NTE7495 Integrated Circuit TTL – 4-Bit Parallel-Access Shift Register ### **Description:** The NTE7495 is 4-bit register in a 14-Lead DIP type package that features parallel and serial inputs, parallel outputs, mode control, and two clock inputs. This device hs three output modes of operation: Parallel (broadside) Load Shift Right (the direction Q_A toward Q_D) Shift Left (the direction Q_D toward Q_A) Parallel loading is accomplished by applying the four bits of data and taking the mode control input high. The data is loaded into the associated flip-flops and appears at the outputs after the high-to-low transition of the clock-2 input. During loading, the entry of serial data is inhibited. Shift right is accomplished on the high–to–low transition of clock 1 when the mode control is low; shift left is accomplished on the high–to–low transition of clock 2 when the mode control is high by connecting the output of each flip–flop to the parallel input of the previous flip–flop (Q_D to input C, etc.) and serial data is entered at input D. The clock input may be applied commonly to clock 1 and clock 2 if both modes can be clocked from the same source. Changes at the mode control input should normally be made while both clock inputs are low; however, conditions described in the last three lines of the function table will also ensure that register contents are protected. ## Absolute Maximum Ratings: (Note 1) | Supply Voltage, V _{CC} | 7V | |---|--------------| | Input Voltage, V _{IN} | 5.5V | | Interemitter Voltage (Note 2) | 5.5V | | Power Dissipation | 195mW | | Operating Temperature Range, T _A | 0°C to +70°C | | Storage Temperature Range, T _{stg} 65° | °C to +150°C | - Note 1. Voltage values, except interemitter voltage, are with respect to network ground terminal. - Note 2. This is the voltage between two emitters of a multiple–emitter input transistor. This rating applies between the clock–2 and th mode control input. ### **Recommended Operating Conditions:** | Parameter | Symbol | Min | Тур | Max | Unit | |--|------------------------|------|-----|------|------| | Supply Voltage | V _{CC} | 4.75 | 5.0 | 5.25 | V | | High-Level Output Current | Іон | _ | _ | -800 | μΑ | | Low-Level Output Current | l _{OL} | - | _ | 16 | mA | | Clock Frequency | f _{clock} | 0 | _ | 25 | MHz | | Width of Clock Pulse | t _{w(clock)} | 20 | _ | _ | ns | | Setup Time, High Level or Low-Level Data | t _{su} | 15 | _ | _ | ns | | Hold Time, High Level or Low-Level Data | t _h | 0 | _ | _ | ns | | Time to Enable Clock 1 | t _{enable 1} | 15 | _ | _ | ns | | Time to Enable Clock 2 | t _{enable 2} | 15 | _ | _ | ns | | Time to Inhibit Clock 1 | t _{inhibit 1} | 5 | _ | _ | ns | | Time to Inhibit Clock 2 | t _{inhibit 2} | 5 | _ | _ | ns | | Operating Temperature Range | T _A | 0 | _ | +70 | °C | ### **<u>Electrical Characteristics</u>**: (Note 2, Note 3) | Parameter | Symbol | Test Conditions | Min | Тур | Max | Unit | |--|-----------------|---|-----|-----|------|------| | High-Level Input Voltage | V _{IH} | | 2 | - | _ | V | | Low-Level Input Voltage | V_{IL} | | - | _ | 0.8 | V | | Input Clamp Voltage | V_{IK} | $V_{CC} = MIN, I_I = -12mA$ | - | _ | -1.5 | V | | High Level Output Voltage | V _{OH} | $V_{CC} = MIN, V_{IH} = 2V, V_{IL} = 0.8V, I_{OH} = -800 \mu A$ | 2.4 | 3.4 | - | V | | Low Level Output Voltage | V_{OL} | V_{CC} = MIN, V_{IH} = 2V, V_{IL} = 0.8V, I_{OL} = 16mA | - | 0.2 | 0.4 | V | | Input Current | lı | $V_{CC} = MAX, V_I = 5.5V$ | - | _ | 1 | mA | | High Level Input Current
Serial, A, B, C, D | I _{IH} | $V_{CC} = MAX, V_I = 2.7V$ | _ | _ | 40 | μΑ | | Clock 1 or 2 | | | _ | _ | 40 | μΑ | | Mode Control | | | - | _ | 80 | μΑ | | Low Level Input Current
Serial, A, B, C, D | I _{IL} | $V_{CC} = MAX, V_I = 0.4V$ | _ | _ | -1.6 | mA | | Clock 1 or 2 | | | _ | _ | -1.6 | mΑ | | Mode Control | | | - | _ | -3.2 | mΑ | | Short-Circuit Output Current | los | V _{CC} = MAX, Note 4 | -18 | _ | -57 | mΑ | | Supply Current | I _{CC} | V _{CC} = MAX, Note 5 | _ | 39 | 63 | mA | - Note 2. .For conditions shown as MIN or MAX, use the appropriate value specified under "Recommended Operation Conditions". - Note 3. All typical values are at $V_{CC} = 5V$, $T_A = +25$ °C. - Note 4. Not more than one output should be shorted at a time. - Note 5. I_{CC} is measured with all outputs and serial input open; A, B, C, and D inputs grounded; mode control at 4.5V; and a momentary 3V, then ground, applied to both clock inputs. ## <u>Switching Characteristics</u>: $(V_{CC} = 5V, T_A = +25^{\circ}C \text{ unless otherwise specified})$ | Parameter | Symbol | Test Conditions | Min | Тур | Max | Unit | |-------------------------|------------------|-------------------------------|-----|-----|-----|------| | Maximum Clock Frequency | f _{max} | $R_L = 400\Omega, C_L = 15pF$ | 25 | 36 | _ | MHz | | Propagation Delay Time | t _{PLH} | | - | 18 | 27 | ns | | | t _{PHL} | | - | 21 | 32 | ns | #### **Function Table:** | Inputs | | | | | Outputs | | | | | | | |--------------|--------------|--------------|----------|------------------|---------------|---------------|---|----------|-----------------|----------|----------| | Mode Clocks | Serial | | Parallel | | | | | <u> </u> | | | | | Control | 2 (L) | 1 (R) | Serial | Α | В | С | D | Q_A | Q_B | Q_{C} | Q_D | | Н | Н | Χ | Х | Х | Χ | X | Χ | Q_{A0} | Q _{B0} | Q_{C0} | Q_{D0} | | Н | \downarrow | Χ | X | а | b | С | d | а | b | С | d | | Н | \downarrow | Χ | X | Q _B † | $Q_C \dagger$ | $Q_D \dagger$ | d | Q_{Bn} | Q_Cn | Q_Dn | d | | L | L | Н | X | Х | Χ | Χ | Χ | Q_{A0} | Q_{B0} | Q_{C0} | Q_{D0} | | L | Χ | \downarrow | Н | Х | Χ | X | X | Н | Q_{An} | Q_Bn | Q_Cn | | L | Χ | \downarrow | L | Х | Χ | X | Χ | L | Q_{An} | Q_Bn | Q_Cn | | 1 | L | L | Х | Х | Χ | X | Χ | Q_{A0} | Q_{B0} | Q_{C0} | Q_{D0} | | \downarrow | L | L | X | Х | Χ | Χ | Χ | Q_{A0} | Q_{B0} | Q_{C0} | Q_{D0} | | \downarrow | L | Н | Х | Х | Χ | X | Χ | Q_{A0} | Q_{B0} | Q_{C0} | Q_{D0} | | 1 | Н | L | X | Х | Χ | Χ | X | Q_{A0} | Q_{B0} | Q_{C0} | Q_{D0} | | 1 | Н | Н | X | Х | Χ | Χ | Χ | Q_{A0} | Q_{B0} | Q_{C0} | Q_{D0} | $[\]dagger$ = Shifting left requires external connection of Q_B to A, Q_C to B, and Q_D to C. Serial data is entered at input D. H = HIGH Level (Steady State) L = LOW Level (Steady State) X = Irrelevant (Any input, including transitions) a, b, c, d = The level of steady-state input at inputs A, B, C, or D, respectively. Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} = The level of Q_A , Q_B , Q_C , or Q_D , respectively, before the indicated steady-state input conditions were established. Q_{An} , Q_{Bn} , Q_{Cn} , Q_{Dn} = The level of Q_A , Q_B , Q_C , or Q_D , respectively, before the most–recent \downarrow transition of the clock.