.2 64M1
	33.3 64MC

	34. Errata
	34.1 ATmega169P Rev. G
	34.2 ATmega169P Rev. A to F

	35. Datasheet Revision History
	35.1 Rev. 8018P 08/10
	35.2 Rev. 8018O 10/09
	35.3 Rev. 8018N 08/09
	35.4 Rev. 8018M 07/09
	35.5 Rev. L 08/08
	35.6 Rev. K 06/08
	35.7 Rev. J 08/07
	35.8 Rev. I 11/06
	35.9 Rev. H 09/06
	35.10 Rev. G 08/06
	35.11 Rev. F 08/06
	35.12 Rev. E 08/06
	35.13 Rev. D 07/06
	35.14 Rev. C 06/06
	35.15 Rev. B 04/06
	35.16 Rev. A 03/06

	Table of Contents

