

NTE7495 Integrated Circuit TTL – 4-Bit Parallel-Access Shift Register

Description:

The NTE7495 is 4-bit register in a 14-Lead DIP type package that features parallel and serial inputs, parallel outputs, mode control, and two clock inputs. This device hs three output modes of operation:

Parallel (broadside) Load Shift Right (the direction Q_A toward Q_D) Shift Left (the direction Q_D toward Q_A)

Parallel loading is accomplished by applying the four bits of data and taking the mode control input high. The data is loaded into the associated flip-flops and appears at the outputs after the high-to-low transition of the clock-2 input. During loading, the entry of serial data is inhibited.

Shift right is accomplished on the high–to–low transition of clock 1 when the mode control is low; shift left is accomplished on the high–to–low transition of clock 2 when the mode control is high by connecting the output of each flip–flop to the parallel input of the previous flip–flop (Q_D to input C, etc.) and serial data is entered at input D. The clock input may be applied commonly to clock 1 and clock 2 if both modes can be clocked from the same source. Changes at the mode control input should normally be made while both clock inputs are low; however, conditions described in the last three lines of the function table will also ensure that register contents are protected.

Absolute Maximum Ratings: (Note 1)

Supply Voltage, V _{CC}	7V
Input Voltage, V _{IN}	5.5V
Interemitter Voltage (Note 2)	5.5V
Power Dissipation	195mW
Operating Temperature Range, T _A	0°C to +70°C
Storage Temperature Range, T _{stg} 65°	°C to +150°C

- Note 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.
- Note 2. This is the voltage between two emitters of a multiple–emitter input transistor. This rating applies between the clock–2 and th mode control input.

Recommended Operating Conditions:

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{CC}	4.75	5.0	5.25	V
High-Level Output Current	Іон	_	_	-800	μΑ
Low-Level Output Current	l _{OL}	-	_	16	mA
Clock Frequency	f _{clock}	0	_	25	MHz
Width of Clock Pulse	t _{w(clock)}	20	_	_	ns
Setup Time, High Level or Low-Level Data	t _{su}	15	_	_	ns
Hold Time, High Level or Low-Level Data	t _h	0	_	_	ns
Time to Enable Clock 1	t _{enable 1}	15	_	_	ns
Time to Enable Clock 2	t _{enable 2}	15	_	_	ns
Time to Inhibit Clock 1	t _{inhibit 1}	5	_	_	ns
Time to Inhibit Clock 2	t _{inhibit 2}	5	_	_	ns
Operating Temperature Range	T _A	0	_	+70	°C

<u>Electrical Characteristics</u>: (Note 2, Note 3)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
High-Level Input Voltage	V _{IH}		2	-	_	V
Low-Level Input Voltage	V_{IL}		-	_	0.8	V
Input Clamp Voltage	V_{IK}	$V_{CC} = MIN, I_I = -12mA$	-	_	-1.5	V
High Level Output Voltage	V _{OH}	$V_{CC} = MIN, V_{IH} = 2V, V_{IL} = 0.8V, I_{OH} = -800 \mu A$	2.4	3.4	-	V
Low Level Output Voltage	V_{OL}	V_{CC} = MIN, V_{IH} = 2V, V_{IL} = 0.8V, I_{OL} = 16mA	-	0.2	0.4	V
Input Current	lı	$V_{CC} = MAX, V_I = 5.5V$	-	_	1	mA
High Level Input Current Serial, A, B, C, D	I _{IH}	$V_{CC} = MAX, V_I = 2.7V$	_	_	40	μΑ
Clock 1 or 2			_	_	40	μΑ
Mode Control			-	_	80	μΑ
Low Level Input Current Serial, A, B, C, D	I _{IL}	$V_{CC} = MAX, V_I = 0.4V$	_	_	-1.6	mA
Clock 1 or 2			_	_	-1.6	mΑ
Mode Control			-	_	-3.2	mΑ
Short-Circuit Output Current	los	V _{CC} = MAX, Note 4	-18	_	-57	mΑ
Supply Current	I _{CC}	V _{CC} = MAX, Note 5	_	39	63	mA

- Note 2. .For conditions shown as MIN or MAX, use the appropriate value specified under "Recommended Operation Conditions".
- Note 3. All typical values are at $V_{CC} = 5V$, $T_A = +25$ °C.
- Note 4. Not more than one output should be shorted at a time.
- Note 5. I_{CC} is measured with all outputs and serial input open; A, B, C, and D inputs grounded; mode control at 4.5V; and a momentary 3V, then ground, applied to both clock inputs.

<u>Switching Characteristics</u>: $(V_{CC} = 5V, T_A = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Clock Frequency	f _{max}	$R_L = 400\Omega, C_L = 15pF$	25	36	_	MHz
Propagation Delay Time	t _{PLH}		-	18	27	ns
	t _{PHL}		-	21	32	ns

Function Table:

Inputs					Outputs						
Mode Clocks	Serial		Parallel					<u> </u>			
Control	2 (L)	1 (R)	Serial	Α	В	С	D	Q_A	Q_B	Q_{C}	Q_D
Н	Н	Χ	Х	Х	Χ	X	Χ	Q_{A0}	Q _{B0}	Q_{C0}	Q_{D0}
Н	\downarrow	Χ	X	а	b	С	d	а	b	С	d
Н	\downarrow	Χ	X	Q _B †	$Q_C \dagger$	$Q_D \dagger$	d	Q_{Bn}	Q_Cn	Q_Dn	d
L	L	Н	X	Х	Χ	Χ	Χ	Q_{A0}	Q_{B0}	Q_{C0}	Q_{D0}
L	Χ	\downarrow	Н	Х	Χ	X	X	Н	Q_{An}	Q_Bn	Q_Cn
L	Χ	\downarrow	L	Х	Χ	X	Χ	L	Q_{An}	Q_Bn	Q_Cn
1	L	L	Х	Х	Χ	X	Χ	Q_{A0}	Q_{B0}	Q_{C0}	Q_{D0}
\downarrow	L	L	X	Х	Χ	Χ	Χ	Q_{A0}	Q_{B0}	Q_{C0}	Q_{D0}
\downarrow	L	Н	Х	Х	Χ	X	Χ	Q_{A0}	Q_{B0}	Q_{C0}	Q_{D0}
1	Н	L	X	Х	Χ	Χ	X	Q_{A0}	Q_{B0}	Q_{C0}	Q_{D0}
1	Н	Н	X	Х	Χ	Χ	Χ	Q_{A0}	Q_{B0}	Q_{C0}	Q_{D0}

 $[\]dagger$ = Shifting left requires external connection of Q_B to A, Q_C to B, and Q_D to C. Serial data is entered at input D.

H = HIGH Level (Steady State)

L = LOW Level (Steady State)

X = Irrelevant (Any input, including transitions)

a, b, c, d = The level of steady-state input at inputs A, B, C, or D, respectively.

 Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} = The level of Q_A , Q_B , Q_C , or Q_D , respectively, before the indicated steady-state input conditions were established.

 Q_{An} , Q_{Bn} , Q_{Cn} , Q_{Dn} = The level of Q_A , Q_B , Q_C , or Q_D , respectively, before the most–recent \downarrow transition of the clock.

