

16V, Dual 18A, High-Efficiency, Synchronous Step-Down Module Evaluation Board

DESCRIPTION

The EVM3690-30A-BF-00A evaluation board is designed to demonstrate the capabilities of the MPM3690-30A, a fully integrated, high-efficiency, synchronous, dual 18A output current, step-down power module.

The MPM3690-30A adopts internally compensated constant-on-time (COT) control to provide fast transient response and ease loop

stabilization. The operating frequency can be set between 400kHz to 1MHz by connecting a resistor between f_{SET} and AGND. Refer to the MPM3690-30A datasheet for more detailed information.

It is recommended to read the datasheet for the MPM3690-30A prior to making any changes to the EVM3690-30A-BF-00A.

PERFORMANCE SUMMARY (1)

Specifications are at $T_A = 25^{\circ}$ C, unless otherwise noted.

Parameters	Conditions	Value
Input voltage range (V _{IN})		3.2V to 16V (2)
Output voltage (Vout)	V _{IN} = 3.2V to 16V, I _{OUT} = 0A to 18A	1.2V
Maximum output current (IouT)	V _{IN} = 3.2V to 16V, V _{OUT} = 1.2V	18A
Full load efficiency (3)	V _{IN} = 12V, V _{OUT} = 1.2V, I _{OUT} = 18A, f _{SW} = 500kHz	91.28%
Peak efficiency ⁽³⁾	V _{IN} = 12V, V _{OUT} = 1.2V, I _{OUT} = 10A, f _{SW} = 500kHz	92.96%
Default switching frequency		500kHz

Notes:

1) For different V_{IN} and V_{OUT} specifications with different output capacitors, the application circuit parameters may require changes.

2) If $V_{IN} < 4V$, an external 3.3V V_{CC} is required.

3) Only one channel is working; the other channel is off.

EVALUATION BOARD

(LxWxH) 10cmx10cmx1.5cm

Board Number	MPS IC Number	
EVM3690-30A-BF-00A	MPM3690GBF-30A	

QUICK START GUIDE

The EVM3690-30A-BF-00A evaluation board is easy to set up and use to evaluate the performance of the MPM3690-30A. See Figure 1 on page 4 for the proper measurement equipment set-up, and follow the procedure below:

- 1. Preset the power supply (V_{IN}) between 4V and 16V, then turn off the power supply. ⁽⁴⁾
- 2. Connect the power supply terminals to:
 - a. Positive (+): VIN
 - b. Negative (-): GND
- 3. Connect the load terminals (no initial load) to:
 - a. Positive (+): VOUT
 - b. Negative (-): GND
- 4. After making the connections, turn on the power supply on. The board should automatically start up.
- 5. Check for the proper output voltage (V_{OUT}) between the VOSENSE and VOGNDSEN terminals.
- 6. Once the proper V_{OUT} is established, adjust the load within the operating range and measure the efficiency, output ripple voltage, and other parameters. $^{(5)}$
- 7. After completing all tests, adjust the load to 0A, then turn off the input power supply.

Notes:

- 4) Ensure that V_{IN} does not exceed 16V.
- 5) When measuring the output or input voltage ripple, do not use the long ground lead on the oscilloscope probe.

Figure 1: Proper Measurement Equipment Set-Up

EVALUATION BOARD SCHEMATIC

Figure 2: Evaluation Board Schematic

EVM3690-30A-BF-00A BILL OF MATERIALS

Qty	Ref	Value	Description	Package	Manufacturer	Manufacturer PN
2	C19, C20	100µF	Surface-mount polymer aluminum capacitor, 25V	SMD	Panasonic	25SVPF100M
8	C11, C14, C15, C17, C24, C27, C28, C30	47µF	Ceramic capacitor, 6.3V	0805	Murata	GRM21BR60J476 ME15L
8	C2, C3, C4, C5, C6, C8, C9, C10	22µF	Ceramic capacitor, 25V	0805	Murata	GRM21BR61E226 ME44L
2	C1, C7	1µF	Ceramic capacitor, 25V	0805	Murata	GRM219R71E105 KA88D
2	C36, C37	100nF	Ceramic capacitor, 50V	0603	Murata	GRM188R71E104 KA01D
2	C35, C23	33nF	Ceramic capacitor, 50V	0603	Wurth	885012206092
4	R4, R5, R10, R14	0Ω	Resistor, 1%	0603	Yageo	RC0603FR-070RL
2	R16, R17	48kΩ	Resistor, 1%	0603	Yageo	RC0603FR- 0748KL
4	R2, R7, R12, R13	10kΩ	Resistor, 1%	0603	Yageo	RC0603FR- 0710KL
2	R3, R9	60.4kΩ	Resistor, 1%	0603	Yageo	RC0603FR- 0760K4L
2	SWITCH1, SWITCH2	500mA	Switch slide SPDT, 5V	10mmx 2.5mm	Wurth	450301014042
2	C22, C33	220µF	Tantalum capacitor, 6.3V, 15mΩ	SMD	Panasonic	EEFCX0J221R
1	U1	MPM3690 -30A	16V, dual 18A, step- down power module	BGA (16mmx 16mmx 5.18mm)	MPS	MPM3690GBF-30A

EVB TEST RESULTS

Performance curves and waveforms are tested on the evaluation board. V_{IN} = 12V, $V_{OUT1} = V_{OUT2} = 1.2V$, $f_{SW1} = f_{SW2} = 500$ kHz, $T_A = 25$ °C, unless otherwise noted.

6) Only one channel is working; the other channel is off.

Thermal Performance

 I_{OUT1} = I_{OUT2} = 18A, no forced airflow, T_A = 28°C, T_{CASE} = 73.9°C

EVB TEST RESULTS (continued)

Performance curves and waveforms are tested on the evaluation board. V_{IN} = 12V, $V_{OUT1} = V_{OUT2} = 1.2V$, $f_{SW1} = f_{SW2} = 500$ kHz, $T_A = 25$ °C, unless otherwise noted.

Load Transient Ripple

Start-Up through VIN

Shutdown through VIN

PCB LAYOUT

PCB LAYOUT (continued)

Figure 7: Bottom Layer

Figure 8: Bottom Silk

REVISION HISTORY

Revision #	Revision Date	Description	Pages Updated
1.0	08/23/2021	Initial Release	-

Notice: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.