2-way pressure reducing valve,

RE 18111-03/08.11 1/8 Replaces: 06.08

Type KRD (high performance)

direct operated

Size 2 Component series B Maximum operating pressure 400 bar Maximum flow 25 I/min

Table of contents

Contents	Page
Features	1
Ordering code	2
Preferred types	2
Function, section, symbol	2
Technical data	3
Characteristic curves	4
Unit dimensions	5
Mounting cavity	6
Available individual components	7

Features

- Cartridge valve
- Mounting cavity R/ISO 7789-27-01-1-98
- Available in 3 pressure ratings (100, 210 and 315 bar)
- Can be used for many pressure reduction functions without leakage oil drain

Information on available spare parts: www.boschrexroth.com/spc

Ordering code

= 2

¹⁾ Only with pressure rating 100 bar ("F")

²⁾ Example (pressure adjustment is made with $q_V = 1$ to 2 l/min): – Set to 50 bar: .../L-50 V

Preferred types

Size

Pressure rating	Туре	Material number
100 bar	KRD2F2AB/LV	R901082845
210 bar	KRD2L2AB/LV	R901082849
315 bar	KRD2P2AB/LV	R901082857

Function, section, symbol

General

The direct operated 2-way pressure reducing valve type KRD is designed as tight seat valve. It is used for the leakage-free pressure reduction of a working pressure.

It basically comprises of the screw-in housing (1) with spring (6) and adjustment type (5) as well as spool (3), valve seat (2) and closing element (4).

Function

In the initial position, the valve seat is open. Hydraulic fluid can flow from the main port ① to ②. If the pressure in the main port increases ② to the pressure value set at the adjustment type (5), the closing element (4) closes the connection ① to ③. If the system pressure increases further (main port ①), this will no longer influence the pressure in main port ② (pressure holding function). Pressure losses in main port ② (actuator) will be compensated by the valve.

(1) = main port 1 (P)
 (2) = main port 2 (A)

Technical data (For applications outside these parameters, please consult us!)

general	
Weight kg	1
Installation position	Any

hydraulic

-				
Maximum operating pressure	– Main port ①	bar	r 400	
	– Main port (2)	bar	315	
Maximum set pressure 1)			Rated pressure in A	Settable minimum pressure in A
	- Pressure rating 100 bar	bar	100	10
	- Pressure rating 210 bar	bar	210	20
	- Pressure rating 315 bar	bar	315	30
Maximum flow		l/min	25	
Maximum permitted leakage in the application/system I/min		1.5		
Hydraulic fluid		See table below		
Hydraulic fluid temperature range °C		-20 to +80		
Viscosity range mm ² /s		5 to 1000 (preferably 10 to 100)		
Maximum permitted degree of contamination of the hydraulic fluid - cleanliness class according to ISO 4406 (c)		Class 20/18/15 ²⁾		

Hydraulic fluid		Classification	Suitable sealing materials	Standards	
Mineral oils and related	hydrocarbons	HL, HLP, HLPD, HVLP, HVLPD	FKM	DIN 51524	
Environmentally compatible	- Insoluble in water	HEES	FKM	160 15290	
		HEPR	FKM	130 15560	
	 Soluble in water 	HEPG	FKM	ISO 15380	
Flame-resistant	- Water-free	HFDU, HFDR	FKM	ISO 12922	
	- Water-containing	HFAS	FKM	ISO 12922	

Important information on hydraulic fluids!

- For more information and data on the use of other hydraulic fluids refer to data sheet 90220 or contact us!

 There may be limitations regarding the technical valve data (temperature, pressure range, service life, maintenance intervals, etc.)! Flame-resistant – water-containing: Maximum pressure differential per control edge 175 bar; otherwise, increased cavitation erosion!

Tank pre-loading < 1 bar or > 20 % of the pressure differential. The pressure peaks should not exceed the maximum operating pressures!

¹⁾ Exact pressure control at p > 20 bar is possible.

²⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the service life of the components.

For selecting the filters, see www.boschrexroth.com/filter.

Characteristic curves (measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

Reduced pressure against the flow

F Notice!

The figures show the $p-q_V$ characteristic curves of the 3 pressure ratings at the relevant rated pressures.

Recommendation for the pressure differential: $\Delta \boldsymbol{p} \ge 20$ bar

Flow resistance

M27x2

Unit dimensions (dimensions in mm)

- (1) = main port 1 (P)
- **1.1** Adjustment type "1":
- 1.2 Adjustment type "2": Setscrew with hexagon SW5 and protective cap
- 1.3 Adjustment type "3": Lockable rotary knob with scale (only with pressure rating 100 bar "F")
 - 2 Plastic ring with marking (adjustment of the zero position after the valve has been screwed in, then fixing of the ring by horizontal shifting until it engages on the reducing piece)
 - 3 Lock nut SW19, tightening torque $M_A = 30\pm5$ Nm
 - 4 Lock nut SW30, tightening torque $M_A = 100$ Nm
 - 5 Space required to remove the key
 - 6 Hexagon SW36, tightening torque $M_A = 170$ Nm

Mounting cavity R/ISO 7789-27-01-1-98 (similar to ISO 7789-27-01-0-98): 2 main ports, thread M27 x 2 (dimensions in mm)

- ¹⁾ Deviating from ISO 7789 27-01-0-98: Valves for mounting cavity ISO 7789 27-01-0-98 can be screwed into this bore!
- ²⁾ Depth of fit

(1) = main port 1 (P)
 (2) = main port 2 (A)

Available individual components

Item	Denomination	Material no.
999	Seal kit of the valve	R961001402

Notes

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 Fax +49 (0) 93 52 / 18-23 58 documentation@boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.