Arm ${ }^{\circledR}$ Cortex $^{\circledR}$-M7 32b MCU+FPU, 462DMIPS, up to 2MB Flash/ $512+16+4 K B$ RAM, USB OTG HS/FS, 28 com IF, LCD, DSI

Features

- Core: Arm ${ }^{\circledR}$ 32-bit Cortex ${ }^{\circledR}-\mathrm{M} 7$ CPU with DPFPU, ART Accelerator ${ }^{\text {TM }}$ and L1-cache: 16 Kbytes I/D cache, allowing 0-wait state execution from embedded Flash and external memories, up to 216 MHz , MPU, 462 DMIPS/2.14 DMIPS/MHz (Dhrystone 2.1), and DSP instructions.
- Memories
- Up to 2 Mbytes of Flash memory organized into two banks allowing read-while-write
- SRAM: 512 Kbytes (including 128 Kbytes of data TCM RAM for critical real-time data) + 16 Kbytes of instruction TCM RAM (for critical real-time routines) +4 Kbytes of backup SRAM
- Flexible external memory controller with up to 32-bit data bus: SRAM, PSRAM, SDRAM/LPSDR SDRAM, NOR/NAND memories
- Dual mode Quad-SPI
- Graphics
- Chrom-ART Accelerator ${ }^{\text {TM }}$ (DMA2D), graphical hardware accelerator enabling enhanced graphical user interface
- Hardware JPEG codec
- LCD-TFT controller supporting up to XGA resolution
- MIPI ${ }^{\circledR}$ DSI host controller supporting up to 720p 30 Hz resolution
- Clock, reset and supply management
- 1.7 V to 3.6 V application supply and I/Os
- POR, PDR, PVD and BOR
- Dedicated USB power
- 4-to-26 MHz crystal oscillator
- Internal 16 MHz factory-trimmed RC (1\% accuracy)
- 32 kHz oscillator for RTC with calibration
- Internal 32 kHz RC with calibration

- Low-power
- Sleep, Stop and Standby modes
- $V_{\text {BAT }}$ supply for RTC, 32×32 bit backup registers +4 Kbytes backup SRAM
- 3×12-bit, 2.4 MSPS ADC: up to 24 channels
- Digital filters for sigma delta modulator (DFSDM), 8 channels / 4 filters
- 2×12-bit D/A converters
- General-purpose DMA: 16-stream DMA controller with FIFOs and burst support
- Up to 18 timers: up to thirteen 16-bit ($1 \times$ lowpower 16-bit timer available in Stop mode) and two 32-bit timers, each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input. All 15 timers running up to 216 MHz . 2 x watchdogs, SysTick timer
- Debug mode
- SWD \& JTAG interfaces
- Cortex ${ }^{\circledR}$-M7 Trace Macrocell ${ }^{\text {TM }}$
- Up to 168 I/O ports with interrupt capability
- Up to 164 fast I/Os up to 108 MHz
- Up to 1665 V-tolerant I/Os
- Up to 28 communication interfaces
- Up to $4 I^{2} \mathrm{C}$ interfaces (SMBus/PMBus)
- Up to 4 USARTs/4 UARTs (12.5 Mbit/s, ISO7816 interface, LIN, IrDA, modem control)
- Up to 6 SPIs (up to $54 \mathrm{Mbit} / \mathrm{s}$), 3 with muxed simplex $I^{2} S$ for audio
- $2 \times$ SAls (serial audio interface)
- $3 \times$ CANs (2.0B Active) and $2 x$ SDMMCs
- SPDIFRX interface
- HDMI-CEC
- MDIO slave interface
- Advanced connectivity
- USB 2.0 full-speed device/host/OTG controller with on-chip PHY
- USB 2.0 high-speed/full-speed device/host/OTG controller with dedicated DMA, on-chip full-speed PHY and ULPI
- 10/100 Ethernet MAC with dedicated DMA: supports IEEE 1588v2 hardware, MII/RMII
- 8- to 14 -bit camera interface up to $54 \mathrm{Mbyte} / \mathrm{s}$
- True random number generator
- CRC calculation unit
- RTC: subsecond accuracy, hardware calendar
- 96-bit unique ID

Table 1. Device summary

Reference	Part number
STM32F765xx	STM32F765BI, STM32F765BG, STM32F765NI, STM32F765NG, STM32F765II, STM32F765IG, STM32F765ZI, STM32F765ZG, STM32F765VI, STM32F765VG
STM32F767xx	STM32F767BG, STM32F767BI, STM32F767IG, STM32F767II, STM32F767NG, STM32F767NI, STM32F767VG, STM32F767VI, STM32F767ZG, STM32F767ZI
STM32F768Ax	STM32F768AI
STM32F769xx	STM32F769AG, STM32F769AI, STM32F769BG, STM32F769BI, STM32F769IG, STM32F769II, STM32F769NG, STM32F769NI

Contents

1 Description 14
2 Functional overview 20
2.1 \quad Arm ${ }^{\circledR}$ Cortex $^{\circledR}$-M7 with FPU 20
2.2 Memory protection unit 20
2.3 Embedded Flash memory 21
2.4 CRC (cyclic redundancy check) calculation unit 21
2.5 Embedded SRAM 21
2.6 AXI-AHB bus matrix 22
2.7 DMA controller (DMA) 23
2.8 Flexible memory controller (FMC) 24
2.9 Quad-SPI memory interface (QUADSPI) 24
2.10 LCD-TFT controller 25
2.11 Chrom-ART Accelerator ${ }^{\text {TM }}$ (DMA2D) 25
2.12 Nested vectored interrupt controller (NVIC) 25
2.13 JPEG codec (JPEG) 26
2.14 External interrupt/event controller (EXTI) 26
2.15 Clocks and startup 26
2.16 Boot modes 27
2.17 Power supply schemes 27
2.18 Power supply supervisor 29
2.18.1 Internal reset ON 29
2.18.2 Internal reset OFF 30
2.19 Voltage regulator 31
2.19.1 Regulator ON 31
2.19.2 Regulator OFF 32
2.19.3 Regulator ON/OFF and internal reset ON/OFF availability 35
2.20 Real-time clock (RTC), backup SRAM and backup registers 35
2.21 Low-power modes 36
$2.22 \mathrm{~V}_{\mathrm{BAT}}$ operation 37
2.23 Timers and watchdogs 37
2.23.1 Advanced-control timers (TIM1, TIM8) 39
2.23.2 General-purpose timers (TIMx) 39
2.23.3 Basic timers TIM6 and TIM7 39
2.23.4 Low-power timer (LPTIM1) 40
2.23.5 Independent watchdog 40
2.23.6 Window watchdog 40
2.23.7 SysTick timer 40
2.24 Inter-integrated circuit interface $\left(\mathrm{I}^{2} \mathrm{C}\right)$ 41
2.25 Universal synchronous/asynchronous receiver transmitters (USART) 42
2.26 Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S) 43
2.27 Serial audio interface (SAI) 43
2.28 SPDIFRX Receiver Interface (SPDIFRX) 44
2.29 Audio PLL (PLLI2S) 44
2.30 Audio and LCD PLL (PLLSAI) 44
2.31 SD/SDIO/MMC card host interface (SDMMC) 45
2.32 Ethernet MAC interface with dedicated DMA and IEEE 1588 support 45
2.33 Controller area network (bxCAN) 46
2.34 Universal serial bus on-the-go full-speed (OTG_FS) 46
2.35 Universal serial bus on-the-go high-speed (OTG_HS) 46
2.36 High-definition multimedia interface (HDMI) - consumer electronics control (CEC) 47
2.37 Digital camera interface (DCMI) 47
2.38 Management Data Input/Output (MDIO) slaves 48
2.39 Random number generator (RNG) 48
2.40 General-purpose input/outputs (GPIOs) 48
2.41 Analog-to-digital converters (ADCs) 48
2.42 Digital filter for Sigma-Delta Modulators (DFSDM) 49
2.43 Temperature sensor 51
2.44 Digital-to-analog converter (DAC) 51
2.45 Serial wire JTAG debug port (SWJ-DP) 51
2.46 Embedded Trace Macrocell ${ }^{\text {TM }}$ 51
2.47 DSI Host (DSIHOST) 52
3 Pinouts and pin description 54
4 Memory mapping 102
5 Electrical characteristics 107
5.1 Parameter conditions 107
5.1.1 Minimum and maximum values 107
5.1.2 Typical values 107
5.1.3 Typical curves 107
5.1.4 Loading capacitor 107
5.1.5 Pin input voltage 107
5.1.6 Power supply scheme 108
5.1.7 Current consumption measurement 110
5.2 Absolute maximum ratings 110
5.3 Operating conditions 112
5.3.1 General operating conditions 112
5.3.2 VCAP1/VCAP2 external capacitor 114
5.3.3 Operating conditions at power-up / power-down (regulator ON) 115
5.3.4 Operating conditions at power-up / power-down (regulator OFF) 115
5.3.5 Reset and power control block characteristics 115
5.3.6 Over-drive switching characteristics 117
5.3.7 Supply current characteristics 117
5.3.8 Wakeup time from low-power modes 135
5.3.9 External clock source characteristics 136
5.3.10 Internal clock source characteristics 141
5.3.11 PLL characteristics 143
5.3.12 PLL spread spectrum clock generation (SSCG) characteristics 145
5.3.13 MIPI D-PHY characteristics 147
5.3.14 MIPI D-PHY PLL characteristics 150
5.3.15 MIPI D-PHY regulator characteristics 151
5.3.16 Memory characteristics 152
5.3.17 EMC characteristics 155
5.3.18 Absolute maximum ratings (electrical sensitivity) 156
5.3.19 I/O current injection characteristics 157
5.3.20 I/O port characteristics 158
5.3.21 NRST pin characteristics 164
5.3.22 TIM timer characteristics 165
5.3.23 RTC characteristics 165
5.3.24 12-bit ADC characteristics 165
5.3.25 Temperature sensor characteristics 171
5.3.26 $V_{\text {BAT }}$ monitoring characteristics 171
4 DocID029041 Rev 6 5/255
5.3.27 Reference voltage 171
5.3.28 DAC electrical characteristics 172
5.3.29 Communications interfaces 174
5.3.30 FMC characteristics 191
5.3.31 Quad-SPI interface characteristics 211
5.3.32 Camera interface (DCMI) timing specifications 213
5.3.33 LCD-TFT controller (LTDC) characteristics 214
5.3.34 Digital filter for Sigma-Delta Modulators (DFSDM) characteristics 216
5.3.35 DFSDM timing diagrams 218
5.3.36 SD/SDIO MMC card host interface (SDMMC) characteristics 219
6 Package information 221
6.1 LQFP100 14x 14 mm, low-profile quad flat package information 221
6.2 TFBGA100, $8 \times 8 \times 0.8 \mathrm{~mm}$ thin fine-pitch ball grid array package information 225
6.3 LQFP144 $20 \times 20 \mathrm{~mm}$, low-profile quad flat package information 228
6.4 LQFP176 $24 \times 24 \mathrm{~mm}$, low-profile quad flat package information 232
6.5 LQFP208 28×28 mm low-profile quad flat package information 236
6.6 WLCSP 180-bump, $5.5 \times 6 \mathrm{~mm}$, wafer level chip scale package information 240
6.7 UFBGA176+25, $10 \times 10,0.65 \mathrm{~mm}$ ultra thin fine-pitch ball grid array package information 244
6.8 TFBGA216, $13 \times 13 \times 0.8 \mathrm{~mm}$ thin fine-pitch ball grid array package information 247
6.9 Thermal characteristics 250
7 Ordering information 251
Appendix A Recommendations when using internal reset OFF 252
A. 1 Operating conditions 252
Revision history 253

List of tables

Table 1. Device summary 2
Table 2. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx features and peripheral counts 16
Table 3. Voltage regulator configuration mode versus device operating mode 32
Table 4. Regulator ON/OFF and internal reset ON/OFF availability. 35
Table 5. Voltage regulator modes in stop mode 36
Table 6. Timer feature comparison 38
Table 7. I2C implementation 41
Table 8. USART implementation 42
Table 9. DFSDM implementation 50
Table 10. Legend/abbreviations used in the pinout table 65
Table 11. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions 65
Table 12. FMC pin definition. 85
Table 13. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx alternate function mapping 88
Table 14. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx register boundary addresses 103
Table 15. Voltage characteristics 110
Table 16. Current characteristics 111
Table 17. Thermal characteristics 111
Table 18. General operating conditions 112
Table 19. Limitations depending on the operating power supply range 114
Table 20. VCAP1/VCAP2 operating conditions 115
Table 21. Operating conditions at power-up / power-down (regulator ON) 115
Table 22. Operating conditions at power-up / power-down (regulator OFF). 115
Table 23. Reset and power control block characteristics 116
Table 24. Over-drive switching characteristics 117
Table 25. Typical and maximum current consumption in Run mode, code with data processing running from ITCM RAM, regulator ON 118
Table 26. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (Single bank mode, ART ON except prefetch / L1-cache ON) or SRAM on AXI (L1-cache ON), regulator ON 119
Table 27. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (Dual bank mode, ART ON except prefetch / L1-cache ON), regulator ON 120
Table 28. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (Single bank mode) or SRAM on AXI (L1-cache disabled), regulator ON 121
Table 29. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (Dual bank mode), regulator ON 122
Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (Single bank mode) on ITCM interface (ART disabled), regulator ON 123
Table 31. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (Dual bank mode) on ITCM interface (ART disabled), regulator ON 124
Table 32. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (Single bank mode, ART ON except prefetch / L1-cache ON) or SRAM on AXI (L1-cache ON), regulator OFF125
Table 33. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (Dual bank mode, ART ON except prefetch / L1-cache ON) or SRAM on AXI (L1-cache ON), regulator OFF. 125
Table 34. Typical and maximum current consumption in Sleep mode, regulator ON. 126
Table 35. Typical and maximum current consumption in Sleep mode, regulator OFF 127
Table 36. Typical and maximum current consumptions in Stop mode 127
Table 37. Typical and maximum current consumptions in Standby mode 128
Table 38. Typical and maximum current consumptions in $V_{\text {BAT }}$ mode. 129
Table 39. Switching output I/O current consumption 130
Table 40. Peripheral current consumption 132
Table 41. Low-power mode wakeup timings 135
Table 42. High-speed external user clock characteristics. 136
Table 43. Low-speed external user clock characteristics 137
Table 44. HSE 4-26 MHz oscillator characteristics. 138
Table 45. LSE oscillator characteristics ($\mathrm{f}_{\mathrm{LSE}}=32.768 \mathrm{kHz}$) 139
Table 46. HSI oscillator characteristics 141
Table 47. LSI oscillator characteristics 142
Table 48. Main PLL characteristics. 143
Table 49. PLLI2S characteristics 144
Table 50. PLLISAI characteristics. 144
Table 51. SSCG parameters constraint 145
Table 52. MIPI D-PHY characteristics 147
Table 53. MIPI D-PHY AC characteristics LP mode and HS/LP transitions 148
Table 54. DSI-PLL characteristics 150
Table 55. DSI regulator characteristics. 151
Table 56. Flash memory characteristics 152
Table 57. Flash memory programming (single bank configuration nDBANK=1) 152
Table 58. Flash memory programming (dual bank configuration nDBANK=0) 153
Table 59. Flash memory programming with VPP 154
Table 60. Flash memory endurance and data retention 154
Table 61. EMS characteristics 155
Table 62. EMI characteristics 156
Table 63. ESD absolute maximum ratings 157
Table 64. Electrical sensitivities 157
Table 65. I/O current injection susceptibility 158
Table 66. I/O static characteristics 158
Table 67. Output voltage characteristics 161
Table 68. I/O AC characteristics 162
Table 69. NRST pin characteristics 164
Table 70. TIMx characteristics 165
Table 71. RTC characteristics 165
Table 72. ADC characteristics 165
Table 73. \quad ADC static accuracy at $\mathrm{f}_{\mathrm{ADC}}=18 \mathrm{MHz}$. 167
Table 74. $\quad A D C$ static accuracy at $f_{A D C}=30 \mathrm{MHz}$. 167
Table 75. $\quad A D C$ static accuracy at $f_{A D C}=36 \mathrm{MHz}$. 168
Table 76. $\quad A D C$ dynamic accuracy at $f_{A D C}=18 \mathrm{MHz}$ - limited test conditions 168
Table 77. \quad ADC dynamic accuracy at $\mathrm{f}_{\mathrm{ADC}}=36 \mathrm{MHz}$ - limited test conditions 168
Table 78. Temperature sensor characteristics 171
Table 79. Temperature sensor calibration values 171
Table 80. $V_{\text {BAT }}$ monitoring characteristics 171
Table 81. internal reference voltage 171
Table 82. Internal reference voltage calibration values 172
Table 83. DAC characteristics 172
Table 84. Minimum I2CCLK frequency in all I2C modes 175
Table 85. I2C analog filter characteristics 175
Table 86. SPI dynamic characteristics 176
Table 87. $\mathrm{I}^{2} \mathrm{~S}$ dynamic characteristics 179
Table 88. Dynamics characteristics: JTAG characteristics 181
Table 89. Dynamics characteristics: SWD characteristics 182
Table 90. SAI characteristics 183
Table 91. USB OTG full speed startup time 185
Table 92. USB OTG full speed DC electrical characteristics 185
Table 93. USB OTG full speed electrical characteristics 186
Table 94. USB HS DC electrical characteristics 187
Table 95. USB HS clock timing parameters 187
Table 96. Dynamic characteristics: USB ULPI 188
Table 97. Dynamics characteristics: Ethernet MAC signals for SMI. 189
Table 98. Dynamics characteristics: Ethernet MAC signals for RMII 190
Table 99. Dynamics characteristics: Ethernet MAC signals for MII 190
Table 100. MDIO Slave timing parameters 191
Table 101. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings 193
Table 102. Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT timings 193
Table 103. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings 194
Table 104. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings. 195
Table 105. Asynchronous multiplexed PSRAM/NOR read timings. 196
Table 106. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings 196
Table 107. Asynchronous multiplexed PSRAM/NOR write timings 197
Table 108. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings 198
Table 109. Synchronous multiplexed NOR/PSRAM read timings 200
Table 110. Synchronous multiplexed PSRAM write timings 202
Table 111. Synchronous non-multiplexed NOR/PSRAM read timings 203
Table 112. Synchronous non-multiplexed PSRAM write timings 205
Table 113. Switching characteristics for NAND Flash read cycles 207
Table 114. Switching characteristics for NAND Flash write cycles 208
Table 115. SDRAM read timings 209
Table 116. LPSDR SDRAM read timings 209
Table 117. SDRAM write timings 210
Table 118. LPSDR SDRAM write timings 211
Table 119. Quad-SPI characteristics in SDR mode 211
Table 120. Quad SPI characteristics in DDR mode 212
Table 121. DCMI characteristics 213
Table 122. LTDC characteristics 214
Table 123. DFSDM measured timing $1.71-3.6 \mathrm{~V}$ 216
Table 124. Dynamic characteristics: SD / MMC characteristics, VDD=2.7V to 3.6 V 220
Table 125. Dynamic characteristics: eMMC characteristics, VDD=1.71V to 1.9 V 220
Table 126. LQPF100, $14 \times 14 \mathrm{~mm}$ 100-pin low-profile quad flat package mechanical data 222
Table 127. TFBGA100, $8 \times 8 \times 0.8 \mathrm{~mm}$ thin fine-pitch ball grid array package mechanical data 225
Table 128. TFBGA100 recommended PCB design rules (0.8 mm pitch BGA). 227
Table 129. LQFP144, $20 \times 20 \mathrm{~mm}, 144$-pin low-profile quad flat package mechanical data 229
Table 130. LQFP176, $24 \times 24 \mathrm{~mm}, 176$-pin low-profile quad flat package mechanical data 233
Table 131. LQFP208, $28 \times 28 \mathrm{~mm}$, 208-pin low-profile quad flat package mechanical data 237
Table 132. WLCSP 180-bump, $5.5 \times 6 \mathrm{~mm}, 0.4 \mathrm{~mm}$ pitch wafer level chip scale package mechanical data 241
Table 133. WLCSP 180-bump, $5.5 \times 6 \mathrm{~mm}$, recommended PCB design rules (0.4 mm pitch). 242
Table 134. UFBGA176+25, $10 \times 10 \times 0.65 \mathrm{~mm}$ ultra thin fine-pitch ball grid array package mechanical data 244
Table 135. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA) 245
Table 136. TFBGA216, $13 \times 13 \times 0.8 \mathrm{~mm}$ thin fine-pitch ball grid array package mechanical data 247
Table 137. TFBGA216 recommended PCB design rules (0.8 mm pitch BGA). 248
Table 138. Package thermal characteristics 250
Table 139. Ordering information scheme 251
Table 140. Limitations depending on the operating power supply range 252
Table 141. Document revision history 253

List of figures

Figure 1. Compatible board design for LQFP100 package 18
Figure 2. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx block diagram 19
Figure 3. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx AXI-AHB bus matrix architecture ${ }^{(1)}$ 22
Figure 4. VDDUSB connected to VDD power supply 28
Figure 5. VDDUSB connected to external power supply 29
Figure 6. Power supply supervisor interconnection with internal reset OFF 30
Figure 7. PDR_ON control with internal reset OFF 31
Figure 8. Regulator OFF 33
Figure 9. Startup in regulator OFF: slow $V_{D D}$ slope

- power-down reset risen after $\mathrm{V}_{\mathrm{CAP}} 1, \mathrm{~V}_{\mathrm{CAP}}$ 2 stabilization 34
Figure 10. Startup in regulator OFF mode: fast $\overline{\mathrm{V}}_{\mathrm{DD}}$ slope - power-down reset risen before $\mathrm{V}_{\mathrm{CAP}}{ }_{1}, \mathrm{~V}_{\mathrm{CAP}} 2$ stabilization 34
Figure 11. STM32F76xxx LQFP100 pinout 54
Figure 12. STM32F76xxx TFBGA100 pinout 55
Figure 13. STM32F76xxx LQFP144 pinout 56
Figure 14. STM32F76xxx LQFP176 pinout 57
Figure 15. STM32F769xx LQFP176 pinout 58
Figure 16. STM32F769Ax/STM32F768Ax WLCSP180 ballout 59
Figure 17. STM32F76xxx LQFP208 pinout 60
Figure 18. STM32F769xx LQFP208 pinout 61
Figure 19. STM32F76xxx UFBGA176 ballout 62
Figure 20. STM32F76xxx TFBGA216 ballout 63
Figure 21. STM32F769xx TFBGA216 ballout 64
Figure 22. Memory map 102
Figure 23. Pin loading conditions 107
Figure 24. Pin input voltage 107
Figure 25. STM32F769xx/STM32F779xx power supply scheme 108
Figure 26. STM32F767xx/STM32F777xx power supply scheme 109
Figure 27. Current consumption measurement scheme 110
Figure 28. External capacitor $\mathrm{C}_{\mathrm{EXT}}$ 114
Figure 29. High-speed external clock source AC timing diagram 137
Figure 30. Low-speed external clock source AC timing diagram 138
Figure 31. Typical application with an 8 MHz crystal 139
Figure 32. Typical application with a 32.768 kHz crystal 140
Figure 33. ACCHSI versus temperature 141
Figure 34. LSI deviation versus temperature 142
Figure 35. PLL output clock waveforms in center spread mode 146
Figure 36. PLL output clock waveforms in down spread mode 147
Figure 37. MIPI D-PHY HS/LP clock lane transition timing diagram 150
Figure 38. MIPI D-PHY HS/LP data lane transition timing diagram 150
Figure 39. FT I/O input characteristics 160
Figure 40. I/O AC characteristics definition 163
Figure 41. Recommended NRST pin protection 164
Figure 42. ADC accuracy characteristics 169
Figure 43. Typical connection diagram using the ADC 169
Figure 44. Power supply and reference decoupling ($\mathrm{V}_{\mathrm{REF}+}$ not connected to $\mathrm{V}_{\mathrm{DDA}}$) 170
Figure 45. Power supply and reference decoupling ($\mathrm{V}_{\text {REF }+}$ connected to $\mathrm{V}_{\text {DDA }}$). 170
Figure 46. 12-bit buffered /non-buffered DAC 174
Figure 47. SPI timing diagram - slave mode and CPHA $=0$ 177
Figure 48. SPI timing diagram - slave mode and CPHA $=1^{(1)}$ 178
Figure 49. SPI timing diagram - master mode ${ }^{(1)}$ 178
Figure 50. $\mathrm{I}^{2} \mathrm{~S}$ slave timing diagram (Philips protocol) ${ }^{(1)}$ 180
Figure 51. $I^{2} \mathrm{~S}$ master timing diagram (Philips protocol) ${ }^{(1)}$ 180
Figure 52. JTAG timing diagram 182
Figure 53. SWD timing diagram 183
Figure 54. SAI master timing waveforms 184
Figure 55. SAI slave timing waveforms 185
Figure 56. USB OTG full speed timings: definition of data signal rise and fall time 186
Figure 57. ULPI timing diagram 188
Figure 58. Ethernet SMI timing diagram 189
Figure 59. Ethernet RMII timing diagram 189
Figure 60. Ethernet MII timing diagram 190
Figure 61. MDIO Slave timing diagram 191
Figure 62. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms 192
Figure 63. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms 194
Figure 64. Asynchronous multiplexed PSRAM/NOR read waveforms. 195
Figure 65. Asynchronous multiplexed PSRAM/NOR write waveforms 197
Figure 66. Synchronous multiplexed NOR/PSRAM read timings 199
Figure 67. Synchronous multiplexed PSRAM write timings. 201
Figure 68. Synchronous non-multiplexed NOR/PSRAM read timings 203
Figure 69. Synchronous non-multiplexed PSRAM write timings 204
Figure 70. NAND controller waveforms for read access 206
Figure 71. NAND controller waveforms for write access 206
Figure 72. NAND controller waveforms for common memory read access 207
Figure 73. NAND controller waveforms for common memory write access 207
Figure 74. SDRAM read access waveforms (CL = 1) 208
Figure 75. SDRAM write access waveforms 210
Figure 76. Quad-SPI timing diagram - SDR mode 213
Figure 77. Quad-SPI timing diagram - DDR mode 213
Figure 78. DCMI timing diagram 214
Figure 79. LCD-TFT horizontal timing diagram 215
Figure 80. LCD-TFT vertical timing diagram 215
Figure 81. Channel transceiver timing diagrams 218
Figure 82. SDIO high-speed mode 219
Figure 83. SD default mode. 219
Figure 84. LQFP100, $14 \times 14 \mathrm{~mm}$ 100-pin low-profile quad flat package outline 221
Figure 85. LQFP100, $14 \times 14 \mathrm{~mm}, 100$-pin low-profile quad flat package recommended footprint 223
Figure 86. LQFP100, $14 \times 14 \mathrm{~mm}, 100$-pin low-profile quad flat package top view example 224
Figure 87. TFBGA100, $8 \times 8 \times 0.8 \mathrm{~mm}$ thin fine-pitch ball grid array package outline. 225
Figure 88. TFBGA100, $8 \times 8 \times 0.8 \mathrm{~mm}$ thin fine-pitch ball grid array package recommended footprint 226
Figure 89. TFBGA100, $8 \times 8 \times 0.8 \mathrm{~mm}$ thin fine-pitch ball grid array package top view example 227
Figure 90. LQFP144, $20 \times 20 \mathrm{~mm}, 144$-pin low-profile quad flat package outline 228
Figure 91. LQFP144, $20 \times 20 \mathrm{~mm}, 144$-pin low-profile quad flat package recommended footprint 230
Figure 92. LQFP144, $20 \times 20 \mathrm{~mm}$, 144-pin low-profile quad flat package top view example 231
Figure 93. LQFP176, $24 \times 24 \mathrm{~mm}, 176$-pin low-profile quad flat package outline 232
Figure 94. LQFP176, $24 \times 24 \mathrm{~mm}, 176$-pin low-profile quad flat package recommended footprint. 234
Figure 95. LQFP176, $24 \times 24 \mathrm{~mm}$, 176-pin low-profile quad flat package top view example 235
Figure 96. LQFP208, $28 \times 28 \mathrm{~mm}, 208$-pin low-profile quad flat package outline 236
Figure 97. LQFP208, $28 \times 28 \mathrm{~mm}, 208$-pin low-profile quad flat package recommended footprint. 238
Figure 98. LQFP208, $28 \times 28 \mathrm{~mm}$, 208-pin low-profile quad flat package top view example 239
Figure 99. WLCSP 180-bump, $5.5 \times 6 \mathrm{~mm}, 0.4 \mathrm{~mm}$ pitch wafer level chip scale package outline 240
Figure 100. WLCSP 180-bump, $5.5 \times 6 \mathrm{~mm}, 0.4 \mathrm{~mm}$ pitch wafer level chip scale package recommended footprint 242
Figure 101. WLCSP180-bump, $5.5 \times 6 \mathrm{~mm}, 0.4 \mathrm{~mm}$ pitch wafer level chip scale package top view example 243
Figure 102. UFBGA176+25, $10 \times 10 \times 0.65 \mathrm{~mm}$ ultra thin fine-pitch ball grid array package outline 244
Figure 103. UFBGA176+25, $10 \times 10 \mathrm{~mm} \times 0.65 \mathrm{~mm}$, ultra fine-pitch ball grid array package recommended footprint 245
Figure 104. UFBGA $176+25,10 \times 10 \times 0.65 \mathrm{~mm}$ ultra thin fine-pitch ball grid array package top view example 246
Figure 105. TFBGA216, $13 \times 13 \times 0.8 \mathrm{~mm}$ thin fine-pitch ball grid array package outline. 247
Figure 106. TFBGA216, $13 \times 13 \mathrm{~mm}, 0.8 \mathrm{~mm}$ pitch, thin fine-pitch ball grid array package recommended footprint 248
Figure 107. TFBGA216, $13 \times 13 \times 0.8 \mathrm{~mm}$ thin fine-pitch ball grid array package top view example 249

1 Description

The STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx devices are based on the high-performance Arm^{\circledR} Cortex $^{\circledR}$-M7 32-bit RISC core operating at up to 216 MHz frequency. The Cortex ${ }^{\circledR}-\mathrm{M} 7$ core features a floating point unit (FPU) which supports Arm ${ }^{\circledR}$ double-precision and single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances the application security.

The STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx devices incorporate high-speed embedded memories with a Flash memory up to 2 Mbytes, 512 Kbytes of SRAM (including 128 Kbytes of Data TCM RAM for critical real-time data), 16 Kbytes of instruction TCM RAM (for critical real-time routines), 4 Kbytes of backup SRAM available in the lowest power modes, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses, a 32-bit multi-AHB bus matrix and a multi layer AXI interconnect supporting internal and external memories access.
All the devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve generalpurpose 16-bit timers including two PWM timers for motor control, two general-purpose 32bit timers, a true random number generator (RNG). They also feature standard and advanced communication interfaces:

- Up to four I2Cs
- Six SPIs, three I2Ss in half-duplex mode. To achieve audio class accuracy, the I2S peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization.
- Four USARTs plus four UARTs
- An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the ULPI)
- Three CANs
- Two SAI serial audio interfaces
- Two SDMMC host interfaces
- Ethernet and camera interfaces
- LCD-TFT display controller
- Chrom-ART Accelerator ${ }^{\text {TM }}$
- SPDIFRX interface
- HDMI-CEC

Advanced peripherals include two SDMMC interfaces, a flexible memory control (FMC) interface, a Quad-SPI Flash memory interface, a camera interface for CMOS sensors.

The STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx devices operate in the -40 to $+105^{\circ} \mathrm{C}$ temperature range from a 1.7 to 3.6 V power supply. Dedicated supply inputs for USB (OTG_FS and OTG_HS) and SDMMC2 (clock, command and 4-bit data) are available on all the packages except LQFP100 for a greater power supply choice.
The supply voltage can drop to 1.7 V with the use of an external power supply supervisor. A comprehensive set of power-saving mode allows the design of low-power applications.

The STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx devices offer devices in 11 packages ranging from 100 pins to 216 pins. The set of included peripherals changes with the device chosen.

These features make the STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx microcontrollers suitable for a wide range of applications:

- Motor drive and application control
- Medical equipment
- Industrial applications: PLC, inverters, circuit breakers
- Printers, and scanners
- Alarm systems, video intercom, and HVAC
- Home audio appliances
- Mobile applications, Internet of Things
- Wearable devices: smartwatches

The following table lists the peripherals available on each part number.
Table 2. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx features and

Periph	erals	$\underset{765}{\text { STM }^{2}}$	$\begin{aligned} & \text { M32F } \\ & 5 \mathrm{Vx} \end{aligned}$	$\begin{array}{\|c} \text { STM3; } \\ \text { I76 } \end{array}$	$\begin{aligned} & 2 F 767 \\ & 9 \mathrm{Vx} \end{aligned}$	$\begin{gathered} \text { STM } \\ 765 \end{gathered}$	[32F	$\begin{array}{r} \text { STM3 } \\ \hline 76 \end{array}$	$\begin{aligned} & 2 F 767 \\ & 9 Z x \end{aligned}$	$\begin{array}{r} \text { STM } \\ 769 \end{array}$	32F	$\underset{768 \mathrm{Ax}}{\mathrm{ST}_{2}}$	$\begin{gathered} \text { STM } \\ 76 \end{gathered}$	$\begin{aligned} & 132 F \\ & 51 \times \end{aligned}$	$\begin{array}{r} \text { STM3 } \\ 176 \end{array}$	$\underset{\text { OIv }}{2 F 767}$		$\begin{aligned} & 332 F \\ & 5 \mathrm{Bx} \end{aligned}$	$\begin{array}{\|c} \text { STM3 } \\ \hline \end{array}$	27767		$\begin{aligned} & 132 F \\ & { }_{5}^{2} \times \end{aligned}$	$\begin{gathered} \text { STM32 } \\ \hline 769 \end{gathered}$	$2 F 767$
Flash memory in	Kbytes	1024	2048	1024	2048	1024	2048	1024	2048	1024	2048	2048	1024	2048	1024	2048	1024	2048	1024	2048	1024	2048	1024	2048
	System											512(36	+16+	128)										
SRAM in	Instruction												16											
	Backup												4											
FMC memory co	troller												es ${ }^{11}$											
Quad-SPI													Yes											
Ethernet					Y						No								es					
	Generalpurpose												10											
Timers	Advancedcontrol												2											
	Basic												2											
	Low-power												1											
Random number	generator												Yes											
	$\mathrm{SPI} / \mathrm{I}^{2} \mathrm{~S}$		4/3 (sin	plex) ${ }^{(2)}$										6/3 ((implex									
	$1^{2} \mathrm{C}$												4											
	USART/UART												4/4											
	USB OTG FS												Yes											
ation	USB OTG HS												Yes											
ces	CAN												3											
	SAI												2											
	SPDIFRX												nputs											
	SDMMC1												Yes											
	SDMMC2												Yes ${ }^{(3)}$											
Camera interface		Yes																						
MIPI-DSI Host ${ }^{(4)}$		No								Yes			No		Yes		No		Yes		No		Yes	
LCD-TFT		No		Yes		No		Yes					No		Yes		No		Yes		No		Yes	

Table 2. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx features and

Peripherals	$\begin{gathered} \text { STM }_{765 \mathrm{~V}} \mathrm{ST} \end{gathered}$	$\begin{gathered} \text { STM32F767 } \\ \text { I769Vx } \end{gathered}$	$\begin{aligned} & \text { STM }{ }_{7652 F} \end{aligned}$	$\begin{array}{\|c} \hline \text { STM32F767 } \\ \text { I769Zx } \end{array}$	$\begin{aligned} & \text { STM32F } \\ & 769 \mathrm{Ax} \end{aligned}$	$\begin{aligned} & \text { STM } 32 F \\ & 768 \mathrm{Ax} \end{aligned}$	$\begin{gathered} \text { STM }{ }_{7651 x} \end{gathered}$	$\begin{array}{\|c} \text { STM32F767 } \\ \text { I7691x } \end{array}$	$\begin{aligned} & \text { STM } 32 \mathrm{~F} 2 \mathrm{Bx} \end{aligned}$	$\begin{aligned} & \text { STM32F767 } \\ & \text { /769Bx } \end{aligned}$	STM32F	$\begin{aligned} & \text { STM32F767 } \\ & \text { /769Nx } \end{aligned}$
Chrom-ART Accelerator ${ }^{\text {TM }}$ (DMA2D)	Yes											
JPEG codec	No	Yes	No	Yes			No	Yes	No	Yes	No	Yes
GPIOs	82		114		129		140	132	168	159	168	159
DFSDM1	Yes (4 filters)											
12-bit ADC	3											
Number of channels	16		24									
12-bit DAC Number of channels	$\begin{gathered} \text { Yes } \\ 2 \end{gathered}$											
Maximum CPU frequency	$216 \mathrm{MHz}^{(5)}$											
Operating voltage	1.7 to $3.6 \mathrm{~V}^{(6)}$											
Operating ter	Ambient temperatures: -40 to $+85^{\circ} \mathrm{C} /-40$ to $+105^{\circ} \mathrm{C}$											
	Junction temperature: -40 to $+125^{\circ} \mathrm{C}$											
Package	$\begin{aligned} & \text { LQFP100 } \\ & \text { TFBGA100 } \end{aligned}$		LQFP144		WLCSP180		$\begin{gathered} \hline \text { UFBGA176 }{ }^{(7)} \\ \text { LQFP176 } \end{gathered}$		LQFP208		TFBGA216	

[^0]
Full compatibility throughout the family

The STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx devices are fully pin-to-pin, compatible with the STM32F4xxxx devices, allowing the user to try different peripherals, and reaching higher performances (higher frequency) for a greater degree of freedom during the development cycle.

Figure 1 gives compatible board designs between the STM32F7xx and STM32F4xx families.

Figure 1. Compatible board design for LQFP100 package

The STM32F76x LQFP144, LQFP176, LQFP208, TFBGA216, UFBGA176 packages are fully pin to pin compatible with STM32F4xx devices.

Figure 2. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx block diagram

1. The timers connected to APB2 are clocked from TIMxCLK up to 216 MHz , while the timers connected to APB1 are clocked from TIMxCLK either up to 108 MHz or 216 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.

2 Functional overview

2.1 \quad Arm ${ }^{\circledR}$ Cortex $^{\circledR}$-M7 with FPU

The Arm ${ }^{\circledR}$ Cortex ${ }^{\circledR}-\mathrm{M} 7$ with FPU processor is the latest generation of Arm processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering an outstanding computational performance and low interrupt latency.
The Cortex ${ }^{\circledR}-\mathrm{M} 7$ processor is a highly efficient high-performance featuring:

- Six-stage dual-issue pipeline
- Dynamic branch prediction
- Harvard caches (16 Kbytes of I-cache and 16 Kbytes of D-cache)
- 64-bit AXI4 interface
- 64-bit ITCM interface
- 2x32-bit DTCM interfaces

The processor supports the following memory interfaces:

- Tightly Coupled Memory (TCM) interface.
- Harvard instruction and data caches and AXI master (AXIM) interface.
- Dedicated low-latency AHB-Lite peripheral (AHBP) interface.

The processor supports a set of DSP instructions which allow an efficient signal processing and a complex algorithm execution.

It supports single and double precision FPU (floating point unit), speeds up software development by using metalanguage development tools, while avoiding saturation.

Figure 2 shows the general block diagram of the STM32F76xxx family.
Note: \quad The Cortex ${ }^{\circledR}$-M7 with FPU core is binary compatible with the Cortex ${ }^{\circledR}$-M4 core.

2.2 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

2.3 Embedded Flash memory

The STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx devices embed a Flash memory of up to 2 Mbytes available for storing programs and data. The Flash interface features:

- Single /or Dual bank operating modes,
- Read-While-Write (RWW) in Dual bank mode.

2.4 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.

2.5 Embedded SRAM

All the devices feature:

- System SRAM up to 512 Kbytes:
- SRAM1 on AHB bus Matrix: 368 Kbytes
- SRAM2 on AHB bus Matrix: 16 Kbytes
- DTCM-RAM on TCM interface (Tighly Coupled Memory interface): 128 Kbytes for critical real-time data.
- Instruction RAM (ITCM-RAM) 16 Kbytes:
- It is mapped on TCM interface and reserved only for CPU Execution/Instruction useful for critical real-time routines.

The Data TCM RAM is accessible by the GP-DMAs and peripherals DMAs through specific AHB slave of the CPU.The instruction TCM RAM is reserved only for CPU. It is accessed at CPU clock speed with 0 wait states.

- 4 Kbytes of backup SRAM

This area is accessible only from the CPU. Its content is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode.

2.6 AXI-AHB bus matrix

The STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx system architecture is based on 2 sub-systems:

- An AXI to multi AHB bridge converting AXI4 protocol to AHB-Lite protocol:
- $3 x$ AXI to 32-bit AHB bridges connected to AHB bus matrix
- $\quad 1 x$ AXI to 64-bit AHB bridge connected to the embedded Flash memory
- A multi-AHB Bus-Matrix
- The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB HS, LCD-TFT, and DMA2D) and the slaves (Flash memory, RAM, FMC, Quad-SPI, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.

Figure 3. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx AXI-AHB bus matrix architecture ${ }^{(1)}$

1. The above figure has large wires for 64-bits bus and thin wires for 32-bits bus.

2.7 DMA controller (DMA)

The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB).

The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code.
Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. The configuration is made by software and the transfer sizes between the source and the destination are independent.

The DMA can be used with the main peripherals:

- $\quad S P I$ and $I^{2} S$
- $\quad \mathrm{I}^{2} \mathrm{C}$
- USART
- General-purpose, basic and advanced-control timers TIMx
- DAC
- SDMMC
- Camera interface (DCMI)
- ADC
- SAI
- SPDIFRX
- Quad-SPI
- HDMI-CEC
- JPEG codec
- DFSDM1

2.8 Flexible memory controller (FMC)

The Flexible memory controller (FMC) includes three memory controllers:

- The NOR/PSRAM memory controller
- The NAND/memory controller
- The Synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) controller

The main features of the FMC controller are the following:

- Interface with static-memory mapped devices including:
- \quad Static random access memory (SRAM)
- NOR Flash memory/OneNAND Flash memory
- PSRAM (4 memory banks)
- NAND Flash memory with ECC hardware to check up to 8 Kbytes of data
- Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories
- 8-,16-,32-bit data bus width
- Independent Chip Select control for each memory bank
- Independent configuration for each memory bank
- Write FIFO
- Read FIFO for SDRAM controller
- The maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is HCLK/2

LCD parallel interface

The FMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration.

2.9 Quad-SPI memory interface (QUADSPI)

All the devices embed a Quad-SPI memory interface, which is a specialized communication interface targetting Single, Dual or Quad-SPI Flash memories. It can work in:

- Direct mode through registers
- External Flash status register polling mode
- Memory mapped mode.

Up to 256 Mbytes external Flash are memory mapped, supporting 8, 16 and 32-bit access. Code execution is supported.

The opcode and the frame format are fully programmable. The communication can be either in Single Data Rate or Dual Data Rate.

2.10 LCD-TFT controller

The LCD-TFT display controller provides a 24 -bit parallel digital RGB (Red, Green, Blue) and delivers all signals to interface directly to a broad range of LCD and TFT panels up to XGA (1024x768) resolution with the following features:

- 2 display layers with dedicated FIFO (64×32-bit)
- Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer
- Up to 8 input color formats selectable per layer
- Flexible blending between two layers using alpha value (per pixel or constant)
- Flexible programmable parameters for each layer
- Color keying (transparency color)
- Up to 4 programmable interrupt events

2.11 Chrom-ART Accelerator ${ }^{\text {TM }}$ (DMA2D)

The Chrom-Art Accelerator ${ }^{\text {TM }}$ (DMA2D) is a graphic accelerator which offers advanced bit blitting, row data copy and pixel format conversion. It supports the following functions:

- Rectangle filling with a fixed color
- Rectangle copy
- Rectangle copy with pixel format conversion
- Rectangle composition with blending and pixel format conversion

Various image format codings are supported, from indirect 4bpp color mode up to 32bpp direct color. It embeds dedicated memory to store color lookup tables.

An interrupt can be generated when an operation is complete or at a programmed watermark.

All the operations are fully automatized and are running independently from the CPU or the DMAs.

2.12 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 110 maskable interrupt channels plus the 16 interrupt lines of the Cortex ${ }^{\circledR}$ M7 with FPU core.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Allows early processing of interrupts
- Processing of late arriving, higher-priority interrupts
- Support tail chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimum interrupt latency.

2.13 JPEG codec (JPEG)

The JPEG codec provides an fast and simple hardware compressor and decompressor of JPEG images with full management of JPEG headers.

The JPEG codec main features:

- 8-bit/channel pixel depths
- Single clock per pixel encoding and decoding
- Support for JPEG header generation and parsing
- Up to four programmable quantization tables
- Fully programmable Huffman tables (two AC and two DC)
- Fully programmable minimum coded unit (MCU)
- Encode/decode support (non simultaneous)
- Single clock Huffman coding and decoding
- Two-channel interface: Pixel/Compress In, Pixel/Compressed Out
- Stallable design
- Support for single, greyscale component
- Functionality to enable/disable header processing
- Internal register interface
- Fully synchronous design
- Configured for high-speed decode mode

2.14 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 25 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 168 GPIOs can be connected to the 16 external interrupt lines.

2.15 Clocks and startup

On reset the 16 MHz internal HSI RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy. The application can then select as system clock either the RC oscillator or an external $4-26 \mathrm{MHz}$ clock source. This clock can be monitored for failure. If a failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 216 MHz . Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails).
Several prescalers allow the configuration of the two AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB buses is 216 MHz while the maximum frequency of the high-speed APB domains is 108 MHz . The maximum allowed frequency of the low-speed APB domain is 54 MHz .

The devices embed two dedicated PLL (PLLI2S and PLLSAI) which allow to achieve audio class performance. In this case, the $\mathrm{I}^{2} \mathrm{~S}$ and SAI master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz .

2.16 Boot modes

At startup, the boot memory space is selected by the BOOT pin and BOOT_ADDx option bytes, allowing to program any boot memory address from 0×00000000 to $0 \times 3 F F F$ FFFF which includes:

- All Flash address space mapped on ITCM or AXIM interface
- All RAM address space: ITCM, DTCM RAMs and SRAMs mapped on AXIM interface
- The System memory bootloader

The boot loader is located in system memory. It is used to reprogram the Flash memory through a serial interface. Refer to STM32 microcontroller system memory boot mode application note (AN2606) for details.

2.17 Power supply schemes

- $\quad \mathrm{V}_{\mathrm{DD}}=1.7$ to 3.6 V : external power supply for I/Os and the internal regulator (when enabled), provided externally through V_{DD} pins.
- $\quad V_{S S A}, V_{\text {DDA }}=1.7$ to 3.6 V : external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL. $V_{D D A}$ and $V_{S S A}$ must be connected to $V_{D D}$ and $V_{S S}$, respectively.
- $\quad V_{B A T}=1.65$ to 3.6 V : power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

Note: $\quad V_{D D} / V_{D D A}$ minimum value of 1.7 V is obtained when the internal reset is OFF (refer to Section 2.18.2: Internal reset OFF). Refer to Table 3: Voltage regulator configuration mode versus device operating mode to identify the packages supporting this option.

- $\quad V_{\text {DDSDMMC }}$ can be connected either to $V_{D D}$ or an external independent power supply (1.8 to 3.6 V) for SDMMC2 pins (clock, command, and 4-bit data). For example, when the device is powered at 1.8 V , an independent power supply 2.7 V can be connected to $\mathrm{V}_{\text {DDSDMMC }}$. When the $\mathrm{V}_{\text {DDSDMMC }}$ is connected to a separated power supply, it is independent from $V_{D D}$ or $V_{D D A}$ but it must be the last supply to be provided and the first to disappear. The following conditions $\mathrm{V}_{\text {DDSDMMC }}$ must be respected:
- During the power-on phase ($\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{DD}}$ MIN $), \mathrm{V}_{\text {DDSDMMC }}$ should be always lower than $V_{D D}$
- During the power-down phase $\left(\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{DD} _\mathrm{MIN}}\right), \mathrm{V}_{\text {DDSDMMC }}$ should be always lower than V_{DD}
- The $\mathrm{V}_{\text {DDSDMMC }}$ rising and falling time rate specifications must be respected
- In operating mode phase, $\mathrm{V}_{\text {DDSDMMC }}$ could be lower or higher than V_{DD} : All associated GPIOs powered by $\mathrm{V}_{\text {DSSDMMC }}$ are operating between $V_{\text {DDSDMMC_MIN }}$ and $V_{\text {DDSDMMC_MAX. }}$
- $\quad V_{\text {DDUSB }}$ can be connected either to $\mathrm{V}_{\text {DD }}$ or an external independent power supply (3.0 to 3.6 V) for USB transceivers (refer to Figure 4 and Figure 5). For example, when the device is powered at 1.8 V , an independent power supply 3.3 V can be connected to $V_{\text {DDUSB }}$. When the $V_{\text {DDUSB }}$ is connected to a separated power supply, it is independent from $V_{D D}$ or $V_{D D A}$ but it must be the last supply to be provided and the first to
disappear. The following conditions $V_{\text {DDUSB }}$ must be respected:
- During the power-on phase ($\left.\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{DD}} \mathrm{MII}\right), \mathrm{V}_{\mathrm{DDUSB}}$ should be always lower than $V_{D D}$
- \quad During the power-down phase $\left(\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{DD}} \mathrm{MII}\right), \mathrm{V}_{\mathrm{DDUSB}}$ should be always lower than $V_{D D}$
- The $V_{\text {DDUSB }}$ rising and falling time rate specifications must be respected (see Table 20 and Table 21)
- In operating mode phase, $\mathrm{V}_{\mathrm{DDUSB}}$ could be lower or higher than V_{DD} : - If USB (USB OTG_HS/OTG_FS) is used, the associated GPIOs powered by $V_{\text {DDUSB }}$ are operating between $V_{\text {DDUSB_MIN }}$ and $V_{\text {DDUSB_MAX }}$.
- The VDDUSB supply both USB transceiver (USB OTG_HS and USB OTG_FS). If only one USB transceiver is used in the application, the GPIOs associated to the other USB transceiver are still supplied by $\mathrm{V}_{\text {DDUSB }}$.
- If USB (USB OTG_HS/OTG_FS) is not used, the associated GPIOs powered by $V_{\text {DDUSB }}$ are operating between $V_{D D _M I N}$ and $V_{D D _M A X}$.

Figure 4. $\mathrm{V}_{\text {DDUSB }}$ connected to $\mathrm{V}_{\text {DD }}$ power supply

Figure 5. $\mathrm{V}_{\text {DDUSB }}$ connected to external power supply

The DSI (Display Serial Interface) sub-system uses several power supply pins which are independent from the other supply pins:

- $\quad V_{\text {DDDSI }}$ is an independent DSI power supply dedicated for DSI Regulator and MIPI D-PHY. This supply must be connected to global V_{DD}.
- \quad The $\mathrm{V}_{\text {CAPDSI }}$ pin is the output of DSI Regulator (1.2V) which must be connected externally to $\mathrm{V}_{\text {DD12DSI }}$.
- The $V_{\text {DD12DSI }}$ pin is used to supply the MIPI D-PHY, and to supply the clock and data lanes pins. An external capacitor of 2.2 uF must be connected on the $V_{\text {DD12DSI }}$ pin.
- The $\mathrm{V}_{\text {SSDSI }}$ pin is an isolated supply ground used for DSI sub-system.
- If the DSI functionality is not used at all, then:
- The $\mathrm{V}_{\text {DDDSI }}$ pin must be connected to global V_{DD}.
- The $\mathrm{V}_{\text {CAPDSI }}$ pin must be connected externally to $\mathrm{V}_{\text {DD12DSI }}$ but the external capacitor is no more needed.
- The $\mathrm{V}_{\text {SSDSI }}$ pin must be grounded.

2.18 Power supply supervisor

2.18.1 Internal reset ON

On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On the other packages, the power supply supervisor is always enabled.

The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V . After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default BOR thresholds, or to disable BOR permanently. Three BOR thresholds are available through
option bytes. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{\text {POR/PDR }}$ or $\mathrm{V}_{\mathrm{BOR}}$, without the need for an external reset circuit.
The device also features an embedded programmable voltage detector (PVD) that monitors the $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDA}}$ power supply and compares it to the $\mathrm{V}_{\mathrm{PVD}}$ threshold. An interrupt can be generated when $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDA}}$ drops below the $\mathrm{V}_{\mathrm{PVD}}$ threshold and/or when $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDA}}$ is higher than the $\mathrm{V}_{\mathrm{PVD}}$ threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

2.18.2 Internal reset OFF

This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin.
An external power supply supervisor should monitor $V_{D D}$ and NRST and should maintain the device in reset mode as long as V_{DD} is below a specified threshold. PDR_ON should be connected to V_{SS}. Refer to Figure 6: Power supply supervisor interconnection with internal reset OFF.

Figure 6. Power supply supervisor interconnection with internal reset OFF

The V_{DD} specified threshold, below which the device must be maintained under reset, is 1.7 V (see Figure 7).

A comprehensive set of power-saving mode allows to design low-power applications.
When the internal reset is OFF, the following integrated features are no more supported:

- The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
- The brownout reset (BOR) circuitry must be disabled
- The embedded programmable voltage detector (PVD) is disabled
- $\quad V_{B A T}$ functionality is no more available and $V_{B A T}$ pin should be connected to $V_{D D}$. All the packages, except for the LQFP100, allow to disable the internal reset through the PDR_ON signal when connected to V_{SS}.

Figure 7. PDR_ON control with internal reset OFF

2.19 Voltage regulator

The regulator has four operating modes:

- Regulator ON
- Main regulator mode (MR)
- Low power regulator (LPR)
- Power-down
- Regulator OFF

2.19.1 Regulator ON

On packages embedding the BYPASS_REG pin, the regulator is enabled by holding BYPASS_REG low. On all other packages, the regulator is always enabled.
There are three power modes configured by software when the regulator is ON :

- MR mode used in Run/sleep modes or in Stop modes
- In Run/Sleep modes

The MR mode is used either in the normal mode (default mode) or the over-drive mode (enabled by software). Different voltages scaling are provided to reach the best compromise between maximum frequency and dynamic power consumption. The over-drive mode allows operating at a higher frequency than the normal mode for a given voltage scaling.

- In Stop modes

The MR can be configured in two ways during stop mode:
MR operates in normal mode (default mode of MR in stop mode) MR operates in under-drive mode (reduced leakage mode).

- LPR is used in the Stop modes:

The LP regulator mode is configured by software when entering Stop mode. Like the MR mode, the LPR can be configured in two ways during stop mode:

- LPR operates in normal mode (default mode when LPR is ON)
- LPR operates in under-drive mode (reduced leakage mode).
- Power-down is used in Standby mode.

The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost.

Refer to Table 3 for a summary of voltage regulator modes versus device operating modes.
Two external ceramic capacitors should be connected on $\mathrm{V}_{\mathrm{CAP}} 1$ and $\mathrm{V}_{\mathrm{CAP}}$ 2 pin.
All packages have the regulator ON feature.
Table 3. Voltage regulator configuration mode versus device operating mode ${ }^{(1)}$

Voltage regulator configuration	Run mode	Sleep mode	Stop mode	Standby mode
Normal mode	MR	MR	MR or LPR	-
Over-drive mode $^{(2)}$	MR	MR	-	-
Under-drive mode	-	-	MR or LPR	-
Power-down mode	-	-	-	Yes

1. '-' means that the corresponding configuration is not available.
2. The over-drive mode is not available when $\mathrm{V}_{\mathrm{DD}}=1.7$ to 2.1 V .

2.19.2 Regulator OFF

This feature is available only on packages featuring the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a V_{12} voltage source through $\mathrm{V}_{\mathrm{CAP}} 1$ and $\mathrm{V}_{\mathrm{CAP}}$ 2 pins.
Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency. The two $2.2 \mu \mathrm{~F}$ ceramic capacitors should be replaced by two 100 nF decoupling capacitors.
When the regulator is OFF, there is no more internal monitoring on V_{12}. An external power supply supervisor should be used to monitor the V_{12} of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V_{12} power domain.

In the regulator OFF mode, the following features are no more supported:

- PAO cannot be used as a GPIO pin since it allows to reset a part of the V_{12} logic power domain which is not reset by the NRST pin.
- As long as PAO is kept low, the debug mode cannot be used under power-on reset. As a consequence, PAO and NRST pins must be managed separately if the debug connection under reset or pre-reset is required.
- The over-drive and under-drive modes are not available.
- The Standby mode is not available.

Figure 8. Regulator OFF

The following conditions must be respected:

- $V_{D D}$ should always be higher than $\mathrm{V}_{\text {CAP_1 }}$ and $\mathrm{V}_{\mathrm{CAP} \text { _ } 2}$ to avoid current injection between power domains.
- If the time for $\mathrm{V}_{\text {CAP_1 }}$ and $\mathrm{V}_{\text {CAP_2 }}$ to reach V_{12} minimum value is faster than the time for V_{DD} to reach $1.7 \mathrm{~V}^{-}$then PA0 should be kept low to cover both conditions: until $\mathrm{V}_{\mathrm{CAP}} 1$ and $\mathrm{V}_{\mathrm{CAP} \text { _ } 2}$ reach V_{12} minimum value and until V_{DD} reaches 1.7 V (see Figure 9).
- Otherwise, if the time for $\mathrm{V}_{\text {CAP }_{-1} 1}$ and $\mathrm{V}_{\text {CAP }_{-}}$to reach V_{12} minimum value is slower than the time for V_{DD} to reach $\overline{1} .7 \mathrm{~V}$, then PAO could be asserted low externally (see Figure 10).
- If $V_{C A P _1}$ and $V_{C A P _2}$ go below V_{12} minimum value and $V_{D D}$ is higher than 1.7 V , then a reset must be asserted on PA0 pin.
Note: \quad The minimum value of V_{12} depends on the maximum frequency targeted in the application.

Figure 9. Startup in regulator OFF: slow V_{DD} slope - power-down reset risen after $\mathrm{V}_{\mathrm{CAP} 1}, \mathrm{~V}_{\mathrm{CAP} 2}$ stabilization

1. This figure is valid whatever the internal reset mode (ON or OFF).

Figure 10. Startup in regulator OFF mode: fast V_{DD} slope - power-down reset risen before $\mathrm{V}_{\mathrm{CAP}}{ }_{1}, \mathrm{~V}_{\mathrm{CAP}}$ 2 stabilization

1. This figure is valid whatever the internal reset mode (ON or OFF).

2.19.3 Regulator ON/OFF and internal reset ON/OFF availability

Table 4. Regulator ON/OFF and internal reset ON/OFF availability

Package	Regulator ON	Regulator OFF	Internal reset ON	Internal reset OFF
LQFP100	Yes	No	Yes	No
LQFP144, LQFP208			$\begin{gathered} \text { Yes } \\ \text { PDR_ON set to } V_{D D} \end{gathered}$	$\begin{gathered} \text { Yes } \\ \text { PDR_ON set to } V_{S S} \end{gathered}$
LQFP176, UFBGA176, TFBGA100, TFBGA216	Yes BYPASS_REG set to $V_{S S}$	Yes BYPASS REG set to $V_{D D}$		
WLCSP180	Yes ${ }^{(1)}$			

1. Available only on dedicated part number. Refer to Section 7: Ordering information.

2.20 Real-time clock (RTC), backup SRAM and backup registers

The RTC is an independent BCD timer/counter. It supports the following features:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
- Two programmable alarms.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy.
- Three anti-tamper detection pins with programmable filter.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to $V_{B A T}$ mode.
- 17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period.

The RTC and the 32 backup registers are supplied through a switch that takes power either from the V_{DD} supply when present or from the $\mathrm{V}_{\mathrm{BAT}}$ pin.

The backup registers are 32-bit registers used to store 128 bytes of user application data when VDD power is not present. They are not reset by a system or power reset, or when the device wakes up from Standby mode.

The RTC clock sources can be:

- A 32.768 kHz external crystal (LSE)
- An external resonator or oscillator(LSE)
- The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)
- The high-speed external clock (HSE) divided by 32

The RTC is functional in $V_{B A T}$ mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in $V_{\text {BAT }}$ mode, but is functional in all low-power modes.

All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt and wakeup the device from the low-power modes.

2.21 Low-power modes

The devices support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

- Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

- Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled.
The voltage regulator can be put either in main regulator mode (MR) or in low-power mode (LPR). Both modes can be configured as follows (see Table 5: Voltage regulator modes in stop mode):

- Normal mode (default mode when MR or LPR is enabled)
- Under-drive mode.

The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup and LPTIM1 asynchronous interrupt).

Table 5. Voltage regulator modes in stop mode

Voltage regulator configuration	Main regulator (MR)	Low-power regulator (LPR)
Normal mode	MR ON	LPR ON
Under-drive mode	MR in under-drive mode	LPR in under-drive mode

- Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering

Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected.
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising or falling edge on one of the 6 WKUP pins (PA0, PA2, PC1, PC13, PI8, PI11), or an RTC alarm / wakeup / tamper /time stamp event occurs.
The Standby mode is not supported when the embedded voltage regulator is bypassed and the 1.2 V domain is controlled by an external power.

2.22 $\quad \mathrm{V}_{\mathrm{BAT}}$ operation

The $\mathrm{V}_{\text {BAT }}$ pin allows to power the device $\mathrm{V}_{\mathrm{BAT}}$ domain from an external battery, an external supercapacitor, or from $V_{D D}$ when no external battery and an external supercapacitor are present.
$V_{B A T}$ operation is activated when $V_{D D}$ is not present.
The $\mathrm{V}_{\text {BAT }}$ pin supplies the RTC, the backup registers and the backup SRAM.
Note: \quad When the microcontroller is supplied from $V_{B A T}$, external interrupts and RTC alarm/events do not exit it from $V_{B A T}$ operation.

When the PDR_ON pin is connected to $V_{S S}$ (Internal Reset OFF), the $V_{B A T}$ functionality is no more available and the $V_{B A T}$ pin should be connected to VDD.

2.23 Timers and watchdogs

The devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers.

All timer counters can be frozen in debug mode.
Table 6 compares the features of the advanced-control, general-purpose and basic timers.

Table 6. Timer feature comparison

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complem entary output	```Max interface clock (MHz)```	$\begin{gathered} \text { Max } \\ \text { timer } \\ \text { clock } \\ (\mathrm{MHz})^{(1)} \end{gathered}$
Advanced -control	TIM1, TIM8	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	Yes	108	216
General purpose	$\begin{aligned} & \text { TIM2, } \\ & \text { TIM5 } \end{aligned}$	32-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	54	108/216
	TIM3, TIM4	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	54	108/216
	TIM9	16-bit	Up	Any integer between 1 and 65536	No	2	No	108	216
	TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No	108	216
	TIM12	16-bit	Up	Any integer between 1 and 65536	No	2	No	54	108/216
	TIM13, TIM14	16-bit	Up	Any integer between 1 and 65536	No	1	No	54	108/216
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No	54	108/216

1. The maximum timer clock is either 108 or 216 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.

2.23.1 Advanced-control timers (TIM1, TIM8)

The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge- or center-aligned modes)
- One-pulse mode output

If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0100\%).

The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

TIM1 and TIM8 support independent DMA request generation.

2.23.2 General-purpose timers (TIMx)

There are ten synchronizable general-purpose timers embedded in the STM32F76xxx devices (see Table 6 for differences).

- TIM2, TIM3, TIM4, TIM5

The STM32F76xxx include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3, and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.
The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining.
Any of these general-purpose timers can be used to generate PWM outputs.
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

- TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9 and TIM12 have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.

2.23.3 Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base.
TIM6 and TIM7 support independent DMA request generation.

2.23.4 Low-power timer (LPTIM1)

The low-power timer has an independent clock and is running also in Stop mode if it is clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode.
This low-power timer supports the following features:

- 16-bit up counter with 16-bit autoreload register
- 16-bit compare register
- Configurable output: pulse, PWM
- Continuous / one-shot mode
- Selectable software / hardware input trigger
- Selectable clock source:
- Internal clock source: LSE, LSI, HSI or APB clock
- External clock source over LPTIM input (working even with no internal clock source running, used by the Pulse Counter Application)
- Programmable digital glitch filter
- Encoder mode

2.23.5 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes.

2.23.6 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

2.23.7 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features:

- A 24-bit downcounter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source

2.24 Inter-integrated circuit interface $\left(I^{2} \mathrm{C}\right)$

The devices embed 4 I2C. Refer to table Table 7: I2C implementation for the features implementation.
The $I^{2} \mathrm{C}$ bus interface handles communications between the microcontroller and the serial $I^{2} \mathrm{C}$ bus. It controls all $I^{2} \mathrm{C}$ bus-specific sequencing, protocol, arbitration and timing.
The I2C peripheral supports:

- $\quad I^{2} C$-bus specification and user manual rev. 5 compatibility:
- Slave and master modes, multimaster capability
- Standard-mode (Sm), with a bitrate up to $100 \mathrm{kbit/} / \mathrm{s}$
- Fast-mode (Fm), with a bitrate up to $400 \mathrm{kbit} / \mathrm{s}$
- Fast-mode Plus (Fm+), with a bitrate up to $1 \mathrm{Mbit} / \mathrm{s}$ and 20 mA output drive I/Os
- 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
- Programmable setup and hold times
- Optional clock stretching
- System Management Bus (SMBus) specification rev 2.0 compatibility:
- Hardware PEC (Packet Error Checking) generation and verification with ACK control
- Address resolution protocol (ARP) support
- SMBus alert
- Power System Management Protocol (PMBus ${ }^{\text {TM }}$) specification rev 1.1 compatibility
- Independent clock: a choice of independent clock sources allowing the I2C communication speed to be independent from the PCLK reprogramming.
- Programmable analog and digital noise filters
- 1-byte buffer with DMA capability

Table 7. I2C implementation

I2C features ${ }^{(\mathbf{1)}}$	12C1	I2C2	I2C3	12C4
Standard-mode (up to 100 kbit/s)	X	X	X	X
Fast-mode (up to 400 kbit/s)	X	X	X	X
Fast-mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s)	X	X	X	X
Programmable analog and digital noise filters	X	X	X	X
SMBus/PMBus hardware support	X	X	X	X
Independent clock	X	X	X	X

1. X : supported.

2.25 Universal synchronous/asynchronous receiver transmitters (USART)

The devices embed USART. Refer to Table 8: USART implementation for the features implementation.

The universal synchronous asynchronous receiver transmitter (USART) offers a flexible means of full-duplex data exchange with external equipment requiring an industry standard NRZ asynchronous serial data format.

The USART peripheral supports:

- Full-duplex asynchronous communications
- Configurable oversampling method by 16 or 8 to give flexibility between speed and clock tolerance
- Dual clock domain allowing convenient baud rate programming independent from the PCLK reprogramming
- A common programmable transmit and receive baud rate of up to $27 \mathrm{Mbit} / \mathrm{s}$ when the USART clock source is system clock frequency (max is 216 MHz) and oversampling by 8 is used.
- Auto baud rate detection
- Programmable data word length (7 or 8 or 9 bits) word length
- Programmable data order with MSB-first or LSB-first shifting
- Programmable parity (odd, even, no parity)
- Configurable stop bits (1 or 1.5 or 2 stop bits)
- Synchronous mode and clock output for synchronous communications
- Single-wire half-duplex communications
- Separate signal polarity control for transmission and reception
- Swappable Tx/Rx pin configuration
- Hardware flow control for modem and RS-485 transceiver
- Multiprocessor communications
- LIN master synchronous break send capability and LIN slave break detection capability
- IrDA SIR encoder decoder supporting 3/16 bit duration for normal mode
- Smartcard mode (T=0 and T=1 asynchronous protocols for Smartcards as defined in the ISO/IEC 7816-3 standard)
- Support for Modbus communication

Table 8 summarizes the implementation of all U(S)ARTs instances
Table 8. USART implementation

features $^{(1)}$	USART1/2/3/6	UART4/5/7/8
Data Length	7,8 and 9 bits	
Hardware flow control for modem	X	X
Continuous communication using DMA	X	X
Multiprocessor communication	X	X
Synchronous mode	X	C

Table 8. USART implementation (continued)

features $^{(1)}$	USART1/2/3/6	UART4/5/7/8
Smartcard mode	X	-
Single-wire half-duplex communication	X	X
IrDA SIR ENDEC block	X	X
LIN mode	X	X
Dual clock domain	X	X
Receiver timeout interrupt	X	X
Modbus communication	X	X
Auto baud rate detection	X	X
Driver Enable	X	X

1. X : supported.

2.26 Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S)

The devices feature up to six SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1, SPI4, SPI5, and SPI6 can communicate at up to $54 \mathrm{Mbits} / \mathrm{s}$, SPI2 and SPI3 can communicate at up to $25 \mathrm{Mbit} / \mathrm{s}$. The 3 -bit prescaler gives 8 master mode frequencies and the frame is configurable from 4 to 16 bits. The SPI interfaces support NSS pulse mode, TI mode and Hardware CRC calculation. All the SPIs can be served by the DMA controller.
Three standard ${ }^{2}$ S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available. They can be operated in master or slave mode, in simplex communication modes, and can be configured to operate with a $16-/ 32$-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the $I^{2} S$ interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.
All I2Sx can be served by the DMA controller.

2.27 Serial audio interface (SAI)

The devices embed two serial audio interfaces.
The serial audio interface is based on two independent audio subblocks which can operate as transmitter or receiver with their FIFO. Many audio protocols are supported by each block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC'97 and SPDIF output, supporting audio sampling frequencies from 8 kHz up to 192 kHz . Both subblocks can be configured in master or in slave mode.

In master mode, the master clock can be output to the external DAC/CODEC at 256 times of the sampling frequency.

The two sub-blocks can be configured in synchronous mode when full-duplex mode is required.

SAl1 and SAI2 can be served by the DMA controller

2.28 SPDIFRX Receiver Interface (SPDIFRX)

The SPDIFRX peripheral, is designed to receive an S/PDIF flow compliant with IEC-60958 and IEC-61937. These standards support simple stereo streams up to high sample rate, and compressed multi-channel surround sound, such as those defined by Dolby or DTS (up to 5.1).

The main features of the SPDIFRX are the following:

- Up to 4 inputs available
- Automatic symbol rate detection
- Maximum symbol rate: 12.288 MHz
- Stereo stream from 32 to 192 kHz supported
- Supports Audio IEC-60958 and IEC-61937, consumer applications
- Parity bit management
- Communication using DMA for audio samples
- Communication using DMA for control and user channel information
- Interrupt capabilities

The SPDIFRX receiver provides all the necessary features to detect the symbol rate, and decode the incoming data stream. The user can select the wanted SPDIF input, and when a valid signal will be available, the SPDIFRX will re-sample the incoming signal, decode the manchester stream, recognize frames, sub-frames and blocks elements. It delivers to the CPU decoded data, and associated status flags.

The SPDIFRX also offers a signal named spdif_frame_sync, which toggles at the S/PDIF sub-frame rate that will be used to compute the exact sample rate for clock drift algorithms.

2.29 Audio PLL (PLLI2S)

The devices feature an additional dedicated PLL for audio $I^{2} S$ and SAI applications. It allows to achieve error-free $I^{2} S$ sampling clock accuracy without compromising on the CPU performance, while using USB peripherals.

The PLLI2S configuration can be modified to manage an I^{2} S/SAI sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 KHz to 192 KHz .

In addition to the audio PLL, a master clock input pin can be used to synchronize the $I^{2} S / S A I$ flow with an external PLL (or Codec output).

2.30 Audio and LCD PLL (PLLSAI)

An additional PLL dedicated to audio and LCD-TFT is used for SAI1 peripheral in case the PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or 11.2896 MHz) and the audio application requires both sampling frequencies simultaneously.

The PLLSAI is also used to generate the LCD-TFT clock.

2.31 SD/SDIO/MMC card host interface (SDMMC)

SDMMC host interfaces are available, that support the MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.

The interface allows data transfer at up to 50 MHz , and is compliant with the SD Memory Card Specification Version 2.0.
The SDMMC Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit.

The current version supports only one SD/SDMMC/MMC4.2 card at any one time and a stack of MMC4.1 or previous.
The SDMMC can be served by the DMA controller

2.32 Ethernet MAC interface with dedicated DMA and IEEE 1588 support

The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard medium-independent interface (MII) or a reduced medium-independent interface (RMII). The microcontroller requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller.

The devices include the following features:

- Supports 10 and 100 Mbit/s rates
- Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors
- Tagged MAC frame support (VLAN support)
- Half-duplex (CSMA/CD) and full-duplex operation
- MAC control sublayer (control frames) support
- 32-bit CRC generation and removal
- Several address filtering modes for physical and multicast address (multicast and group addresses)
- 32-bit status code for each transmitted or received frame
- Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes.
- Supports hardware PTP (precision time protocol) in accordance with IEEE 15882008 (PTP V2) with the time stamp comparator connected to the TIM2 input
- Triggers interrupt when system time becomes greater than target time

2.33 Controller area network (bxCAN)

The three CANs are compliant with the 2.0A and B (active) specifications with a bit rate up to $1 \mathrm{Mbit} / \mathrm{s}$. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). 256 bytes of SRAM are allocated for CAN1 and CAN2. 512 bytes of SRAM are dedicated for CAN3.

2.34 Universal serial bus on-the-go full-speed (OTG_FS)

The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 2.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator.
The major features are:

- Combined Rx and Tx FIFO size of 1.28 Kbytes with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 1 bidirectional control endpoint +5 IN endpoints +5 OUT endpoints
- 12 host channels with periodic OUT support
- Software configurable to OTG1.3 and OTG2.0 modes of operation
- USB 2.0 LPM (Link Power Management) support
- Battery Charging Specification Revision 1.2 support
- Internal FS OTG PHY support
- HNP/SNP/IP inside (no need for any external resistor)

For the OTG/Host modes, a power switch is needed in case bus-powered devices are connected

2.35 Universal serial bus on-the-go high-speed (OTG_HS)

The devices embed a USB OTG high-speed (up to $480 \mathrm{Mbit} / \mathrm{s}$) device/host/OTG peripheral. The USB OTG HS supports both full-speed and high-speed operations. It integrates the transceivers for full-speed operation ($12 \mathrm{Mbit} / \mathrm{s}$) and features a UTMI low-pin interface (ULPI) for high-speed operation ($480 \mathrm{Mbit} / \mathrm{s}$). When using the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required.

The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG 2.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator.

The major features are:

- Combined Rx and Tx FIFO size of 4 Kbytes with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 8 bidirectional endpoints
- 16 host channels with periodic OUT support
- Software configurable to OTG1.3 and OTG2.0 modes of operation
- USB 2.0 LPM (Link Power Management) support
- Battery Charging Specification Revision 1.2 support
- Internal FS OTG PHY support
- External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output.
- Internal USB DMA
- HNP/SNP/IP inside (no need for any external resistor)
- for OTG/Host modes, a power switch is needed in case bus-powered devices are connected

2.36 High-definition multimedia interface (HDMI) - consumer electronics control (CEC)

The devices embed a HDMI-CEC controller that provides hardware support for the Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).

This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead. It has a clock domain independent from the CPU clock, allowing the HDMI-CEC controller to wakeup the MCU from Stop mode on data reception.

2.37 Digital camera interface (DCMI)

The devices embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can sustain a data transfer rate up to $54 \mathrm{Mbytes} / \mathrm{s}$ in 8 -bit mode at 54 MHz . It features:

- Programmable polarity for the input pixel clock and synchronization signals
- Parallel data communication can be 8-, 10-, 12- or 14-bit
- \quad Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG)
- Supports continuous mode or snapshot (a single frame) mode
- Capability to automatically crop the image

2.38 Management Data Input/Output (MDIO) slaves

The devices embed a MDIO slave interface it includes the following features:

- $\quad 32$ MDIO Registers addresses, each of which is managed using separate input and output data registers:
- $\quad 32 \times 16$-bit firmware read/write, MDIO read-only output data registers
- 32×16-bit firmware read-only, MDIO write-only input data registers
- Configurable slave (port) address
- Independently maskable interrupts/events:
- MDIO Register write
- MDIO Register read
- MDIO protocol error
- Able to operate in and wake up from STOP mode

2.39 Random number generator (RNG)

All the devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

2.40 General-purpose input/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission.

The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers.

A fast I/O handling allows a maximum I/O toggling up to 108 MHz .

2.41 Analog-to-digital converters (ADCs)

Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold

The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM5, or TIM8 timer.

2.42 Digital filter for Sigma-Delta Modulators (DFSDM)

The devices embed one DFSDM with 4 digital filters modules and 8 external input serial channels (transceivers) or alternately 8 internal parallel inputs support. The DFSDM peripheral is dedicated to interface the external $\Sigma \Delta$ modulators to microcontroller and then to perform digital filtering of the received data streams (which represent analog value on $\Sigma \Delta$ modulators inputs). The DFSDM can also interface PDM (Pulse Density Modulation) microphones and perform PDM to PCM conversion and filtering in hardware. The DFSDM features optional parallel data stream inputs from microcontrollers memory (through DMA/CPU transfers into DFSDM). The DFSDM transceivers support several serial interface formats (to support various $\Sigma \Delta$ modulators). The DFSDM digital filter modules perform digital processing according user selected filter parameters with up to 24-bit final ADC resolution.

The DFSDM peripheral supports:

- 8 multiplexed input digital serial channels:
- Configurable SPI interface to connect various SD modulator(s)
- Configurable Manchester coded 1 wire interface support
- PDM (Pulse Density Modulation) microphone input support
- Maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding)
- Clock output for SD modulator(s): $0 . .20 \mathrm{MHz}$
- Alternative inputs from 8 internal digital parallel channels (up to 16 bit input resolution):
- internal sources: device memory data streams (DMA)
- 4 digital filter modules with adjustable digital signal processing:
- Sincxfilter: filter order/type (1..5), oversampling ratio (up to 1..1024)
- integrator: oversampling ratio (1..256)
- Up to 24-bit output data resolution, signed output data format
- Automatic data offset correction (offset stored in register by user)
- Continuous or single conversion
- Start-of-conversion triggered by:
- Software trigger
- Internal timers
- External events
- Start-of-conversion synchronously with first digital filter module (DFSDMO)
- Analog watchdog feature:
- Low value and high value data threshold registers
- Dedicated configurable Sincx digital filter (order = 1..3, oversampling ratio $=1 . .32$)
- Input from final output data or from selected input digital serial channels
- Continuous monitoring independently from standard conversion
- Short circuit detector to detect saturated analog input values (bottom and top range):
- Up to 8-bit counter to detect 1.. 256 consecutive 0 's or 1's on serial data stream
- Monitoring continuously each input serial channel
- Break signal generation on analog watchdog event or on short circuit detector event
- Extremes detector:
- Storage of minimum and maximum values of final conversion data
- Refreshed by software
- DMA capability to read the final conversion data
- Interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial channel clock absence
- "regular" or "injected" conversions:
- "regular" conversions can be requested at any time or even in continuous mode without having any impact on the timing of "injected" conversions
- "injected" conversions for precise timing and with high conversion priority

Table 9. DFSDM implementation

DFSDM features	DFSDM1
Number of filters: x (DFSDM_FLTx)	4
Number of input transceivers/channels: y (DFSDM_CHy)	8
Internal ADC parallel input support	-
Number of external triggers (JEXTSEL size)	32
ID register support	-

2.43 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with the temperature. The conversion range is between 1.7 V and 3.6 V . The temperature sensor is internally connected to the same input channel as $\mathrm{V}_{\mathrm{BAT}}$, $\mathrm{ADC} 1 _I N 18$, which is used to convert the sensor output voltage into a digital value. When the temperature sensor and $\mathrm{V}_{\text {BAT }}$ conversion are enabled at the same time, only $\mathrm{V}_{\mathrm{BAT}}$ conversion is performed.
As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

2.44 Digital-to-analog converter (DAC)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs.

This dual digital Interface supports the following features:

- Two DAC converters: one for each output channel
- 8-bit or 12-bit monotonic output
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- Triangular-wave generation
- Dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- External triggers for conversion
- Input voltage reference $\mathrm{V}_{\text {REF }}+$

Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams.

2.45 Serial wire JTAG debug port (SWJ-DP)

The Arm SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

The debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

2.46 Embedded Trace Macrocell ${ }^{\text {TM }}$

The Arm embedded trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F76xxx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or
any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell operates with third party debugger software tools.

2.47 DSI Host (DSIHOST)

The DSI Host is a dedicated peripheral for interfacing with MIPI ${ }^{\circledR}$ DSI compliant displays. It includes a dedicated video interface internally connected to the LTDC and a generic APB interface that can be used to transmit information to the display.
These interfaces are as follows:

- LTDC interface:
- Used to transmit information in Video mode, in which the transfers from the host processor to the peripheral take the form of a real-time pixel stream (DPI).
- Through a customized for mode, this interface can be used to transmit information in full bandwidth in the Adapted Command mode (DBI).
- APB slave interface:
- Allows the transmission of generic information in Command mode, and follows a proprietary register interface.
- Can operate concurrently with either LTDC interface in either Video mode or Adapted Command mode.
- Video mode pattern generator:
- Allows the transmission of horizontal/vertical color bar and D-PHY BER testing pattern without any kind of stimuli.
The DSI Host main features:
- Compliant with MIPI ${ }^{\circledR}$ Alliance standards
- Interface with MIPI ${ }^{\circledR}$ D-PHY
- Supports all commands defined in the MIPI ${ }^{\circledR}$ Alliance specification for DCS:
- Transmission of all Command mode packets through the APB interface
- Transmission of commands in low-power and high-speed during Video mode
- Supports up to two D-PHY data lanes
- Bidirectional communication and escape mode support through data lane 0
- Supports non-continuous clock in D-PHY clock lane for additional power saving
- Supports Ultra Low-power mode with PLL disabled
- ECC and Checksum capabilities
- \quad Support for End of Transmission Packet (EoTp)
- Fault recovery schemes
- 3D transmission support
- Configurable selection of system interfaces:
- AMBA APB for control and optional support for Generic and DCS commands
- Video Mode interface through LTDC
- Adapted Command mode interface through LTDC
- Independently programmable Virtual Channel ID in
- Video mode
- Adapted Command mode
- APB Slave

Video Mode interfaces features:

- LTDC interface color coding mappings into 24-bit interface:
- 16-bit RGB, configurations 1,2 , and 3
- 18-bit RGB, configurations 1 and 2
- 24-bit RGB
- Programmable polarity of all LTDC interface signals
- Maximum resolution is limited by available DSI physical link bandwidth:
- Number of lanes: 2
- Maximum speed per lane: 500 Mbps 1 Gbps

Adapted interface features

Support for sending large amounts of data through the memory_write_start(WMS) and memory_write_continue(WMC) DCS commands

- LTDC interface color coding mappings into 24-bit interface:
- 16-bit RGB, configurations 1,2 , and 3
- 18-bit RGB, configurations 1 and 2
- 24-bit RGB

Video mode pattern generator:

- Vertical and horizontal color bar generation without LTDC stimuli
- BER pattern without LTDC stimuli

3 Pinouts and pin description

Figure 11. STM32F76xxx LQFP100 pinout

1. The above figure shows the package top view.

Figure 12. STM32F76xxx TFBGA100 pinout

1. The above figure shows the package top view.

Figure 13. STM32F76xxx LQFP144 pinout

1. The above figure shows the package top view.

Figure 14. STM32F76xxx LQFP176 pinout

1. The above figure shows the package top view.

Figure 15. STM32F769xx LQFP176 pinout

1. The above figure shows the package top view.

Figure 16. STM32F769Ax/STM32F768Ax WLCSP180 ballout

1. NC ball must not be connected to GND nor to VDD.
2. The above figure shows the package top view.

Figure 17. STM32F76xxx LQFP208 pinout

1. The above figure shows the package top view.

Figure 18. STM32F769xx LQFP208 pinout

1. The above figure shows the package top view.

Figure 19. STM32F76xxx UFBGA176 ballout

MS39130V1

1. The above figure shows the package top view.

Figure 20. STM32F76xxx TFBGA216 ballout

1. The above figure shows the package top view.

Figure 21. STM32F769xx TFBGA216 ballout

MS39125V1

1. The above figure shows the package top view.

Table 10. Legend/abbreviations used in the pinout table

Name	Abbreviation	Definition
Pin name	Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name	
Pin type	S	Supply pin
	1	Input only pin
	I/O	Input / output pin
I/O structure	FT	5 V tolerant I/O
	TTa	3.3 V tolerant I/O directly connected to ADC
	B	Dedicated BOOT pin
	RST	Bidirectional reset pin with weak pull-up resistor
Notes	Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset	
Alternate functions	Functions selected through GPIOx_AFR registers	
Additional functions	Functions directly selected/enabled through peripheral registers	

Table 11. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions

Table 11. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

Table 11. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

Table 11. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

Table 11. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

Table 11. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

Table 11. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

Table 11. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

Table 11. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

Table 11. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

Table 11. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

Table 11. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

Table 11. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

Table 11. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

Table 11. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

Table 11. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

Table 11. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

Table 11. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

Table 11. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

Table 11. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions (continued)

1. NC (not-connected) pins are not bonded. They must be configured by software to output push-pull and forced to 0 in the output data register to avoid an extra current consumption in low-power modes. list of pins: PI8, PI12, PI13, PI14, PF6, PF7, PF8, PF9, PC2, PC3, PC4, PC5, PI15, PJ0, PJ1, PJ2, PJ3, PJ4, PJ5, PH6, PH7, PJ12, PJ13, PJ14, PJ15, PG14, PK3, PK4, PK5, PK6 and PK7.
2. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited:- The speed should not exceed 2 MHz with a maximum load of 30 pF . - These I/Os must not be used as a current source (e.g. to drive an LED).
3. $\mathrm{FT}=5 \mathrm{~V}$ tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
4. If the device is in regulator OFF/internal reset ON mode (BYPASS_REG pin is set to VDD), then PAO is used as an internal reset (active low).
5. Internally connected to VDD or VSS depending on part number.

Table 12. FMC pin definition

Pin name	NOR/PSRAM/SR AM	NOR/PSRAM Mux	NAND16	SDRAM
PF0	A0	-	-	A0
PF1	A1	-	-	A1
PF2	A2	-	-	A2
PF3	A3	-	-	A3
PF4	A4	-	-	A4
PF5	A5	-	-	A5
PF12	A6	-	-	A6
PF13	A7	-	-	A7
PF14	A8	-	-	A8
PF15	A9	-	-	A9
PG0	A10	-	-	A10
PG1	A11	-	-	A11
PG2	A12	-	-	A12
PG3	A13	-	-	-
PG4	A14	-	-	BA0
PG5	A15	-	-	BA1
PD11	A16	A16	CLE	-
PD12	A17	A17	ALE	-
PD13	A18	A18	-	-
PE3	A19	A19	-	-
PE4	A20	A20	-	-
PE5	A21	A21	-	-
PE6	A22	A22	-	-
PE2	A23	A23	-	-
PG13	A24	A24	-	-
PG14	A25	A25	-	-
PD14	D0	DA0	D0	D0
PD15	D1	DA1	D1	D1
PD0	D2	DA2	D2	D2
PD1	D3	DA3	D3	D3
PE7	D4	DA4	D4	D4
PE8	D5	DA5	D5	D5
PE9	D6	DA6	D6	D6
PE10	D7	DA7	D7	D7

Table 12. FMC pin definition (continued)

Pin name	NOR/PSRAM/SR AM	NOR/PSRAM Mux	NAND16	SDRAM
PE11	D8	DA8	D8	D8
PE12	D9	DA9	D9	D9
PE13	D10	DA10	D10	D10
PE14	D11	DA11	D11	D11
PE15	D12	DA12	D12	D12
PD8	D13	DA13	D13	D13
PD9	D14	DA14	D14	D14
PD10	D15	DA15	D15	D15
PH8	D16	-	-	D16
PH9	D17	-	-	D17
PH10	D18	-	-	D18
PH11	D19	-	-	D19
PH12	D20	-	-	D20
PH13	D21	-	-	D21
PH14	D22	-	-	D22
PH15	D23	-	-	D23
PIO	D24	-	-	D24
PI1	D25	-	-	D25
PI2	D26	-	-	D26
PI3	D27	-	-	D27
PI6	D28	-	-	D28
PI7	D29	-	-	D29
P19	D30	-	-	D30
PI10	D31	-	-	D31
PD7	NE1	NE1	-	-
PG6	NE3	-	-	-
PG9	NE2	NE2	NCE	-
PG10	NE3	NE3	-	-
PG11	-	-	-	-
PG12	NE4	NE4	-	-
PD3	CLK	CLK	-	-
PD4	NOE	NOE	NOE	-
PD5	NWE	NWE	NWE	-
PD6	NWAIT	NWAIT	NWAIT	-

Table 12. FMC pin definition (continued)

Pin name	NOR/PSRAM/SR AM	NOR/PSRAM Mux	NAND16	SDRAM
PB7	NADV	NADV	-	-
PF6	-	-	-	-
PF7	-	-	-	-
PF8	-	-	-	-
PF9	-	-	-	-
PF10	-	-	-	-
PG6	-	-	-	-
PG7	-	-	INT	-
PE0	NBLO	NBLO	-	NBLO
PE1	NBL1	NBL1	-	NBL1
PI4	NBL2	-	-	NBL2
PI5	NBL3	-	-	NBL3
PG8	-	-	-	SDCLK
PC0	-	-	-	SDNWE
PF11	-	-	-	SDNRAS
PG15	-	-	-	SDNCAS
PH2	-	-	-	SDCKE0
PH3	-	-	-	SDNE0
PH6	-	-	-	SDNE1
PH7	-	-	-	SDCKE1
PH5	-	-	-	SDNWE
PC2	-	-	-	SDNE0
PC3	-	-	-	SDCKE0
PC6	NWAIT	NWAIT	NWAIT	-
PB5	-	-	-	SDCKE1
PB6	-	-	-	SDNE1

Table 13. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx alternate function mapping																	
Port		AFO	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
		SYS	$\begin{aligned} & \text { I2C4/UA } \\ & \text { RT5/TIM } \\ & \text { 1/2 } \end{aligned}$	TIM3/4/5	TIM8/9/10/ 1/DFSDM 1/CEC	12C1/2/3/ 1/CEC		$\begin{array}{\|c\|} \hline \text { SPI2/I2S } \\ \text { 2SPP1/I2 } \\ \text { S3/SA111 } \\ 12 C 4 / / 4 A \\ \text { RT4/DF } \\ \text { SDM1 } \end{array}$	SPI2/I2S 2/SPI3/12 S3/SPI6/ USART1/ 2/3/UART 1/SPDIF 5/DFSDM	SPI6/SAI 2/USART 6/UART4/ G_FS/SP DIF	CAN1/2/T IM12/13/ 14/QUAD LCD	SAI2/QU ADSPI/S DMMC2/D TG2 HS/ OTG1_FS /LCD	12C4/CAN 3/SDMM C2/ETH	UART7/ FMC/SD MMC1/M G2 FS	$\begin{aligned} & \mathrm{DCMI/LL} \\ & \text { CD/DSI } \end{aligned}$	LCD	SYS
Port A	PAO	-	TIM2_C H1/TIM2 ETR	$\underset{\mathrm{H} 1^{-}}{\text {TII }}$	$\underset{R}{\text { TIM8_ET }}$	-	-	-	USART2 _CTS	$\begin{aligned} & \text { UART4_- } \\ & \text { TX } \end{aligned}$	-	$\underset{\bar{B}}{\mathrm{SAl}_{-} \mathrm{SD}_{-}}$	$\underset{\text { CRS }}{\text { ETH_MII }}$	-	-	-	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PA1	-	$\underset{\mathrm{H} 2 \mathrm{C}}{\mathrm{~T} \text { TIM2_C }}$	$\underset{\mathrm{H}_{2}}{\text { TIM5_C }}$	-	-	-	-	$\underset{\text { _RTS }}{\text { USART2 }}$	$\begin{gathered} \text { UART4_- } \\ \text { RX } \end{gathered}$	$\begin{aligned} & \text { QUADSP } \\ & \text { I_BK1_IO } \\ & 3 \end{aligned}$	$\begin{gathered} \text { SAI2_MC } \\ \text { K_B }^{2} \end{gathered}$	$\begin{aligned} & \text { ETH_MII } \\ & \text { RX_CLK } \\ & \text { ETH RMI } \\ & \text { I_REF_C } \\ & L K_{2} \end{aligned}$	-	-	LCD_R2	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PA2	-	$\underset{\mathrm{H}_{3}}{\mathrm{TIM} \mathbf{N}_{2} \mathrm{C}}$	$\begin{gathered} \text { TIM5_C } \\ \mathrm{H}_{3} \end{gathered}$	$\underset{1}{\text { TIM9_CH }}$	-	-	-	USART2 _TX	$\underset{K_{K} \text { S_B }}{\text { SAI2SC }}$	-	-	ETH_MDI	MDIOS MDIO	-	LCD_R1	EVEN TOUT
	PA3	-	$\underset{\mathrm{H} 4}{\mathrm{TIM} \mathbf{L}^{-} \mathrm{C}}$	$\underset{\mathrm{H} 4}{\mathrm{~T} \text { TIM }}$	$\underset{2}{\mathrm{TIM} 9} \mathrm{CH}$	-	-	-	$\begin{gathered} \text { USART2 } \\ \text { _RX } \end{gathered}$	-	LCD_B2	$\begin{aligned} & \text { OTG_HS } \\ & \text { ULPI_DO } \end{aligned}$	$\begin{array}{\|l\|l\|} \text { ETH_MII_ } \\ \text { CÖL } \end{array}$	-	-	LCD_B5	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PA4	-	-	-	-	-	SPI1 NS S/I2S1_ WS	SPI3_NS S/I2S3_ WS	$\begin{gathered} \text { USART2 } \\ \text { _CK } \end{gathered}$	$\underset{\text { S }}{\text { SPI6 }}$	-	-	-	$\begin{gathered} \text { OTG_HS } \\ \text { SOOF } \end{gathered}$	$\begin{aligned} & \text { DCMI_H } \\ & \text { SYNC }^{2} \end{aligned}$	$\begin{gathered} \text { LCD_VS } \\ \text { YNC } \end{gathered}$	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PA5	-	TIM2_C H1/TIM2 _ETR	-	$\underset{\text { TIM8_CH }}{\substack{\text { TI }}}$	-	SPI1_SC K/I2S1_ CK	-	-	$\underset{\mathrm{K}}{\text { SPI6_SC }}$	-	OTG_HS	-	-	-	LCD_R4	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PA6	-	$\underset{\text { KIN }^{\text {TIM1_B }}}{ }$		${\underset{N}{N}}_{\text {TIM8 }}$	-	$\begin{gathered} \mathrm{SPI1} \mathrm{Ml} \\ \mathrm{SO} \end{gathered}$	-	-	$\begin{gathered} \text { SPI6_MI } \\ \text { SO } \end{gathered}$	$\underset{\mathrm{H} 1}{\mathrm{~T} \text { TIM13_C }}$	-	-	MDIOS MDC	$\underset{\text { XCLK }}{\text { DCMI PI }}$	LCD_G2	EVEN TOUT
	PA7	-	$\underset{\text { H1N }}{\text { TIM1_C }}$	$\underset{\mathrm{H}_{2}}{\text { TIM3_C }}$	$\underset{1 \mathrm{~N}}{\text { TIM8_CH }}$	-	$\begin{gathered} \text { SPI1_M } \\ \text { OSI/I2S1 } \\ \text { SD } \end{gathered}$	-	-	$\underset{\text { SII }}{\text { SPIO }}$	$\underset{\mathrm{H} 1}{\text { TIM14_C }}$	-	$\begin{aligned} & \text { ETH_MII } \\ & \text { RX_DVE } \\ & \text { TH_RMII } \\ & \text { CRS_DV } \end{aligned}$	FMC_SD NWE	-	-	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PA8	MCO1	$\underset{\mathrm{H} 1}{\boldsymbol{T} \text { TIM1_C }}$	-	$\underset{\mathrm{N} 2}{\mathrm{TI} \mathrm{~B}} \mathrm{BKI}$	$\underset{\text { L_S }}{12 \mathrm{C} 3 \mathrm{SC}}$	-	-	USART1 _CK	-	-	$\begin{array}{\|c} \hline \text { OTG_FS_ } \\ \text { SOFF } \end{array}$	$\begin{gathered} \text { CAN3_R } \\ X \end{gathered}$	$\text { UART7_ }_{\text {RX }}$	LCD_B3	LCD_R6	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PA9	-	$\underset{\mathrm{H} 2}{\text { TIM1_C }}$	-	-	$\underset{B \bar{A}}{12 C 3}$	SPI2_SC K/I2S2 CK	-	$\begin{gathered} \text { USART1 } \\ \text { _TX } \end{gathered}$	-	-	-	-	-	$\underset{0}{\text { DCMI_D }}$	LCD_R5	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PA10	-	$\underset{\text { H3 }}{\substack{\text { TIM1_C }}}$	-	-	-	-	-	USART1	-	LCD_B4	$\underset{\text { ID }}{\text { OTG_Fs }}$	-	MDIOS MDIO	$\underset{1}{\text { DCMI_D }}$	LCD_B1	EVEN TOUT

Table 13．STM32F765xx，STM32F767xx，STM32F768Ax and STM32F769xx alternate

$\frac{n}{i k}$	$\stackrel{\infty}{\omega}$	$\underset{\sim}{\text { zien }}$	$\underset{\sim}{2} \underset{\sim}{2}$	永年	永っ			$\underset{\sim}{2} \underset{\sim}{2}$	発っ	$\underset{\sim}{2} \underset{\sim}{2}$	$\underset{\sim}{3}$	$\underset{\sim}{\text { zien }}$	$\underset{\sim}{2} \underset{\sim}{2} \stackrel{1}{2}$
$\underset{\frac{\pi}{4}}{\frac{\pi}{4}}$	O	$\begin{aligned} & \hline \stackrel{y}{\approx} \\ & \stackrel{\rightharpoonup}{O} \end{aligned}$		＇	＇	＇	$\begin{aligned} & \bar{O}_{1} \\ & 0 \end{aligned}$	$\begin{aligned} & O_{1} \\ & 0 \\ & \hline- \end{aligned}$			，	O 0 0 1	＇
$\stackrel{N}{\stackrel{N}{4}}$	犮㐫合	，	＇	＇	＇	＇	＇	＇		，	＇	$\begin{aligned} & Q_{1}^{\prime} \\ & \sum_{0}^{\prime} 0 \end{aligned}$	$\sum_{\substack{0 \\ 0}}^{1}$
$\stackrel{N}{\dot{\mid}}$		－	，	，	，	$\begin{aligned} & \hat{N}^{\prime} \\ & \stackrel{\rightharpoonup}{5} \times \\ & \hline \end{aligned}$	，	，	＇			$\begin{aligned} & 0_{1} \\ & \sum_{4}^{\prime \stackrel{u}{0}} \end{aligned}$	$\begin{aligned} & 0_{1}^{\prime} \\ & \sum_{4}^{\prime \stackrel{u}{z}} \end{aligned}$
$\underset{\underset{\sim}{4}}{\bar{U}}$		＇	－	＇	＇				，				
$\frac{\text { 은 }}{\stackrel{1}{4}}$		$\begin{aligned} & \mathbf{N}^{\prime} \\ & \omega_{1}^{\prime 2} \\ & 0_{0}^{\prime} \end{aligned}$	$\begin{aligned} & \hline \omega^{\prime} \\ & \mathscr{N}_{10} \\ & 0_{0}^{\prime} \\ & \hline \end{aligned}$	＇	＇	＇				$\sum_{\substack{N \\ \sum_{0} \\ N_{1} \\ \hline}}$	$\sum_{0}^{N} \tilde{N}_{1}^{N} \tilde{o}_{1}$		
$\frac{8}{4}$				＇	，	＇	雑	$\begin{aligned} & \text { ®O } \\ & 0 \\ & \hline-1 \end{aligned}$			．		$\stackrel{\vdash_{1}^{\prime}}{{\underset{J}{\alpha}}^{\prime} \times}$
$\stackrel{\infty}{4}$		＇		＇	，			，	＇	$\begin{aligned} & 0 \\ & \omega_{1} \\ & \frac{\varrho_{0}}{\infty} \end{aligned}$	$\begin{aligned} & \sum_{1} \\ & \varrho_{0}^{\circ} e \\ & \omega_{0} \end{aligned}$	$\begin{aligned} & \sum_{\sum_{1}} \\ & \varrho_{0}^{\circ} \end{aligned}$	＇
免				＇	＇		，	＇		＇		＇	
$\stackrel{\circ}{4}$				，	，						$\begin{aligned} & \hline \sum_{\omega_{1}} 0 \\ & \bar{\omega}_{0} 0 \end{aligned}$		
$\stackrel{6}{4}$				＇	，		，	，	，		$\begin{aligned} & \overline{\sum_{10}} \\ & \bar{n}_{0} \cong \end{aligned}$		＇
誌	ल্⿳亠丷厂⿰㇒⿻土一𧘇 둑	＇	－	＇	＇	产首岂	，	，	＇	＇	＇		
枈		－	＇	＇	＇	＇	In	In ${ }_{\text {I }}^{\text {I }}$	，		＇	＇	㪟岂
N	$\begin{aligned} & \hline \frac{n}{2} \\ & \stackrel{n}{5} \\ & \stackrel{N}{n} \end{aligned}$	＇	＇	＇	＇	，	$\begin{aligned} & 0_{1} \\ & \sum_{i}^{N_{1}} \bar{I} \end{aligned}$	$\begin{aligned} & U_{1}^{\prime} \\ & \sum_{i}^{m} I \end{aligned}$	，	＇	$\begin{aligned} & \hline U_{1}^{\prime} \\ & \sum_{i} \bar{I} \end{aligned}$	$\begin{aligned} & U_{1}^{\prime} \\ & \sum_{i}{ }^{\prime} N \end{aligned}$	
砏		$\begin{aligned} & U_{1} \\ & \sum_{i}^{S_{1}}{ }^{\prime} \end{aligned}$		，	＇		$\begin{array}{\|l\|} \hline 0 \\ \sum_{i}^{\prime} z \\ \sum_{i} \underset{I}{N} \end{array}$	$\begin{aligned} & U_{1 z} \\ & \sum_{i}^{\prime} \bar{M} \end{aligned}$	＇	$\begin{aligned} & U_{1}^{\prime} \\ & {\underset{\Sigma}{N}}^{N}{ }^{\text {N }} \end{aligned}$	，		$\begin{aligned} & \stackrel{\varrho}{n}^{\prime} \\ & \frac{\alpha}{5} \times \\ & \hline \end{aligned}$
안	$\stackrel{\infty}{\omega}$	＇	＇	$\sum_{5}^{\infty} \sum_{j}^{\circ}$	$\begin{aligned} & \text { 关资 } \\ & \stackrel{y y}{0} \end{aligned}$	믁	，	＇	＇			，	．
$\stackrel{\text { ̌ }}{\substack{\circ}}$		$\stackrel{\text { 「 }}{\text { ¢ }}$	$\frac{N}{\square}$	$\stackrel{m}{\grave{\alpha}}$	$\frac{\mathrm{t}}{\underset{\alpha}{x}}$	$\frac{0}{\square}$	\％	＂	๕	๕	呙	¢	๕
		$\begin{aligned} & \text { を } \\ & \stackrel{y}{\circ} \end{aligned}$					$\begin{aligned} & \infty \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$						

Table 13．STM32F765xx，STM32F767xx，STM32F768Ax and STM32F769xx alternate

$\frac{n}{4}$	$\stackrel{0}{\omega}$	\|를흔	案各	永年	永年	$\underset{\text { zu른 }}{2}$	를둔		永っ	를는
$\stackrel{H}{\stackrel{U}{4}}$	O	＇	$\begin{aligned} & \hline ⿱ 丷 天 心 \\ & \hline 1 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \bar{\omega}_{1} \\ & \mathrm{O}_{1} \end{aligned}$	$\begin{aligned} & \hline \text { O} \\ & \text { OU } \end{aligned}$	$$	＇	＇	＇	＇
$\frac{\stackrel{m}{4}}{\stackrel{4}{4}}$	릉뭉		$\begin{array}{\|l\|} \hline 0 \\ \sum_{0}^{1} o \\ 0 \end{array}$	$\begin{aligned} & \hline Q_{1}^{\prime} \\ & \sum_{0}^{1} \wedge \end{aligned}$	＇		＇	＇	＇	，
$\stackrel{N}{\stackrel{N}{4}}$		$\begin{aligned} & z_{z_{1}^{\prime}}^{\prime} \\ & \sum_{U}^{0} \end{aligned}$	気䓪	$\sum_{0}^{0} \sum_{0}^{0} 0_{1}$	，	，	$\begin{aligned} & \mathbf{N}_{1} \\ & \mathbf{N}_{1} \end{aligned}$	＇		$\begin{aligned} & \mathbf{N}_{1} \\ & 00_{1} \\ & 5 \end{aligned}$
				$\begin{aligned} & \hline \sum_{\infty}^{\infty} \\ & {\underset{N}{0}}^{(1 区} \\ & \hline \end{aligned}$					＇	，
$\stackrel{\circ}{\dot{U}}$		，	$\sum_{0}^{N} \sum_{0}^{N}$	$\sum_{0}^{\sim} \sum_{0}^{N}$					$\sum_{\sum_{0}}^{\substack{N \\ 0}}$	$\sum_{\text {coid }}^{\text {No }}$
눈		＇		$\begin{aligned} & F_{i}^{1} \\ & \sum_{0}^{\prime} x \end{aligned}$		＇	$\stackrel{\substack{\alpha \\ \sum_{c}^{\prime} \\ N_{0}^{\prime}}}{ }$	$\begin{aligned} & \stackrel{\rightharpoonup}{\prime}_{\prime}^{N_{<}^{\prime}} \times \end{aligned}$	$\begin{aligned} & \hline U_{1}^{\prime} \\ & \sum_{i}^{N_{1}} \bar{I} \end{aligned}$	$\begin{aligned} & U_{1} \\ & \sum_{i}^{N} \mathbb{N} \end{aligned}$
$\stackrel{\infty}{4}$		，	＇	＇	＇	＇				
免	N		$\begin{aligned} & n^{\prime} \\ & e^{2} \times \\ & \frac{2}{5} \times{ }^{2} \times \end{aligned}$							＇
$\stackrel{\circ}{4}$			$\begin{array}{\|l\|} \hline \sum_{0}^{n} \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$					$\begin{aligned} & \sum_{00}^{\overline{0}} \\ & \text { 듬 } \end{aligned}$		$\begin{aligned} & \sum_{0}^{5} \tilde{e n}_{0}^{0} \\ & y_{0}^{0} \end{aligned}$
$\stackrel{\text { ¢ }}{4}$		，	＇			＇			$\begin{aligned} & \hline \bar{N}_{10} \\ & {\underset{N}{\omega}}^{\omega} \Theta \end{aligned}$	
年		$\begin{aligned} & \dot{o}_{1} \\ & \bar{j}_{1} \varangle \\ & \underline{\underline{n}} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0_{1} \\ {\underset{N}{N}}^{2} \end{array}$	$\begin{aligned} & \dot{\sigma}_{1} \\ & \tilde{j}_{1} \end{aligned}$	$\begin{aligned} & \mathbf{N}_{1} \\ & {\underset{N N}{N}}^{\prime} \end{aligned}$	$\begin{aligned} & \mathbf{Q}_{1} \\ & \tilde{N}^{<} \end{aligned}$		＇		
皆		＇	O ${ }_{\text {O }}$	$\begin{aligned} & \hline I_{0}^{\prime} \\ & \sum_{i}^{I_{1}^{\prime}} \end{aligned}$	＇	，	，	＇		
N	$\begin{aligned} & \hline \frac{n}{n} \\ & \sum_{n}^{m} \\ & \sum_{1}^{m} \end{aligned}$	$\begin{aligned} & U_{1} \\ & \dot{T}^{\prime} \mathbb{N} \\ & \sum_{1} \end{aligned}$		$\begin{aligned} & U_{1}^{\prime} \\ & \sum_{i}{ }^{\prime}{ }^{\prime} \end{aligned}$	＇	＇	＇	＇	＇	＇
둔		＇	$\left\lvert\, \begin{aligned} & 0 \\ & 0_{1} \\ & J_{1} \\ & \underline{\underline{N}} \end{aligned}\right.$	$\begin{aligned} & 0_{1} \\ & \mathbf{J}_{1}< \\ & \underline{\underline{n}} \end{aligned}$	$\sum_{i}^{N^{\prime}} \text { 오 }$	$\begin{aligned} & U_{1}^{\prime} \\ & {\underset{N}{1}}_{1}^{1} \end{aligned}$	$\sum_{i}^{\infty} \sum_{1}^{\prime} \bar{z}$		$\begin{array}{\|l\|l\|} \hline U_{1 z} \\ \sum_{i}^{\prime} \underset{N}{N} \\ \hline \end{array}$	$\begin{aligned} & U_{1}^{\prime 2} \\ & \sum_{i}^{\prime} \bar{M} \end{aligned}$
안	$\stackrel{\sim}{\omega}$	＇	＇	＇	＇	＇	＇	＇	＇	
$\stackrel{\text { ² }}{\substack{\circ}}$		¢ ${ }_{\text {¢ }}$	®	® ${ }_{\text {® }}$	음	－	N	¢	$\stackrel{\mathrm{J}}{\mathrm{D}}$	$\stackrel{\sim}{0}$
		$\stackrel{\text { ¢ }}{\stackrel{\text { L }}{\circ}}$								

Table 13．STM32F765xx，STM32F767xx，STM32F768Ax and STM32F769xx alternate

$\stackrel{\text { n }}{\stackrel{n}{4}}$	$\stackrel{\infty}{\omega}$	$\underset{\text { zu를 }}{2}$	垫	永5	垫	$\underset{\sim}{\text { z2 }}$	$\underset{\sim}{2} \underset{\sim}{2}$	坔年	$\underset{\text { zun }}{\substack{\mathrm{u} \\ \hline}}$	発っ	$\underset{\sim}{2} \underset{\sim}{2} \stackrel{1}{2}$		
$\frac{\underset{4}{4}}{\frac{t}{4}}$	O		＇		，	，	＇		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline 1 \end{aligned}$		$\xrightarrow{\text { ® }}$	$\xrightarrow{\widetilde{0}}$	
$\frac{\stackrel{m}{4}}{\stackrel{4}{4}}$	\sum_{0}^{2}	＇	，		＇	，	，	$\begin{aligned} & 0 \\ & \sum_{0}^{1} 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0_{0}^{\prime} \\ & \sum_{0}^{\prime}- \\ & \hline \end{aligned}$	$\begin{aligned} & 0_{0}^{\prime} \\ & \sum_{0}^{\sum_{Q}} N \end{aligned}$	$\begin{aligned} & 0 \\ & \sum_{0}^{1} m \\ & \hline \end{aligned}$	$\begin{aligned} & 0_{0}^{1} \\ & \sum_{0}^{\infty} \infty \\ & \hline \end{aligned}$	
$\stackrel{N}{\stackrel{N}{4}}$		$\begin{aligned} & \text { Qum } \\ & \sum_{4}^{0} \sum_{z}^{z} \end{aligned}$	$\begin{aligned} & \operatorname{si}^{\prime} \\ & 0_{0}^{0} \frac{0}{\Sigma} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline Q_{1} \\ \sum_{i}^{\prime} \\ \sum_{i}^{\prime} \underline{z} \end{array}$		$\begin{aligned} & \dot{\omega}_{1}^{\prime} \\ & \sum_{i}^{\prime} \stackrel{1}{z} \end{aligned}$		$\sum_{0}^{0} \AA_{1}^{0}$	$\sum_{i=0}^{0}{ }_{0}^{0}$	$\sum_{i=1}^{0} o_{1}^{0}$	$\sum_{i=0}^{0} \bar{O}_{1}$	$\sum_{i=1}^{0} N_{1}$	
$\underset{\underset{4}{4}}{\bar{u}}$		，	$\begin{aligned} & \sum_{\Sigma}^{0} \\ & \underset{\Psi}{\Psi} \end{aligned}$					，	，	，	＇	，	
은			$\begin{aligned} & \sum_{i}^{\prime} \bar{z} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			，	，	$\sum_{0}^{N} \mathrm{~N}_{0}^{\mathrm{N}} \mathrm{O}_{1}$	$\sum_{i=0}^{N} \widehat{N}_{1}^{N}$	＇	O	，	
$\frac{i \pi}{4}$		．	，		，	，	，	$\begin{aligned} & \sum_{<1}^{2} \\ & \sum_{k}^{0 \mid} \end{aligned}$	$\begin{aligned} & {\underset{Z}{\prime}}_{1}^{\prime} \\ & \sum_{\\|}^{\prime} \end{aligned}$				
$\stackrel{\infty}{4}$			，		＇			$\begin{aligned} & 0 \\ & \stackrel{0}{6} \times \\ & \underset{\substack{4 \\ 5}}{2} \end{aligned}$			，		
交		＇	＇	＇	＇	＇	＇	$\begin{aligned} & \sum_{0}^{5} \underset{\sim}{m} \\ & \sum_{0}^{2} \\ & 0 \end{aligned}$					
$\frac{00}{4}$					＇	＇	＇	＇	$\sum_{\operatorname{NeN}_{1}}^{\substack{0}}$	＇	＇		
$\frac{\stackrel{6}{4}}{4}$		，				$\begin{aligned} & \sum_{\text {NJ }}^{\text {NO }} \end{aligned}$	，	$\begin{aligned} & \sum_{\sim}^{\prime} \\ & \underset{\sim}{\top} \mathrm{U} \end{aligned}$	＇	，		＇	
蒋	ल্র	，	＇	，	，	＇	＇	，	＇	，		＇	
$\stackrel{!}{4}$					$\begin{aligned} & \sum_{0}^{1} \\ & 0 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathbf{I}_{0}^{\prime} \\ & \sum_{i}^{\infty^{\prime}}- \end{aligned}$	$\sum_{i}^{\infty}{ }_{1}^{\infty} \mathbb{N}$	$\sum_{i}^{\infty} \frac{\infty^{\prime}}{\Xi}$	$\sum_{1}^{\infty}{ }_{1}^{\prime}$		
Nㅜㄴ	$\begin{aligned} & \hline \frac{n}{m} \\ & \stackrel{n}{N} \\ & \stackrel{m}{n} \end{aligned}$	，	＇	＇	＇	＇	＇	$\begin{aligned} & U_{1} \\ & \sum_{i}^{N_{1}} \bar{I} \end{aligned}$	$\begin{aligned} & \hline U_{1}^{\prime} \\ & \sum_{i}^{M_{1}} \mathbb{N} \end{aligned}$	$\begin{aligned} & \hline U_{1}^{\prime} \\ & \sum_{i}^{\prime} \frac{M}{1} \end{aligned}$	$\begin{aligned} & U_{1} \\ & \sum_{i}^{N_{1}} T \end{aligned}$	，	
\bar{x}		＇	，		＇	＇	＇		，	＇	＇	＇	
운	$\stackrel{\infty}{\omega}$	，	足		，	，	，		．	岂 ¢ ¢	O	＇	
！		8	¢	ก	\％	J	\％	O	S	\％	8	은	
		－											

DocID029041 Rev 6

Port		AFO	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
		SYS	12C4/UA RT5/TIM 1/2	TIM3/4/5	TIM8/9/10/ 11/LPTIM 1/DFSDM 1/CEC	I2C1/2/3/ 4/USART 1/CEC	$\begin{array}{\|c} \text { SPI1/12S } \\ 1 / 2 \mathrm{SPI2/2} \\ \text { S2/SPI3/ } \\ 12 \mathrm{SS} / \mathrm{SPP} \\ 4 / 5 / 6 \end{array}$	SPI2/12S 2/SPII/2 S3/SA11/ I2CT/UA RT4/DF SDM1	SPI2/I2S 2/SPI3/I2 S3/SPI6 USART1/ 5/DFSDM 1/SPDIF	SPI6/SAI 2/USART 6/UART4/ G FS/SP DIF	CAN $1 / 2 / \mathrm{T}$ IM12/13 14/QUAD SPI/FMC/ LCD	SAI2/QU ADSPI/S DMMC2/D FSDM1/O OTG1 FS /LCD	$\begin{aligned} & \text { I2C4/CAN } \\ & \text { 3/SDMM } \\ & \text { C2/ETH } \end{aligned}$	UART7I FMC/SD MMC1/M DIOS/OT G2_FS	$\begin{aligned} & \text { DCMI/L } \\ & \text { CD/DSI } \end{aligned}$	LCD	SYS
Port C	PC11	-	-	-	DFSDM1 DATAIN5	-	-	$\begin{gathered} \mathrm{SPI3} 3 \mathrm{MI} \\ \mathrm{SO} \end{gathered}$	$\begin{gathered} \text { USART3 } \\ \quad \text { RX } \end{gathered}$	UART4_ RX	QUADSP I_BK2_N CS	-	-	$\underset{-D 3}{\text { SDMMC }}$	$\underset{4}{\text { DCMI_D }}$	-	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PC12	$\begin{array}{\|c} \hline \text { TRACED } \\ 3 \end{array}$	-	-	-	-	-	$\begin{gathered} \text { SPI3M } \\ \text { OSI//2S3 } \end{gathered}$	$\begin{gathered} \text { USART3 } \\ \text { CK } \end{gathered}$	$\underset{\mathrm{X}}{\text { UART5_T }}$	-	-	-	$\underset{\text { _CK }}{\substack{\text { SDMMC }}}$	$\underset{9}{\text { DCMI_D }}$	-	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PC13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PC14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVEN TOUT
	PC15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
Port D	PDO	-	-	-	$\begin{array}{\|c} \text { DFSDM1 } \\ \text { CKIN6 } \end{array}$	-	-	DFSDM1 DATAIN 7	-	$\begin{aligned} & \text { UART4_ } \\ & \text { RX } \end{aligned}$	$\begin{gathered} \text { CAN1_R } \\ X \end{gathered}$	-	-	FMC_D2	-	-	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PD1	-	-	-	$\begin{aligned} & \text { DFSDM1 } \\ & \text { DATAIN6- } \end{aligned}$	-	-	DFSDM1 _CKIN7	-	$\begin{gathered} \text { UART4_T } \\ X \end{gathered}$	$\begin{gathered} \text { CAN1_T } \\ \times \end{gathered}$	-	-	FMC_D3	-	-	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PD2	$\underset{2}{\text { TRACED }}$	-	$\underset{R}{\text { TIM3_ET }}$	-	-	-	-	-	$\begin{aligned} & \text { UART5- } \\ & \text { RX } \end{aligned}$	-	-	-	$\begin{gathered} \text { SDMMC } \\ \text { CMD } \end{gathered}$	$\underset{11}{\text { DCMI_D }}$	-	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PD3	-	-	-	$\begin{gathered} \text { DFSDM1- } \\ \text { CKOUT } \end{gathered}$	-		$\begin{aligned} & \text { DFSDM1 } \\ & \text {-DATAIN } \\ & 0 \end{aligned}$	$\begin{gathered} \text { USART2 } \\ \text { _CTS } \end{gathered}$	-	-	-	-	$\underset{K}{\text { FMC_CL }}$	$\underset{5}{\text { DCMI_D }}$	LCD_G7	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PD4	-	-	-	-	-	-	DFSDM1 _CKINO	USART2 _RTS	-	-	-	-	$\underset{\mathrm{OE}}{\mathrm{FMC}}$	-	-	EVEN TOUT
	PD5	-	-	-	-	-	-	-	$\begin{gathered} \text { USART2 } \\ \text { _TX } \end{gathered}$	-	-	-	-	$\underset{\text { FMC_N }}{\text { WE }}$	-	-	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PD6	-	-	-	$\begin{array}{\|c} \text { DFSDM1 } \\ \text { CKIN4 } \end{array}$	-	_SD	$\mathrm{SAl1}_{-\mathrm{A}}^{\mathrm{A}}$	$\begin{gathered} \text { USART2 } \\ \text { _RX } \end{gathered}$	-	-	$\begin{aligned} & \text { DFSDM1 } \\ & \text { DATAIN1 } \end{aligned}$	$\begin{array}{\|c} \text { SDMMC2 } \\ \text { CK } \end{array}$	$\begin{aligned} & \text { FMCN } \\ & \text { WAIT } \end{aligned}$	$\underset{10}{\text { DCMI_D }}$	LCD_B2	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$
	PD7	-	-	-	$\begin{array}{\|c\|} \hline \text { DFSDM1 } \\ \text { DATAIN4 } \end{array}$	-		DFSDM1 _CKIN1	$\begin{gathered} \text { USART2 } \\ \text { CKK } \end{gathered}$	$\underset{\text { X0 }}{\text { SPDIF_R }}$	-	-	$\begin{aligned} & \text { SDMMC2 } \\ & \text { _CMD } \end{aligned}$	$\underset{1}{\text { FMC_NE }}$	-	-	$\begin{aligned} & \text { EVEN } \\ & \text { TOUT } \end{aligned}$

Table 13．STM32F765xx，STM32F767xx，STM32F768Ax and STM32F769xx alternate

$\stackrel{n}{\stackrel{n}{4}}$	$\stackrel{\omega}{\omega}$	\|를을					永年		坔与		坔各。	를는	$\mid \underset{\sim}{\text { zun }}$
$\stackrel{\text { I }}{\frac{1}{4}}$	O	，	＇	$\begin{aligned} & \tilde{m}_{1} \\ & 0_{1} \end{aligned}$		＇	＇	＇	＇	，	，	＇	，
$\stackrel{m}{4}$	\sum_{0}^{2}	，	，	，		＇	，	，	＇	$\begin{aligned} & \hline 0 \\ & \sum_{0}^{1} N \\ & \sum_{0} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ \sum_{0}^{1} m \\ 0 \end{array}$	，	，
$\stackrel{N}{4}$			$\begin{aligned} & \bar{L}_{1}^{\prime} \\ & \sum_{\sum_{u}^{\prime}} \end{aligned}$	$\left\lvert\, \begin{aligned} & \bar{a}_{1} \\ & \sum_{i}^{0_{1}} \end{aligned}\right.$				$\begin{aligned} & \mathrm{O}_{\mathrm{I}} \\ & \sum_{\Perp}^{\prime} \end{aligned}$	$\begin{aligned} & \bar{\Sigma}_{\bar{\prime}}^{\prime} \\ & \sum_{\text {N }}^{\prime} \end{aligned}$	$\begin{array}{\|l} \sum_{\Sigma_{10}} \\ \sum_{i}^{0} \end{array}$	$\begin{aligned} & \sum_{N_{l}} \\ & \sum_{U}^{0} \\ & \hline \end{aligned}$		$\begin{aligned} & {\underset{ভ}{c}}_{1} \\ & \sum_{i}^{0} の \end{aligned}$
$\underset{\stackrel{i}{4}}{\overline{4}}$		，	，	，	，	，	，	，	，	，	，		，
은		，	，	＇				＇			，	，	，
$\frac{\ddot{4}}{4}$		，	，	＇				，	，	，	，		，
$\stackrel{\infty}{4}$			，	，		＇	＇		－${ }_{\text {on }}^{\substack{\text { cos }}}$			＇	，
交			$\begin{aligned} & \hline \begin{array}{c} m \\ \underset{c}{\alpha} \\ \underset{\sim}{n} \\ \hline \end{array} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \begin{array}{l} n \\ \underset{4}{x} \\ \substack{0 \\ 0} \\ \hline \end{array} \\ \hline \end{array}$			，	，	＇	，	，	，	＇
这		＇	，	，	＇	，	，	＇	，	，	＇		
$\stackrel{6}{4}$		，	，	，	，	＇	，	，	＇	，	＇	$\begin{aligned} & 0 \\ & 0_{1} \\ & \frac{\vdots}{0} \end{aligned}$	，
誌		＇	，	，		O \sim_{1} J $^{\text {a }}$	$\begin{aligned} & 0_{1} \\ & \mathbf{J}_{1} \varangle \\ & \underline{N} \end{aligned}$	，	，	，	＇	，	，
¢		$\begin{array}{\|l\|l} \hline \sum_{0}^{\prime} \\ \sum_{0}^{0} \\ \text { y } \\ 0 \\ 0 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline \sum_{0}^{1} \\ 0 . \\ 00 \\ 0 \\ 0 \\ \hline \end{array}$	＇	$\begin{aligned} & -1 \\ & \sum_{i}^{-1} \bar{z} \end{aligned}$	$\sum_{a}^{\sum_{i}^{\prime}}$	＇	，		$\begin{aligned} & -1 \\ & \sum_{i}^{\prime} \tilde{z} \\ & \sum_{1} \end{aligned}$	＇	，
攵	$\begin{aligned} & \hline \frac{N}{N} \\ & \frac{N}{N} \\ & \stackrel{N}{1} \end{aligned}$	＇	＇	＇	＇	$\begin{aligned} & \hline U_{1} \\ & \sum_{i}^{+} \bar{I} \end{aligned}$	$\begin{aligned} & \hline U^{\prime} \\ & \sum_{i}^{J^{\prime}} \times 1 \end{aligned}$	$\begin{aligned} & U \\ & U_{1}^{\prime} \\ & \sum_{i} ㅆ ㅗ \end{aligned}$	$\begin{aligned} & U_{1} \\ & \sum_{i}^{y_{i}} \underset{I}{ } \end{aligned}$		，	＇	＇
砏		＇	＇	＇	＇	＇	，	＇		＇	＇	＇	＇
茹	$\stackrel{\infty}{\omega}$	＇	＇	＇	＇	，	＇	，		，	，	嵳	号
！		응	몸	음	$\overline{\mathrm{a}}$	N	$\stackrel{m}{i}$	$\stackrel{\rightharpoonup}{\mathrm{a}}$	$\stackrel{\varrho}{\square}$	씀	员	뿞	뜸
		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$								Q			

DocID029041 Rev 6
Table 13．STM32F765xx，STM32F767xx，STM32F768Ax and STM32F769xx alternate

$\frac{n}{2}$	$\stackrel{0}{\omega}$		$\underset{\text { zis }}{\text { za }}$	穹5		를ㅇㅇㄴ		를흔				$\underset{\sim}{\text { za }}$	宕尔
$\stackrel{H}{\stackrel{U}{4}}$	O	$\begin{aligned} & \circ \\ & \stackrel{\circ}{1} \\ & 0 \end{aligned}$	$\begin{aligned} & 0_{1} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \bar{O}_{1} \\ & 0 \end{aligned}$	＇	＇	＇	＇	$\begin{aligned} & \text { O} \\ & 0 \\ & \hline 1 \end{aligned}$				$\xrightarrow{\text { Nor }}$
$\frac{\stackrel{m}{4}}{\stackrel{4}{4}}$	$\begin{aligned} & 1 \\ & \sum_{0}^{2} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \sum_{0}^{1} \\ & \sum_{0}^{\prime} \end{aligned}$	$\begin{aligned} & 0 \\ & \sum_{0}^{1} \\ & \sum_{0} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ \sum_{0}^{1} \end{array}$	＇	＇	＇	＇	＇	＇	＇	＇	＇
$\stackrel{N}{\stackrel{N}{4}}$		$\begin{aligned} & \text { N } \\ & \sum_{<1}^{0} \\ & \sum_{L}^{0} \end{aligned}$	$\begin{aligned} & \hline \tilde{S}_{1} \\ & \sum_{L}^{0}- \end{aligned}$	$\begin{array}{\|l\|} \hline \underset{S}{N} \\ \sum_{L}^{N} N \end{array}$	$\begin{aligned} & \mathrm{O}_{1} \\ & \sum_{L}^{\prime} \end{aligned}$		$\begin{aligned} & \circ \\ & \AA_{1} \\ & \sum_{L}^{\prime} \end{aligned}$	$\begin{aligned} & \hat{N}_{1} \\ & \sum_{k}^{0} \end{aligned}$		$\begin{aligned} & \text { İ } \\ & { }_{1}^{\prime} \\ & \sum_{k}^{\prime} \end{aligned}$		$\begin{aligned} & \bar{S}_{1}^{\prime} \\ & \sum_{U}^{\prime} \end{aligned}$	$\begin{array}{\|l\|} \hline \bar{\Sigma}_{1} \\ \sum_{u}^{0^{\prime} N} \end{array}$
$\underset{\text { 친 }}{\bar{i}}$	Z	＇	，	＇	，	＇	＇	，	，	，	＇	＇	，
은			$\begin{aligned} & \sum_{0}^{\prime} \sum_{0}^{\prime} \\ & \sum_{4}^{\prime} \\ & 0 \end{aligned}$	$\begin{aligned} & \sum_{\sum_{n}}^{0} m_{1} \\ & \underset{\sim}{\mathbb{1}} x^{\prime} \end{aligned}$						$\begin{aligned} & \mathbf{N}_{1} \\ & \stackrel{1}{m_{1}} \\ & \underset{\mathbb{N}}{x_{1}} \end{aligned}$	$\begin{array}{\|l\|} \hline \boldsymbol{\omega}^{\prime} \\ \stackrel{\rightharpoonup}{\mathbf{N}} \\ \stackrel{\mathbf{N}^{\infty}}{ } \end{array}$	$\begin{aligned} & \sum_{1}^{0} m_{1} \\ & \underset{\mathbb{N}}{N_{1}^{\prime}} \end{aligned}$	＇
난		＇	＇	＇	＇	＇	，	＇	＇	＇	＇	＇	＇
$\stackrel{\infty}{4}$		＇	＇	＇	$\begin{aligned} & \hat{N}^{\prime} \\ & \hat{e}_{5}^{x} \times{ }^{\text {co }} \end{aligned}$			$\begin{aligned} & \text { Non } \\ & \text { 宕合 } \end{aligned}$	，	＇	，	＇	＇
年		＇	＇	＇	＇	，	＇	＇	＇	＇	＇	＇	＇
$\stackrel{\circ}{4}$											$\begin{aligned} & \sum_{0}^{5}=0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	＇	＇
$\stackrel{\text { ¢ }}{4}$		$\begin{aligned} & \begin{array}{l} \infty \\ \sum_{1} \\ j_{0} \infty \\ \infty \end{array} \end{aligned}$			＇	＇	＇	＇	$\begin{aligned} & \begin{array}{l} \Sigma_{1} \\ \mathbf{j}_{0}^{0} \\ \infty \end{array} \end{aligned}$		$\begin{aligned} & \sum_{j_{1}} \\ & \bar{J}_{0}^{\infty} \end{aligned}$	$\begin{aligned} & \sum_{j^{\prime}} \\ & \mathbf{J}_{0}^{0} 0 \end{aligned}$	＇
誌		＇	＇	＇	＇	＇	＇	＇	＇	＇	＇	＇	＇
㜽		＇		$\begin{aligned} & \hline \Xi^{\prime} \\ & \sum_{1} N \\ & \sum_{F} \end{aligned}$	＇	＇	，	＇	，	＇	，	＇	＇
尔		＇	＇	＇	＇	＇	＇	＇	＇	＇	＇	＇	＇
「		，	＇	$\sum_{i}^{m_{1}} \sum_{i}^{\sum_{1}}$			$\begin{aligned} & U_{1} \\ & \sum_{i} \bar{I} \end{aligned}$	$\begin{aligned} & 0_{1} \\ & \sum_{i}^{\prime} \underset{1}{I} \end{aligned}$	$\begin{array}{\|l\|} \hline U_{1} \\ \sum_{i} \\ \hline \end{array}$	$\begin{aligned} & U_{1} \\ & \sum_{i}^{1}{ }_{i} \bar{T} \end{aligned}$	$\begin{aligned} & U_{0} \\ & \sum_{i}^{\prime} \text { 온 } \end{aligned}$	$\begin{aligned} & U_{1} \\ & {\underset{i}{\prime}}_{\underline{I}}^{I} \end{aligned}$	$\left\lvert\, \begin{aligned} & \infty_{1} z \\ & \sum_{i}^{\frac{D_{1}}{1}} \end{aligned}\right.$
안	$\stackrel{\infty}{\omega}$				＇	＇	＇	＇	＇	＇	＇	＇	＇
\％		岂	吕	追	凯	씀	䟧	음	$\underset{\sim}{\underset{\alpha}{\mid}}$	$\underset{\sim}{\underset{\sim}{\sim}}$	$\stackrel{\stackrel{N}{山 己}}{\underset{\sim}{u}}$	$\underset{\sim}{\underset{\sim}{\underset{\sim}{4}}}$	$\stackrel{\sim}{\text { ¢ }}$
		$\begin{aligned} & \text { 山 } \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$											

Table 13．STM32F765xx，STM32F767xx，STM32F768Ax and STM32F769xx alternate

$\frac{n}{4}$	$\stackrel{\infty}{\omega}$	\|를흔				$\underset{\sim}{2} \underset{\sim}{2}$		를은	를는	坔っ		\|를은	誌岩	
$\frac{\underset{U}{4}}{\frac{J}{4}}$	O	＇	＇	＇	＇	＇	＇	＇	，	，	＇	山 O O	＇	
$\frac{N}{\stackrel{N}{4}}$		＇	＇	＇	＇	＇	＇	，	，	，	＇	$\sum_{0}^{0} \sum_{0}^{1}=$	$\stackrel{\sim}{0}_{0}{ }_{0}^{1}$	
$\underset{\underset{\sim}{\mathbb{L}}}{\stackrel{N}{2}}$			$\begin{aligned} & \overline{\widetilde{~}} \\ & \sum_{\\|}^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \sum_{1}^{\prime} \\ & \sum_{4}^{\prime} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \sum_{L}^{0} \\ & \sum_{L}^{\prime} \end{aligned}$	$\begin{aligned} & \mathbb{K} \\ & \sum_{1}^{N} \\ & \sum_{L}^{\prime} \end{aligned}$	$$	＇	＇	＇	＇	＇	$\begin{aligned} & 0,0 \\ & 0_{1}, \\ & \sum_{4}^{0} \frac{\alpha}{2} \end{aligned}$	
$\underset{\stackrel{\rightharpoonup}{4}}{\overline{4}}$		＇	，	＇	＇	＇	＇	，	＇	，	，	＇	，	
$\frac{\circ}{4}$		，	，	＇	＇	＇	，	＇	＇			＇		
䓘		＇	，	，	＇	＇	＇			$\begin{aligned} & 0 \\ & \sum_{i}^{m_{1}} \bar{I} \end{aligned}$	$\begin{aligned} & U_{1}^{\prime} \\ & \sum_{i}^{J_{i}} \bar{I} \end{aligned}$	仿	，	
$\stackrel{\infty}{4}$		＇	＇	＇	＇	＇	＇					＇	，	
苼	츤 	＇	＇	＇	＇	＇	＇	＇	＇	＇	＇	＇	＇	
$\stackrel{\circ}{4}$	NiN Nㅡㅁ른 No No	＇	，	，	＇	＇	＇		$\begin{aligned} & \sum_{1} m_{1} \\ & \bar{\kappa} \underset{1}{\vdots} \end{aligned}$			＇	＇	
$\stackrel{0}{4}$		，	，	，	＇	＇	＇	$\begin{aligned} & \sum_{1} \\ & \frac{\Omega_{1}}{n} \end{aligned}$	$\begin{aligned} & 0 \\ & \omega_{1} \\ & \stackrel{n}{0}_{\omega_{n}} \end{aligned}$	$\begin{aligned} & \overline{\sum_{1}} \\ & \frac{\varrho^{\prime}}{\omega} \\ & \infty \end{aligned}$	$\begin{aligned} & \sum_{1} \\ & \frac{\omega}{0} \pi \\ & \infty \end{aligned}$	＇	$\begin{aligned} & \sum_{1} \\ & \frac{\omega_{0}}{0} \mathrm{O} \end{aligned}$	
誌		$\begin{aligned} & \dot{N}_{1} \\ & \tilde{N}_{1} \varangle \\ & \underline{\underline{x}} \end{aligned}$	U N N－1 N－		＇	＇	，	＇	＇	＇	＇	＇	＇	
$\frac{\dddot{4}}{4}$		＇	＇	＇	＇	＇	＇		$\begin{aligned} & \hline I^{I} \\ & \sum_{i}^{I_{i}^{\prime}}- \end{aligned}$	＇	＇	＇	＇	
N		＇	＇	＇	＇	＇	＇	＇	＇	＇	＇	＇	＇	
㐫		＇	＇	＇	＇	＇	＇	＇	＇	＇	＇	＇	＇	
茄	$\stackrel{\infty}{\omega}$	＇	＇	＇	＇	＇	＇	＇	＇	＇	＇	＇	＇	
\bigcirc		암	乭	츰	$\frac{\mathscr{L}}{\underline{\circ}}$	绩	$\frac{!!}{2}$	$\stackrel{\circ}{1}$	茄	음	암	은	$\underset{\text { ¢ }}{\text { 듬 }}$	
		$\begin{aligned} & \text { u } \\ & \stackrel{\rightharpoonup}{\mathrm{a}} \end{aligned}$												

DocID029041 Rev 6

	$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline \frac{n}{4} \end{array}$	$\frac{\infty}{\omega}$					$\begin{array}{\|l\|} \hline \text { 学灾 } \end{array}$	$\begin{array}{\|l\|} \hline \text { 2y } \\ \text { y } \end{array}$		$\begin{array}{\|l\|} \hline \text { 2y } \\ \text { y } \end{array}$		学5	$\begin{array}{\|l\|l\|} \hline \underset{y}{2} \stackrel{5}{w} \\ \hline \end{array}$	
	$\underset{\frac{t}{4}}{\frac{t}{4}}$	O	＇	＇	＇	＇	－	－		，	＇	，	䓂	צ ${ }_{\text {U }}^{\text {¢ }}$
	$\frac{m}{\frac{m}{4}}$	左皆	，	＇	，	＇	，	＇	＇	，	＇	＇	－${ }_{\text {¢ }}^{\substack{1 \\ 0}}$	$\stackrel{\Sigma}{0}_{0}^{0}{ }_{0}^{\prime}$
			$\begin{aligned} & \stackrel{\otimes}{<} \\ & \sum_{4}^{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\star} \\ & \sum_{1}^{\prime} \\ & N_{4} \end{aligned}$	$\begin{aligned} & \hline \infty \\ & \sum_{<}^{\infty} \\ & \sum_{L}^{0} \end{aligned}$	$\begin{aligned} & \text { Q } \\ & \mathbb{N}_{1} \\ & \sum_{K}^{\prime} \end{aligned}$	$\begin{aligned} & \mathbb{S}_{1} \\ & \sum_{1}^{0} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \mathbb{S}_{1} \\ \sum_{1}^{0} \\ \hline \end{array}$	$\begin{array}{\|l\|} \mathbb{T}_{1} \\ {\underset{S}{1}}^{0} N \end{array}$	$\begin{array}{\|l\|} \hline \bar{S}_{1} \\ \sum_{i N}^{0} \end{array}$			$\begin{array}{\|l\|} \hline{\underset{\Sigma}{1}}^{\prime} \\ \sum_{u}^{0} \end{array}$	$\begin{array}{\|l\|} \hline \underset{u}{z} \\ \sum_{4}^{0} \vdash \end{array}$
			＇	＇	－	，	，	，	，	，	＇	＇	，	，
	은		＇	＇	－	－	＇	－	＇	，	＇	，	，	，
	$\stackrel{8}{4}$		＇	＇	－	＇	＇	，	，	，	＇	，	，	，
	$\stackrel{\infty}{\frac{\infty}{4}}$		＇	，	＇	－	，	，	，	，	，	＇	，	道
	砍		＇	＇	－	＇	＇	，	＇	，	＇	，	，	＇
	$\frac{0}{4}$		＇			＇	，	－	，	－	＇	，	＇	
	$\frac{!!}{4}$		，	＇	－	＇	，	，	，	－	＇	，	，	＇
	荘		＇			$\begin{array}{\|l\|} \hline \mathbf{o}_{1} \\ J^{\prime} \ll \\ \underline{\underline{N}} \\ \hline \end{array}$	＇	，	，	，	＇	，	，	＇
	枈		，	，	－	，	，	，	，	，	＇	，	，	＇
	尔	$\begin{aligned} & \hline \frac{N}{N} \\ & \sum_{N}^{m} \\ & \sum_{1}^{m} \end{aligned}$	＇	＇	＇	＇	＇	＇	＇	，	＇	，	，	＇
	㐫		＇	＇	＇	＇	＇	，	＇	，	＇	＇	，	＇
	안	$\stackrel{\omega}{\omega}$	＇	＇	，	＇	＇	，	＇	＇	＇	，	＇	＇
	！		$\frac{N}{\text { 든 }}$	$\stackrel{m}{\stackrel{m}{L}}$	$\frac{\underset{4}{4}}{\frac{t}{4}}$	$\frac{\text { n }}{\frac{1}{a}}$	O	ָু	N	§	\％	セ0	¢	へ
			$\stackrel{\text { u }}{\text { ¢ }}$				OL¢							

Table 13．STM32F765xx，STM32F767xx，STM32F768Ax and STM32F769xx alternate

$\frac{n}{\dot{4}}$	ω	\|를은	永年	発っ	誋	坔与	発っ	$\underset{\text { 2 }}{2}$	
$\stackrel{H}{\stackrel{4}{4}}$	O	$\begin{aligned} & \hat{O}_{1} \\ & 0 \end{aligned}$	＇	$\begin{aligned} & \tilde{m}_{1}^{\prime} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 毋 } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \bar{m}_{1}^{\prime} \\ & \mathrm{O}_{1} \end{aligned}$	$\begin{aligned} & \text { ষ্́ } \\ & 0 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \text { ó } \\ & 0 \\ & 0 \end{aligned}$	＇
$\frac{m}{4}$	르웅	，	$\begin{aligned} & >_{10} \\ & \sum_{0}^{1} \sum_{0} \end{aligned}$	$\begin{aligned} & 0_{0}^{1} \\ & \sum_{0}^{\prime} N \end{aligned}$	$\begin{aligned} & 0_{0}^{1} \\ & \sum_{0}^{\prime} m \end{aligned}$	－	，	，	
$\stackrel{N}{\dot{4}}$		$\left\lvert\, \begin{aligned} & 0_{1} \\ & \sum_{k}^{0} \\ & \sum_{u} \end{aligned}\right.$				$\begin{aligned} & \sum_{\sum_{1}} \\ & \sum_{L}^{\prime} \end{aligned}$	$\begin{aligned} & \mathbb{N}_{1}^{N} \\ & \sum_{i}^{0} \end{aligned}$	$\begin{aligned} & {\underset{X}{X}}_{1}^{\prime} \\ & \sum_{L}^{0} \end{aligned}$	$\begin{aligned} & 0_{0}, 0 \\ & \sum_{k}^{0} z \\ & 0_{1} z \end{aligned}$
$\underset{\underset{4}{\overline{4}}}{\stackrel{F}{4}}$			$\sum_{i=1}^{N} O_{1}^{N}$	$\begin{aligned} & \hline \sum_{00}^{N} \bar{O}_{1} \\ & \hline 0 \end{aligned}$		$\sum_{0}^{N} \sum_{0}^{N}$			＇
$\frac{\circ}{4}$		，	$\begin{aligned} & \hline \mathscr{N}^{\prime} \\ & \stackrel{1}{\mathbb{1}} \infty \\ & \underset{\infty}{\infty} \end{aligned}$		$\sum_{i=1}^{N} \tilde{N}_{1}$	＇	＇	，	，
$\frac{10}{4}$		＇		$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { O} \end{aligned}$	＇	$\begin{aligned} & \mathrm{m}_{1} \\ & \text { OU } \end{aligned}$	，		，
$\stackrel{\text { ® }}{4}$				－		为			
交				＇		$\begin{aligned} & \hline \alpha_{1} \\ & \frac{\omega_{0}}{\overline{0}} \\ & \frac{0}{\omega} \end{aligned}$	＇	＇	＇
$\stackrel{\circ}{4}$		＇	＇	＇	＇	＇	＇	＇	＇
$\stackrel{\text { ¢ }}{4}$		$\begin{aligned} & \hline \sum_{n} \\ & \frac{\rho_{1} \infty}{0} \\ & \end{aligned}$	$\begin{aligned} & \bar{\Sigma}_{10} \\ & \overline{\bar{n}}_{\infty} \circlearrowleft \end{aligned}$			$\begin{array}{\|l} \hline \sum_{\omega_{1}} \\ \frac{\varrho_{0}}{\infty} \omega \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & \dot{N}_{1} \\ & \frac{0}{0} \\ & x_{0} \end{aligned}$	$\begin{aligned} & \sum_{1} \overline{\varrho_{0}}{ }_{n}^{2} \end{aligned}$	，
誌		＇	＇	＇	＇	＇	＇	＇	＇
¢		＇	＇	＇	＇	$\left\lvert\, \begin{aligned} & -1 \\ & \sum_{i}^{-1} \bar{z} \\ & \vdots \end{aligned}\right.$	$\sum_{a}^{\sum_{a}^{\prime}} \stackrel{1}{0}$		＇
N		＇	＇	＇	，	＇	，	，	＇
둔		，	，	＇	，	＇	，	，	＇
안	ω_{ω}^{∞}	＇	，	＇	，	＇		¢	＇
！		©゚	O	음	F	N	$\begin{aligned} & \text { m } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \stackrel{7}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \circ \\ & \hline 0 \\ & \hline 2 \end{aligned}$
		$\begin{aligned} & \hline \\ & \hline \text { o } \\ & \hline ⿳ 亠 口 口 又 寸 ~ \end{aligned}$							

DocID029041 Rev 6

Table 13．STM32F765xx，STM32F767xx，STM32F768Ax and STM32F769xx alternate

$\frac{n}{\dot{4}}$	ω	\|를은	를는	$\underset{\sim}{2} \underset{\sim}{2}$	永年	\|를은	氷年	를은	坔っ	永年	永5	热各	\|를은	坔各。	垫
$\stackrel{H}{\stackrel{U}{4}}$	O	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \hline \stackrel{\text { O}}{1} \\ & \text { O} \end{aligned}$	$\begin{aligned} & \hline \text { O } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hat{\mathrm{O}}_{1} \\ & \mathrm{O}_{1} \end{aligned}$	，	$\begin{aligned} & \hline \stackrel{\rightharpoonup}{\mathrm{m}} \\ & \stackrel{1}{0} \end{aligned}$	$\begin{aligned} & \hline \varrho_{1} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \hat{\omega} \\ & 0 \\ & 0 \end{aligned}$				，
$\stackrel{m}{4}$	\sum_{0}^{2}	$\begin{array}{\|l\|} \hline 0 \\ \sum_{0}^{1} \\ \sum_{0} \end{array}$	$\begin{aligned} & \hline 0 \\ & \sum_{0}^{\prime} F \\ & \hline \alpha \end{aligned}$	$\stackrel{i}{0}_{\stackrel{D}{0}_{1}^{\prime}}^{m}$	$\begin{aligned} & Q_{0}^{1} \\ & \sum_{0}^{1} \infty \end{aligned}$	$\begin{aligned} & \hline Q_{1}^{\prime} \\ & \sum_{0}^{1} \sigma \end{aligned}$	$\begin{aligned} & Q_{0}^{\prime} \\ & \sum_{0}^{\prime} \circ \end{aligned}$	$\begin{aligned} & Q_{1}^{\prime} \\ & \sum_{0}^{1} n \end{aligned}$	$\begin{aligned} & \hline>10 \\ & \sum_{0}^{n} \sum_{\omega}^{n} \end{aligned}$	$\begin{aligned} & \hline Q_{1}^{\prime} \\ & \sum_{0}^{1} 0 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ \sum_{0}^{1} \\ \hline \end{array}$	＇	＇	，	，
$\stackrel{N}{\frac{1}{4}}$		$\begin{array}{\|l\|} \hline \tilde{N}_{1} \\ \sum_{i}^{\prime} N \end{array}$		$\begin{aligned} & \tilde{N}_{1}^{\prime} \\ & \sum_{L}^{\prime} \end{aligned}$	$\begin{aligned} & \tilde{O}_{1}^{\prime} \\ & \sum_{i}^{0_{1}} \end{aligned}$	$\begin{array}{\|l\|} \hline N_{0}^{\prime} \\ \sum_{U}^{\prime} 0 \end{array}$	$\begin{aligned} & \tilde{O}_{1} \\ & \sum_{i}^{0_{1}^{\prime}} \end{aligned}$	$\begin{aligned} & \sum_{\Sigma_{l}} \\ & \sum_{u}^{0} \end{aligned}$	$\begin{aligned} & \sum_{N_{l n}} \\ & \sum_{L}^{0} \end{aligned}$		$\begin{array}{\|l\|} \hline \tilde{N}^{\prime} \\ \sum_{i}^{\prime} の \\ \hline \end{array}$	＇	$\begin{array}{\|l\|l} \hline{ }_{n}^{\prime} \\ \sum_{i}^{\prime} 0 \end{array}$	$\left\lvert\, \begin{array}{\|l\|l\|} \hline 0 \\ \sum_{1}^{\prime} \\ \sum_{4} \end{array}\right.$	，
$\underset{\underset{4}{i}}{\underset{\sim}{i}}$		，	，	＇	＇	，	，	，	，	，	，	，	，	仿	，
은		，	，	－	，	，	，	$\begin{aligned} & \hline \sum_{\Sigma_{1}} \\ & \underset{\widetilde{c}}{N_{1}} \end{aligned}$		$\begin{aligned} & \hline a^{\prime} \\ & n^{\prime \varangle} \\ & N^{〔} \\ & \infty \end{aligned}$	$\begin{array}{\|l\|} \hline \mathscr{N}^{\prime} \\ \stackrel{1}{1} \\ \mathfrak{N}^{\top} \\ \mathscr{\infty} \end{array}$	，	，	，	
$\frac{10}{4}$		$\begin{aligned} & \underset{\sim}{\infty} \\ & \sum_{0}^{\prime} x \\ & 0 \end{aligned}$	，	，	＇	，	，	，	，	，		，		＇	0 0 0
$\stackrel{\infty}{4}$			，	，	＇	－	，	，	，	，		＇		，	，
交		＇	，	＇	，	，	，	＇	＇	＇	＇	－	，	，	，
$\frac{00}{4}$		＇	，	＇	＇	，	，	，	，	＇	＇	，	＇	，	，
$\frac{\ddot{6}}{4}$		＇	，			$\begin{array}{\|l\|l} \hline \bar{N}^{\prime} O \\ \frac{N_{n}}{\infty} \\ \hline \end{array}$		，	，	，	＇	，	＇	，	，
蒋		，	，	＇	＇	，	，	＇	，	，	，	－	，	＇	＇
$\frac{\mathscr{m}}{\mathbb{4}}$			$\begin{aligned} & \mathrm{I}_{0}^{\prime} \\ & \sum_{\sum_{1}^{\prime}}^{\infty}{ }^{\circ} \mathrm{z} \end{aligned}$	，				$\left\lvert\, \begin{aligned} & \frac{\overline{\mathrm{s}}}{1} \\ & \sum_{1}^{\infty} z \\ & \sum_{1} \end{aligned}\right.$	$\begin{array}{\|l\|} I_{0}^{\prime} \\ \sum_{i}^{\prime} \\ \sum_{1} \end{array}$	$\begin{aligned} & I_{0}^{\prime} \\ & \sum_{1}^{\infty} N \\ & \sum_{1} \end{aligned}$	$\begin{array}{\|l\|l} \mathrm{I}_{0} \\ \sum_{i}^{\infty} ल \\ \sum_{1} \end{array}$	－	，	，	，
$\frac{\text { N }}{4}$		＇	＇	$\begin{aligned} & U_{1} \\ & \sum_{i}^{n} I T \end{aligned}$	，	＇	，	，	－	＇	＇	－	，	＇	＇
춘		＇	－	＇	＇	，	＇	＇	，	＇		，	＇	，	＇
$\frac{10}{4}$	ω_{ω}^{∞}	，	，	＇	＇	，	＇	，	，	，		．	＇	，	，
！			$\begin{aligned} & \text { 옴 } \\ & \hline \end{aligned}$	은	Г	ㅍ	음	$\frac{ \pm}{\square}$	음	음	へ	¢	음	음	듬
				$\stackrel{ \pm}{\circ}$											

DocID029041 Rev 6

Table 13．STM32F765xx，STM32F767xx，STM32F768Ax and STM32F769xx alternate

$\frac{n}{i k}$	$\stackrel{\infty}{\omega}$	\|를은	垫		热各		$\begin{aligned} & \text { zun } \\ & \text { y } \\ & \hline 10 \end{aligned}$		热各	$\mid \underset{\sim}{\text { zu }}$	热各	誋	永年	$\underset{\sim}{\text { 2 }}$
$\frac{\underset{4}{4}}{\frac{t}{4}}$	O	$\begin{aligned} & \hline{ }_{\mathrm{O}}^{1} \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \overline{\bar{m}_{1}^{\prime}} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \hline \tilde{m}_{1} \\ & 0_{1} \end{aligned}$	$\begin{aligned} & \tilde{\omega}_{1} \\ & \stackrel{U}{1}^{\prime} \end{aligned}$	$\begin{aligned} & \text { O} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \hat{O}_{1} \\ & \mathrm{O}_{1} \end{aligned}$	$\begin{aligned} & \hline \stackrel{\rightharpoonup}{\mathrm{o}} \\ & 0 \\ & \hline \mathrm{O} \end{aligned}$	$\begin{aligned} & \text { 品 } \\ & 0_{1}^{\prime} \end{aligned}$		$\begin{aligned} & \hat{\mathrm{m}}_{1} \\ & \mathrm{o}_{1} \end{aligned}$	$\begin{aligned} & \ddot{0}_{1} \\ & 0 \\ & 0 \end{aligned}$
$\stackrel{m}{4}$		，	，	，	，	，	，	，	，	，	，	，	，	．
$\stackrel{N}{\dot{4}}$		，	，	，	，	－	，	，	－	，	－	，	，	，
$\underset{\underset{4}{i}}{\overline{4}}$		＇	，	，	＇	＇	，	，	，	，	－	－	＇	，
$\frac{\text { 은 }}{\stackrel{1}{4}}$		＇	＇	＇	＇	＇	，	＇	＇	－	－	，	，	＇
$\frac{\ddot{4}}{4}$		，	$\begin{aligned} & \text { O} \\ & \text { OU } \\ & \text { O- } \end{aligned}$	$\begin{aligned} & \text { 犬 } \\ & 0 \\ & \hline \mathrm{O} \end{aligned}$	＇	＇	，	，	＇	，	－	－	，	，
$\stackrel{\infty}{4}$		＇	＇	，	＇	，	，	－	－	－	－	－	＇	＇
交		＇	＇	＇	＇	，	，	，	，	，	，	，	，	＇
$\frac{00}{4}$		＇	＇	＇	＇	＇	＇	＇	＇	，	＇	＇	＇	＇
$\stackrel{0}{4}$		，	，	，	＇	，	，	，	，	，	，	，	，	＇
誌		＇	，	，	＇	＇	＇	＇	＇	，	＇	＇	＇	＇
枈		＇	，	，	，	－	，	，	，	，	，	－	＇	＇
$\frac{\mathrm{N}}{\mathbf{\alpha}}$		＇	，	，	＇	＇	＇	，	，	＇	，	＇	＇	＇
砏		，	，	，	＇	，	，	，	，	，	，	－	，	＇
윤	ご	＇	，	，	＇	，	，	＇	，	，	，	，	＇	＇
！		$\underset{0}{5}$	$\stackrel{N}{2}$	$\stackrel{\infty}{2}$	$\stackrel{\rightharpoonup}{2}$	$\stackrel{\infty}{2}$	$\stackrel{\text { 옴 }}{ }$	$\frac{\bar{y}}{\mathrm{a}}$	$\frac{\mathfrak{y}}{\mathrm{a}}$	끔	损	铝	ํํㅁ	츰
		?					늠							

DocID029041 Rev 6

4 Memory mapping

The memory map is shown in Figure 22.
Figure 22. Memory map

Table 14. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx register boundary addresses ${ }^{(1)}$

Bus	Boundary address	Peripheral
-	0xE00F FFFF - 0xFFFFF FFFF	Reserved
Cortex-M7	0xE000 0000-0xE00F FFFF	Cortex-M7 internal peripherals
AHB3	0xD000 0000-0xDFFF FFFF	FMC bank 6
	0xC000 0000-0xCFFFF FFFF	FMC bank 5
	0xA000 2000-0xBFFF FFFF	Reserved
	0xA000 1000-0xA000 1FFF	Quad-SPI control register
	0xA000 0000-0xA000 0FFF	FMC control register
	0x9000 0000-0x9FFF FFFF	Quad-SPI
	0x8000 0000-0x8FFF FFFF	FMC bank 3
	0x7000 0000-0x7FFF FFFF	FMC bank 2
	0x6000 0000-0x6FFF FFFF	FMC bank 1
-	0×5006 0C00-0x5FFF FFFF	Reserved
AHB2	0x5006 0800-0x5006 0BFF	RNG
	0x5005 2000-0x5005 FFFF	Reserved
	$0 \times 50051000-0 \times 50051$ FFF	JPEG codec
	0x5005 0000-0x5005 03FF	DCMI
	$0 \times 50040000-0 \times 5004$ FFFF	Reserved
	0x5000 0000-0x5003 FFFF	USB OTG FS

Table 14. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx register boundary addresses ${ }^{(1)}$ (continued)

Bus	Boundary address	Peripheral
-	0x4008 0000-0x4FFF FFFF	Reserved
AHB1	0x4004 0000-0x4007 FFFF	USB OTG HS
	0x4002 BC00-0x4003 FFFF	Reserved
	0x4002 B000-0x4002 BBFF	Chrom-ART (DMA2D)
	0x4002 9400-0x4002 AFFF	Reserved
	0x4002 9000-0x4002 93FF	ETHERNET MAC
	0x4002 8C00-0x4002 8FFF	
	0x4002 8800-0x4002 8BFF	
	0x4002 8400-0x4002 87FF	
	0x4002 8000-0x4002 83FF	
	0x4002 6800-0x4002 7FFF	Reserved
	0x4002 6400-0x4002 67FF	DMA2
	0x4002 6000-0x4002 63FF	DMA1
	0x4002 5000-0X4002 5FFF	Reserved
	0x4002 4000-0x4002 4FFF	BKPSRAM
	0x4002 3C00-0x4002 3FFF	Flash interface register
	0x4002 3800-0x4002 3BFF	RCC
	$0 \times 40023400-0 \times 4002$ 37FF	Reserved
	0x4002 3000-0x4002 33FF	CRC
	0x4002 2C00-0x4002 2FFF	Reserved
	0x4002 2800-0x4002 2BFF	GPIOK
	0x4002 2400-0x4002 27FF	GPIOJ
	0x4002 2000-0x4002 23FF	GPIOI
	0x4002 1C00-0x4002 1FFF	GPIOH
	0x4002 1800-0x4002 1BFF	GPIOG
	0x4002 1400-0x4002 17FF	GPIOF
	0x4002 1000-0x4002 13FF	GPIOE
	0X4002 0C00-0x4002 0FFF	GPIOD
	0x4002 0800-0x4002 0BFF	GPIOC
	0x4002 0400-0x4002 07FF	GPIOB
	0x4002 0000-0x4002 03FF	GPIOA

Table 14. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx register boundary addresses ${ }^{(1)}$ (continued)

Bus	Boundary address	Peripheral
-	0x4001 7C00-0x4001 FFFF	Reserved
APB2	0x4001 7800-0x4001 7BFF	MDIOS
	0x4001 7400-0x4001 77FF	DFSDM1
	0x4001 6C00-0x4001 73FF	DSI Host
	0x4001 6800-0x4001 6BFF	LCD-TFT
	0x4001 6000-0x4001 67FF	Reserved
	0x4001 5C00-0x4001 5FFF	SAI2
	0x4001 5800-0x4001 5BFF	SAI1
	0x4001 5400-0x4001 57FF	SPI6
	0x4001 5000-0x4001 53FF	SPI5
	0x4001 4C00-0x4001 4FFF	Reserved
	0x4001 4800-0x4001 4BFF	TIM11
	0x4001 4400-0x4001 47FF	TIM10
	0x4001 4000-0x4001 43FF	TIM9
	0x4001 3C00-0x4001 3FFF	EXTI
	0x4001 3800-0x4001 3BFF	SYSCFG
	0x4001 3400-0x4001 37FF	SPI4
	0x4001 3000-0x4001 33FF	SPI1/I2S1
	0x4001 2C00-0x4001 2FFF	SDMMC1
	0x4001 $2400-0 \times 4001$ 2BFF	Reserved
	0x4001 2000-0x4001 23FF	ADC1 - ADC2 - ADC3
	0x4001 1C00-0x4001 1FFF	SDMMC2
	0x4001 1800-0x4001 1BFF	Reserved
	0x4001 1400-0x4001 17FF	USART6
	0x4001 1000-0x4001 13FF	USART1
	0x4001 0800-0x4001 OFFF	Reserved
	0x4001 0400-0x4001 07FF	TIM8
	0x4001 0000-0x4001 03FF	TIM1

Table 14. STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx register boundary addresses ${ }^{(1)}$ (continued)

Bus	Boundary address	Peripheral
-	0x4000 8000-0x4000 FFFF	Reserved
APB1	0x4000 7C00-0x4000 7FFF	UART8
	0x4000 7800-0x4000 7BFF	UART7
	0x4000 7400-0x4000 77FF	DAC
	0x4000 7000-0x4000 73FF	PWR
	0x4000 6C00-0x4000 6FFF	HDMI-CEC
	0x4000 6800-0x4000 6BFF	CAN2
	0x4000 6400-0x4000 67FF	CAN1
	0x4000 6000-0x4000 63FF	I2C4
	0x4000 5C00-0x4000 5FFF	I2C3
	0x4000 5800-0x4000 5BFF	I2C2
	0x4000 5400-0x4000 57FF	I2C1
	0x4000 5000-0x4000 53FF	UART5
	0x4000 4C00-0x4000 4FFF	UART4
	0x4000 4800-0x4000 4BFF	USART3
	0x4000 4400-0x4000 47FF	USART2
	0x4000 4000-0x4000 43FF	SPDIFRX
	0x4000 3C00-0x4000 3FFF	SPI3 / I2S3
	0x4000 3800-0x4000 3BFF	SPI2 / I2S2
	0x4000 3400-0x4000 37FF	CAN3
	0x4000 3000-0x4000 33FF	IWDG
	0x4000 2C00-0x4000 2FFF	WWDG
	0x4000 2800-0x4000 2BFF	RTC \& BKP Registers
	0x4000 2400-0x4000 27FF	LPTIM1
	0x4000 2000-0x4000 23FF	TIM14
	0x4000 1C00-0x4000 1FFF	TIM13
	0x4000 1800-0x4000 1BFF	TIM12
	0x4000 1400-0x4000 17FF	TIM7
	0x4000 1000-0x4000 13FF	TIM6
	0x4000 0C00-0x4000 0FFF	TIM5
	0x4000 0800-0x4000 0BFF	TIM4
	0x4000 0400-0x4000 07FF	TIM3
	0x4000 0000-0x4000 03FF	TIM2

1. The gray color is used for reserved Flash memory addresses.

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{A}} \max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3 \sigma$).

5.1.2 Typical values

Unless otherwise specified, typical data are based on $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ (for the $1.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$ voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2 \sigma$).

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 23.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 24.
Figure 23. Pin loading conditions Figure 24. Pin input voltage

5.1.6 Power supply scheme

Figure 25. STM32F769xx/STM32F779xx power supply scheme

Figure 26. STM32F767xx/STM32F777xx power supply scheme

1. To connect BYPASS_REG and PDR_ON pins, refer to Section 2.18: Power supply supervisor and Section 2.19: Voltage regulator.
2. The two $2.2 \mu \mathrm{~F}$ ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the voltage regulator is OFF.
3. The $4.7 \mu \mathrm{~F}$ ceramic capacitor must be connected to one of the $\mathrm{V}_{\mathrm{DD}} \mathrm{pin}$.
4. $\mathrm{V}_{\mathrm{DDA}}=\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{SSA}}=\mathrm{V}_{\mathrm{SS}}$.

Caution: Each power supply pair $\left(\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DDA}} / \mathrm{V}_{\mathrm{SSA}} \ldots\right)$ must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure good operation of the device. It is not recommended to remove filtering capacitors to reduce PCB size or cost. This might cause incorrect operation of the device.

5.1.7 Current consumption measurement

Figure 27. Current consumption measurement scheme

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in Table 15: Voltage characteristics, Table 16: Current characteristics, and Table 17: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and the functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. The device mission profile (application conditions) is compliant with JEDEC JESD47 Qualification Standard. Extended mission profiles are available on demand.

Table 15. Voltage characteristics

Symbol	Ratings	Min	Max	Unit
$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}$	External main supply voltage (including $\mathrm{V}_{\mathrm{DDA}}, \mathrm{V}_{\mathrm{DD}}$, $V_{\text {BAT }}, V_{\text {DDUSB, }} V_{\text {DDDSI }}{ }^{(1)}$ and $V_{\text {DDSDMMC }}{ }^{(2)}$	-0.3	4.0	V
V_{IN}	Input voltage on FT pins ${ }^{(3)}$	$V_{S S}-0.3$	$V_{D D}+4.0$	
	Input voltage on TTa pins	$V_{S S}-0.3$	4.0	
	Input voltage on any other pin	$V_{S S}-0.3$	4.0	
	Input voltage on BOOT pin	$V_{\text {SS }}$	9.0	
$\left\|\Delta \mathrm{V}_{\text {DDx }}\right\|$	Variations between different $V_{\text {DD }}$ power pins	-	50	mV
$\mid \mathrm{V}_{\text {SSX }}{ }^{-V_{S S}}$	Variations between all the different ground pins ${ }^{(4)}$	-	50	
$\mathrm{V}_{\text {ESD }}$ (HBM)	Electrostatic discharge voltage (human body model)	see Section 5.3.18: Absolute maximum ratings (electrical sensitivity)		-

1. Applicable only for STM32F7x9 sales types.
2. All main power ($\left.\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {DDA }}, \mathrm{V}_{\text {DDSDMMC }}, \mathrm{V}_{\text {DDUSB }}, \mathrm{V}_{\text {DDDSI }}\right)$ and ground $\left(\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{S S A}\right)$ pins must always be connected to the external power supply, in the permitted range.
3. $\mathrm{V}_{\text {IN }}$ maximum value must always be respected. Refer to Table 16 for the values of the maximum allowed injected current.
4. Include $\mathrm{V}_{\text {REF- }}$ pin.

Table 16. Current characteristics

Symbol	Ratings	Max.	Unit
$\Sigma l_{\text {VDD }}$	Total current into sum of all $\mathrm{V}_{\text {DD_x }}$ p power lines (source) ${ }^{(1)}$	420	mA
$\Sigma l_{\text {VSs }}$	Total current out of sum of all $\mathrm{V}_{\text {SS_x }}$ ground lines (sink) ${ }^{(1)}$	-420	
$\Sigma I_{\text {VDDUSB }}$	Total current into $V_{\text {DDUSB }}$ power line (source)	25	
$\Sigma I_{\text {VDDSDMMC }}$	Total current into $\mathrm{V}_{\text {DDSDMMC }}$ power line (source)	60	
$\mathrm{I}_{\mathrm{VDD}}$	Maximum current into each $\mathrm{V}_{\mathrm{DD}_{2} \mathrm{x}}$ power line (source) ${ }^{(1)}$	100	
IVDDSDMMC	Maximum current into $\mathrm{V}_{\text {DDSDMM }}$ power line (source): PG[12:9], PD[7:6]	100	
Ivss	Maximum current out of each $\mathrm{V}_{\text {SS_x }}$ ground line (sink) ${ }^{(1)}$	-100	
	Output current sunk by any I/O and control pin	25	
10	Output current sourced by any I/Os and control pin	-25	
Σl_{10}	Total output current sunk by sum of all I/O and control pins ${ }^{(2)}$	120	
	Total output current sunk by sum of all USB I/Os	25	
	Total output current sunk by sum of all SDMMC I/Os	120	
	Total output current sourced by sum of all I/Os and control pins except USB I/Os ${ }^{(2)}$	-120	
$\mathrm{I}_{\text {INJ(PIN })}$	Injected current on FT, FTf, RST and B pins ${ }^{(3)}$	-5/+0	
	Injected current on TTa pins ${ }^{(4)}$	± 5	
$\Sigma \mathrm{I}_{\mathrm{INJ}(\mathrm{PIN})}{ }^{(4)}$	Total injected current (sum of all I/O and control pins) ${ }^{(5)}$	± 25	

1. All main power $\left(\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DDA}}\right)$ and ground $\left(\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{SSA}}\right)$ pins must always be connected to the external power supply, in the permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.
4. A positive injection is induced by $V_{I N}>V_{D D A}$ while a negative injection is induced by $V_{I N}<V_{S S}$. $I_{I N J(P I N)}$ must never be exceeded. Refer to Table 15: Voltage characteristics for the values of the maximum allowed input voltage.
5. When several inputs are submitted to a current injection, the maximum $\Sigma I_{I N J(P I N)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 17. Thermal characteristics

Symbol	Ratings	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum junction temperature	125	

5.3 Operating conditions

5.3.1 General operating conditions

Table 18. General operating conditions

Symbol	Parameter	Conditions ${ }^{(1)}$		Min	Typ	Max	Unit
$\mathrm{f}_{\mathrm{HCLK}}$	Internal AHB clock frequency	Power Scale 3 (VOS[1:0] bits in PWR_CR register = 0x01), Regulator ON, over-drive OFF		0	-	144	MHz
		Power Scale 2 (VOS[1:0] bits in PWR_CR register $=0 \times 10$), Regulator ON	Overdrive OFF	0	-	168	
			Overdrive ON		-	180	
		Power Scale 1 (VOS[1:0] bits in PWR_CR register $=0 \times 11$), Regulator ON	Overdrive OFF	0	-	180	
			Overdrive ON		-	$216^{(2)}$	
$\mathrm{f}_{\text {PCLK } 1}$	Internal APB1 clock frequency	Over-drive OFF		0	-	45	
		Over-drive ON		0	-	54	
$\mathrm{f}_{\text {PCLK2 }}$	Internal APB2 clock frequency	Over-drive OFF		0	-	90	
		Over-drive ON		0	-	108	
$V_{D D}$	Standard operating voltage	-		$1.7{ }^{(3)}$	-	3.6	\checkmark
$V_{\text {DDA }}{ }^{(4)(5)}$	Analog operating voltage (ADC limited to 1.2 M samples)	Must be the same potential as $\mathrm{V}_{\mathrm{DD}}{ }^{(6)}$		$1.7{ }^{(3)}$	-	2.4	
	Analog operating voltage (ADC limited to 2.4 M samples)			2.4	-	3.6	
$V_{\text {DDUSB }}$	USB supply voltage (supply voltage for PA11,PA12, PB14 and PB15 pins)	USB not used		1.7	3.3	3.6	
		USB used		3.0	-	3.6	
$V_{\text {BAT }}$	Backup operating voltage	-		1.65	-	3.6	
$V_{\text {DDSDMMC }}$	SDMMC2 supply voltage (supply voltage for PG[12:9] and PD6 pins)	It can be different from VDD	-	1.7	-	3.6	
$\mathrm{V}_{\text {DDDSI }}$	DSI system operating	-		1.7	-	3.6	

Table 18. General operating conditions (continued)

Symbol	Parameter	Conditions ${ }^{(1)}$	Min	Typ	Max	Unit
V_{12}	Regulator ON: 1.2 V internal voltage on $\mathrm{V}_{\text {CAP_1 }} / \mathrm{V}_{\text {CAP_2 }}$ pins	Power Scale 3 ((VOS[1:0] bits in PWR_CR register = 0x01), 144 MHz HCLK max frequency	1.08	1.14	1.20	V
		Power Scale 2 ((VOS[1:0] bits in PWR_CR register = 0x10), 168 MHz HCLK max frequency with over-drive OFF or 180 MHz with over-drive ON	1.20	1.26	1.32	
		Power Scale 1 ((VOS[1:0] bits in PWR_CR register = 0x11), 180 MHz HCLK max frequency with over-drive OFF or 216 MHz with over-drive ON	1.26	1.32	1.40	
	Regulator OFF: 1.2 V external voltage must be supplied from external regulator on $\mathrm{V}_{\text {CAP_1 }} / \mathrm{V}_{\text {CAP_2 }}$ pins $^{(7)}$	Max frequency 144 MHz	1.10	1.14	1.20	
		Max frequency 168 MHz	1.20	1.26	1.32	
		Max frequency 180 MHz	1.26	1.32	1.38	
$\mathrm{V}_{\text {IN }}$	Input voltage on RST and FT pins ${ }^{(8)}$	$2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$	-0.3	-	5.5	
		$\mathrm{V}_{\mathrm{DD}} \leq 2 \mathrm{~V}$	-0.3	-	5.2	
	Input voltage on TTa pins	-	-0.3	-	$\begin{gathered} \mathrm{V}_{\mathrm{DDA}}{ }^{+} \\ 0.3 \end{gathered}$	
	Input voltage on BOOT pin	-	0	-	9	
P_{D}	Power dissipation at $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ for suffix 6 or $T_{A}=105^{\circ} \mathrm{C}$ for suffix $7^{(9)}$	LQFP100	-	-	465	mW
		WLCSP180	-	-	641	
		LQFP144	-	-	500	
		LQFP176	-	-	526	
		UFBGA176	-	-	513	
		LQFP208	-	-	1053	
		TFBGA216	-	-	690	
		TFBGA100	-	-	552	
TA	Ambient temperature for 6 suffix version	Maximum power dissipation	-40	-	85	C
		Low power dissipation ${ }^{(10)}$	-40	-	105	
	Ambient temperature for 7 suffix version	Maximum power dissipation	-40	-	105	${ }^{\circ} \mathrm{C}$
		Low power dissipation ${ }^{(10)}$	-40	-	125	
TJ	Junction temperature range	6 suffix version	-40	-	105	${ }^{\circ} \mathrm{C}$
		7 suffix version	-40	-	125	

1. The over-drive mode is not supported at the voltage ranges from 1.7 to 2.1 V .
2. 216 MHz maximum frequency for 6 suffix version (200 MHz maximum frequency for 7 suffix version).
3. $V_{D D} / V_{D D A}$ minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.18.2: Internal reset OFF).
4. When the ADC is used, refer to Table 72: ADC characteristics.
5. If $\mathrm{V}_{\mathrm{REF}+}$ pin is present, it must respect the following condition: $\mathrm{V}_{\mathrm{DDA}}-\mathrm{V}_{\mathrm{REF}}<1.2 \mathrm{~V}$.
6. It is recommended to power V_{DD} and $\mathrm{V}_{\mathrm{DDA}}$ from the same source. A maximum difference of 300 mV between V_{DD} and $V_{\text {DDA }}$ can be tolerated during power-up and power-down operation.
7. The over-drive mode is not supported when the internal regulator is OFF.
8. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled
9. If T_{A} is lower, higher P_{D} values are allowed as long as T_{J} does not exceed $T_{J m a x}$.
10. In low power dissipation state, T_{A} can be extended to this range as long as T_{J} does not exceed $T_{J m a x}$.

Table 19. Limitations depending on the operating power supply range

Operating power supply range	ADC operation	Maximum Flash memory access frequency with no wait states ($\mathrm{f}_{\text {Flashmax }}$)	Maximum HCLK frequency vs Flash memory wait states (1)(2)	1/O operation	Possible Flash memory operations
$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=1.7 \text { to } \\ 2.1 \mathrm{~V}^{(3)} \end{gathered}$	Conversion time up to 1.2 Msps	20 MHz	180 MHz with 8 wait states and over-drive OFF	No I/O compensation	8-bit erase and program operations only
$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=2.1 \text { to } \\ 2.4 \mathrm{~V} \end{gathered}$	Conversion time up to 1.2 Msps	22 MHz	216 MHz with 9 wait states and over-drive ON	No I/O compensation	16-bit erase and program operations
$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=2.4 \text { to } \\ 2.7 \mathrm{~V} \end{gathered}$	Conversion time up to 2.4 Msps	24 MHz	216 MHz with 8 wait states and over-drive ON	I/O compensation works	16-bit erase and program operations
$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=2.7 \text { to } \\ 3.6 \mathrm{~V}^{(4)} \end{gathered}$	Conversion time up to 2.4 Msps	30 MHz	216 MHz with 6 wait states and over-drive ON	I/O compensation works	32-bit erase and program operations

1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is required.
2. Thanks to the ART accelerator on ITCM interface and L1-cache on AXI interface, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator or L1-cache allows to achieve a performance equivalent to 0 -wait state program execution.
3. $V_{D D} / V_{D D A}$ minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.18.2: Internal reset OFF).
4. The voltage range for USB full speed PHYs can drop down to 2.7 V . However the electrical characteristics of D- and D+ pins will be degraded between 2.7 and 3 V .

5.3.2 VCAP1/VCAP2 external capacitor

Stabilization for the main regulator is achieved by connecting an external capacitor $\mathrm{C}_{\mathrm{EXT}}$ to the VCAP1/VCAP2 pins. $\mathrm{C}_{\mathrm{EXT}}$ is specified in Table 20.

Figure 28. External capacitor $\mathrm{C}_{\mathrm{EXT}}$

1. Legend: ESR is the equivalent series resistance.

Table 20. VCAP1/VCAP2 operating conditions ${ }^{(1)}$

Symbol	Parameter	Conditions
CEXT	Capacitance of external capacitor	$2.2 \mu \mathrm{~F}$
ESR	ESR of external capacitor	$<2 \Omega$

1. When bypassing the voltage regulator, the two $2.2 \mu \mathrm{~F} \mathrm{~V}_{\mathrm{CAP}}$ capacitors are not required and should be replaced by two 100 nF decoupling capacitors.

5.3.3 Operating conditions at power-up / power-down (regulator ON)

Subject to general operating conditions for T_{A}.
Table 21. Operating conditions at power-up / power-down (regulator ON)

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\mathrm{VDD}}$	V_{DD} rise time rate	20	∞	$\mu \mathrm{~s} / \mathrm{V}$
	V_{DD} fall time rate	20	∞	

5.3.4 Operating conditions at power-up / power-down (regulator OFF)

Subject to general operating conditions for T_{A}.
Table 22. Operating conditions at power-up / power-down (regulator OFF) ${ }^{(1)}$

Symbol	Parameter	Conditions	Min	Max	Unit
$t_{V D D}$	$V_{D D}$ rise time rate	Power-up	20	∞	$\mu \mathrm{s} / \mathrm{V}$
	$V_{D D}$ fall time rate	Power-down	20	∞	
$t_{\text {VCAP }}$	$\mathrm{V}_{\text {CAP_1 }}$ and $\mathrm{V}_{\text {CAP_2 }}$ rise time rate	Power-up	20	∞	
	$\mathrm{V}_{\text {CAP_1 }}$ and $\mathrm{V}_{\text {CAP_2 }}$ fall time rate	Power-down	20	∞	

1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when V_{DD} reach below 1.08 V .

5.3.5 Reset and power control block characteristics

The parameters given in Table 23 are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in Table 18.

Table 23. Reset and power control block characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\mathrm{PVD}}$	Programmable voltage detector level selection	PLS[2:0]=000 (rising edge)	2.09	2.14	2.19	V
		PLS[2:0]=000 (falling edge)	1.98	2.04	2.08	V
		PLS[2:0]=001 (rising edge)	2.23	2.30	2.37	V
		PLS[2:0]=001 (falling edge)	2.13	2.19	2.25	V
		PLS[2:0]=010 (rising edge)	2.39	2.45	2.51	V
		PLS[2:0]=010 (falling edge)	2.29	2.35	2.39	V
		PLS[2:0]=011 (rising edge)	2.54	2.60	2.65	V
		PLS[2:0]=011 (falling edge)	2.44	2.51	2.56	V
		PLS[2:0]=100 (rising edge)	2.70	2.76	2.82	V
		PLS[2:0]=100 (falling edge)	2.59	2.66	2.71	V
		PLS[2:0]=101 (rising edge)	2.86	2.93	2.99	V
		PLS[2:0]=101 (falling edge)	2.65	2.84	2.92	V
		PLS[2:0]=110 (rising edge)	2.96	3.03	3.10	V
		PLS[2:0]=110 (falling edge)	2.85	2.93	2.99	V
		PLS[2:0]=111 (rising edge)	3.07	3.14	3.21	V
		PLS[2:0]=111 (falling edge)	2.95	3.03	3.09	V
$\mathrm{V}_{\text {PVDhyst }}{ }^{(1)}$	PVD hysteresis	-	-	100	-	mV
$\mathrm{V}_{\text {POR/PDR }}$	Power-on/power-down reset threshold	Falling edge	1.60	1.68	1.76	V
		Rising edge	1.64	1.72	1.80	V
$\mathrm{V}_{\text {PDRhyst }}{ }^{(1)}$	PDR hysteresis	-	-	40	-	mV
$V_{\text {BOR1 }}$	Brownout level 1 threshold	Falling edge	2.13	2.19	2.24	V
		Rising edge	2.23	2.29	2.33	V
$\mathrm{V}_{\mathrm{BOR} 2}$	Brownout level 2 threshold	Falling edge	2.44	2.50	2.56	V
		Rising edge	2.53	2.59	2.63	V
$V_{\text {BOR3 }}$	Brownout level 3 threshold	Falling edge	2.75	2.83	2.88	V
		Rising edge	2.85	2.92	2.97	V
$\mathrm{V}_{\text {BORhyst }}{ }^{(1)}$	BOR hysteresis	- -	-	100	-	mV
$\mathrm{T}_{\mathrm{RSTTE}_{(1)(2)} \mathrm{MPO}}$	POR reset temporization	-	0.5	1.5	3.0	ms
$\mathrm{I}_{\text {RUSH }}{ }^{(1)}$	InRush current on voltage regulator poweron (POR or wakeup from Standby)	-	-	160	250	mA
$\mathrm{E}_{\text {RUSH }}{ }^{(1)}$	InRush energy on voltage regulator poweron (POR or wakeup from Standby)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=105^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{RUSH}}=171 \mathrm{~mA} \text { for } 31 \mu \mathrm{~s} \end{aligned}$	-	-	5.4	$\mu \mathrm{C}$

1. Guaranteed by design.
2. The reset temporization is measured from the power-on (POR reset or wakeup from $\mathrm{V}_{\mathrm{BAT}}$) to the instant when first instruction is read by the user application code.

5.3.6 Over-drive switching characteristics

When the over-drive mode switches from enabled to disabled or disabled to enabled, the system clock is stalled during the internal voltage set-up.

The over-drive switching characteristics are given in Table 24. They are subject to general operating conditions for T_{A}.

Table 24. Over-drive switching characteristics ${ }^{(1)}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Tod_swen	Over_drive switch enable time	HSI	-	45	-	$\mu \mathrm{s}$
		HSE max for 4 MHz and \min for 26 MHz	45	-	100	
		$\begin{gathered} \text { External HSE } \\ 50 \mathrm{MHz} \end{gathered}$	-	40	-	
Tod_swdis	Over_drive switch disable time	HSI	-	20	-	
		HSE max for 4 MHz and min for 26 MHz .	20	-	80	
		$\begin{gathered} \text { External HSE } \\ 50 \mathrm{MHz} \end{gathered}$	-	15	-	

1. Guaranteed by design.

5.3.7 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in Figure 27: Current consumption measurement scheme.
All the run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load).
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash memory access time is adjusted both to $f_{H C L K}$ frequency and $V_{D D}$ range (see Table 19: Limitations depending on the operating power supply range).
- When the regulator is ON, the voltage scaling and over-drive mode are adjusted to $\mathrm{f}_{\text {HCLK }}$ frequency as follows:
- \quad Scale 3 for $f_{\text {HCLK }} \leq 144 \mathrm{MHz}$
- \quad Scale 2 for $144 \mathrm{MHz}<\mathrm{f}_{\text {HCLK }} \leq 168 \mathrm{MHz}$
- \quad Scale 1 for $168 \mathrm{MHz}<\mathrm{f}_{\text {HCLK }} \leq 216 \mathrm{MHz}$. The over-drive is only ON at 216 MHz .
- When the regulator is OFF, the V12 is provided externally as described in Table 18: General operating conditions:
- \quad The system clock is HCLK, $\mathrm{f}_{\mathrm{PCLK} 1}=\mathrm{f}_{\mathrm{HCLK}} / 4$, and $\mathrm{f}_{\mathrm{PCLK} 2}=\mathrm{f}_{\mathrm{HCLK}} / 2$.
- External clock frequency is 25 MHz and PLL is ON when $\mathrm{f}_{\text {HCLK }}$ is higher than 25 MHz .
- The typical current consumption values are obtained for $1.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$ voltage range and for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.
- The maximum values are obtained for $1.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$ voltage range and a maximum ambient temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ unless otherwise specified.
- For the voltage range $1.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$, the maximum frequency is 180 MHz .

Table 25. Typical and maximum current consumption in Run mode, code with data processing running from ITCM RAM, regulator ON

Symbol	Parameter	Conditions	$\mathrm{f}_{\mathrm{HCLK}}(\mathrm{MHz})$	Typ	Max ${ }^{(1)}$			Unit
					$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=105^{\circ} \mathrm{C}$	
I_{DD}	Supply current in RUN mode	All peripherals enabled ${ }^{(2)(3)}$	216	193	$221{ }^{(4)}$	$258{ }^{(4)}$	-	mA
			200	179	207	244	279	
			180	159	$176{ }^{(4)}$	$210^{(4)}$	$238{ }^{(4)}$	
			168	142	156	187	211	
			144	122	135	167	190	
			60	49	55	81	103	
			25	23	28	54	76	
		All peripherals disabled ${ }^{(3)}$	216	95	$107{ }^{(4)}$	$153{ }^{(4)}$	-	
			200	88	100	146	180	
			180	78	$88^{(4)}$	$122^{(4)}$	$147{ }^{(4)}$	
			168	70	78	109	133	
			144	60	68	99	123	
			60	24	29	55	76	
			25	12	16	42	63	

[^1]2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC for the analog part.
4. Guaranteed by test in production.

Table 26. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (Single bank mode, ART ON except prefetch / L1-cache ON) or SRAM on AXI (L1-cache ON), regulator ON

Symbol	Parameter	Conditions	$\mathrm{f}_{\mathrm{HCLK}}(\mathrm{MHz})$	Typ	Max ${ }^{(1)}$			Unit
					$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=10{ }^{\circ} \mathrm{C}$	
I_{DD}	Supply current in RUN mode	All peripherals enabled ${ }^{(2)(3)}$	216	190	219	255	-	mA
			200	177	205	241	268	
			180	157	173	208	228	
			168	139	153	185	204	
			144	107	117	144	161	
			60	48	54	81	98	
			25	23	28	54	71	
			216	92	104	150	-	
			200	86	97	143	170	
			180	76	85	119	140	
		All peripherals disabled ${ }^{(3)}$	168	67	75	107	126	
			144	52	58	84	101	
			60	23	28	54	71	
			25	11	15	42	56	

1. Guaranteed by characterization results.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC for the analog part.

Table 27. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (Dual bank mode, ART ON except prefetch / L1-cache ON), regulator ON

Symbol	Parameter	Conditions	$\mathrm{f}_{\mathrm{HCLK}}(\mathrm{MHz})$	Typ	Max ${ }^{(1)}$			Unit
					$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=105^{\circ} \mathrm{C}$	
I_{DD}	Supply current in RUN mode	All peripherals enabled ${ }^{(2)(3)}$	216	190	219	255	-	mA
			200	177	204	242	268	
			180	157	173	208	228	
			168	139	153	185	204	
			144	107	117	144	161	
			60	48	54	81	98	
			25	23	28	54	71	
		All peripherals disabled ${ }^{(3)}$	216	92	104	150	-	
			200	86	97	143	170	
			180	76	85	119	140	
			168	67	75	107	126	
			144	52	58	84	101	
			60	23	28	54	71	
			25	11	15	42	59	

1. Guaranteed by characterization results.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC for the analog part.

Table 28. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (Single bank mode) or SRAM on AXI (L1-cache disabled),
regulator ON

Symbol	Parameter	Conditions	$\mathrm{f}_{\mathrm{HCLK}}(\mathrm{MHz})$	Typ	Max ${ }^{(1)}$			Unit
					TA $=25^{\circ} \mathrm{C}$	TA $=85{ }^{\circ} \mathrm{C}$	TA $=10{ }^{\circ} \mathrm{C}$	
$I_{\text {DD }}$	Supply current in RUN mode	All peripherals enabled ${ }^{(2)(3)}$	216	190	209	255	-	mA
			200	177	194	241	268	
			180	160	175	211	232	
			168	144	156	189	209	
			144	115	125	152	170	
			60	56	62	89	107	
			25	27	32	59	79	
		All peripherals disabled ${ }^{(3)}$	216	92	103	150	-	
			200	86	96	243	171	
			180	79	87	123	144	
			168	71	79	111	131	
			144	60	65	92	110	
			60	32	36	63	80	
			25	16	20	46	64	

1. Guaranteed by characterization results, unless otherwise specified.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC for the analog part.

Table 29. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (Dual bank mode), regulator ON

Symbol	Parameter	Conditions	$\mathrm{f}_{\mathrm{HCLK}}(\mathrm{MHz})$	Typ	Max ${ }^{(1)}$			Unit
					TA $=25^{\circ} \mathrm{C}$	TA $=85{ }^{\circ} \mathrm{C}$	TA $=105^{\circ} \mathrm{C}$	
$I_{\text {DD }}$	Supply current in RUN mode	All peripherals enabled ${ }^{(2)(3)}$	216	176	194	240	-	mA
			200	164	181	227	255	
			180	149	163	198	220	
			168	133	145	178	198	
			144	106	116	143	161	
			60	54	60	87	105	
			25	27	31	58	76	
		All peripherals disabled ${ }^{(3)}$	216	77	88	135	-	
			200	72	82	129	157	
			180	67	75	110	131	
			168	60	67	99	120	
			144	50	56	83	101	
			60	29	34	60	78	
			25	15	19	45	63	

1. Guaranteed by characterization results, unless otherwise specified.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC for the analog part.

Table 30. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (Single bank mode) on ITCM interface (ART disabled), regulator ON

Symbol	Parameter	Conditions	$\mathrm{f}_{\mathrm{HCLK}}(\mathrm{MHz})$	Typ	Max ${ }^{(1)}$			Unit
					$\mathrm{TA}=25^{\circ} \mathrm{C}$	$\mathrm{TA}=85{ }^{\circ} \mathrm{C}$	TA $=10{ }^{\circ} \mathrm{C}$	
$I_{\text {D }}$	Supply current in RUN mode	All peripherals enabled ${ }^{(2)(3)}$	216	215	242	281	-	mA
			200	200	218	265	293	
			180	185	200	237	258	
			168	166	179	213	233	
			144	134	144	172	190	
			60	61	68	95	112	
			25	29	34	61	78	
		All peripherals disabled ${ }^{(3)}$	216	118	129	177	-	
			200	110	120	168	196	
			180	104	113	149	170	
			168	94	102	135	155	
			144	79	85	113	130	
			60	37	42	69	86	
			25	18	22	48	66	

1. Guaranteed by characterization results, unless otherwise specified.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC for the analog part.

Table 31. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (Dual bank mode) on ITCM interface (ART disabled),
regulator ON

Symbol	Parameter	Conditions	$\mathrm{f}_{\mathrm{HCLK}}$ (MHz)	Typ	Max ${ }^{(1)}$			Unit
					TA $=25^{\circ} \mathrm{C}$	TA $=85{ }^{\circ} \mathrm{C}$	TA $=10{ }^{\circ} \mathrm{C}$	
$I_{\text {D }}$	Supply current in RUN mode	All peripherals enabled ${ }^{(2)(3)}$	216	191	218	255	-	mA
			200	178	195	241	269	
			180	164	179	214	236	
			168	147	160	192	212	
			144	121	130	157	175	
			60	60	66	93	111	
			25	28	33	59	77	
		All peripherals disabled ${ }^{(3)}$	216	93	104	150	-	
			200	87	97	144	171	
			180	83	92	126	148	
			168	75	82	114	134	
			144	65	71	97	115	
			60	35	40	66	84	
			25	16	20	47	64	

1. Guaranteed by characterization results, unless otherwise specified.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC for the analog part.

Table 32. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (Single bank mode, ART ON except prefetch / L1-cache ON) or SRAM on AXI (L1-cache ON), regulator OFF

Symbol	Parameter	Conditions	$\mathrm{f}_{\mathrm{HCLK}}$ (MHz)	Typ		Max ${ }^{(1)}$						Unit
						$\mathrm{TA}=25{ }^{\circ} \mathrm{C}$		$\mathrm{TA}=85{ }^{\circ} \mathrm{C}$		$\mathrm{TA}=10{ }^{\circ} \mathrm{C}$		
				IDD12	IDD	IDD12	IDD	IDD12	IDD	IDD12	IDD	
$\begin{array}{\|l} \mid \text { IDD12/ } \\ \text { IDD } \end{array}$	Supply current in RUN mode from V12 and VDD supply	All Peripherals Enabled ${ }^{(2)(3)}$	180	152	1	167	2	200	2	220	2	mA
			168	136	1	148	2	179	2	198	2	
			144	105	1	115	2	141	2	158	2	
			60	47	1	53	2	79	2	96	2	
			25	22	1	27	2	53	2	70	2	
		All Peripherals Disabled ${ }^{(3)}$	180	74	1	83	2	116	2	136	2	
			168	65	1	73	2	104	2	123	2	
			144	50	1	57	2	83	2	100	2	
			60	22	1	27	2	53	2	70	2	
			25	10	1	14	2	41	2	58	2	

1. Guaranteed by characterization results.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC for the analog part.

Table 33. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (Dual bank mode, ART ON except prefetch / L1-cache ON) or SRAM on AXI (L1-cache ON), regulator OFF

Symbol	Parameter	Conditions	$\mathrm{f}_{\mathrm{HCLK}}$ (MHz)	Typ		Max ${ }^{(1)}$						Unit
						$\mathrm{TA}=25^{\circ} \mathrm{C}$		$\mathrm{TA}=85{ }^{\circ} \mathrm{C}$		$\mathrm{TA}=10{ }^{\circ} \mathrm{C}$		
				IDD12	IDD	IDD12	IDD	IDD12	IDD	IDD12	IDD	
$\begin{array}{\|l} \text { IDD12/ } \\ \text { IDD } \end{array}$	Supply current in RUN mode from V12 and VDD supply	All Peripherals Enabled ${ }^{(2)(3)}$	180	152	1	167	2	200	2	220	2	mA
			168	136	1	148	2	179	2	198	2	
			144	105	1	115	2	141	2	158	2	
			60	47	1	53	2	79	2	96	2	
			25	22	1	27	2	53	2	70	2	
		All Peripherals Disabled ${ }^{(3)}$	180	74	1	82	2	114	2	137	2	
			168	65	1	73	2	104	2	123	2	
			144	50	1	57	2	83	2	100	2	
			60	22	1	27	2	53	2	70	2	
			25	10	1	14	2	41	2	58	2	

1. Guaranteed by characterization results.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC for the analog part.

Table 34. Typical and maximum current consumption in Sleep mode, regulator ON

Symbol	Parameter	Conditions	$\mathrm{f}_{\mathrm{HCLK}}(\mathrm{MHz})$	Typ	Max ${ }^{(1)}$			Unit
					$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=105^{\circ} \mathrm{C}$	
$I_{\text {D }}$	Supply current in Sleep mode	All peripherals enabled ${ }^{(2)}$	216	128	$144{ }^{(3)}$	$190^{(3)}$	-	mA
			200	119	134	180	214	
			180	105	$118^{(3)}$	$153{ }^{(3)}$	$178{ }^{(3)}$	
			168	93	105	136	156	
			144	72	80	107	124	
			60	33	39	65	82	
			25	17	21	47	65	
		All peripherals disabled	216	18	$25^{(3)}$	$71^{(3)}$	-	
			200	17	24	70	112	
			180	14	$20^{(3)}$	$54^{(3)}$	$75^{(3)}$	
			168	13	18	49	69	
			144	10	14	40	58	
			60	6	10	36	53	
			25	4	8	34	51	

1. Guaranteed by characterization results, unless otherwise specified.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.
3. Guaranteed by test in production.

Table 35. Typical and maximum current consumption in Sleep mode, regulator OFF

Symbol	Parameter	Conditions	$\mathrm{f}_{\mathrm{HCLK}}$ (MHz)	Typ		Max ${ }^{(1)}$						Unit
						$\mathrm{TA}=25^{\circ} \mathrm{C}$		TA= $85{ }^{\circ} \mathrm{C}$		$\mathrm{TA}=105^{\circ} \mathrm{C}$		
				IDD12	IDD	IDD12	IDD	IDD12	IDD	IDD12	IDD	
$\begin{array}{\|l} \mid \text { IDD12/ } \\ \text { IDD } \end{array}$	Supply current in RUN mode from V12 and $V_{D D}$ supply	All Peripherals Enabled ${ }^{(2)}$	180	102	1	114	2	148	2	168	2	mA
			168	91	1	101	2	132	2	152	2	
			144	71	1	78	2	105	2	122	2	
			60	32	1	37	2	64	2	81	2	
			25	16	1	20	2	46	2	64	2	
		All Peripherals Disabled	180	13	1	18	2	53	2	73	2	
			168	12	1	16	2	47	2	67	2	
			144	9	1	13	2	39	2	56	2	
			60	5	1	9	2	35	2	52	2	
			25	3	1	7	2	33	2	50	2	

1. Guaranteed by characterization results, unless otherwise specified.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

Table 36. Typical and maximum current consumptions in Stop mode

Symbol	Parameter	Conditions	Typ	Max ${ }^{(1)}$			Unit
				$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$			
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}= \\ & 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{r} \mathrm{T}_{\mathrm{A}}= \\ 25^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} \mathrm{T}_{\mathrm{A}}= \\ 85^{\circ} \mathrm{C} \end{array}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 105^{\circ} \mathrm{C} \end{gathered}$	
IDD_STOP_NM (normal mode)	Supply current in Stop mode, main regulator in Run mode	Flash memory in Stop mode, all oscillators OFF, no IWDG	0.55	3	18	27	mA
		Flash memory in Deep power down mode, all oscillators OFF	0.5	3	18	27	
	Supply current in Stop mode, main regulator in Low-power mode	Flash memory in Stop mode, all oscillators OFF, no IWDG	0.42	2.5	15	24	
		Flash memory in Deep power down mode, all oscillators OFF, no IWDG	0.37	2.5	15	24	
IDD_STOP_UDM (under-drive mode)	Supply current in Stop mode, main regulator in Low voltage and underdrive modes	Regulator in Run mode, Flash memory in Deep power down mode, all oscillators OFF, no IWDG	0.18	1.2	6	10	
		Regulator in Low-power mode, Flash memory in Deep power down mode, all oscillators OFF, no IWDG	0.13	1.1	6	10	

[^2]Table 37. Typical and maximum current consumptions in Standby mode

Symbol	Parameter	Conditions	Typ ${ }^{(1)}$			Max ${ }^{(2)}$			Unit
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}= \\ & 85^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 105^{\circ} \mathrm{C} \end{gathered}$	
			$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}= \\ & 1.7 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{v}_{\mathrm{DD}}= \\ & 2.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}= \\ & 3.3 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$			
$\mathrm{I}_{\text {DD_STBY }}$	Supply current in Standby mode	Backup SRAM OFF, RTC and LSE OFF	1.1	1.9	2.4	$5^{(3)}$	$18^{(3)}$	$38^{(3)}$	$\mu \mathrm{A}$
		Backup SRAM ON, RTC and LSE OFF	1.9	2.7	3.2	$6^{(3)}$	$23^{(3)}$	$48^{(3)}$	
		Backup SRAM OFF, RTC ON and LSE in low drive mode	1.7	2.7	3.5	7	26	55	
		Backup SRAM OFF, RTC ON and LSE in medium low drive mode	1.7	2.7	3.5	7	26	56	
		Backup SRAM OFF, RTC ON and LSE in medium high drive mode	1.8	2.8	3.6	8	28	57	
		Backup SRAM OFF, RTC ON and LSE in high drive mode	1.9	2.9	3.7	8	28	59	
		Backup SRAM ON, RTC ON and LSE in low drive mode	2.4	3.4	4.3	8	31	65	
		Backup SRAM ON, RTC ON and LSE in Medium low drive mode	2.4	3.5	4.3	8	31	65	
		Backup SRAM ON, RTC ON and LSE in Medium high drive mode	2.6	3.7	4.5	8	33	68	
		Backup SRAM ON, RTC ON and LSE in High drive mode	2.6	3.7	4.5	9	33	68	

[^3]Table 38. Typical and maximum current consumptions in $\mathrm{V}_{\mathrm{BAT}}$ mode

Symbol	Parameter	Conditions ${ }^{(1)}$	$\begin{gathered} \text { Typ } \\ \hline \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$			Max ${ }^{(2)}$		Unit
						$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=105^{\circ} \mathrm{C}$	
			$\begin{gathered} \mathrm{V}_{\mathrm{BAT}}= \\ 1.7 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{BAT}}= \\ & 2.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{BAT}}= \\ & 3.3 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{BAT}}=3.6 \mathrm{~V}$		
Idd_VBAT	Supply current in $V_{\text {BAT }}$ mode	Backup SRAM OFF, RTC and LSE OFF	0.03	0.04	0.04	0.2	0.4	$\mu \mathrm{A}$
		Backup SRAM ON, RTC and LSE OFF	0.77	0.78	0.83	3.2	7.4	
		Backup SRAM OFF, RTC ON and LSE in low drive mode	0.62	0.8	1.13	4.4	10.2	
		Backup SRAM OFF, RTC ON and LSE in medium low drive mode	0.65	0.83	1.17	4.6	10.6	
		Backup SRAM OFF, RTC ON and LSE in medium high drive mode	0.75	0.94	1.28	5.0	11.4	
		Backup SRAM OFF, RTC ON and LSE in high drive mode	0.9	1.08	1.43	5.5	12.8	
		Backup SRAM ON, RTC ON and LSE in low drive mode	1.35	1.54	1.91	7.3	17.2	
		Backup SRAM ON, RTC ON and LSE in Medium low drive mode	1.38	1.57	1.93	7.9	18.4	
		Backup SRAM ON, RTC ON and LSE in Medium high drive mode	1.53	1.73	2.11	8.0	18.7	
		Backup SRAM ON, RTC ON and LSE in High drive mode	1.67	1.87	2.26	9.0	21.0	

1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a C_{L} of 6 pF for typical values.
2. Guaranteed by characterization results.

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate a current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 66: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

An additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid a current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption
In addition to the internal peripheral current consumption (see Table 40: Peripheral current consumption), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$
I_{S W}=V_{D D} \times f_{S W} \times C
$$

where
$I_{\text {SW }}$ is the current sunk by a switching I/O to charge/discharge the capacitive load
$V_{D D}$ is the MCU supply voltage
$f_{S W}$ is the I/O switching frequency
C is the total capacitance seen by the I/O pin: $\mathrm{C}=\mathrm{C}_{\mathrm{INT}}{ }^{+} \mathrm{C}_{\mathrm{EXT}}$
The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

Table 39. Switching output I/O current consumption ${ }^{(1)}$

Symbol	Parameter	Conditions	I/O toggling frequency (fsw) MHz	$\begin{gathered} \text { Typ } \\ \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Typ } \\ \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \end{gathered}$	Unit
$\mathrm{I}_{\text {DDIO }}$	I/O switching Current	$\begin{gathered} C_{E X T}=0 p F \\ C=C_{I N T}+C_{S}+C_{E X T} \end{gathered}$	2	0.1	0.1	mA
			8	0.4	0.2	
			25	1.1	0.7	
			50	2.4	1.3	
			60	3.1	1.6	
			84	4.3	2.4	
			90	4.9	2.6	
			100	5.4	2.8	
		$\begin{gathered} \mathrm{C}_{\mathrm{EXT}}=10 \mathrm{pF} \\ \mathrm{C}=\mathrm{C}_{\mathrm{INT}}+\mathrm{C}_{\mathrm{S}}+\mathrm{C}_{\mathrm{EXT}} \end{gathered}$	2	0.2	0.1	
			8	0.6	0.3	
			25	1.8	1.1	
			50	3.1	2.3	
			60	4.6	3.4	
			84	9.7	3.6	
			90	10.12	5.2	
			100	14.92	5.4	

Table 39. Switching output I/O current consumption ${ }^{(1)}$ (continued)

Symbol	Parameter	Conditions	I/O toggling frequency (fsw) MHz	$\begin{gathered} \text { Typ } \\ \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Typ } \\ \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \end{gathered}$	Unit
$I_{\text {DDIo }}$	I/O switching Current	$\begin{gathered} C_{E X T}=22 \mathrm{pF} \\ \mathrm{C}=\mathrm{C}_{I N T}+\mathrm{C}_{\mathrm{S}}+\mathrm{C}_{\mathrm{EXT}} \end{gathered}$	2	0.3	0.1	mA
			8	1.0	0.5	
			25	3.5	1.6	
			50	5.9	4.2	
			60	10.0	4.4	
			84	19.12	5.8	
			90	19.6	-	
		$\begin{gathered} \mathrm{C}_{\mathrm{EXT}}=33 \mathrm{pF} \\ \mathrm{C}=\mathrm{C}_{\mathrm{INT}}+\mathrm{C}_{S}+\mathrm{C}_{\mathrm{EXT}} \end{gathered}$	2	0.3	0.2	
			8	1.3	0.7	
			25	3.5	2.3	
			50	10.26	5.19	
			60	16.53	-	

1. $\mathrm{CINT}+\mathrm{C}_{\mathrm{S}}$, PCB board capacitance including the pad pin is estimated to 15 pF .

On-chip peripheral current consumption

The MCU is placed under the following conditions:

- At startup, all I/O pins are in analog input configuration.
- All peripherals are disabled unless otherwise mentioned.
- I/O compensation cell enabled.
- The ART/L1-cache is ON.
- Scale 1 mode selected, internal digital voltage $\mathrm{V} 12=1.32 \mathrm{~V}$.
- HCLK is the system clock. $\mathrm{f}_{\mathrm{PCLK} 1}=\mathrm{f}_{\mathrm{HCLK}} / 4$, and $\mathrm{f}_{\text {PCLK } 2}=\mathrm{f}_{\mathrm{HCLK}} / 2$.

The given value is calculated by measuring the difference of current consumption

- with all peripherals clocked off
- with only one peripheral clocked on
- $\quad \mathrm{f}_{\text {HCLK }}=216 \mathrm{MHz}$ (Scale $1+$ over-drive ON), $\mathrm{f}_{\text {HCLK }}=168 \mathrm{MHz}$ (Scale 2), $\mathrm{f}_{\mathrm{HCLK}}=144 \mathrm{MHz}$ (Scale 3)
- Ambient operating temperature is $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$.

Table 40. Peripheral current consumption

Peripheral		$\mathrm{I}_{\mathrm{DD}}(\mathrm{Typ})^{(1)}$			Unit
		Scale 1	Scale 2	Scale 3	
$\begin{gathered} \text { AHB1 } \\ \text { (up to } \\ 216 \mathrm{MHz} \text {) } \end{gathered}$	GPIOA	2.9	2.8	2.2	$\mu \mathrm{A} / \mathrm{MHz}$
	GPIOB	3.0	2.9	2.2	
	GPIOC	2.9	2.8	2.2	
	GPIOD	3.1	3.0	2.3	
	GPIOE	3.1	3.0	2.3	
	GPIOF	2.9	2.8	2.2	
	GPIOG	2.9	2.8	2.2	
	GPIOH	3.1	3.1	2.4	
	GPIOI	3.0	2.9	2.2	
	GPIOJ	2.9	2.9	2.2	
	GPIOK	2.8	2.8	2.4	
	CRC	1.0	0.9	0.8	
	BKPSRAM	0.9	0.9	0.7	
	DMA1	$3.17 \times \mathrm{N}+11.63$	$3.08 \times \mathrm{N}+11.39$	$2.6 \times \mathrm{N}+9.64$	
	DMA2	$3.33 \times \mathrm{N}+12.84$	$3.27 \times \mathrm{N}+11.84$	$2.75 \times \mathrm{N}+10.10$	
	DMA2D	77.7	76.3	63.5	
	ETH_MAC ETH_MAC_TX ETH_MAC_RX ETH_MAC_PTP	40.1	39.5	32.8	
	OTG_HS	58.5	57.4	48.1	
	OTG_HS+ULPI	58.5	57.4	48.1	
$\begin{gathered} \text { AHB2 } \\ \text { (up to } \\ 216 \mathrm{MHz} \text {) } \end{gathered}$	DCMI	2.9	2.8	2.1	$\mu \mathrm{A} / \mathrm{MHz}$
	JPEG	74.8	73.4	61.9	
	RNG	6.7	6.7	5.4	
	USB_OTG_FS	32.4	31.9	26.7	
$\begin{gathered} \text { AHB3 } \\ \text { (up to } \\ 216 \mathrm{MHz} \text {) } \end{gathered}$	FMC	18.6	18.2	15.1	$\mu \mathrm{A} / \mathrm{MHz}$
	QSPI	22.3	21.8	18.1	
Bus matrix ${ }^{(2)}$		3.94	3.25	2.12	$\mu \mathrm{A} / \mathrm{MHz}$

Table 40. Peripheral current consumption (continued)

Peripheral		$\mathrm{I}_{\mathrm{DD}}(\mathrm{Typ})^{(1)}$			Unit
		Scale 1	Scale 2	Scale 3	
APB1 (up to 54 MHz)	TIM2	19.1	18.7	14.7	$\mu \mathrm{A} / \mathrm{MHz}$
	TIM3	14.6	14.0	10.6	
	TIM4	15.4	14.7	11.4	
	TIM5	18.1	17.6	13.6	
	TIM6	3.1	2.7	1.4	
	TIM7	3.0	2.7	1.1	
	TIM12	8.1	7.8	5.6	
	TIM13	5.4	5.1	3.1	
	TIM14	5.6	5.3	3.3	
	LPTIM1	9.8	9.6	6.9	
	WWDG	1.9	1.6	1,4	
	SPI2/I2S2 ${ }^{(3)}$	3.0	2.9	1.4	
	SPI3/I2S3 ${ }^{(3)}$	3.0	3.3	1.4	
	SPDIFRX	2.4	2.0	1.7	
	USART2	12.6	12.7	9.2	
	USART3	12.4	12.4	9.4	
	UART4	10.7	10.9	8.1	
	UART5	10.7	10.7	8.1	
	I2C1	8.9	8.9	6.4	
	I2C2	8.3	8.2	6.1	
	I2C3	8.1	8.2	6.1	
	I2C4	8.0	8.2	5.8	
	CAN1	6.3	6.4	4.4	
	CAN2	5.7	5.8	3.9	
	CAN3	7.4	7.1	5.6	
	HDMI-CEC	2.2	1.8	1.4	
	PWR	1.3	0.9	0.8	
	DAC ${ }^{(4)}$	4.8	4.2	3.6	
	UART7	10.4	10.4	7.8	
	UART8	11.1	11.3	8.3	

Table 40. Peripheral current consumption (continued)

Peripheral		$\mathrm{I}_{\mathrm{DD}}(\mathrm{Typ})^{(1)}$			Unit
		Scale 1	Scale 2	Scale 3	
$\begin{gathered} \text { APB2 } \\ \text { (up to } \\ 108 \mathrm{MHz} \text {) } \end{gathered}$	TIM1	24.1	23.8	19.6	$\mu \mathrm{A} / \mathrm{MHz}$
	TIM8	24.5	24.2	20.0	
	USART1	17.7	17.4	14.3	
	USART6	11.9	11.8	9.4	
	ADC1 ${ }^{(5)}$	4.5	4.7	3.5	
	ADC2 ${ }^{(5)}$	4.5	4.7	3.3	
	ADC3 ${ }^{(5)}$	4.5	4.6	3.3	
	SDMMC1	8.4	8.3	6.9	
	SDMMC2	8.2	8.2	6.4	
	SPI1/I2S1 ${ }^{(3)}$	3.9	3.6	3.1	
	SPI4	3.9	3.6	3.1	
	SYSCFG	2.5	2.2	1.9	
	TIM9	8.0	8.0	6.2	
	TIM10	5.0	5.1	3.7	
	TIM11	6.9	6.9	5.3	
	SPI5	2.7	2.8	1.8	
	SPI6	3.1	3.2	2.2	
	SAI1	3.2	3.3	2.2	
	DFSDM1	10.9	10.7	9.0	
	SAI2	3.9	3.9	2.8	
	MDIO	7.1	7.0	5.8	
	LTDC	51.2	50.3	41.8	
	DSI	8.5	8.4	8.1	

1. When the I / O compensation cell is $\mathrm{ON}, \mathrm{I}_{\mathrm{DD}}$ typical value increases by 0.22 mA .
2. The BusMatrix is automatically active when at least one master is $O N$.
3. To enable an I2S peripheral, first set the I2SMOD bit and then the I2SE bit in the SPI_I2SCFGR register.
4. When the DAC is ON and EN $1 / 2$ bits are set in DAC_CR register, add an additional power consumption of 0.75 mA per DAC channel for the analog part.
5. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC for the analog part.

5.3.8 Wakeup time from low-power modes

The wakeup times given in Table 41 are measured starting from the wakeup event trigger up to the first instruction executed by the CPU:

- For Stop or Sleep modes: the wakeup event is WFE.
- WKUP (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.

All timings are derived from tests performed under ambient temperature and $V_{D D}=3.3 \mathrm{~V}$.
Table 41. Low-power mode wakeup timings

Symbol	Parameter	Conditions	Typ ${ }^{(1)}$	Max ${ }^{(1)}$	Unit
$t_{\text {WUSLEEP }}{ }^{(2)}$	Wakeup from Sleep	-	13	13	CPU clock cycles
$\mathrm{t}_{\text {WUSTOP }}{ }^{(2)}$	Wakeup from Stop mode with MR/LP regulator in normal mode	Main regulator is ON	14	14.9	$\mu \mathrm{s}$
		Main regulator is ON and Flash memory in Deep power down mode	104.1	107.6	
		Low power regulator is ON	21.4	24.2	
		Low power regulator is ON and Flash memory in Deep power down mode	111.5	116.5	
$\mathrm{t}_{\text {WUSTOP }}{ }^{(2)}$	Wakeup from Stop mode with MR/LP regulator in Under-drive mode	Main regulator in under-drive mode (Flash memory in Deep power-down mode)	107.4	113.2	
		Low power regulator in under-drive mode (Flash memory in Deep power-down mode)	112.7	120	
tWUSTDBY (2)	Wakeup from Standby mode	Exit Standby mode on rising edge	308	313	
		Exit Standby mode on falling edge	307	313	

1. Guaranteed by characterization results.
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first

5.3.9 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the Table 66: I/O static characteristics. However, the recommended clock input waveform is shown in Figure 29.

The characteristics given in Table 42 result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 18.

Table 42. High-speed external user clock characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{f}_{\text {HSE_ext }}$	External user clock source frequency ${ }^{(1)}$	-	1	-	50	MHz
$\mathrm{V}_{\text {HSEH }}$	OSC_IN input pin high level voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$V_{D D}$	V
$\mathrm{V}_{\text {HSEL }}$	OSC_IN input pin low level voltage		V_{SS}	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{w}(\mathrm{HSE})} \\ & \mathrm{t}_{\mathrm{w}(\mathrm{HSE})} \end{aligned}$	OSC_IN high or low time ${ }^{(1)}$		5	-	-	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{r}(\mathrm{HSE})} \\ & \mathrm{t}_{\mathrm{f}(\mathrm{HSE})} \end{aligned}$	OSC_IN rise or fall time ${ }^{(1)}$		-	-	10	
$\mathrm{C}_{\text {in(HSE) }}$	OSC_IN input capacitance ${ }^{(1)}$	-	-	5	-	pF
$\mathrm{DuCy}_{(\text {(HSE) }}$	Duty cycle	-	45	-	55	\%
I_{L}	OSC_IN Input leakage current	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}}$	-	-	± 1	$\mu \mathrm{A}$

1. Guaranteed by design.

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the Table 66: I/O static characteristics. However, the recommended clock input waveform is shown in Figure 30.

The characteristics given in Table 43 result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 18.

Table 43. Low-speed external user clock characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{f}_{\text {LSE_ext }}$	User External clock source frequency ${ }^{(1)}$	-	-	32.768	1000	kHz
$\mathrm{V}_{\text {LSEH }}$	OSC32_IN input pin high level voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$V_{D D}$	V
$V_{\text {LSEL }}$	OSC32_IN input pin low level voltage		$\mathrm{V}_{\text {SS }}$	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	
$\begin{aligned} & \left.\mathrm{t}_{\mathrm{w}(\mathrm{LSE}}\right) \\ & \mathrm{t}_{\mathrm{f}(\mathrm{LSE})} \end{aligned}$	OSC32_IN high or low time ${ }^{(1)}$		450	-	-	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{r}(\mathrm{LSE})} \\ & \mathrm{t}_{\mathrm{f}(\mathrm{LSE})} \end{aligned}$	OSC32_IN rise or fall time ${ }^{(1)}$		-	-	50	
$\mathrm{C}_{\text {in(LSE) }}$	OSC32_IN input capacitance ${ }^{(1)}$	-	-	5	-	pF
DuCy ${ }_{(\text {LSE) }}$	Duty cycle	-	30	-	70	\%
IL	OSC32_IN Input leakage current	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}}$	-	-	± 1	$\mu \mathrm{A}$

1. Guaranteed by design.

Figure 29. High-speed external clock source AC timing diagram

Figure 30. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 44. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Table 44. HSE 4-26 MHz oscillator characteristics ${ }^{(1)}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
fosc_IN	Oscillator frequency	-	4	-	26	MHz
R_{F}	Feedback resistor	-	-	200	-	k Ω
IDD	HSE current consumption	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \\ \mathrm{ESR}=30 \Omega, \\ \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} @ 25 \mathrm{MHz} \end{gathered}$	-	450	-	$\mu \mathrm{A}$
		$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \\ \mathrm{ESR}=30 \Omega, \\ \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} @ 25 \mathrm{MHz} \end{gathered}$	-	530	-	
$\mathrm{ACC}_{\text {HSE }}{ }^{(2)}$	HSE accuracy	-	- 500	-	500	ppm
G_{m} crit_max	Maximum critical crystal gm_{m}	Startup	-	-	1	mA/V
$\mathrm{t}_{\text {SU(HSE }}{ }^{(3)}$	Startup time	$V_{D D}$ is stabilized	-	2	-	ms

1. Guaranteed by design.
2. This parameter depends on the crystal used in the application. The minimum and maximum values must be respected to comply with USB standard specifications.
3. $t_{\text {SU(HSE) }}$ is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is guaranteed by characterization results. It is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For $\mathrm{C}_{\mathrm{L} 1}$ and $\mathrm{C}_{\mathrm{L} 2}$, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 31). $\mathrm{C}_{\mathrm{L} 1}$ and $\mathrm{C}_{\mathrm{L} 2}$ are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of $\mathrm{C}_{\mathrm{L} 1}$ and $\mathrm{C}_{\mathrm{L} 2}$. The PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing $\mathrm{C}_{\mathrm{L} 1}$ and $\mathrm{C}_{\mathrm{L} 2}$.
Note: \quad For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Figure 31. Typical application with an 8 MHz crystal

1. $R_{E X T}$ value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 45. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Table 45. LSE oscillator characteristics ($\left.\mathrm{f}_{\text {LSE }}=32.768 \mathrm{kHz}\right)^{(1)}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
IDD	LSE current consumption	LSEDRV[1:0]=00 Low drive capability	-	250	-	nA
		LSEDRV[1:0]=10 Medium low drive capability	-	300	-	
		LSEDRV[1:0]=01 Medium high drive capability	-	370	-	
		LSEDRV[1:0]=11 High drive capability	-	480	-	

Table 45. LSE oscillator characteristics $\left(\mathbf{f}_{\text {LSE }}=32.768 \mathrm{kHz}\right){ }^{(1)}$ (continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
G_{m} _crit_max	Maximum critical crystal gm_{m}	LSEDRV[1:0]=00 Low drive capability	-	-	0.48	$\mu \mathrm{A} / \mathrm{V}$
		LSEDRV[1:0]=10 Medium low drive capability	-	-	0.75	
		LSEDRV[1:0]=01 Medium high drive capability	-	-	1.7	
		LSEDRV[1:0]=11 High drive capability	-	-	2.7	
$\mathrm{t}_{\text {Su }}{ }^{(2)}$	start-up time	$V_{D D}$ is stabilized	-	2	-	s

1. Guaranteed by design.
2. Guaranteed by characterization results. t_{SU} is the start-up time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Note:
For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Figure 32. Typical application with a 32.768 kHz crystal

Resonator with
integrated capacitors

5.3.10 Internal clock source characteristics

The parameters given in Table 46 and Table 47 are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in Table 18.

High-speed internal (HSI) RC oscillator
Table 46. HSI oscillator characteristics ${ }^{(1)}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{f}_{\mathrm{HSI}}$	Frequency	-	-	16	-	MHz
$\mathrm{ACC}_{\mathrm{HSI}}$	Accuracy of the HSI oscillator	HSI user trimming step ${ }^{(2)}$	-	-	-	1
		$\mathrm{~T}_{\mathrm{A}}=-40$ to $105^{\circ} \mathrm{C}^{(3)}$	-8	-	4.5	$\%$
		-4	-	4	$\%$	
	$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(4)}$	-1	-	1	$\%$	
$\mathrm{t}_{\text {su(HSI) }}{ }^{(2)}$	HSI oscillator startup time	-	-	2.2	4	$\mu \mathrm{~s}$
$\mathrm{I}_{\mathrm{DD}(\mathrm{HSI})}{ }^{(2)}$	HSI oscillator power consumption	-	-	60	80	$\mu \mathrm{~A}$

1. $V_{D D}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $105^{\circ} \mathrm{C}$ unless otherwise specified.
2. Guaranteed by design.
3. Guaranteed by characterization results.
4. Factory calibrated, parts not soldered.

Figure 33. ACCHSI versus temperature

1. Guaranteed by characterization results.

Low-speed internal (LSI) RC oscillator

Table 47. LSI oscillator characteristics ${ }^{(1)}$

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{f}_{\mathrm{LSI}}{ }^{(2)}$	Frequency	17	32	47	kHz
$\mathrm{t}_{\text {su(LSI) }}{ }^{(3)}$	LSI oscillator startup time	-	15	40	$\mu \mathrm{~s}$
$\mathrm{I}_{\mathrm{DD}(\mathrm{LSI})}{ }^{(3)}$	LSI oscillator power consumption	-	0.4	0.6	$\mu \mathrm{~A}$

1. $V_{D D}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $105^{\circ} \mathrm{C}$ unless otherwise specified.
2. Guaranteed by characterization results.
3. Guaranteed by design.

Figure 34. LSI deviation versus temperature

5.3.11 PLL characteristics

The parameters given in Table 48 and Table 49 are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in Table 18.

Table 48. Main PLL characteristics

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
$\mathrm{f}_{\text {PLL_IN }}$	PLL input clock ${ }^{(1)}$	-		$0.95{ }^{(2)}$	1	2.10	MHz
fPLL_OUT	PLL multiplier output clock	-		24	-	216	
fPLL48_OUT	48 MHz PLL multiplier output clock	-		-	48	75	
fvco_out	PLL VCO output	-		100	-	432	
t Lock	PLL lock time	VCO freq $=192 \mathrm{MHz}$		75	-	200	$\mu \mathrm{s}$
		VCO freq $=432 \mathrm{MHz}$		100	-	300	
Jitter ${ }^{(3)}$		System clock 216 MHz	RMS	-	25	-	ps
	Cycle-to-cycle jitter		peak to peak	-	± 150	-	
			RMS	-	15	-	
	Period Jitter		peak to peak	-	± 200	-	
	Main clock output (MCO) for RMII Ethernet	Cycle to cycle at 50 MHz on 1000 samples		-	32	-	
	Main clock output (MCO) for MII Ethernet	Cycle to cycle at 25 MHz on 1000 samples		-	40	-	
	Bit Time CAN jitter	Cycle to cycle at 1 MHz on 1000 samples		-	330	-	
$\mathrm{I}_{\mathrm{DD}(\mathrm{PLL})^{(4)}}$	PLL power consumption on V_{DD}	$\begin{aligned} & \mathrm{VCO} \text { freq }=192 \mathrm{MHz} \\ & \mathrm{VCO} \text { freq }=432 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 0.15 \\ & 0.45 \end{aligned}$	-	$\begin{aligned} & 0.40 \\ & 0.75 \end{aligned}$	mA
$\mathrm{I}_{\mathrm{DDA}(\mathrm{PLL})}{ }^{(4)}$	PLL power consumption on $\mathrm{V}_{\text {DDA }}$	$\begin{aligned} & \mathrm{VCO} \text { freq }=192 \mathrm{MHz} \\ & \mathrm{VCO} \text { freq }=432 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 0.30 \\ & 0.55 \end{aligned}$	-	$\begin{aligned} & 0.40 \\ & 0.85 \end{aligned}$	mA

1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between PLL and PLLI2S.
2. Guaranteed by design.
3. The use of 2 PLLs in parallel could degraded the Jitter up to $+30 \%$.
4. Guaranteed by characterization results.

Table 49. PLLI2S characteristics

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
$\mathrm{f}_{\text {PLLI2S_IN }}$	PLLI2S input clock ${ }^{(1)}$	-		$0.95{ }^{(2)}$	1	2.10	MHz
$\mathrm{f}_{\text {PLLI2SP_OUT }}$	PLLI2S multiplier output clock for SPDIFRX	-		-	-	216	
$\mathrm{f}_{\text {PLLI2SQ_OUT }}$	PLLI2S multiplier output clock for SAI	-		-	-	216	
$\mathrm{f}_{\text {PLLI2SR_OUT }}$	PLLI2S multiplier output clock for I2S	-		-	-	216	
$\mathrm{f}_{\mathrm{VCO}}$ _Out	PLLI2S VCO output	-		100	-	432	
$\mathrm{t}_{\text {LOCK }}$	PLLI2S lock time	VCO freq = 192 MHz		75	-	200	$\mu \mathrm{s}$
		VCO freq $=432 \mathrm{MHz}$		100	-	300	
Jitter ${ }^{(3)}$	Master I2S clock jitter	Cycle to cycle at 12.288 MHz on 48 KHz period, $\mathrm{N}=432, \mathrm{R}=5$	RMS	-	90	-	-
			peak to peak	-	± 280	-	ps
		Average frequency of $\begin{aligned} & 12.288 \mathrm{MHz} \\ & \mathrm{~N}=432, \mathrm{R}=5 \end{aligned}$ on 1000 samples		-	90	-	ps
	WS I2S clock jitter	Cycle to cycle at 48 KHz on 1000 samples		-	400	-	ps
$\mathrm{I}_{\mathrm{DD}(\mathrm{PLLI} 2 \mathrm{~S})}{ }^{(4)}$	PLLI2S power consumption on $V_{D D}$	$\begin{aligned} & \hline \mathrm{VCO} \text { freq }=192 \mathrm{MHz} \\ & \mathrm{VCO} \text { freq }=432 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 0.15 \\ & 0.45 \end{aligned}$	-	$\begin{aligned} & 0.40 \\ & 0.75 \end{aligned}$	mA
$\mathrm{I}_{\mathrm{DDA}(\mathrm{PLLI} 2 \mathrm{~S})}{ }^{(4)}$	PLLI2S power consumption on $V_{\text {DDA }}$	$\begin{aligned} & \mathrm{VCO} \text { freq }=192 \mathrm{MHz} \\ & \mathrm{VCO} \text { freq }=432 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 0.30 \\ & 0.55 \end{aligned}$	-	$\begin{aligned} & 0.40 \\ & 0.85 \end{aligned}$	mA

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.
2. Guaranteed by design.
3. Value given with main PLL running.
4. Guaranteed by characterization results.

Table 50. PLLISAI characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
f PLLSAI_IN $^{\text {(1) }}$	PLLSAI input clock ${ }^{(1)}$	-	$0.95^{(2)}$	1	2.10	
f PLLSAIP_OUT	PLLSAI multiplier output clock for 48 MHz	-	-	48	75	
fPLLSAIQ_OUT	PLLSAI multiplier output clock for SAI	-	-	-	216	MHz
fPLLSAIR_OUT	PLLSAI multiplier output clock for LCD-TFT	-	-	-	216	
f VCO_OUT	PLLSAI VCO output	-	100	-	432	

Table 50. PLLISAI characteristics (continued)

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
$\mathrm{t}_{\text {LOCK }}$	PLLSAI lock time	VCO freq $=192 \mathrm{MHz}$		75	-	200	
		VCO freq $=432 \mathrm{MHz}$		100	-	300	
Jitter ${ }^{(3)}$	Master SAI clock jitter	Cycle to cycle at 12.288 MHz on 48 KHz period, $\mathrm{N}=432, \mathrm{R}=5$	RMS	-	90	-	-
			peak to peak	-	± 280	-	ps
		Average frequency of $\begin{aligned} & 12.288 \mathrm{MHz} \\ & \mathrm{~N}=432, \mathrm{R}=5 \end{aligned}$ on 1000 samples		-	90	-	ps
	FS clock jitter	Cycle to cycle at 48 KHz on 1000 samples		-	400	-	ps
$\mathrm{I}_{\mathrm{DD}\left(\text { PLLSAI) }{ }^{(4)}\right.}$	PLLSAI power consumption on $V_{D D}$	$\begin{aligned} & \hline \mathrm{VCO} \text { freq }=192 \mathrm{MHz} \\ & \mathrm{VCO} \text { freq }=432 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 0.15 \\ & 0.45 \end{aligned}$	-	$\begin{aligned} & 0.40 \\ & 0.75 \end{aligned}$	mA
$\mathrm{I}_{\text {DDA(PLLSAI) }}{ }^{(4)}$	PLLSAI power consumption on $V_{\text {DDA }}$	$\begin{aligned} & \mathrm{VCO} \text { freq }=192 \mathrm{MHz} \\ & \mathrm{VCO} \text { freq }=432 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 0.30 \\ & 0.55 \end{aligned}$		$\begin{aligned} & 0.40 \\ & 0.85 \end{aligned}$	mA

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.
2. Guaranteed by design.
3. Value given with main PLL running.
4. Guaranteed by characterization results.

5.3.12 PLL spread spectrum clock generation (SSCG) characteristics

The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic interferences (see Table 62: EMI characteristics). It is available only on the main PLL.

Table 51. SSCG parameters constraint

Symbol	Parameter	Min	Typ	Max $^{(1)}$	Unit
$\mathrm{f}_{\text {Mod }}$	Modulation frequency	-	-	10	KHz
md	Peak modulation depth	0.25	-	2	$\%$
MODEPER * INCSTEP	-	-	-	$2^{15}-1$	-

1. Guaranteed by design.

Equation 1

The frequency modulation period (MODEPER) is given by the equation below:

$$
\text { MODEPER }=\operatorname{round}\left[\mathrm{f}_{\text {PLL_IN }} /\left(4 \times \mathrm{f}_{\text {Mod }}\right)\right]
$$

$\mathrm{f}_{\text {PLL_IN }}$ and $\mathrm{f}_{\text {Mod }}$ must be expressed in Hz .
As an example:

If $\mathrm{f}_{\mathrm{PLL}, \mathrm{IN}}=1 \mathrm{MHz}$, and $\mathrm{f}_{\mathrm{MOD}}=1 \mathrm{kHz}$, the modulation depth (MODEPER) is given by equation 1 :

$$
\text { MODEPER }=\operatorname{round}\left[10^{6} /\left(4 \times 10^{3}\right)\right]=250
$$

Equation 2

Equation 2 allows to calculate the increment step (INCSTEP):

$$
\text { INCSTEP }=\operatorname{round}\left[\left(\left(2^{15}-1\right) \times \mathrm{md} \times \text { PLLN }\right) /(100 \times 5 \times \text { MODEPER })\right]
$$

$\mathrm{f}_{\text {VCO_OUT }}$ must be expressed in MHz .
With a modulation depth $(\mathrm{md})= \pm 2 \%$ (4% peak to peak), and PLLN $=240$ (in MHz):

$$
\operatorname{INCSTEP}=\operatorname{round}\left[\left(\left(2^{15}-1\right) \times 2 \times 240\right) /(100 \times 5 \times 250)\right]=126 \mathrm{md}(\text { quantitazed }) \%
$$

An amplitude quantization error may be generated because the linear modulation profile is obtained by taking the quantized values (rounded to the nearest integer) of MODPER and INCSTEP. As a result, the achieved modulation depth is quantized. The percentage quantized modulation depth is given by the following formula:

$$
\mathrm{md}_{\text {quantized }} \%=(\text { MODEPER } \times \operatorname{INCSTEP} \times 100 \times 5) /\left(\left(2^{15}-1\right) \times \text { PLLN }\right)
$$

As a result:

$$
\mathrm{md}_{\text {quantized }} \%=(250 \times 126 \times 100 \times 5) /\left(\left(2^{15}-1\right) \times 240\right)=2.002 \%(\text { peak })
$$

Figure 35 and Figure 36 show the main PLL output clock waveforms in center spread and down spread modes, where:

F0 is $f_{\text {PLL_OUT }}$ nominal.
$\mathrm{T}_{\text {mode }}$ is the modulation period.
md is the modulation depth.
Figure 35. PLL output clock waveforms in center spread mode

Figure 36. PLL output clock waveforms in down spread mode

5.3.13 MIPI D-PHY characteristics

The parameters given in Table 52 and Table 53 are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in Table 18.

Table 52. MIPI D-PHY characteristics ${ }^{(1)}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Hi-Speed Input/Output Characteristics						
$\mathrm{U}_{\text {INST }}$	Ul instantaneous	-	2	-	12.5	ns
$\mathrm{V}_{\text {CMTX }}$	HS transmit common mode voltage	-	150	200	250	mV
$\left\|\Delta \mathrm{V}_{\text {CMTX }}\right\|$	$\mathrm{V}_{\text {CMTX }}$ mismatch when output is Differential-1 or Differential-0	-	-	-	5	
$\left\|\mathrm{V}_{\text {OD }}\right\|$	HS transmit differential voltage	-	140	200	270	
$\left\|\Delta \mathrm{V}_{\mathrm{OD}}\right\|$	$V_{O D}$ mismatch when output is Differential-1 or Differential-0	-	-	-	14	
$\mathrm{V}_{\mathrm{OHHS}}$	HS output high voltage	-	-	-	360	
Z_{OS}	Single ended output impedance	-	40	50	62.5	Ω
$\Delta \mathrm{Z}_{\text {OS }}$	Single ended output impedance mismatch	-	-	-	10	\%
$\mathrm{t}_{\mathrm{HSr}} \& \mathrm{t}_{\mathrm{HSf}}$	20\%-80\% rise and fall time	-	100	-	0.35*UI	ps
LP Receiver Input Characteristics						
VIL	Logic 0 input voltage (not in ULP State)	-	-	-	550	
$\mathrm{V}_{\text {IL-ULPS }}$	Logic 0 input voltage in ULP State	-	-	-	300	mV
V_{IH}	Input high level voltage	-	880	-	-	
$\mathrm{V}_{\text {hys }}$	Voltage hysteresis	-	25	-	-	
LP Emitter Output Characteristics						

Table 52. MIPI D-PHY characteristics ${ }^{(1)}$ (continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit	
V_{IL}	Output low level voltage	-	1.1	1.2	1.2	V	
$\mathrm{~V}_{\mathrm{IL}-\mathrm{ULPS}}$	Output high level voltage	-	-50	-	50	mV	
V_{IH}	Output impedance of LP transmitter	-	110	-	-	Ω	
$\mathrm{V}_{\text {hys }}$	$15 \%-85 \%$ rise and fall time	-	-	-	25	ns	
LP Contention Detector Characteristics							
$\mathrm{V}_{\mathrm{ILCD}}$	Logic 0 contention threshold	-	-	-	200	mV	
$\mathrm{V}_{\text {IHCD }}$	Logic 0 contention threshold	-	450	-	-	m	

1. Guaranteed based on test during characterization.

Table 53. MIPI D-PHY AC characteristics LP mode and HS/LP

$$
\text { transitions }{ }^{(1)}
$$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {LPX }}$	Transmitted length of any LowPower state period	-	50	-	-	
TCLK-PREPARE	Time that the transmitter drives the Clock Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission.	-	38	-	95	ns
TCLK-PREPARE $+$ TCLK-ZERO	Time that the transmitter drives the HS-0 state prior to starting the clock.	-	300	-	-	
TCLK-PRE	Time that the HS clock shall be driven by the transmitter prior to any associated Data Lane beginning the transition from LP to HS mode.	-	8	-	-	UI

Table 53. MIPI D-PHY AC characteristics LP mode and HS/LP transitions ${ }^{(1)}$ (continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {CLK-POST }}$	Time that the transmitter continues to send HS clock after the last associated Data Lane has transitioned to LP Mode.	-	62+52*UI	-	-	
$\mathrm{T}_{\text {CLK-TRAIL }}$	Time that the transmitter drives the HS-0 state after the last payload clock bit of an HS transmission burst.	-	60	-	-	
THS-PREPARE	Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission.	-	40+4* UI	-	85+6*UI	
$\begin{gathered} \mathrm{T}_{\text {HS-PREPARE }} \\ + \\ \mathrm{T}_{\text {HS-ZERO }} \end{gathered}$	THS-PREPARE+ Time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence.	-	145+10*UI	-	-	ns
THS-TRAIL	Time that the transmitter drives the flipped differential state after last payload data bit of a HS transmission burst.	-	$\begin{gathered} \text { Max } \\ \left(\mathrm{n}^{*} 8^{*} \mathrm{UI},\right. \\ \left.60+\mathrm{n}^{*} 4^{*} \mathrm{UI}\right) \end{gathered}$	-	-	
$\mathrm{T}_{\text {HS-EXIT }}$	Time that the transmitter drives LP-11 following a HS burst.	-	100	-	-	
$\mathrm{T}_{\text {REOT }}$	$30 \%-85 \%$ rise time and fall time	-	-	-	35	
$\mathrm{T}_{\text {EOT }}$	Transmitted time interval from the start of $\mathrm{T}_{\text {HS-TRAIL }}$ or TCLK-TRAIL, to the start of the LP-11 state following a HS burst.	-	-	-	$\begin{gathered} \text { 105+ } \\ \text { n*12UI } \end{gathered}$	

[^4]Figure 37. MIPI D-PHY HS/LP clock lane transition timing diagram

Figure 38. MIPI D-PHY HS/LP data lane transition timing diagram

5.3.14 MIPI D-PHY PLL characteristics

The parameters given in Table 54 are derived from tests performed under temperature and $V_{\text {DD }}$ supply voltage conditions summarized in Table 18.

Table 54. DSI-PLL characteristics ${ }^{(1)}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{f}_{\text {PLL_IN }}$	PLL input clock	-	4	-	100	MHz
$\mathrm{f}_{\text {PLL_INFIN }}$	PFD input clock	-	4	-	25	
$\mathrm{f}_{\text {PLL_OUT }}$	PLL multiplier output clock	-	31.25	-	500	
$\mathrm{f}_{\text {VCO_OUT }}$	PLL VCO output	-	500	-	1000	
t Lock	PLL lock time	-	-	-	200	$\mu \mathrm{s}$

Table 54. DSI-PLL characteristics ${ }^{(1)}$ (continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{I}_{\mathrm{DD}(\mathrm{PLL})}$	PLL power consumption on $\mathrm{V}_{\text {DD12 }}$	$\mathrm{f}_{\text {VCO_OUT }}=500 \mathrm{MHz}$	-	0.55	0.70	mA
		$\mathrm{f}_{\text {VCO_OUT }}=600 \mathrm{MHz}$	-	0.65	0.80	
		$\mathrm{f}_{\text {Vco_out }}=1000 \mathrm{MHz}$	-	0.95	1.20	

1. Based on test during characterization.

5.3.15 MIPI D-PHY regulator characteristics

The parameters given in Table 55 are derived from tests performed under temperature and $V_{D D}$ supply voltage conditions summarized in Table 18.

Table 55. DSI regulator characteristics ${ }^{(1)}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {DD12DSI }}$	1.2 V internal voltage on $\mathrm{V}_{\text {DD12 }}$ (${ }^{\text {a }}$	-	1.15	1.20	1.30	V
$\mathrm{C}_{\text {EXT }}$	External capacitor on $\mathrm{V}_{\text {CAPDSI }}$	-	1.1	2.2	3.3	$\mu \mathrm{F}$
ESR	External Serial Resistor	-	0	25	600	$\mathrm{m} \Omega$
IDDDSIREG	Regulator power consumption	-	100	120	125	$\mu \mathrm{A}$
$\mathrm{I}_{\text {DDDSI }}$	DSI system (regulator, PLL and D-PHY) current consumption on $V_{\text {DDDSI }}$	Ultra Low Power Mode (Reg. ON + PLL OFF)	-	290	600	$\mu \mathrm{A}$
		$\begin{gathered} \text { Stop State } \\ \text { (Reg. ON + PLL OFF) } \end{gathered}$	-	290	600	
$\mathrm{I}_{\text {DDDSILP }}$	DSI system current consumption on $V_{\text {DDDSI }}$ in LP mode communication ${ }^{(2)}$	10 MHz escape clock (Reg. ON + PLL OFF)	-	4.3	5.0	mA
		20 MHz escape clock (Reg. ON + PLL OFF)	-	4.3	5.0	
IDDDSIHS	DSI system (regulator, PLL and D-PHY) current consumption on $\mathrm{V}_{\text {DDDSI }}$ in HS mode communication ${ }^{(3)}$	300 Mbps - 1 data lane (Reg. ON + PLL ON)	-	8.0	8.8	mA
		300 Mbps - 2data lane (Reg. ON + PLL ON)	-	11.4	12.5	
		$500 \mathrm{Mbps}-1$ data lane (Reg. ON + PLL ON)	-	13.5	14.7	
		500 Mbps - 2data lane (Reg. ON + PLL ON)	-	18.0	19.6	
	DSI system (regulator, PLL and D-PHY) current consumption on $V_{\text {DDDSI }}$ in HS mode with CLK like payload	500 Mbps - 2data lane (Reg. ON + PLL ON)	-	21.4	23.3	
$\mathrm{t}_{\text {WAKEUP }}$	Startup delay	$\mathrm{C}_{\text {EXT }}=2.2 \mu \mathrm{~F}$	-	110	-	$\mu \mathrm{s}$
		$\mathrm{C}_{\text {EXT }}=3.3 \mu \mathrm{~F}$	-	-	160	
$\mathrm{I}_{\text {INRUSH }}$	Inrush current on $\mathrm{V}_{\text {DDDSI }}$	External capacitor load at start	-	60	200	mA

1. Based on test during characterization.
2. Values based on an average traffic in LP Command Mode.
3. Values based on an average traffic ($3 / 4 \mathrm{HS}$ traffic \& $1 / 4 \mathrm{LP}$) in Video Mode.

5.3.16 Memory characteristics

Flash memory

The characteristics are given at TA $=-40$ to $105^{\circ} \mathrm{C}$ unless otherwise specified.
The devices are shipped to customers with the Flash memory erased.
Table 56. Flash memory characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
IDD	Supply current	Write / Erase 8-bit mode, $\mathrm{V}_{\mathrm{DD}}=1.7 \mathrm{~V}$	-	14	-	mA
		Write / Erase 16-bit mode, $\mathrm{V}_{\mathrm{DD}}=2.1 \mathrm{~V}$	-	17	-	
		Write / Erase 32-bit mode, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	-	24	-	

Table 57. Flash memory programming (single bank configuration
nDBANK=1)

Symbol	Parameter	Conditions	Min ${ }^{(1)}$	Typ	Max ${ }^{(1)}$	Unit
$t_{\text {prog }}$	Word programming time	Program/erase parallelism $(\text { PSIZE })=x 8 / 16 / 32$	-	16	$100^{(2)}$	$\mu \mathrm{s}$
$t_{\text {ERASE32KB }}$	Sector (32 KB) erase time	Program/erase parallelism $($ PSIZE $)=x 8$	-	400	800	ms
		Program/erase parallelism $($ PSIZE $)=x 16$	-	250	600	
		Program/erase parallelism $($ PSIZE $)=x 32$	-	200	500	
terase 128 KB	Sector (128 KB) erase time	Program/erase parallelism $($ PSIZE $)=x 8$	-	1100	2400	ms
		Program/erase parallelism $(P S I Z E)=x 16$	-	800	1400	
		Program/erase parallelism (PSIZE) $=\times 32$	-	500	1100	
terase 256 Kb	Sector (256 KB) erase time	Program/erase parallelism (PSIZE) $=x 8$	-	2.1	4	s
		Program/erase parallelism $($ PSIZE $)=x 16$	-	1.5	2.6	
		Program/erase parallelism (PSIZE) $=\times 32$	-	1	2	
$\mathrm{t}_{\text {ME }}$	Mass erase time	Program/erase parallelism $($ PSIZE $)=x 8$	-	16	32	s
		Program/erase parallelism $($ PSIZE $)=x 16$	-	11	22	
		Program/erase parallelism $($ PSIZE $)=\times 32$	-	8	16	

Table 57. Flash memory programming (single bank configuration nDBANK=1) (continued)

Symbol	Parameter	Conditions	Min $^{(\mathbf{1})}$	Typ	$\boldsymbol{M a x}^{(\mathbf{1})}$	Unit
$\mathrm{V}_{\text {prog }}$	Programming voltage	32-bit program operation	2.7	-	3	V
		16-bit program operation	2.1	-	3.6	V
		8-bit program operation	1.7	-	3.6	V

1. Guaranteed by characterization results.
2. The maximum programming time is measured after 100 K erase operations.

Table 58. Flash memory programming (dual bank configuration nDBANK=0)

Symbol	Parameter	Conditions	Min ${ }^{(1)}$	Typ	Max ${ }^{(1)}$	Unit
$t_{\text {prog }}$	Word programming time	Program/erase parallelism $($ PSIZE $)=x 8 / 16 / 32$	-	16	$100^{(2)}$	$\mu \mathrm{s}$
terase16Kb	Sector (16 KB) erase time	Program/erase parallelism (PSIZE) $=\mathrm{x} 8$	-	400	800	ms
		Program/erase parallelism $($ PSIZE $)=x 16$	-	250	600	
		Program/erase parallelism $($ PSIZE $)=\times 32$	-	200	500	
$t_{\text {ERASE64Kb }}$	Sector (64 KB) erase time	Program/erase parallelism (PSIZE) $=x 8$	-	1100	2400	ms
		Program/erase parallelism $($ PSIZE $)=x 16$	-	800	1400	
		Program/erase parallelism $($ PSIZE $)=x 32$	-	500	1100	
terase128kB	Sector (128 KB) erase time	Program/erase parallelism (PSIZE) $=\mathrm{x} 8$	-	2.1	4	s
		Program/erase parallelism $(P S I Z E)=x 16$	-	1.5	2.6	
		Program/erase parallelism $($ PSIZE $)=\times 32$	-	1	2	
$\mathrm{t}_{\text {ME }}$	Mass erase time	Program/erase parallelism (PSIZE) $=x 8$	-	16	32	s
		Program/erase parallelism $($ PSIZE $)=x 16$	-	11	22	
		Program/erase parallelism $($ PSIZE $)=\times 32$	-	8	16	

Table 58. Flash memory programming (dual bank configuration nDBANK=0) (continued)

Symbol	Parameter	Conditions	Min ${ }^{(1)}$	Typ	Max ${ }^{(1)}$	Unit
$t_{\text {bE }}$	Bank erase time	Program/erase parallelism (PSIZE) $=\mathrm{x} 8$	-	16	32	s
		Program/erase parallelism (PSIZE) $=x 16$	-	11	22	
		Program/erase parallelism (PSIZE) $=\times 32$	-	8	16	
$V_{\text {prog }}$	Programming voltage	32-bit program operation	2.7	-	3	V
		16-bit program operation	2.1	-	3.6	V
		8-bit program operation	1.7	-	3.6	V

1. Guaranteed by characterization results.
2. The maximum programming time is measured after 100 K erase operations.

Table 59. Flash memory programming with V_{PP}

Symbol	Parameter	Conditions	Min ${ }^{(1)}$	Typ	Max ${ }^{(1)}$	Unit
$\mathrm{t}_{\text {prog }}$	Double word programming	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0 \text { to }+40^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{PP}}=8.5 \mathrm{~V} \end{gathered}$	-	16	$100^{(2)}$	$\mu \mathrm{s}$
$t_{\text {ERASE32KB }}$	Sector (32 KB) erase time		-	180	-	ms
terasE128KB	Sector (128 KB) erase time		-	450	-	
terase 256 KB	Sector (256 KB) erase time		-	900	-	
$\mathrm{t}_{\text {ME }}$	Mass erase time		-	6.9	-	s
$\mathrm{V}_{\text {prog }}$	Programming voltage	-	2.7	-	3.6	V
$V_{P P}$	V_{PP} voltage range	-	7	-	9	V
IPP	Minimum current sunk on the $V_{\text {PP }}$ pin	-	10	-	-	mA
$\mathrm{t}_{\text {VPP }}{ }^{(3)}$	Cumulative time during which V_{Pp} is applied	-	-	-	1	hour

1. Guaranteed by design.
2. The maximum programming time is measured after 100 K erase operations.
3. V_{PP} should only be connected during programming/erasing.

Table 60. Flash memory endurance and data retention

Symbol	Parameter	Conditions	Value	Unit
			Min ${ }^{(1)}$	
$\mathrm{N}_{\text {END }}$	Endurance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}(6 \text { suffix versions }) \\ & \left.\mathrm{T}_{\mathrm{A}}=-40 \text { to }+105^{\circ} \mathrm{C} \text { (7 suffix versions }\right) \end{aligned}$	10	kcycles
$\mathrm{t}_{\text {RET }}$	Data retention	$1 \mathrm{kcycle}^{(2)}$ at $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	30	Years
		$1 \mathrm{kcycle}^{(2)}$ at $\mathrm{T}_{\mathrm{A}}=105^{\circ} \mathrm{C}$	10	
		10 ccycles $^{(2)}$ at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$	20	

1. Guaranteed by characterization results.
2. Cycling performed over the whole temperature range.

5.3.17 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to $V_{D D}$ and $V_{S S}$ through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 61. They are based on the EMS levels and classes defined in application note AN1709.

Table 61. EMS characteristics

Symbol	Parameter	Conditions	Level Class
$\mathrm{V}_{\text {FESD }}$	Voltage limits to be applied on any I / O pin to induce a functional disturbance	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{HCLK}}=$ 216 MHz, conforms to IEC $61000-$ $4-2$	2 B
$\mathrm{~V}_{\mathrm{FTB}}$	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{HCLK}}=$ 168 MHz, conforms to $\mathrm{IEC} 61000-$ $4-2$	5 A

As a consequence, it is recommended to add a serial resistor ($1 \mathrm{k} \Omega$) located as close as possible to the MCU to the pins exposed to noise (connected to tracks longer than 50 mm on PCB).

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading.

Table 62. EMI characteristics

Symbol	Parameter	Conditions	Monitored frequency band	Max vs. [$\mathrm{f}_{\mathrm{HSE}} / \mathrm{f}_{\mathrm{CPU}}$]	Unit
				8/200 MHz	
$\mathrm{S}_{\text {EMI }}$	Peak level	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, TFBGA216 package, conforming to IEC61967-2 ART/L1-cache ON, over-drive ON, all peripheral clocks enabled, clock dithering disabled.	0.1 to 30 MHz	5	$\mathrm{dB} \mu \mathrm{V}$
			30 to 130 MHz	10	
			130 MHz to 1 GHz	18	
			1 GHz to 2 GHz	10	
			EMI Level	3.5	-
			0.1 to 30 MHz	2	
		$V_{D D}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, TFBGA216 package, conforming to IEC61967-2 ART/L1-cache ON,	30 to 130 MHz	9	
		over-drive ON, all peripheral clocks enabled,	130 MHz to 1 GHz	14	
			1 GHz to 2 GHz	9	
			EMI Level	3	-

5.3.18 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times ($n+1$) supply pins). This test conforms to the ANSI/ESDA/JEDEC JS-001-2012 and ANSI/ESD S5.3.1-2009 standards.

Table 63. ESD absolute maximum ratings

Symbol	Ratings	Conditions	Class	$\begin{aligned} & \text { Maximum } \\ & \text { value } \end{aligned}$	Unit
$\mathrm{V}_{\text {ESD }}$ (HBM)	Electrostatic discharge voltage (human body model)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ conforming to ANSI/ESDA/JEDEC JS-001-2012	2	2000	V
$\mathrm{V}_{\text {ESD (CDM) }}$	Electrostatic discharge voltage (charge device model)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ conforming to ANSI/ESD S5.3.12009, all packages except TFBGA100	3	250	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ conforming to ANSI/ESD S5.3.12009, TFBGA100 package	4	500	

1. Guaranteed by characterization results.

Static latchup

Two complementary static tests are required on six parts to assess the latchup performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latchup standard.
Table 64. Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$ conforming to JESD78A	II level A

5.3.19 I/O current injection characteristics

As a general rule, a current injection to the I/O pins, due to external voltage below $\mathrm{V}_{\text {SS }}$ or above V_{DD} (for standard, 3 V -capable I/O pins) should be avoided during the normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when an abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during the device characterization.

Functional susceptibilty to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of $5 \mu \mathrm{~A} /+0 \mu \mathrm{~A}$ range), or other functional failure (for example reset, oscillator frequency deviation).

A negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection.
The test results are given in Table 65.

Table 65. I/O current injection susceptibility

Symbol	Description	Functional susceptibility		Unit
		Negative injection	Positive injection	
$\mathrm{I}_{\text {IN }}$	Injected current on BOOTO, DSI_DOP, DSI_DON, DSI_D1P, DSI_D1N, DSI_CKP, DSI_CKN pin	-0	0	mA
	Injected current on NRST pin	-0	$N A^{(1)}$	
	Injected current on PC0, PC2, PH1_OSCOUT pins	-0	$N A^{(1)}$	
	Injected current on any other FT pin	-5	$N A^{(1)}$	
	Injected current on any other pins	- 5	+5	

1. Injection is not possible.

Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

5.3.20 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in Table 66: I/O static characteristics are derived from tests performed under the conditions summarized in Table 18. All I/Os are CMOS and TTL compliant.

Table 66. I/O static characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {IL }}$	FT, TTa and NRST I/O input low level voltage	$1.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$	-	-	$\frac{0.35 \mathrm{~V}_{\mathrm{DD}}-0.04{ }^{(1)}}{0.3 \mathrm{~V}_{\mathrm{DD}}{ }^{(2)}}$	V
	BOOT I/O input low level voltage	$\begin{gathered} 1.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V},- \\ 40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 105^{\circ} \mathrm{C} \end{gathered}$	-	-	$0.1 \mathrm{~V}_{\mathrm{DD}}+0.1^{(1)}$	
		$\begin{gathered} 1.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}, \\ 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 105^{\circ} \mathrm{C} \end{gathered}$	-	-		
V_{IH}	FT, TTa and NRST I/O input high level voltage ${ }^{(5)}$	$1.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$	$0.45 \mathrm{~V}_{\mathrm{DD}}+0.3^{(1)}$	-	-	V
			$0.7 \mathrm{~V}_{\mathrm{DD}}{ }^{(2)}$			
	BOOT I/O input high level voltage	$\begin{gathered} 1.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V},- \\ 40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 105^{\circ} \mathrm{C} \end{gathered}$	$0.17 \mathrm{~V}_{\mathrm{DD}}+0.7^{(1)}$	-	-	
		$\begin{gathered} 1.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}, \\ 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 105^{\circ} \mathrm{C} \end{gathered}$				
$\mathrm{V}_{\mathrm{HYS}}$	FT, TTa and NRST I/O input hysteresis	$1.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$	$10 \% \mathrm{~V}_{\mathrm{DD}}{ }^{(3)}$	-	-	V
	BOOT I/O input hysteresis	$\begin{gathered} 1.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V},- \\ 40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 105^{\circ} \mathrm{C} \end{gathered}$	0.1	-	-	
		$\begin{gathered} 1.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}, \\ 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 105^{\circ} \mathrm{C} \end{gathered}$				

Table 66. I/O static characteristics (continued)

Symbol	Parameter		Conditions	Min	Typ	Max	Unit
$\mathrm{I}_{\mathrm{lkg}}$	I/O input leakage current ${ }^{(4)}$		$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{DD}}$	-	-	± 1	$\mu \mathrm{A}$
	I/O FT input leakage current (5)		$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$	-	-	3	
RPU	Weak pull-up equivalent resistor ${ }^{(6)}$	All pins except for PA10/PB12 (OTG_FS_I D,OTG_HS_ ID)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$	30	40	50	k Ω
		PA10/PB12 (OTG_FS_I D,OTG_HS_ ID)		7	10	14	
R_{PD}	Weak pulldown equivalent resistor ${ }^{(7)}$	All pins except for PA10/PB12 (OTG_FS_I D,OTG_HS_ ID)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$	30	40	50	
		PA10/PB12 (OTG_FS_I D,OTG_HS_ ID)		7	10	14	
$\mathrm{C}_{10}{ }^{(8)}$	I/O pin capacitance		-	-	5	-	pF

1. Guaranteed by design.
2. Tested in production.
3. With a minimum of 200 mV .
4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 65: I/O current injection susceptibility
5. To sustain a voltage higher than VDD +0.3 V , the internal pull-up/pull-down resistors must be disabled. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 65: I/O current injection susceptibility
6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimum ($\sim 10 \%$ order).
7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the series resistance is minimum ($\sim 10 \%$ order).
8. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT I/Os is shown in Figure 39.

Figure 39. FT I/O input characteristics

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to $\pm 8 \mathrm{~mA}$, and sink or source up to $\pm 20 \mathrm{~mA}$ (with a relaxed $\mathrm{V}_{\mathrm{OL}} / \mathrm{V}_{\mathrm{OH}}$) except PC13, PC14, PC15 and PI8 which can sink or source up to $\pm 3 \mathrm{~mA}$. When using the PC13 to PC15 and PI8 GPIOs in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF .

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2. In particular:

- The sum of the currents sourced by all the $I / O s$ on $V_{D D}$, plus the maximum Run consumption of the MCU sourced on $V_{D D}$, cannot exceed the absolute maximum rating $\Sigma \mathrm{I}_{\text {VDD }}$ (see Table 16).
- The sum of the currents sunk by all the $I / O s$ on $V_{S S}$ plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating $\Sigma \mathrm{l}_{\text {VSS }}$ (see Table 16).

Output voltage levels

Unless otherwise specified, the parameters given in Table 67 are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in Table 18. All I/Os are CMOS and TTL compliant.

Table 67. Output voltage characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
$\mathrm{V}_{\mathrm{OL}}{ }^{(1)}$	Output low level voltage for an I/O pin	$\begin{gathered} \text { CMOS port }^{(2)} \\ \mathrm{I}_{\mathrm{IO}}=+8 \mathrm{~mA} \\ 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V} \end{gathered}$	-	0.4	
$\mathrm{V}_{\mathrm{OH}}{ }^{(3)}$	Output high level voltage for an I/O pin except PC14	CMOS port ${ }^{(2)}$ $\begin{gathered} \mathrm{I}_{\mathrm{IO}}=-8 \mathrm{~mA} \\ 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V} \end{gathered}$	$V_{D D}-0.4$	-	V
$\mathrm{V}_{\mathrm{OH}}{ }^{(3)}$	Output high level voltage for PC14	CMOS port ${ }^{(2)}$ $\begin{gathered} \mathrm{I}_{\mathrm{IO}}=-2 \mathrm{~mA} \\ 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V} \end{gathered}$	$V_{D D}-0.4$	-	
$V_{O L}{ }^{(1)}$	Output low level voltage for an I/O pin	$\begin{gathered} \mathrm{TTL}^{\text {port }}{ }^{(2)} \\ \mathrm{I}_{\mathrm{IO}}=+8 \mathrm{~mA} \\ 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V} \\ \hline \end{gathered}$	-	0.4	V
$\mathrm{V}_{\mathrm{OH}}{ }^{(3)}$	Output high level voltage for an I/O pin except PC14	$\begin{gathered} \text { TTL port }^{(2)} \\ \mathrm{I}_{\mathrm{O}}=-8 \mathrm{~mA} \\ 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V} \end{gathered}$	2.4	-	\checkmark
$\mathrm{V}_{\mathrm{OL}}{ }^{(1)}$	Output low level voltage for an I/O pin	$\begin{gathered} \mathrm{l}_{\mathrm{O}}=+20 \mathrm{~mA} \\ 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V} \end{gathered}$	-	$1.3{ }^{(4)}$	V
$\mathrm{V}_{\mathrm{OH}}{ }^{(3)}$	Output high level voltage for an I/O pin except PC14	$\begin{gathered} \mathrm{I}_{\mathrm{OO}}=-20 \mathrm{~mA} \\ 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V} \end{gathered}$	$V_{D D}-1.3^{(4)}$	-	
$\mathrm{V}_{\mathrm{OL}}{ }^{(1)}$	Output low level voltage for an I/O pin	$\begin{gathered} \mathrm{I}_{\mathrm{IO}}=+6 \mathrm{~mA} \\ 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V} \end{gathered}$	-	$0.4{ }^{(4)}$	V
$\mathrm{V}_{\mathrm{OH}}{ }^{(3)}$	Output high level voltage for an I/O pin except PC14	$\begin{gathered} \mathrm{I}_{\mathrm{IO}}=-6 \mathrm{~mA} \\ 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V} \end{gathered}$	$V_{D D}-0.4^{(4)}$	-	
$\mathrm{V}_{\mathrm{OL}}{ }^{(1)}$	Output low level voltage for an I/O pin	$\begin{gathered} \mathrm{I}_{\mathrm{IO}}=+4 \mathrm{~mA} \\ 1.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V} \end{gathered}$	-	$0.4{ }^{(5)}$	
$\mathrm{V}_{\mathrm{OH}}{ }^{(3)}$	Output high level voltage for an I/O pin except PC14	$\begin{gathered} \mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA} \\ 1.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V} \end{gathered}$	$V_{D D}-0.4^{(5)}$	-	V
$\mathrm{V}_{\mathrm{OH}}{ }^{(3)}$	Output high level voltage for PC14	$\begin{gathered} \mathrm{I}_{\mathrm{IO}}=-1 \mathrm{~mA} \\ 1.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V} \end{gathered}$	$V_{D D}-0.4^{(5)}$	-	

1. The I_{O} current sunk by the device must always respect the absolute maximum rating specified in Table 16. and the sum of I_{IO} (I/O ports and control pins) must not exceed $\mathrm{I}_{\text {VSs }}$.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. The I_{10} current sourced by the device must always respect the absolute maximum rating specified in Table 16 and the sum of I_{IO} (I/O ports and control pins) must not exceed $\mathrm{I}_{\text {VDD }}$.
4. Based on characterization data.
5. Guaranteed by design.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in Figure 40 and Table 68, respectively.

Unless otherwise specified, the parameters given in Table 68 are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in Table 18.

Table 68. I/O AC characteristics ${ }^{(1)(2)}$

$\begin{array}{\|l\|} \hline \text { OSPEEDRy } \\ {[1: 0] \text { bit }} \\ \text { value }^{(1)} \end{array}$	Symbol	Parameter	Conditions	Min	Typ	Max	Unit
00	$\mathrm{f}_{\max (10) \text { out }}$	Maximum frequency ${ }^{(3)}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 2.7 \mathrm{~V}$	-	-	4	MHz
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.7 \mathrm{~V}$	-	-	2	
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 2.7 \mathrm{~V}$	-	-	8	
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.8 \mathrm{~V}$	-	-	4	
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.7 \mathrm{~V}$	-	-	3	
	$\mathrm{t}_{\mathrm{f}(\mathrm{IO}) \text { out }}{ }^{\prime}$ $\mathrm{t}_{\mathrm{r}(\mathrm{IO}) \text { out }}$	Output high to low level fall time and output low to high level rise time	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{DD}}=1.7 \mathrm{~V} \text { to } \\ & 3.6 \mathrm{~V} \end{aligned}$	-	-	100	ns
01	$\mathrm{f}_{\max (10) \text { out }}$	Maximum frequency ${ }^{(3)}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 2.7 \mathrm{~V}$	-	-	25	MHz
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.8 \mathrm{~V}$	-	-	12.5	
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.7 \mathrm{~V}$	-	-	10	
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 2.7 \mathrm{~V}$	-	-	50	
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.8 \mathrm{~V}$	-	-	20	
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.7 \mathrm{~V}$	-	-	12.5	
	$\mathrm{t}_{\mathrm{f}(\mathrm{IO}) \text { out }}{ }^{\prime}$ $\mathrm{t}_{\mathrm{r}(\mathrm{IO}) \text { out }}$	Output high to low level fall time and output low to high level rise time	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 2.7 \mathrm{~V}$	-	-	10	ns
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 2.7 \mathrm{~V}$	-	-	6	
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.7 \mathrm{~V}$	-	-	20	
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.7 \mathrm{~V}$	-	-	10	
10	$\mathrm{f}_{\max (\mathrm{IO}) \text { out }}$	Maximum frequency ${ }^{(3)}$	$\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 2.7 \mathrm{~V}$	-	-	$50^{(4)}$	MHz
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 2.7 \mathrm{~V}$	-	-	$100^{(4)}$	
			$\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.7 \mathrm{~V}$	-	-	25	
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.8 \mathrm{~V}$	-	-	50	
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.7 \mathrm{~V}$	-	-	42.5	
	$\mathrm{t}_{\mathrm{f}} \mathrm{IO}$)out ${ }^{\prime}$ $\mathrm{t}_{\mathrm{r}(\mathrm{IO}) \text { out }}$	Output high to low level fall time and output low to high level rise time	$\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 2.7 \mathrm{~V}$	-	-	6	ns
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 2.7 \mathrm{~V}$	-	-	4	
			$\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.7 \mathrm{~V}$	-	-	10	
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.7 \mathrm{~V}$	-	-	6	

Table 68. I/O AC characteristics ${ }^{(1)(2)}$ (continued)

$\begin{aligned} & \text { OSPEEDRy } \\ & \text { [1:0] bit } \\ & \text { value }{ }^{(1)} \end{aligned}$	Symbol	Parameter	Conditions	Min	Typ	Max	Unit
11	$\mathrm{f}_{\max (\mathrm{IO}) \text { out }}$	Maximum frequency ${ }^{(3)}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 2.7 \mathrm{~V}$	-	-	$100^{(4)}$	MHz
			$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.8 \mathrm{~V}$	-	-	50	
			$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.7 \mathrm{~V}$	-	-	42.5	
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 2.7 \mathrm{~V}$	-	-	$180^{(4)}$	
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.8 \mathrm{~V}$	-	-	100	
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.7 \mathrm{~V}$	-	-	72.5	
	$\mathrm{t}_{\mathrm{f}(\mathrm{IO}) \text { out }}{ }^{\prime}$ $\mathrm{t}_{\mathrm{r}(\mathrm{IO}) \text { out }}$	Output high to low level fall time and output low to high level rise time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 2.7 \mathrm{~V}$	-	-	4	ns
			$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.8 \mathrm{~V}$	-	-	6	
			$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.7 \mathrm{~V}$	-	-	7	
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 2.7 \mathrm{~V}$	-	-	2.5	
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.8 \mathrm{~V}$	-	-	3.5	
			$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}} \geq 1.7 \mathrm{~V}$	-	-	4	
-	tEXTIpw	Pulse width of external signals detected by the EXTI controller	-	10	-	-	ns

1. Guaranteed by design.
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F76xxx and STM32F77xxx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register.
3. The maximum frequency is defined in Figure 40.
4. For maximum frequencies above 50 MHz and $\mathrm{V}_{\mathrm{DD}}>2.4 \mathrm{~V}$, the compensation cell should be used.

Figure 40. I/O AC characteristics definition

5.3.21 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see Table 66: I/O static characteristics).
Unless otherwise specified, the parameters given in Table 69 are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in Table 18.

Table 69. NRST pin characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
R_{PU}	Weak pull-up equivalent resistor ${ }^{(1)}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{SS}}$	30	40	50	$\mathrm{k} \Omega$
$\mathrm{V}_{\mathrm{F}(\mathrm{NRST})^{(2)}}$	NRST Input filtered pulse	-	-	-	100	ns
$\mathrm{~V}_{\text {NF(NRST) }}{ }^{(2)}$	NRST Input not filtered pulse	$\mathrm{V}_{\mathrm{DD}}>2.7 \mathrm{~V}$	300	-	-	ns
$\mathrm{T}_{\text {NRST_OUT }}$	Generated reset pulse duration	Internal Reset source	20	-	-	$\mu \mathrm{s}$

1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum ($\sim 10 \%$ order).
2. Guaranteed by design.

Figure 41. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets. 0.1 uF capacitor must be placed as close as possible to the chip.
2. The user must ensure that the level on the NRST pin can go below the $\mathrm{V}_{\text {IL(NRST) }}$ max level specified in Table 69. Otherwise the reset is not taken into account by the device.

5.3.22 TIM timer characteristics

The parameters given in Table 70 are guaranteed by design.
Refer to Section 5.3.20: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Table 70. TIMx characteristics ${ }^{(1)(2)}$

Symbol	Parameter	Conditions ${ }^{(3)}$	Min	Max	Unit
$\mathrm{t}_{\text {res(TIM) }}$	Timer resolution time	AHB/APBx prescaler=1 or 2 or $4, \mathrm{f}_{\text {TIMxCLK }}=$ 216 MHz	1	-	$\mathrm{t}_{\text {TIMxCLK }}$
		AHB/APBx prescaler>4, $\mathrm{f}_{\text {TIM } \times C L K}=$ 100 MHz	1	-	$\mathrm{t}_{\text {TIM } \times \text { CLK }}$
$\mathrm{f}_{\mathrm{EXT}}$	Timer external clock frequency on CH 1 to CH 4	$\mathrm{f}_{\text {TIMxCLK }}=216 \mathrm{MHz}$	0	$\mathrm{f}_{\text {TIM } \times C L K} / 2$	MHz
$\mathrm{Res}_{\text {TIM }}$	Timer resolution		-	16/32	bit
$\mathrm{t}_{\text {MAX_COUNT }}$	Maximum possible count with 32-bit counter	-	-	$\begin{gathered} 65536 \times \\ 65536 \end{gathered}$	$\mathrm{t}_{\text {TIM } \times \text { CLK }}$

1. TIMx is used as a general term to refer to the TIM1 to TIM12 timers.
2. Guaranteed by design.
3. The maximum timer frequency on APB1 or APB2 is up to 216 MHz , by setting the TIMPRE bit in the RCC DCKCFGR register, if APBx prescaler is 1 or 2 or 4 , then TIMxCLK = HCLK, otherwise TIMxCLK = $4 x$ PC̄LKx.

5.3.23 RTC characteristics

Table 71. RTC characteristics

Symbol	Parameter	Conditions	Min	Max
-	$f_{\text {PCLK1 }} /$ RTCCLK frequency ratio	Any read/write operation from/to an RTC register	4	-

5.3.24 12-bit ADC characteristics

Unless otherwise specified, the parameters given in Table 72 are derived from tests performed under the ambient temperature, $\mathrm{f}_{\text {PCLK2 }}$ frequency and $\mathrm{V}_{\text {DDA }}$ supply voltage conditions summarized in Table 18.

Table 72. ADC characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {DDA }}$	Power supply	$\mathrm{V}_{\mathrm{DDA}}-\mathrm{V}_{\text {REF+ }}<1.2 \mathrm{~V}$	$1.7{ }^{(1)}$	-	3.6	V
$\mathrm{V}_{\text {REF+ }}$	Positive reference voltage		$1.7{ }^{(1)}$	-	$\mathrm{V}_{\text {DDA }}$	V
$\mathrm{f}_{\text {ADC }}$	ADC clock frequency	$\mathrm{V}_{\mathrm{DDA}}=1.7^{(1)}$ to 2.4 V	0.6	15	18	MHz
		$\mathrm{V}_{\mathrm{DDA}}=2.4$ to 3.6 V	0.6	30	36	MHz

Table 72. ADC characteristics (continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{f}_{\text {TRIG }}{ }^{(2)}$	External trigger frequency	$\begin{aligned} & \hline \mathrm{f}_{\mathrm{ADC}}=30 \mathrm{MHz}, \\ & \text { 12-bit resolution } \end{aligned}$	-	-	1764	kHz
		-	-	-	17	$1 / \mathrm{f}_{\text {ADC }}$
$\mathrm{V}_{\text {AIN }}$	Conversion voltage range ${ }^{(3)}$	-	$\begin{gathered} 0 \\ \left(V_{S S A} \text { or } V_{R E F-}\right. \\ \text { tied to ground }) \end{gathered}$	-	$\mathrm{V}_{\text {REF }+}$	V
$\mathrm{R}_{\text {AIN }}{ }^{(2)}$	External input impedance	See Equation 1 for details	-	-	50	k Ω
$\mathrm{R}_{\text {ADC }}{ }^{(2)(4)}$	Sampling switch resistance	-	1.5	-	6	k Ω
$\mathrm{C}_{\text {ADC }}{ }^{(2)}$	Internal sample and hold capacitor	-	-	4	7	pF
$\mathrm{t}_{\text {at }}{ }^{(2)}$	Injection trigger conversion latency	$\mathrm{f}_{\text {ADC }}=30 \mathrm{MHz}$	-	-	0.100	$\mu \mathrm{s}$
		-	-	-	$3^{(5)}$	$1 / \mathrm{f}_{\text {ADC }}$
$t_{\text {latr }}{ }^{(2)}$	Regular trigger conversion latency	$\mathrm{f}_{\text {ADC }}=30 \mathrm{MHz}$	-	-	0.067	$\mu \mathrm{s}$
		-	-	-	$2^{(5)}$	$1 / \mathrm{f}_{\text {ADC }}$
$\mathrm{t}_{s}{ }^{(2)}$	Sampling time	$\mathrm{f}_{\text {ADC }}=30 \mathrm{MHz}$	0.100	-	16	$\mu \mathrm{s}$
		-	3	-	480	$1 / f_{\text {ADC }}$
$\mathrm{t}_{\text {STAB }}{ }^{(2)}$	Power-up time	-	-	2	3	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{CONV}}{ }^{(2)}$	Total conversion time (including sampling time)	$\begin{aligned} & \hline \mathrm{f}_{\mathrm{ADC}}=30 \mathrm{MHz} \\ & \text { 12-bit resolution } \end{aligned}$	0.50	-	16.40	$\mu \mathrm{s}$
		$\begin{aligned} & \mathrm{f}_{\mathrm{ADC}}=30 \mathrm{MHz} \\ & \text { 10-bit resolution } \end{aligned}$	0.43	-	16.34	$\mu \mathrm{s}$
		$\begin{aligned} & \mathrm{f}_{\mathrm{ADC}}=30 \mathrm{MHz} \\ & \text { 8-bit resolution } \end{aligned}$	0.37	-	16.27	$\mu \mathrm{s}$
		$\begin{aligned} & \mathrm{f}_{\mathrm{ADC}}=30 \mathrm{MHz} \\ & \text { 6-bit resolution } \end{aligned}$	0.30	-	16.20	$\mu \mathrm{s}$
		9 to 492 (t_{S} for sampling +n -bit resolution for successive approximation)				$1 / \mathrm{f}_{\mathrm{ADC}}$
$\mathrm{f}_{S}{ }^{(2)}$	Sampling rate ($\mathrm{f}_{\mathrm{ADC}}=36 \mathrm{MHz}$, and $\mathrm{t}_{\mathrm{S}}=3$ ADC cycles)	12-bit resolution Single ADC	-	-	2.4	Msps
		12-bit resolution Interleave Dual ADC mode	-	-	4.5	Msps
		12-bit resolution Interleave Triple ADC mode	-	-	7.2	Msps

Table 72. ADC characteristics (continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
IVREF $^{(2)}$	ADC V REF DC current consumption in conversion mode	-	-	300	500	$\mu \mathrm{~A}$
IVDDA $^{(2)}$	ADC V DDA consumption in current mode	-	-	1.6	1.8	mA

1. $V_{\text {DDA }}$ minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.18.2: Internal reset OFF).
2. Guaranteed by characterization results.
3. $\mathrm{V}_{\text {REF }}$ is internally connected to $\mathrm{V}_{\mathrm{DDA}}$ and $\mathrm{V}_{\text {REF- }}$ is internally connected to $\mathrm{V}_{\mathrm{SSA}}$.
4. $R_{A D C}$ maximum value is given for $V_{D D}=1.7 \mathrm{~V}$, and minimum value for $V_{D D}=3.3 \mathrm{~V}$.
5. For external triggers, a delay of $1 / \mathrm{f}_{\text {PCLK2 }}$ must be added to the latency specified in Table 72.

Equation 1: $\mathbf{R}_{\text {AIN }} \max$ formula

$$
\mathrm{R}_{\mathrm{AIN}}=\frac{(\mathrm{k}-0.5)}{\mathrm{f}_{\mathrm{ADC}} \times \mathrm{C}_{\mathrm{ADC}} \times \ln \left(2^{\mathrm{N}+2}\right)}-\mathrm{R}_{\mathrm{ADC}}
$$

The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below $1 / 4$ of LSB. $\mathrm{N}=12$ (from 12-bit resolution) and k is the number of sampling periods defined in the ADC_SMPR1 register.

Table 73. ADC static accuracy at $\mathrm{f}_{\text {ADC }}=18 \mathrm{MHz}$

Symbol	Parameter	Test conditions	Typ	Max ${ }^{(1)}$	Unit
ET	Total unadjusted error	$\begin{gathered} \mathrm{f}_{\mathrm{ADC}}=18 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{DDA}}=1.7 \text { to } 3.6 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{REF}}=1.7 \text { to } 3.6 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DDA}}-\mathrm{V}_{\mathrm{REF}}<1.2 \mathrm{~V} \end{gathered}$	± 3	± 4	LSB
EO	Offset error		± 2	± 3	
EG	Gain error		± 1	± 3	
ED	Differential linearity error		± 1	± 2	
EL	Integral linearity error		± 2	± 3	

1. Guaranteed by characterization results.

Table 74. ADC static accuracy at $\mathrm{f}_{\mathrm{ADC}}=30 \mathrm{MHz}$

Symbol	Parameter	Test conditions	Typ	Max ${ }^{(1)}$	Unit
ET	Total unadjusted error	$\begin{aligned} & \mathrm{f}_{\mathrm{ADC}}=30 \mathrm{MHz}, \\ & \mathrm{R}_{\mathrm{AIN}}<10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{DDA}}=2.4 \text { to } 3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{REF}}=1.7 \text { to } 3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DDA}}-\mathrm{V}_{\mathrm{REF}}<1.2 \mathrm{~V} \end{aligned}$	± 2	± 5	LSB
EO	Offset error		± 1.5	± 2.5	
EG	Gain error		± 1.5	± 4	
ED	Differential linearity error		± 1	± 2	
EL	Integral linearity error		± 1.5	± 3	

1. Guaranteed by characterization results.

Table 75. ADC static accuracy at $\mathrm{f}_{\text {ADC }}=36 \mathrm{MHz}$

Symbol	Parameter	Test conditions	Typ	Max ${ }^{(1)}$	Unit
ET	Total unadjusted error	$\begin{gathered} \mathrm{f}_{\mathrm{ADC}}=36 \mathrm{MHz}, \\ \mathrm{~V}_{\mathrm{DDA}}=2.4 \text { to } 3.6 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{REF}}=1.7 \text { to } 3.6 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DDA}}-\mathrm{V}_{\mathrm{REF}}<1.2 \mathrm{~V} \end{gathered}$	± 4	± 7	LSB
EO	Offset error		± 2	± 3	
EG	Gain error		± 3	± 6	
ED	Differential linearity error		± 2	± 3	
EL	Integral linearity error		± 3	± 6	

1. Guaranteed by characterization results.

Table 76. ADC dynamic accuracy at $\mathrm{f}_{\text {ADC }}=18 \mathrm{MHz}$ - limited test conditions ${ }^{(1)}$

Symbol	Parameter	Test conditions	Min	Typ	Max	Unit
ENOB	Effective number of bits	$\begin{gathered} \mathrm{f}_{\mathrm{ADC}}=18 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{DDA}}=\mathrm{V}_{\text {REF+ }}=1.7 \mathrm{~V} \\ \text { Input Frequency }=20 \mathrm{KHz} \\ \text { Temperature }=25^{\circ} \mathrm{C} \end{gathered}$	10.3	10.4	-	bits
SINAD	Signal-to-noise and distortion ratio		64	64.2	-	dB
SNR	Signal-to-noise ratio		64	65	-	
THD	Total harmonic distortion		-67	-72	-	

1. Guaranteed by characterization results.

Table 77. ADC dynamic accuracy at $\mathrm{f}_{\mathrm{ADC}}=\mathbf{3 6} \mathrm{MHz}$ - limited test conditions ${ }^{(1)}$

Symbol	Parameter	Test conditions	Min	Typ	Max	Unit
ENOB	Effective number of bits	$\begin{gathered} \mathrm{f}_{\mathrm{ADC}}=36 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{DDA}}=\mathrm{V}_{\mathrm{REF}}=3.3 \mathrm{~V} \\ \text { Input Frequency }=20 \mathrm{KHz} \\ \text { Temperature }=25^{\circ} \mathrm{C} \end{gathered}$	10.6	10.8	-	bits
SINAD	Signal-to noise and distortion ratio		66	67	-	dB
SNR	Signal-to noise ratio		64	68	-	
THD	Total harmonic distortion		- 70	-72	-	

1. Guaranteed by characterization results.

Note: \quad ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.
Any positive injection current within the limits specified for $\mathrm{I}_{\mathrm{INJ}(\mathrm{PIN})}$ and $\Sigma l_{\mathrm{INJ}(\mathrm{PIN})}$ in Section 5.3.20 does not affect the ADC accuracy.

Figure 42. ADC accuracy characteristics

1. See also Table 74.
2. Example of an actual transfer curve.
3. Ideal transfer curve.
4. End point correlation line.
5. $\mathrm{E}_{\mathrm{T}}=$ Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO = Offset Error: deviation between the first actual transition and the first ideal one. EG = Gain Error: deviation between the last ideal transition and the last actual one. ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.

Figure 43. Typical connection diagram using the ADC

1. Refer to Table 72 for the values of $R_{\text {AIN }}, R_{A D C}$ and $C_{A D C}$.
2. $\mathrm{C}_{\text {parasitic }}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 5 pF). A high $\mathrm{C}_{\text {parasitic }}$ value downgrades conversion accuracy. To remedy this, $\mathrm{f}_{\mathrm{ADC}}$ should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in Figure 44 or Figure 45, depending on whether $\mathrm{V}_{\text {REF }}$ is connected to $\mathrm{V}_{\text {DDA }}$ or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

Figure 44. Power supply and reference decoupling ($\mathrm{V}_{\mathrm{REF}+}$ not connected to $\mathrm{V}_{\mathrm{DDA}}$)

1. $V_{R E F+}$ input is available on all packages except TFBGA100 whereas the $V_{R E F-} s$ available only on UFBGA176 and TFBGA216. When $V_{\text {REF }}$ is not available, it is internally connected to $V_{\text {DDA }}$ and $V_{\text {SSA }}$.

Figure 45. Power supply and reference decoupling ($\mathrm{V}_{\text {REF+ }}$ connected to $\mathrm{V}_{\text {DDA }}$)

1. $V_{R E F+}$ input is available on all packages except TFBGA100 whereas the $V_{\text {REF- }} s$ available only on UFBGA176 and TFBGA216. When $V_{\text {REF }}$ - is not available, it is internally connected to $V_{\text {DDA }}$ and $V_{\text {SSA }}$.

5.3.25 Temperature sensor characteristics

Table 78. Temperature sensor characteristics

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{T}_{\mathrm{L}}{ }^{(1)}$	$\mathrm{V}_{\text {SENSE }}$ linearity with temperature	-	± 1	± 2	${ }^{\circ} \mathrm{C}$
Avg_Slope $^{(1)}$	Average slope	-	2.5	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{25}{ }^{(1)}$	Voltage at $25^{\circ} \mathrm{C}$	-	0.76	-	V
$\mathrm{t}_{\text {START }}{ }^{(2)}$	Startup time	-	6	10	$\mu \mathrm{~s}$
$\mathrm{~T}_{\text {S_temp }}{ }^{(2)}$	ADC sampling time when reading the temperature $\left(1^{\circ} \mathrm{C}\right.$ accuracy $)$	10	-	-	$\mu \mathrm{s}$

1. Guaranteed by characterization results.
2. Guaranteed by design.

Table 79. Temperature sensor calibration values

Symbol	Parameter	Memory address
TS_CAL1	TS ADC raw data acquired at temperature of $30^{\circ} \mathrm{C}, \mathrm{V}_{\text {DDA }}=3.3 \mathrm{~V}$	$0 \times 1 \mathrm{FF} 0 \mathrm{~F} 44 \mathrm{C}-0 \times 1 \mathrm{FF} 0 \mathrm{~F} 44 \mathrm{D}$
TS_CAL2	TS ADC raw data acquired at temperature of $110^{\circ} \mathrm{C}, \mathrm{V}_{\text {DDA }}=3.3 \mathrm{~V}$	0×1 FF0 F44E - 0x1FF0 F44F

5.3.26 $\quad V_{B A T}$ monitoring characteristics

Table 80. $\mathrm{V}_{\text {BAT }}$ monitoring characteristics

Symbol	Parameter	Min	Typ	Max	Unit
R	Resistor bridge for $\mathrm{V}_{\mathrm{BAT}}$	-	50	-	$\mathrm{K} \Omega$
Q	Ratio on $\mathrm{V}_{\text {BAT }}$ measurement	-	4	-	-
$E r^{(1)}$	Error on Q	-1	-	+1	\%
$\mathrm{T}_{\text {S_vbat }}{ }^{(2)(2)}$	ADC sampling time when reading the $\mathrm{V}_{\text {BAT }}$ 1 mV accuracy	5	-	-	$\mu \mathrm{s}$

1. Guaranteed by design.
2. Shortest sampling time can be determined in the application by multiple iterations.

5.3.27 Reference voltage

The parameters given in Table 81 are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in Table 18.

Table 81. internal reference voltage

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {REFINT }}$	Internal reference voltage	$-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+105^{\circ} \mathrm{C}$	1.18	1.21	1.24	V
$\mathrm{~T}_{\text {S_vrefint }}{ }^{(1)}$	ADC sampling time when reading the internal reference voltage	-	10	-	-	$\mu \mathrm{s}$
$\mathrm{V}_{\text {REFINT_s }}{ }^{(2)}$	Internal reference voltage spread over the temperature range	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \mathrm{mV}$	-	3	5	mV

Table 81. internal reference voltage (continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {Coeff }}{ }^{(2)}$	Temperature coefficient	-	-	30	50	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\text {START }^{(2)}}{ }^{(2)}$	Startup time	-	-	6	10	$\mu \mathrm{~s}$

1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design.

Table 82. Internal reference voltage calibration values

Symbol	Parameter	Memory address
V REFIN_CAL	Raw data acquired at temperature of $30^{\circ} \mathrm{C}_{\text {VDDA }}=3.3 \mathrm{~V}$	0×1 FF0 F44A - 0x1FF0 F44B

5.3.28 DAC electrical characteristics

Table 83. DAC characteristics

Symbol	Parameter		Min	Typ	Max	Unit	Comments
$V_{\text {DDA }}$	Analog supply voltage		$1.7{ }^{(1)}$	-	3.6	V	-
$V_{\text {REF+ }}$	Reference supply voltage		$1.7{ }^{(1)}$	-	3.6	V	$\mathrm{V}_{\text {REF+ }} \leq \mathrm{V}_{\text {DDA }}$
$\mathrm{V}_{\text {SSA }}$	Ground		0	-	0	V	-
$\mathrm{R}_{\text {LOAD }}{ }^{(2)}$	Resistive load with buffer ON	Connected to $V_{\text {SSA }}$ Connected to $V_{\text {DDA }}$	5 25	-	-	$\mathrm{k} \Omega$	-
$\mathrm{R}_{\mathrm{O}}{ }^{(2)}$	Impedance output with buffer OFF		-	-	15	k Ω	When the buffer is OFF, the Minimum resistive load between DAC_OUT and $V_{S S}$ to have a 1% accuracy is $1.5 \mathrm{M} \Omega$
$\mathrm{C}_{\text {LOAD }}{ }^{(2)}$	Capacitive load		-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).
$\underset{\min ^{(2)}}{\text { DAC_OUT }}$	Lower DAC_OUT voltage with buffer ON		0.2	-	-	V	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code
$\underset{\max ^{(2)}}{\text { DAC_OUT }}$	Higher DAC_OUT voltage with buffer ON		-	-	$\begin{array}{\|c} \mathrm{V}_{\mathrm{DDA}}- \\ 0.2 \end{array}$	V	($0 \times 0 \mathrm{EO}$) to $(0 \mathrm{xF} 1 \mathrm{C})$ at $\mathrm{V}_{\text {REF }+}=3.6 \mathrm{~V}$ and $(0 \times 1 \mathrm{C} 7)$ to $(0 x E 38)$ at $\mathrm{V}_{\text {REF }+}=1.7 \mathrm{~V}$
$\underset{\min ^{(2)}}{\text { DAC_OUT }}$	Lower DAC_OUT voltage with buffer OFF		-	0.5	-	mV	It gives the maximum output excursion of
$\underset{\max ^{(2)}}{ }$	Higher DAC_OUT voltage with buffer OFF		-	-	$\begin{gathered} \mathrm{V}_{\text {REF+ }+}- \\ \text { 1LSB } \end{gathered}$	V	the DAC.

Table 83. DAC characteristics (continued)

Symbol	Parameter	Min	Typ	Max	Unit	Comments
$\mathrm{IVREFF}^{(4)}$	DAC DC $V_{\text {REF }}$ current consumption in quiescent mode (Standby mode)	-	170	240	$\mu \mathrm{A}$	With no load, worst code (0×800) at $\mathrm{V}_{\text {REF+ }}=3.6 \mathrm{~V}$ in terms of DC consumption on the inputs
		-	50	75		With no load, worst code (0xF1C) at $\mathrm{V}_{\text {REF+ }}=3.6 \mathrm{~V}$ in terms of DC consumption on the inputs
$\mathrm{I}_{\text {DDA }}{ }^{(4)}$	DAC DC $V_{\text {DDA }}$ current consumption in quiescent mode ${ }^{(3)}$	-	280	380	$\mu \mathrm{A}$	With no load, middle code (0×800) on the inputs
		-	475	625	$\mu \mathrm{A}$	With no load, worst code ($0 x \mathrm{FF} 1 \mathrm{C}$) at $\mathrm{V}_{\text {REF+ }}=3.6 \mathrm{~V}$ in terms of DC consumption on the inputs
DNL ${ }^{(4)}$	Differential non linearity Difference between two consecutive code-1LSB)	-	-	± 0.5	LSB	Given for the DAC in 10-bit configuration.
		-	-	± 2	LSB	Given for the DAC in 12-bit configuration.
$\mathrm{INL}{ }^{(4)}$	Integral non linearity (difference between measured value at Code i and the value at Code ion a line drawn between Code 0 and last Code 1023)	-	-	± 1	LSB	Given for the DAC in 10-bit configuration.
		-	-	± 4	LSB	Given for the DAC in 12-bit configuration.
Offset ${ }^{(4)}$	Offset error (difference between measured value at Code (0×800) and the ideal value $=$ $\mathrm{V}_{\mathrm{REF}+} / 2$)	-	-	± 10	mV	Given for the DAC in 12-bit configuration
		-	-	± 3	LSB	Given for the DAC in 10-bit at $\mathrm{V}_{\text {REF }+}=$ 3.6 V
		-	-	± 12	LSB	Given for the DAC in 12-bit at $\mathrm{V}_{\text {REF+ }}=$ 3.6 V
$\begin{aligned} & \text { Gain } \\ & \text { error }{ }^{(4)} \end{aligned}$	Gain error	-	-	± 0.5	\%	Given for the DAC in 12-bit configuration
$\mathrm{t}_{\text {SETTLING }}{ }^{(4)}$	Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ± 4 LSB	-	3	6	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{C}_{\text {LOAD }} \leq 50 \mathrm{pF}, \\ & \mathrm{R}_{\text {LOAD }} \geq 5 \mathrm{k} \Omega \end{aligned}$
THD ${ }^{(4)}$	Total Harmonic Distortion Buffer ON	-	-	-	dB	$\begin{aligned} & \mathrm{C}_{\text {LOAD }} \leq 50 \mathrm{pF}, \\ & \mathrm{R}_{\text {LOAD }} \geq 5 \mathrm{k} \Omega \end{aligned}$
Update rate ${ }^{(2)}$	Max frequency for a correct DAC_OUT change when small variation in the input code (from code ito i+1LSB)	-	-	1	MS/s	$\begin{aligned} & \mathrm{C}_{\text {LOAD }} \leq 50 \mathrm{pF}, \\ & \mathrm{R}_{\text {LOAD }} \geq 5 \mathrm{k} \Omega \end{aligned}$

Table 83. DAC characteristics (continued)

Symbol	Parameter	Min	Typ	Max	Unit	Comments
$t_{\text {WAKEUP }}{ }^{(4)}$	Wakeup time from off state (Setting the ENx bit in the DAC Control register)	-	6.5	10	$\mu \mathrm{s}$	$C_{\text {LOAD }} \leq 50 \mathrm{pF}, \mathrm{R}_{\text {LOAD }} \geq 5 \mathrm{k} \Omega$ input code between lowest and highest possible ones.
PSRR+ ${ }^{(2)}$	Power supply rejection ratio (to $V_{\text {DDA }}$) (static DC measurement)	-	-67	-40	dB	No $\mathrm{R}_{\text {LOAD }}, \mathrm{C}_{\text {LOAD }}=50 \mathrm{pF}$

1. $\mathrm{V}_{\mathrm{DDA}}$ minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.18.2: Internal reset OFF).
2. Guaranteed by design.
3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic consumption occurs.
4. Guaranteed by characterization results.

Figure 46. 12-bit buffered /non-buffered DAC

1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

5.3.29 Communications interfaces

1^{2} C interface characteristics

The $I^{2} C$ interface meets the timings requirements of the $I^{2} \mathrm{C}$-bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to $100 \mathrm{kbit} / \mathrm{s}$
- Fast-mode (Fm): with a bit rate up to $400 \mathrm{kbit} / \mathrm{s}$.
- Fast-mode Plus (Fm+): with a bit rate up to $1 \mathrm{Mbit} / \mathrm{s}$.

The $I^{2} C$ timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to RM0410 reference manual) and when the I2CCLK frequency is greater than the minimum shown in the table below:

Table 84. Minimum I2CCLK frequency in all I2C modes

Symbol	Parameter	Condition		Min	Unit
$\mathrm{f}(\mathrm{I} 2 \mathrm{CCLK})$	I2CCLK frequency	Standard-mode	-	2	MHz
		Fast-mode	Analog filter ON DNF=0	8	
			Analog filter OFF DNF=1	9	
		Fast-mode Plus	Analog filter ON DNF=0	16	
			Analog filter OFF DNF=1	16	

The SDA and SCL I/O requirements are met with the following restrictions:

- The SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.
- The 20 mA output drive requirement in Fast-mode Plus is not supported. This limits the maximum load Cload supported in $\mathrm{Fm}+$, which is given by these formulas:

$$
\begin{aligned}
& \operatorname{Tr}(S D A / S C L)=0.8473 x R_{p} x C_{l o a d} \\
& R_{p}(\min)=\left(V D D-V_{\mathrm{OL}}(\max)\right) / I_{\mathrm{OL}}(\max)
\end{aligned}
$$

Where Rp is the I2C lines pull-up. Refer to Section 5.3.20: I/O port characteristics for the I2C I/Os characteristics.
All I ${ }^{2}$ C SDA and SCL I/Os embed an analog filter. Refer to Table 85 for the analog filter characteristics:

Table 85. I2C analog filter characteristics ${ }^{(1)}$

Symbol	Parameter	Min	Max	Unit
t_{AF}	Maximum pulse width of spikes that are suppressed by the analog filter	$50^{(2)}$	$70^{(3)}$	ns

1. Guaranteed by characterization results.
2. Spikes with widths below $\mathrm{t}_{\mathrm{AF}(\mathrm{min})}$ are filtered.
3. Spikes with widths above $\mathrm{t}_{\mathrm{AF}(\max)}$ are not filtered.

SPI interface characteristics

Unless otherwise specified, the parameters given in Table 86 for the SPI interface are derived from tests performed under the ambient temperature, $\mathrm{f}_{\mathrm{PCLKx}}$ frequency and V_{DD} supply voltage conditions summarized in Table 18, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load $\mathrm{C}=30 \mathrm{pF}$
- Measurement points are done at CMOS levels: $0.5 \mathrm{~V}_{\mathrm{DD}}$

Refer to Section 5.3.20: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Table 86. SPI dynamic characteristics ${ }^{(1)}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\begin{gathered} \mathrm{f}_{\mathrm{SCK}} \\ 1 / \mathrm{t}_{\mathrm{C}(\mathrm{SCK})} \end{gathered}$	SPI clock frequency	Master mode SPI1,4,5,6 $2.7 \leq \mathrm{VDD} \leq 3.6$	-	-	$54^{(2)}$	MHz
		$\begin{gathered} \text { Master mode } \\ \text { SPI1,4,5,6 } \\ 1.71 \leq \text { VDD } \leq 3.6 \end{gathered}$			27	
		Master transmitter mode $\begin{gathered} \text { SPI1,4,5,6 } \\ 1.71 \leq \text { VDD } \leq 3.6 \end{gathered}$			54	
		Slave receiver mode SPI1,4,5,6 $1.71 \leq \mathrm{VDD} \leq 3.6$			54	
		Slave mode transmitter/full duplex SPI1,4,5,6 $2.7 \leq$ VDD ≤ 3.6			$50^{(3)}$	
		Slave mode transmitter/full duplex SPI1,4,5,6 $1.71 \leq \mathrm{VDD} \leq 3.6$			$37^{(3)}$	
		Master \& Slave mode SPI2,3 $1.71 \leq \mathrm{VDD} \leq 3.6$			27	
tsu(NSS)	NSS setup time	Slave mode, SPI presc = 2	$4^{*} \mathrm{~T}_{\text {PLCK }}$	-	-	
th(NSS)	NSS hold time	Slave mode, SPI presc = 2	$2^{*} \mathrm{~T}_{\text {PLCK }}$	-	-	ns
$\begin{aligned} & \mathrm{tw}(\mathrm{SCKH}) \\ & \mathrm{tw}(\mathrm{SCKL}) \end{aligned}$	SCK high and low time	Master mode	TPLCK ${ }^{-2}$	TPLCK	$\mathrm{T}_{\text {PLCK }}+2$	

Table 86. SPI dynamic characteristics ${ }^{(1)}$ (continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
tsu(MI)	Data input setup time	Master mode	$\begin{gathered} 4 \\ 9^{(4)} \end{gathered}$	-	-	ns
tsu(SI)		Slave mode	4.5	-	-	
th(MI)	Data input hold time	Master mode	$\begin{gathered} 3 \\ 0^{(4)} \end{gathered}$	-	-	
th(SI)		Slave mode	2	-	-	
ta(SO)	Data output access time	Slave mode	7	-	21	
tdis(SO)	Data output disable time	Slave mode	5	-	12	
tv(SO)	Data output valid time	Slave mode $2.7 \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	6.5	10	
		Slave mode 1.71 $\mathrm{VVDD} \leq 3.6 \mathrm{~V}$	-	6.5	13.5	
tv(MO)		Master mode	-	2	6	
th(SO)	Data output hold time	$\begin{gathered} \text { Slave mode } \\ 1.71 \leq \mathrm{VDD} \leq 3.6 \mathrm{~V} \end{gathered}$	4.5	-	-	
th(MO)		Master mode	0	-	-	

1. Guaranteed by characterization results.
2. Excepting SPI1 with SCK IO pin mapped on PA5. In this configuration, Maximum achievable frequency is 40 MHz .
3. Maximum Frequency of Slave Transmitter is determined by sum of Tv(SO) and Tsu(MI) intervals which has to fit into SCK level phase preceding the SCK sampling edge. This value can be achieved when it communicates with a Master having Tsu(MI) $=0$ while signal Duty(SCK) $=50 \%$.
4. Only for SPI6.

Figure 47. SPI timing diagram - slave mode and CPHA = 0

Figure 48. SPI timing diagram - slave mode and CPHA $=1^{(1)}$

1. Measurement points are done at $0.5 \mathrm{~V}_{\mathrm{DD}}$ and with external $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.

Figure 49. SPI timing diagram - master mode ${ }^{(1)}$

1. Measurement points are done at $0.5 \mathrm{~V}_{\mathrm{DD}}$ and with external $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.

$I^{2} S$ interface characteristics

Unless otherwise specified, the parameters given in Table 87 for the I^{2} S interface are derived from tests performed under the ambient temperature, $f_{P C L K x}$ frequency and $V_{D D}$ supply voltage conditions summarized in Table 18, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load $\mathrm{C}=30 \mathrm{pF}$
- Measurement points are done at CMOS levels: $0.5 \mathrm{~V}_{\mathrm{DD}}$

Refer to Section 5.3.20: I/O port characteristics for more details on the input/output alternate function characteristics (CK, SD, WS).

Table 87. $\mathrm{I}^{2} \mathrm{~S}$ dynamic characteristics ${ }^{(1)}$

Symbol	Parameter	Conditions	Min	Max	Unit
$\mathrm{f}_{\text {MCK }}$	I2S Main clock output	-	256x8K	256xFs ${ }^{(2)}$	MHz
f_{CK}	12S clock frequency	Master data	-	64xFs	MHz
		Slave data	-	64xFs	
$\mathrm{D}_{\text {CK }}$	I2S clock frequency duty cycle	Slave receiver	30	70	\%
$\mathrm{t}_{\mathrm{v} \text { (WS) }}$	WS valid time	Master mode	-	3	ns
$\mathrm{t}_{\mathrm{h} \text { (WS) }}$	WS hold time	Master mode	0	-	
$\mathrm{t}_{\text {su }}$ (WS)	WS setup time	Slave mode	5	-	
$\mathrm{t}_{\mathrm{h} \text { (WS) }}$	WS hold time	Slave mode	2	-	
$\mathrm{t}_{\text {su(SD_MR) }}$	Data input setup time	Master receiver	2.5	-	
$\mathrm{t}_{\text {su(SD_SR) }}$		Slave receiver	2.5	-	
$\mathrm{th}_{\text {(SD_MR) }}$	Data input hold time	Master receiver	3.5	-	
$\mathrm{t}_{\text {h(SD_SR) }}$		Slave receiver	2	-	
$\mathrm{t}_{\mathrm{v} \text { (SD_ST) }}$	Data output valid time	Slave transmitter (after enable edge)	-	12	
$\mathrm{t}_{\mathrm{v} \text { (SD_MT) }}$		Master transmitter (after enable edge)	-	3	
$\mathrm{t}_{\text {h(SD_ST) }}$	Data output hold time	Slave transmitter (after enable edge)	5	-	
$\mathrm{t}_{\text {h(SD_MT) }}$		Master transmitter (after enable edge)	0	-	

1. Guaranteed by characterization results.
2. The maximum value of $256 x F s$ is 49.152 MHz (APB1 maximum frequency).

Note: \quad Refer to RM0410 reference manual I2S section for more details about the sampling frequency $\left(F_{S}\right) . f_{M C K}, f_{C K}$, and $D_{C K}$ values reflect only the digital peripheral behavior. The values of these parameters might be slightly impacted by the source clock precision. $D_{C K}$ depends mainly on the value of $O D D$ bit. The digital contribution leads to a minimum value of (I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). F_{S} maximum value is supported for each mode/condition.

Figure 50. $\mathrm{I}^{2} \mathrm{~S}$ slave timing diagram (Philips protocol) ${ }^{(1)}$

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 51. I^{2} S master timing diagram (Philips protocol) ${ }^{(1)}$

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

JATG/SWD characteristics

Unless otherwise specified, the parameters given in Table 88 for JTAG/SWD are derived from tests performed under the ambient temperature, $\mathrm{f}_{\text {HCLK }}$ frequency and VDD supply voltage conditions summarized in Table 18, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load $\mathrm{C}=30 \mathrm{pF}$
- Measurement points are performed at CMOS levels: $0.5 \mathrm{~V}_{\mathrm{DD}}$

Refer to Section 5.3.20: I/O port characteristics for more details on the input/output alternate function characteristics (SCK,SD,WS).

Table 88. Dynamics characteristics: JTAG characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
F_{pp}		$2.7 \mathrm{~V}<\mathrm{VDD}<3.6 \mathrm{~V}$	-	-	40	
$1 / \mathrm{t}_{\mathrm{c} \text { (TCK) }}$	TCK clock frequency	1.71 <VDD<3.6V	-	-	35	MHz
$\mathrm{t}_{\mathrm{w} \text { (TCKH) }}$						ns
$t_{\text {w (TCKL) }}$						
$\mathrm{t}_{\text {su(TMS }}$	TMS input setup time	-	3	-	-	
$t_{h(T M S)}$	TMS input hold time	-	0	-	-	
$\mathrm{t}_{\mathrm{su}(\text { TDI })}$	TDI input setup time	-	0.5	-	-	
$t_{\text {(TDI) }}$	TDI input hold time	-	2	-	-	
$\mathrm{t}_{\mathrm{ov} \text { (TDO) }}$	TDO output valid time	$2.7 \mathrm{~V}<\mathrm{VDD}<3.6 \mathrm{~V}$	-	9	11	
		1.71 <VDD<3.6V	-	9	13	
$\mathrm{t}_{\mathrm{oh}(\text { (TDO) }}$	TDO output hold time	-	7.5	-	-	

Table 89. Dynamics characteristics: SWD characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
F_{pp}		$2.7 \mathrm{~V}<\mathrm{VDD}<3.6 \mathrm{~V}$	-	-	80	
$1 / \mathrm{c}_{\text {(SWCLK) }}$	SWCLK clock frequency	1.71 <VDD<3.6V	-	-	50	MHz
$\mathrm{t}_{\mathrm{w} \text { (SWCLKH) }}$						ns
$\mathrm{t}_{\mathrm{w} \text { (SWCLKL) }}$						
$\mathrm{t}_{\text {su(SWDIO) }}$	SWDIO input setup time	-	3.5	-	-	
$t_{\text {(SWDIO) }}$	SWDIO input hold time	-	0	-	-	
$\mathrm{t}_{\mathrm{ov} \text { (SWDIO) }}$	SWDIO output valid time	$2.7 \mathrm{~V}<\mathrm{VDD}<3.6 \mathrm{~V}$	-	11	12	
		1.71 <VDD<3.6V	-	11	16.5	
$\mathrm{t}_{\text {oh(SWDIO) }}$	SWDIO output hold time	-	9	-	-	

JTAG/SWD timing diagrams

Figure 52. JTAG timing diagram

Figure 53. SWD timing diagram

SAI characteristics:

Unless otherwise specified, the parameters given in Table 90 for SAI are derived from tests performed under the ambient temperature, $\mathrm{f}_{\text {PCLKx }}$ frequency and VDD supply voltage conditions summarized in Table 18, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load $\mathrm{C}=30 \mathrm{pF}$
- Measurement points are performed at CMOS levels: $0.5 \mathrm{~V}_{\mathrm{DD}}$

Refer to Section 5.3.20: I/O port characteristics for more details on the input/output alternate function characteristics (SCK,SD,WS).

Table 90. SAI characteristics ${ }^{(1)}$

Symbol	Parameter	Conditions	Min	Max	Unit
$\mathrm{f}_{\text {MCK }}$	SAI Main clock output	-	$256 \times 8 \mathrm{~K}$	256xFs	MHz
F_{CK}	SAI clock frequency ${ }^{(2)}$	Master data: 32 bits	-	$128 \times F s^{(3)}$	MHz
		Slave data: 32 bits	-	128xFs	
	FS valid time	Master mode $2.7 \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	15	ns
S)		Master mode $1.71 \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	20	
$\mathrm{t}_{\text {su(FS) }}$	FS setup time	Slave mode	7	-	
$t_{\text {(FSS }}$	FS hold time	Master mode	1	-	
		Slave mode	1	-	
$\mathrm{t}_{\text {su(SD_A_MR) }}$	Data input setup time	Master receiver	3	-	
$\mathrm{t}_{\text {su(SD_B_SR) }}$		Slave receiver	3.5	-	
$\mathrm{t}_{\text {(SD_A_MR) }}$	Data input hold time	Master receiver	5	-	
$\mathrm{t}_{\mathrm{h} \text { (SD_B_SR) }}$		Slave receiver	1	-	

Table 90. SAI characteristics ${ }^{(1)}$ (continued)

Symbol	Parameter	Conditions	Min	Max	Unit
$\mathrm{t}_{\mathrm{v} \text { (SD_B_ST) }}$	Data output valid time	Slave transmitter (after enable edge) $2.7 \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	12	ns
		Slave transmitter (after enable edge) $1.71 \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	20	
$\mathrm{t}_{\text {h(SD_B_MT) }}$	Data output hold time	Slave transmitter (after enable edge)	5	-	
$\mathrm{t}_{\mathrm{v}(\mathrm{SD} \text {-MT)_A }}$	Data output valid time	Master transmitter (after enable edge) $2.7 \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	15	
		Master transmitter (after enable edge) $1.71 \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	-	20	
$\mathrm{t}_{\text {(SD_A_MT) }}$	Data output hold time	Master transmitter (after enable edge)	5	-	

1. Guaranteed by characterization results.
2. APB clock frequency must be at least twice SAI clock frequency.
3. With $F_{S}=192 \mathrm{kHz}$.

Figure 54. SAI master timing waveforms

Figure 55. SAI slave timing waveforms

USB OTG full speed (FS) characteristics

This interface is present in both the USB OTG HS and USB OTG FS controllers.
Table 91. USB OTG full speed startup time

Symbol	Parameter	Max	Unit
t $_{\text {STARTUP }}{ }^{(1)}$	USB OTG full speed transceiver startup time	1	$\mu \mathrm{~s}$

1. Guaranteed by design.

Table 92. USB OTG full speed DC electrical characteristics

Symbol		Parameter	Conditions	Min. (1)	Typ.	Max. (1)	Unit
Input levels	$V_{\text {DDUSB }}$	USB OTG full speed transceiver operating voltage	-	$3.0^{(2)}$	-	3.6	V
	$V_{D I}{ }^{(3)}$	Differential input sensitivity	I(USB_FS_DP/DM, USB_HS_DP/DM)	0.2	-	-	V
	$\mathrm{V}_{\mathrm{CM}}{ }^{(3)}$	Differential common mode range	Includes $\mathrm{V}_{\text {DI }}$ range	0.8	-	2.5	
	$V_{S E}{ }^{(3)}$	Single ended receiver threshold	-	1.3	-	2.0	
Output levels	$\mathrm{V}_{\text {OL }}$	Static output level low	R_{L} of $1.5 \mathrm{k} \Omega$ to $3.6 \mathrm{~V}^{(4)}$	-	-	0.3	V
	V_{OH}	Static output level high	R_{L} of $15 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{SS}}{ }^{(4)}$	2.8	-	3.6	

Table 92. USB OTG full speed DC electrical characteristics (continued)

Symbol	Parameter	Conditions	Min. (1)	Typ.	Max. (1)	Unit
R_{PD}	PA11, PA12, PB14, PB15 (USB_FS_DP/DM, USB_HS_DP/DM)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$	17	21	24	$\mathrm{k} \Omega$
	PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)		2.4	5.2	8	
RPu	PA12, PB15 (USB_FS_DP, USB_HS_DP)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}$	1.5	1.8	2.1	
	PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	0.55	0.95	1.35	

1. All the voltages are measured from the local ground potential.
2. The USB OTG full speed transceiver functionality is ensured down to 2.7 V but not the full USB full speed electrical characteristics which are degraded in the 2.7 -to-3.0 $\vee \mathrm{V}_{\text {DDUSB }}$ voltage range.
3. Guaranteed by design.
4. R_{L} is the load connected on the USB OTG full speed drivers.

Note: \quad When VBUS sensing feature is enabled, PA9 and PB13 should be left at their default state (floating input), not as alternate function. A typical $200 \mu A$ current consumption of the sensing block (current to voltage conversion to determine the different sessions) can be observed on PA9 and PB13 when the feature is enabled.

Figure 56. USB OTG full speed timings: definition of data signal rise and fall time

Table 93. USB OTG full speed electrical characteristics ${ }^{(1)}$

Driver characteristics					
Symbol	Parameter	Conditions	Min	Max	Unit
t_{r}	Rise time $^{(2)}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4	20	ns
t_{f}	Fall time $^{(2)}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4	20	ns
$\mathrm{t}_{\mathrm{rfm}}$	Rise/ fall time matching	$\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}$	90	110	$\%$
$\mathrm{~V}_{\mathrm{CRS}}$	Output signal crossover voltage	-	1.3	2.0	V
$\mathrm{Z}_{\mathrm{DRV}}$	Output driver impedance ${ }^{(3)}$	Driving high or low	28	44	Ω

1. Guaranteed by design.
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).
3. No external termination series resistors are required on DP ($\mathrm{D}+$) and $\mathrm{DM}(\mathrm{D}-)$ pins since the matching impedance is included in the embedded driver.

USB high speed (HS) characteristics

Unless otherwise specified, the parameters given in Table 96 for ULPI are derived from tests performed under the ambient temperature, $\mathrm{f}_{\text {HCLK }}$ frequency summarized in Table 95 and $V_{D D}$ supply voltage conditions summarized in Table 94, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11, unless otherwise specified
- Capacitive load $\mathrm{C}=20 \mathrm{pF}$, unless otherwise specified
- Measurement points are done at CMOS levels: $0.5 \mathrm{~V}_{\mathrm{DD}}$.

Refer to Section 5.3.20: I/O port characteristics for more details on the input/output characteristics.

Table 94. USB HS DC electrical characteristics

Symbol		Parameter	Min. ${ }^{(1)}$	Max. $^{(1)}$	Unit
Input level	V_{DD}	USB OTG HS operating voltage	1.7	3.6	V

1. All the voltages are measured from the local ground potential.

Table 95. USB HS clock timing parameters ${ }^{(1)}$

Symbol	Parameter		Min	Typ	Max	Unit
-	$\mathrm{f}_{\text {HCLK }}$ value to guarantee proper operation of USB HS interface		30	-	-	MHz
FSTART_8BIT	Frequency (first transition)	8-bit $\pm 10 \%$	54	60	66	MHz
$\mathrm{F}_{\text {STEADY }}$	Frequency (steady state) $\pm 500 \mathrm{ppm}$		59.97	60	60.03	MHz
DSTART_8BIT	Duty cycle (first transition)	8-bit $\pm 10 \%$	40	50	60	\%
D ${ }_{\text {STEADY }}$	Duty cycle (steady state) $\pm 500 \mathrm{ppm}$		49.975	50	50.025	\%
$\mathrm{t}_{\text {STEAD }}$	Time to reach the steady state frequency and duty cycle after the first transition		-	-	1.4	ms
tstart_DEV	Clock startup time after the de-assertion of SuspendM	Peripheral	-	-	5.6	ms
tstart_host		Host	-	-	-	
$t_{\text {PREP }}$	PHY preparation time after the first transition of the input clock		-	-	-	$\mu \mathrm{s}$

[^5]Figure 57. ULPI timing diagram

Table 96. Dynamic characteristics: USB ULPI ${ }^{(1)}$

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\text {SC }}$	Control in (ULPI_DIR, ULPI_NXT) setup time	-	2	-	-	ns
t_{HC}	Control in (ULPI_DIR, ULPI_NXT) hold time	-	1.5	-	-	
$t_{\text {SD }}$	Data in setup time	-	2	-	-	
t_{HD}	Data in hold time	-	1	-	-	
$t_{D C} / t_{D D}$	Data/control output delay	$\begin{gathered} 2.7 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}, \\ \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} \end{gathered}$	-	6.5	8	
		-	-	6.5	11	
		$\begin{gathered} 1.7 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}, \\ \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{gathered}$	-			

1. Guaranteed by characterization results.

Ethernet characteristics

Unless otherwise specified, the parameters given in Table 97, Table 98 and Table 99 for SMI, RMII and MII are derived from tests performed under the ambient temperature, $\mathrm{f}_{\mathrm{HCLK}}$ frequency summarized in Table 18, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] $=10$
- Capacitive load $\mathrm{C}=20 \mathrm{pF}$
- Measurement points are done at CMOS levels: $0.5 \mathrm{~V}_{\text {DD }}$.

Refer to Section 5.3.20: I/O port characteristics for more details on the input/output characteristics.

Table 97 gives the list of Ethernet MAC signals for the SMI (station management interface) and Figure 58 shows the corresponding timing diagram.

Figure 58. Ethernet SMI timing diagram

Table 97. Dynamics characteristics: Ethernet MAC signals for SMI ${ }^{(1)}$

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{t}_{\text {MDC }}$	MDC cycle time(2.38 MHz)	400	400	403	
	$\mathrm{~T}_{\mathrm{d} \text { (MDIO) }}$	Write data valid time	$\mathrm{T}_{\text {HCLK }}+1$	$\mathrm{~T}_{\text {HCLK }}+1.5$	$\mathrm{~T}_{\text {HCLK }}+3$
	ns				
$\mathrm{t}_{\text {su(MDIO) }}$		12.5	-	-	
$\mathrm{t}_{\mathrm{h} \text { (MDIO) }}$	Read data hold time	0	-	-	

1. Guaranteed by characterization results.

Table 98 gives the list of Ethernet MAC signals for the RMII and Figure 59 shows the corresponding timing diagram.

Figure 59. Ethernet RMII timing diagram

Table 98. Dynamics characteristics: Ethernet MAC signals for RMII ${ }^{(1)}$

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{t}_{\text {su(RXD })}$	Receive data setup time	1	-	-	ns
$\mathrm{t}_{\mathrm{in}(\mathrm{RXD})}$	Receive data hold time	2	-	-	
$\mathrm{t}_{\text {su(}}$ (CRS $)$	Carrier sense setup time	2	-	-	
$\mathrm{t}_{\mathrm{in} \text { (CRS) }}$	Carrier sense hold time	2	-	-	
$\mathrm{t}_{\mathrm{d} \text { (TXEN) }}$	Transmit enable valid delay time	7.5	8	12	
$\mathrm{t}_{\text {(} \text { (TXD) }}$	Transmit data valid delay time	7	7.5	12.5	

1. Guaranteed by characterization results.

Table 99 gives the list of Ethernet MAC signals for MII and Figure 59 shows the corresponding timing diagram.

Figure 60. Ethernet MII timing diagram

Table 99. Dynamics characteristics: Ethernet MAC signals for MII ${ }^{(1)}$

Symbol	Parameter	Min	Typ	Max	Unit
$t_{\text {su(RXD })}$	Receive data setup time	1	-	-	ns
$\mathrm{tin}_{\text {(RXD }}$)	Receive data hold time	2.5	-	-	
$\mathrm{t}_{\mathrm{su}(\mathrm{DV})}$	Data valid setup time	1.5	-	-	
$\mathrm{t}_{\text {ih(}}(\mathrm{DV})$	Data valid hold time	0.5	-	-	
$\mathrm{t}_{\text {su(ER) }}$	Error setup time	2.5	-	-	
$\mathrm{t}_{\text {ih(ER) }}$	Error hold time	0.5	-	-	
$\mathrm{t}_{\mathrm{d} \text { (TXEN) }}$	Transmit enable valid delay time	10	8	13	
$\mathrm{t}_{\mathrm{d} \text { (TXD) }}$	Transmit data valid delay time	9	7.5	13	

1. Guaranteed by characterization results.

Table 100. MDIO Slave timing parameters

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{F}_{\mathrm{sDC}}$	Management Data clock	-	-	40	MHz
$\mathrm{t}_{\mathrm{d} \text { (MDIO) }}$	Management Data input/output output valid time	7	8	20	
$\mathrm{t}_{\text {su(MDIO) }}$	Management Data input/output setup time	4	-	-	ns
	$\mathrm{t}_{\mathrm{h} \text { (MDIO) }}$	Management Data input/output hold time	1	-	-

The MDIO controller is mapped on APB2 domain. The frequency of the APB bus should at least 1.5 times the MDC frequency: $\mathrm{F}_{\mathrm{PCLK} 2} \geq 1.5{ }^{*} \mathrm{~F}_{\mathrm{MDC}}$

Figure 61. MDIO Slave timing diagram

CAN (controller area network) interface

Refer to Section 5.3.20: I/O port characteristics for more details on the input/output alternate function characteristics (CANx_TX and CANx_RX).

5.3.30
 FMC characteristics

Unless otherwise specified, the parameters given in Table 101 to Table 114 for the FMC interface are derived from tests performed under the ambient temperature, $\mathrm{f}_{\text {HCLK }}$ frequency and V_{DD} supply voltage conditions summarized in Table 18, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Measurement points are done at CMOS levels: 0.5 V DD

Refer to Section 5.3.20: I/O port characteristics for more details on the input/output characteristics.

Asynchronous waveforms and timings

Figure 62 through Figure 65 represent asynchronous waveforms and Table 101 through Table 108 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- AddressSetupTime $=0 \times 1$
- AddressHoldTime $=0 \times 1$
- DataSetupTime $=0 \times 1$ (except for asynchronous NWAIT mode , DataSetupTime $=0 \times 5$)
- BusTurnAroundDuration $=0 \times 0$
- Capcitive load CL $=30 \mathrm{pF}$

In all timing tables, the $\mathrm{T}_{\text {HCLK }}$ is the HCLK clock period
Figure 62. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

[^6]Table 101. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings ${ }^{(1)(2)}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\mathrm{w} \text { (NE) }}$	FMC_NE low time	$2 \mathrm{~T}_{\text {HCLK }}-1$	$2 \mathrm{~T}_{\text {HCLK }}+1$	
$\mathrm{t}_{\mathrm{v} \text { (NOE_NE) }}$	FMC_NEx low to FMC_NOE low	0	0.5	
$\mathrm{t}_{\mathrm{w} \text { (NOE) }}$	FMC_NOE low time	$2 \mathrm{~T}_{\text {HCLK }}-1$	$2 \mathrm{~T}_{\text {HCLK }}+1$	
$\mathrm{t}_{\mathrm{h} \text { (NE_NOE) }}$	FMC_NOE high to FMC_NE high hold time	0	-	
$\mathrm{t}_{\mathrm{v} \text { (A_NE) }}$	FMC_NEx low to FMC_A valid	-	0.5	
$\mathrm{t}_{\mathrm{h} \text { (A_NOE) }}$	Address hold time after FMC_NOE high	0	-	
$\mathrm{t}_{\mathrm{v}(\text { BL_NE) }}$	FMC_NEx low to FMC_BL valid	-	0.5	
$\mathrm{t}_{\mathrm{h} \text { (BL_NOE) }}$	FMC_BL hold time after FMC_NOE high	0	-	
$\mathrm{t}_{\text {su(Data_NE) }}$	Data to FMC_NEx high setup time	$\mathrm{T}_{\text {HCLK }}-1$	-	
$\mathrm{t}_{\text {su(Data_NOE) }}$	Data to FMC_NOEx high setup time	$\mathrm{T}_{\text {HCLK }}-1$	-	
$\mathrm{t}_{\mathrm{h} \text { (Data_NOE) }}$	Data hold time after FMC_NOE high	0	-	
$\mathrm{t}_{\mathrm{h} \text { (Data_NE) }}$	Data hold time after FMC_NEx high	0	-	
$\mathrm{t}_{\mathrm{v}(\text { NADV_NE) }}$	FMC_NEx low to FMC_NADV low	-	0	
$\mathrm{t}_{\mathrm{w} \text { (NADV) }}$	FMC_NADV low time	-	$\mathrm{T}_{\text {HCLK }}+1$	

1. $C_{L}=30 \mathrm{pF}$.
2. Guaranteed by characterization results.

Table 102. Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT timings ${ }^{(1)}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\mathrm{w}(\mathrm{NE})}$	FMC_NE low time	$7 \mathrm{~T}_{\text {HCLK }}+1$	$7 \mathrm{~T}_{\text {HCLK }}+1$	ns
$\mathrm{t}_{\mathrm{w} \text { (NOE) }}$	FMC_NWE low time	$5 \mathrm{~T}_{\text {HCLK }}-1$	$5 \mathrm{~T}_{\text {HCLK }}+1$	
$\mathrm{t}_{\mathrm{w} \text { (NWAIT) }}$	FMC_NWAIT low time	$\mathrm{T}_{\text {HCLK }}$-0.5	-	
$\mathrm{t}_{\text {su(}}$ (NWAIT_NE)	FMC_NWAIT valid before FMC_NEx high	$5 \mathrm{~T}_{\text {HCLK }}+1.5$	-	
$\mathrm{th}_{\text {h(NE_NWAIT) }}$	FMC_NEx hold time after FMC_NWAIT invalid	$4 \mathrm{~T}_{\text {HCLK }}+1$	-	

1. Guaranteed by characterization results.

Figure 63. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.

Table 103. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings ${ }^{(1)}$

Symbol	Parameter	Min	Max	Unit
$t_{w(N E)}$	FMC_NE low time	$3 \mathrm{~T}_{\text {HCLK }}-1$	$3 \mathrm{~T}_{\text {HCLK }}+1$	ns
$\mathrm{t}_{\mathrm{v} \text { (NWE_NE) }}$	FMC_NEx low to FMC_NWE low	$\mathrm{T}_{\text {HCLK }}-1$	$\mathrm{T}_{\text {HCLK }}+0.5$	
$\mathrm{t}_{\mathrm{w} \text { (NWE) }}$	FMC_NWE low time	$\mathrm{T}_{\text {HCLK }}-1.5$	$\mathrm{T}_{\text {HCLK }}+0.5$	
$\mathrm{t}_{\mathrm{h} \text { (NE_NWE) }}$	FMC_NWE high to FMC_NE high hold time	$\mathrm{T}_{\text {HCLK }}$	-	
$\mathrm{t}_{\text {(}}(\mathrm{A}$ _NE)	FMC_NEx low to FMC_A valid	-	0	
$t_{\text {h(A_NWE) }}$	Address hold time after FMC_NWE high	THCLK -0.5	-	
$\mathrm{t}_{\mathrm{v} \text { (BL_NE) }}$	FMC_NEx low to FMC_BL valid	-	0.5	
$\mathrm{t}_{\mathrm{h} \text { (BL_NWE) }}$	FMC_BL hold time after FMC_NWE high	$\mathrm{T}_{\text {HCLK }}-0.5$	-	
$\mathrm{t}_{\text {v(Data_NE) }}$	Data to FMC_NEx low to Data valid	-	$\mathrm{T}_{\text {HCLK }}+2$	
$t_{\text {(Data_NWE) }}$	Data hold time after FMC_NWE high	$\mathrm{T}_{\text {HCLK }}+0.5$	-	
$\mathrm{t}_{\mathrm{v} \text { (NADV_NE) }}$	FMC_NEx low to FMC_NADV low	-	0	
$\mathrm{t}_{\mathrm{w} \text { (NADV) }}$	FMC_NADV low time	-	$\mathrm{T}_{\text {HCLK }}+1$	

1. Guaranteed by characterization results.

Table 104. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings ${ }^{(1)}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\mathrm{w} \text { (NE) }}$	FMC_NE low time	$8 \mathrm{~T}_{\text {HCLK }}-1$	$8 \mathrm{~T}_{\text {HCLK }}+1$	
$\mathrm{t}_{\mathrm{w} \text { (NWE) }}$	FMC_NWE low time	$6 \mathrm{~T}_{\text {HCLK }}-1.5$	$6 \mathrm{~T}_{\text {HCLK }}+0.5$	n
$\mathrm{t}_{\text {su(NWAIT_NE) }}$	FMC_NWAIT valid before FMC_NEx high	$6 \mathrm{~T}_{\text {HCLK }}-1$	-	
$\mathrm{t}_{\mathrm{h} \text { (NE_NWAIT) }}$	FMC_NEx hold time after FMC_NWAIT invalid	$4 \mathrm{~T}_{\text {HCLK }}+2$	-	

1. Guaranteed by characterization results.

Figure 64. Asynchronous multiplexed PSRAM/NOR read waveforms

Table 105. Asynchronous multiplexed PSRAM/NOR read timings ${ }^{(1)}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\mathrm{w} \text { (NE) }}$	FMC_NE low time	$3 \mathrm{H}_{\text {HCLK }}-1$	$3 \mathrm{~T}_{\text {HCLK }}+1$	ns
$\mathrm{t}_{\mathrm{v} \text { (NOE_NE) }}$	FMC_NEx low to FMC_NOE low	$2 \mathrm{~T}_{\text {HCLK }}$	$2 \mathrm{~T}_{\text {HCLK }}+0.5$	
$\mathrm{t}_{\mathrm{tw}(\mathrm{NOE})}$	FMC_NOE low time	T HCLK ${ }^{-1}$	$\mathrm{T}_{\text {HCLK }}+1$	
$\mathrm{t}_{\mathrm{h} \text { (NE_NOE) }}$	FMC_NOE high to FMC_NE high hold time	0	-	
$\mathrm{t}_{\text {v(A_NE) }}$	FMC_NEx low to FMC_A valid	-	0.5	
$\mathrm{t}_{\mathrm{v} \text { (NADV_NE) }}$	FMC_NEx low to FMC_NADV low	0	0.5	
$\mathrm{t}_{\mathrm{w} \text { (NADV) }}$	FMC_NADV low time	$\mathrm{T}_{\text {HCLK }}-0.5$	$\mathrm{T}_{\text {HCLK }}{ }^{+1}$	
$\mathrm{t}_{\mathrm{h}}(\mathrm{AD}$ _NADV)	FMC_AD(address) valid hold time after FMC_NADV high)	$\mathrm{T}_{\text {HCLK }}+0.5$	-	
$\mathrm{t}_{\mathrm{h}\left(\mathrm{A} _ \text {NOE) }\right.}$	Address hold time after FMC_NOE high	$\mathrm{T}_{\text {HCLK }}-0.5$	-	
t_{h} (BL_NOE)	FMC_BL time after FMC_NOE high	0	-	
$\mathrm{t}_{\mathrm{v} \text { (BL_NE) }}$	FMC_NEx low to FMC_BL valid	-	0.5	
$\mathrm{t}_{\text {su(Data_NE) }}$	Data to FMC_NEx high setup time	$\mathrm{T}_{\text {HCLK }}-1$	-	
$\mathrm{t}_{\text {su(Data_NOE) }}$	Data to FMC_NOE high setup time	T ${ }_{\text {HCLK }}$-1	-	
$\mathrm{t}_{\mathrm{h} \text { (Data_NE) }}$	Data hold time after FMC_NEx high	0	-	
$\mathrm{t}_{\mathrm{h} \text { (Data_NOE) }}$	Data hold time after FMC_NOE high	0	-	

1. Guaranteed by characterization results.

Table 106. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings ${ }^{(1)}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\mathrm{w}(\mathrm{NE})}$	FMC_NE low time	$8 \mathrm{~T}_{\text {HCLK }}-1$	$8 \mathrm{~T}_{\text {HCLK }}+1$	ns
$\mathrm{t}_{\mathrm{w} \text { (NOE) }}$	FMC_NWE low time	$5 \mathrm{~T}_{\text {HCLK }}-1.5$	$5 \mathrm{~T}_{\text {HCLK }}+0.5$	
$t_{\text {su(NWAIT_NE) }}$	FMC_NWAIT valid before FMC_NEx high	$5 \mathrm{~T}_{\text {HCLK }}+1.5$	-	
$\mathrm{t}_{\mathrm{h} \text { (NE_NWAIT) }}$	FMC_NEx hold time after FMC_NWAIT invalid	$4 \mathrm{~T}_{\text {HCLK }}{ }^{+1}$	-	

1. Guaranteed by characterization results.

Figure 65. Asynchronous multiplexed PSRAM/NOR write waveforms

Table 107. Asynchronous multiplexed PSRAM/NOR write timings ${ }^{(1)}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\mathrm{w} \text { (NE) }}$	FMC_NE low time	$4 \mathrm{H}_{\text {HCLK }}-1$	$4 \mathrm{~T}_{\text {HCLK }}+1$	ns
$\mathrm{t}_{\mathrm{v} \text { (NWE_NE) }}$	FMC_NEx low to FMC_NWE low	T ${ }_{\text {HCLK }}$-1	$\mathrm{T}_{\text {HCLK }}+0.5$	
$\mathrm{t}_{\mathrm{w} \text { (NWE) }}$	FMC_NWE low time	$2 \mathrm{~T}_{\text {HCLK }}-0.5$	$2 \mathrm{~T}_{\text {HCLK }}+0.5$	
$\mathrm{t}_{\text {h(}}$ (NE_NWE)	FMC_NWE high to FMC_NE high hold time	$\mathrm{T}_{\text {HCLK }}-0.5$	-	
$\mathrm{t}_{\text {v(A_NE) }}$	FMC_NEx low to FMC_A valid	-	0	
$t_{\text {v(NADV_NE) }}$	FMC_NEx low to FMC_NADV low	0	0.5	
$\mathrm{t}_{\mathrm{w} \text { (NADV) }}$	FMC_NADV low time	$\mathrm{T}_{\text {HCLK }}$	$\mathrm{T}_{\text {HCLK }}{ }^{+1}$	
$t_{\text {(}}$ (AD_NADV)	FMC_AD(adress) valid hold time after FMC_NADV high)	THCLK ${ }^{-0.5}$	-	
t_{h} (A_NWE)	Address hold time after FMC_NWE high	$\mathrm{T}_{\text {HCLK }}+0.5$	-	
$\mathrm{t}_{\mathrm{h} \text { (BL_NWE) }}$	FMC_BL hold time after FMC_NWE high	T ${ }_{\text {HCLK }}-0.5$	-	
$\mathrm{t}_{\mathrm{v} \text { (BL_NE) }}$	FMC_NEx low to FMC_BL valid	-	0.5	
$\mathrm{t}_{\mathrm{v} \text { (Data_NADV) }}$	FMC_NADV high to Data valid	-	$\mathrm{T}_{\text {HCLK }}+2$	
$\mathrm{t}_{\text {(}}$ (Data_NWE)	Data hold time after FMC_NWE high	$\mathrm{T}_{\text {HCLK }}+0.5$	-	

1. Guaranteed by characterization results.

Table 108. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings ${ }^{(1)}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\text {w(NE) }}$	FMC_NE low time	$9 \mathrm{~T}_{\text {HCLK }}-1$	$9 \mathrm{~T}_{\text {HCLK }}+1$	
$\mathrm{t}_{\mathrm{w} \text { (NWE) }}$	FMC_NWE low time	$7 \mathrm{~T}_{\text {HCLK }}-0.5$	$7 \mathrm{~T}_{\text {HCLK }}+0.5$	n
$\mathrm{t}_{\text {su(NWAIT_NE) }}$	FMC_NWAIT valid before FMC_NEx high			
$\mathrm{t}_{\mathrm{h} \text { (NE_NWAIT) }}$	$6 \mathrm{~F}_{\text {HCLK }}+2$	-		

1. Guaranteed by characterization results.

Synchronous waveforms and timings

Figure 66 through Figure 69 represent synchronous waveforms and Table 109 through Table 112 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- BurstAccessMode = FMC_BurstAccessMode_Enable;
- MemoryType = FMC_MemoryType_CRAM;
- WriteBurst = FMC_WriteBurst_Enable;
- \quad CLKDivision $=1$;
- DataLatency = 1 for NOR Flash; DataLatency $=0$ for PSRAM
- $\quad \mathrm{CL}=30 \mathrm{pF}$ on data and address lines. CL = 10 pF on FMC_CLK unless otherwise specified.

In all the timing tables, the $\mathrm{T}_{\text {HCLK }}$ is the HCLK clock period.

- For 2.7 V $\leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$, maximum FMC_CLK $=100 \mathrm{MHz}$ at $\mathrm{CL}=20 \mathrm{pF}$ or 90 MHz at CL=30 pF (on FMC_CLK).
- For $1.71 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$, maximum FMC_CLK $=70 \mathrm{MHz}$ at $\mathrm{CL}=10 \mathrm{pF}$ (on FMC_CLK).

Figure 66. Synchronous multiplexed NOR/PSRAM read timings

Table 109. Synchronous multiplexed NOR/PSRAM read timings ${ }^{(1)}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\mathrm{w} \text { (CLK) }}$	FMC_CLK period	$2 \mathrm{~T}_{\text {HCLK }}-0.5$	-	
$\mathrm{t}_{\mathrm{d} \text { (CLKL-NExL) }}$	FMC_CLK low to FMC_NEx low (x=0..2)	-	2	
$\mathrm{t}_{\mathrm{d}(\mathrm{CLKH}}^{\text {c }}$ _NEXH)	FMC_CLK high to FMC_NEx high (x=0...2)	$\mathrm{T}_{\text {HCLK }}+0.5$	-	
$\mathrm{t}_{\mathrm{d}(\text { CLKL-NADVL) }}$	FMC_CLK low to FMC_NADV low	-	1.	
$\mathrm{t}_{\text {(} \text { (CLKL-NADVH) }}$	FMC_CLK low to FMC_NADV high	0	-	
$\mathrm{t}_{\mathrm{d}(\mathrm{CLKL}}$-AV)	FMC_CLK low to FMC_Ax valid ($\mathrm{x}=16 . . .25$)	-	2.5	
$\mathrm{t}_{\mathrm{d} \text { (CLKH-AIV) }}$	FMC_CLK high to FMC_Ax invalid ($\mathrm{x}=16 . . .25$)	$\mathrm{T}_{\text {HCLK }}$	-	
$\mathrm{t}_{\mathrm{d} \text { (CLKL-NOEL) }}$	FMC_CLK low to FMC_NOE low	-	1.5	ns
$\mathrm{t}_{\mathrm{d}(\text { CLKH-NOEH) }}$	FMC_CLK high to FMC_NOE high	$\mathrm{T}_{\text {HCLK }}-0.5$	-	
$\mathrm{t}_{\text {d(CLKL-ADV) }}$	FMC_CLK low to FMC_AD[15:0] valid	-	3	
$\mathrm{t}_{\mathrm{d} \text { (CLKL-ADIV) }}$	FMC_CLK low to FMC_AD[15:0] invalid	0	-	
$\mathrm{t}_{\text {su(ADV-CLKH) }}$	FMC_A/D[15:0] valid data before FMC_CLK high	1.5	-	
$\mathrm{t}_{\text {h(CLKH-ADV) }}$	FMC_A/D[15:0] valid data after FMC_CLK high	3.5	-	
$\mathrm{t}_{\text {su(NWAIT-CLKH) }}$	FMC_NWAIT valid before FMC_CLK high	2	-	
$\mathrm{t}_{\mathrm{h} \text { (CLKH-NWAIT) }}$	FMC_NWAIT valid after FMC_CLK high	3.5	-	

1. Guaranteed by characterization results.

Figure 67. Synchronous multiplexed PSRAM write timings

Table 110. Synchronous multiplexed PSRAM write timings ${ }^{(1)}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\mathrm{w} \text { (CLK) }}$	FMC_CLK period	$2 \mathrm{~T}_{\text {HCLK }}-0.5$	-	ns
$\mathrm{t}_{\mathrm{d} \text { (CLKL-NExL) }}$	FMC_CLK low to FMC_NEx low (x=0..2)	-	2	
$\mathrm{t}_{\mathrm{d}(\text { CLKH-NExH) }}$	FMC_CLK high to FMC_NEx high (x=0...2)	$\mathrm{T}_{\text {HCLK }}+0.5$	-	
$\mathrm{t}_{\mathrm{d}(\mathrm{CLKL}}$ (NADVL)	FMC_CLK low to FMC_NADV low	-	1	
$\mathrm{t}_{\mathrm{d}(\text { CLKL-NADVH) }}$	FMC_CLK low to FMC_NADV high	0	-	
$\mathrm{t}_{\mathrm{d} \text { (CLKL-AV) }}$	FMC_CLK low to FMC_Ax valid ($\mathrm{x}=16 \ldots .25$)	-	2.5	
$\mathrm{t}_{\mathrm{d} \text { (CLKH-AIV) }}$	FMC_CLK high to FMC_Ax invalid (x=16...25)	$\mathrm{T}_{\text {HCLK }}$	-	
$\mathrm{t}_{\mathrm{d}(\text { CLKL-NWEL) }}$	FMC_CLK low to FMC_NWE low	-	1.5	
$\mathrm{t}_{\text {(CLKH-NWEH) }}$	FMC_CLK high to FMC_NWE high	$\mathrm{T}_{\text {HCLK }}+0.5$	-	
$\mathrm{t}_{\text {d(CLKL-ADV) }}$	FMC_CLK low to FMC_AD[15:0] valid	-	3	
$\mathrm{t}_{\mathrm{d} \text { (CLKL-ADIV) }}$	FMC_CLK low to FMC_AD[15:0] invalid	0	-	
$\mathrm{t}_{\mathrm{d} \text { (CLKL-DATA) }}$	FMC_A/D[15:0] valid data after FMC_CLK low	-	3.5	
$\mathrm{t}_{\mathrm{d} \text { (CLKL-NBLL) }}$	FMC_CLK low to FMC_NBL low	-	2	
$\mathrm{t}_{\mathrm{d}(\mathrm{CLKH}}$-NBLH)	FMC_CLK high to FMC_NBL high	$\mathrm{T}_{\text {HCLK }}+0.5$	-	
$\mathrm{t}_{\text {su(}}$ (NWAIT-CLKH)	FMC_NWAIT valid before FMC_CLK high	2	-	
$\mathrm{t}_{\text {(CLKH-NWAIT) }}$	FMC_NWAIT valid after FMC_CLK high	3.5	-	

1. Guaranteed by characterization results.

Figure 68. Synchronous non-multiplexed NOR/PSRAM read timings

Table 111. Synchronous non-multiplexed NOR/PSRAM read timings ${ }^{(1)}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\mathrm{w} \text { (CLK) }}$	FMC_CLK period	$2 \mathrm{~T}_{\text {HCLK }}-0.5$	-	ns
${ }^{\text {t }}$ (CLKL-NExL)	FMC_CLK low to FMC_NEx low ($\mathrm{x}=0 . .2$)	-	2	
$\mathrm{t}_{\mathrm{d}(\text { CLKH-NExH) }}$	FMC_CLK high to FMC_NEx high (x=0...2)	$\mathrm{T}_{\text {HCLK }}+0.5$	-	
$\mathrm{t}_{\mathrm{d}(\text { CLKL-NADVL) }}$	FMC_CLK low to FMC_NADV low	-	0.5	
$\mathrm{t}_{\mathrm{d} \text { (CLKL-NADVH) }}$	FMC_CLK low to FMC_NADV high	0	-	
$\mathrm{t}_{\mathrm{d} \text { (CLKL-AV) }}$	FMC_CLK low to FMC_Ax valid ($\mathrm{x}=16 \ldots .25$)	-	2.5	
$\mathrm{t}_{\mathrm{d} \text { (CLKH-AIV) }}$	FMC_CLK high to FMC_Ax invalid ($\mathrm{x}=16 . . .25$)	$\mathrm{T}_{\text {HCLK }}$	-	
$\mathrm{t}_{\mathrm{d} \text { (CLKL-NOEL) }}$	FMC_CLK low to FMC_NOE low	-	1.5	
$\mathrm{t}_{\text {d(CLKH-NOEH) }}$	FMC_CLK high to FMC_NOE high	$\mathrm{T}_{\text {HCLK }}+0.5$	-	
$\mathrm{t}_{\text {su(DV-CLKH) }}$	FMC_D[15:0] valid data before FMC_CLK high	1.5	-	
$\mathrm{t}_{\text {h(CLKH-DV) }}$	FMC_D[15:0] valid data after FMC_CLK high	3.5	-	
$\mathrm{t}_{\text {(NWAIT-CLKH) }}$	FMC_NWAIT valid before FMC_CLK high	2	-	
$\mathrm{t}_{\text {(}}$ (CLKH-NWAIT)	FMC_NWAIT valid after FMC_CLK high	3.5	-	

1. Guaranteed by characterization results.

Figure 69. Synchronous non-multiplexed PSRAM write timings

Table 112. Synchronous non-multiplexed PSRAM write timings ${ }^{(1)}$

Symbol	Parameter	Min	Max	Unit
${ }^{\text {t }}$ (CLK)	FMC_CLK period	$2 \mathrm{~T}_{\text {HCLK }}-0.5$	-	ns
$\mathrm{t}_{\mathrm{d} \text { (CLKL-NExL) }}$	FMC_CLK low to FMC_NEx low (x=0..2)	-	2	
${ }_{\text {t }}$ (CLKH-NExH)	FMC_CLK high to FMC_NEx high (x=0...2)	$\mathrm{T}_{\text {HCLK }}+0.5$	-	
$\mathrm{t}_{\mathrm{d}(\text { CLKL-NADVL) }}$	FMC_CLK low to FMC_NADV low	-	0.5	
$\mathrm{t}_{\mathrm{d}(\text { CLKL-NADVH) }}$	FMC_CLK low to FMC_NADV high	0	-	
$\mathrm{t}_{\mathrm{d} \text { (CLKL-AV) }}$	FMC_CLK low to FMC_Ax valid ($\mathrm{x}=16 \ldots 25$)	-	2.5	
$\mathrm{t}_{\mathrm{d} \text { (CLKH-AIV) }}$	FMC_CLK high to FMC_Ax invalid (x=16...25)	$\mathrm{T}_{\text {HCLK }}$	-	
$\mathrm{t}_{\mathrm{d} \text { (CLKL-NWEL) }}$	FMC_CLK low to FMC_NWE low	-	1.5	
$\mathrm{t}_{\mathrm{d}(\text { CLKH-NWEH) }}$	FMC_CLK high to FMC_NWE high	$\mathrm{T}_{\text {HCLK }}+1$	-	
$\mathrm{t}_{\text {d(CLKL-Data) }}$	FMC_D[15:0] valid data after FMC_CLK low	-	3.5	
$\mathrm{t}_{\mathrm{d} \text { (CLKL-NBLL) }}$	FMC_CLK low to FMC_NBL low	-	2	
$\mathrm{t}_{\mathrm{d}(\mathrm{CLKH}}$-NBLH)	FMC_CLK high to FMC_NBL high	$\mathrm{T}_{\text {HCLK }}+1$	-	
$\mathrm{t}_{\text {su(}}$ (NWAIT-CLKH)	FMC_NWAIT valid before FMC_CLK high	2	-	
$\mathrm{t}_{\text {(}}$ (CLKH-NWAIT)	FMC_NWAIT valid after FMC_CLK high	3.5	-	

1. Guaranteed by characterization results.

NAND controller waveforms and timings

Figure 70 through Figure 73 represent synchronous waveforms, and Table 113 and Table 114 provide the corresponding timings. The results shown in this table are obtained with the following FMC configuration:

- COM.FMC_SetupTime $=0 \times 01$;
- COM.FMC_WaitSetupTime $=0 \times 03$;
- COM.FMC_HoldSetupTime $=0 \times 02$;
- COM.FMC_HiZSetupTime $=0 \times 01$;
- ATT.FMC_SetupTime $=0 \times 01$;
- ATT.FMC_WaitSetupTime $=0 \times 03$;
- ATT.FMC_HoldSetupTime $=0 \times 02$;
- ATT.FMC_HiZSetupTime $=0 \times 01$;
- Bank = FMC_Bank_NAND;
- MemoryDataWidth = FMC_MemoryDataWidth_16b;
- ECC = FMC_ECC_Enable;
- ECCPageSize = FMC_ECCPageSize_512Bytes;
- TCLRSetupTime = 0;
- TARSetupTime $=0$.

In all timing tables, the $\mathrm{T}_{\text {HCLK }}$ is the HCLK clock period.

Figure 70. NAND controller waveforms for read access

Figure 71. NAND controller waveforms for write access

Figure 72. NAND controller waveforms for common memory read access

Figure 73. NAND controller waveforms for common memory write access

Table 113. Switching characteristics for NAND Flash read cycles ${ }^{(1)}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\mathrm{w}(\mathrm{NOE})}$	FMC_NOE low width	$4 \mathrm{~T}_{\text {HCLK }}-0.5$	$4 \mathrm{~T}_{\text {HCLK }}+0.5$	ns
$\mathrm{t}_{\text {su(D-NOE) }}$	FMC_D[15-0] valid data before FMC_NOE high	11	-	
$\mathrm{t}_{\mathrm{h} \text { (NOE-D) }}$	FMC_D[15-0] valid data after FMC_NOE high	0	-	
$\mathrm{t}_{\mathrm{d} \text { (ALE-NOE) }}$	FMC_ALE valid before FMC_NOE low	-	$3 \mathrm{~T}_{\text {HCLK }}+1$	
$\mathrm{t}_{\text {(}}$ (NOE-ALE)	FMC_NWE high to FMC_ALE invalid	$4 \mathrm{~T}_{\text {HCLK }}-2$	-	

1. Guaranteed by characterization results.

Table 114. Switching characteristics for NAND Flash write cycles ${ }^{(1)}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\mathrm{w} \text { (NWE) }}$	FMC_NWE low width	$4 \mathrm{~T}_{\text {HCLK }}-0.5$	$4 \mathrm{~T}_{\text {HCLK }}+0.5$	ns
$\mathrm{t}_{\mathrm{v} \text { (NWE-D) }}$	FMC_NWE low to FMC_D[15-0] valid	0	-	
$\mathrm{t}_{\text {(}}$ (NWE-D)	FMC_NWE high to FMC_D[15-0] invalid	$2 \mathrm{~T}_{\text {HCLK }}-1$	-	
$\mathrm{t}_{\text {d(} \mathrm{D}-\mathrm{NWE})}$	FMC_D[15-0] valid before FMC_NWE high	$5 \mathrm{~T}_{\text {HCLK }}-1$	-	
$\mathrm{t}_{\mathrm{d} \text { (ALE-NWE) }}$	FMC_ALE valid before FMC_NWE low	-	$3 \mathrm{~T}_{\text {HCLK }}+1$	
$\mathrm{t}_{\mathrm{h} \text { (NWE-ALE) }}$	FMC_NWE high to FMC_ALE invalid	$2 \mathrm{~T}_{\text {HCLK }}-2$	-	

1. Guaranteed by characterization results.

SDRAM waveforms and timings

- $\quad C L=30 \mathrm{pF}$ on data and address lines. $\mathrm{CL}=10 \mathrm{pF}$ on FMC_SDCLK unless otherwise specified.

In all timing tables, the $\mathrm{T}_{\text {HCLK }}$ is the HCLK clock period.

- For 3.0 V $\leq V_{D D} \leq 3.6 \mathrm{~V}$, maximum FMC_SDCLK $=100 \mathrm{MHz}$ at $\mathrm{CL}=20 \mathrm{pF}$ (on FMC_SDCLK).
- For $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$, maximum FMC_SDCLK $=90 \mathrm{MHz}$ at $\mathrm{CL}=30 \mathrm{pF}$ (on FMC_SDCLK).
- For $1.71 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<1.9 \mathrm{~V}$, maximum FMC _SDCLK $=70 \mathrm{MHz}$ at $\mathrm{CL}=10 \mathrm{pF}$ (on FMC_SDCLK).

Figure 74. SDRAM read access waveforms (CL = 1)

Table 115. SDRAM read timings ${ }^{(1)}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\mathrm{w} \text { (SDCLK) }}$	FMC_SDCLK period	$2 \mathrm{~T}_{\text {HCLK }}-0.5$	$2 \mathrm{~T}_{\text {HCLK }}+0.5$	ns
$\mathrm{t}_{\text {su(SDCLKH _Data) }}$	Data input setup time	1.5	-	
$\mathrm{t}_{\mathrm{h} \text { (SDCLKH_Data) }}$	Data input hold time	1.5	-	
$\mathrm{t}_{\mathrm{d}(\text { SDCLKL_Add) }}$	Address valid time	-	3.5	
$\mathrm{t}_{\text {d(SDCLKL- SDNE) }}$	Chip select valid time	-	1.5	
t_{h} (SDCLKL_SDNE)	Chip select hold time	0.5	-	
$\mathrm{t}_{\mathrm{d} \text { (SDCLKL_SNRAS) }}$	SDNRAS valid time	-	1	
$\mathrm{t}_{\mathrm{h} \text { (SDCLKL_SNRRAS) }}$	SDNRAS hold time	0.5	-	
$\mathrm{t}_{\mathrm{d} \text { (SDCLKL_SDNCAS) }}$	SDNCAS valid time	-	0.5	
$\mathrm{t}_{\mathrm{h} \text { (SDCLKL_SDNCAS) }}$	SDNCAS hold time	0	-	

1. Guaranteed by characterization results.

Table 116. LPSDR SDRAM read timings ${ }^{(1)}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\text {W(SDCLK) }}$	FMC_SDCLK period	$2 \mathrm{~T}_{\text {HCLK }}-0.5$	$2 \mathrm{~T}_{\text {HCLK }}+0.5$	ns
$\mathrm{t}_{\text {su(SDCLKH_Data) }}$	Data input setup time	0	-	
$\mathrm{t}_{\mathrm{h} \text { (SDCLKH_Data) }}$	Data input hold time	4.5	-	
$\mathrm{t}_{\mathrm{d}(\text { SDCLKL_Add) }}$	Address valid time	-	2.5	
$\mathrm{t}_{\mathrm{d} \text { (SDCLKL_SDNE) }}$	Chip select valid time	-	2.5	
$\mathrm{t}_{\mathrm{h} \text { (SDCLKL_SDNE) }}$	Chip select hold time	0	-	
$\mathrm{t}_{\text {d(SDCLKL_S }}$ SNRAS	SDNRAS valid time	-	0.5	
$\mathrm{t}_{\mathrm{h} \text { (SDCLKL_SDNRAS) }}$	SDNRAS hold time	0	-	
$\mathrm{t}_{\mathrm{d}(\text { SDCLKL_SDNCAS) }}$	SDNCAS valid time	-	1.5	
$\mathrm{t}_{\mathrm{h} \text { (SDCLKL_SDNCAS) }}$	SDNCAS hold time	0	-	

1. Guaranteed by characterization results.

Figure 75. SDRAM write access waveforms

Table 117. SDRAM write timings ${ }^{(1)}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\mathrm{w} \text { (SDCLK) }}$	FMC_SDCLK period	$2 \mathrm{~T}_{\text {HCLK }}-0.5$	$2 \mathrm{~T}_{\text {HCLK }}+0.5$	ns
$\mathrm{t}_{\mathrm{d} \text { (SDCLKL _Data }}$)	Data output valid time	-	3	
$\mathrm{t}_{\mathrm{h} \text { (SDCLKL_Data) }}$	Data output hold time	0	-	
$\mathrm{t}_{\mathrm{d} \text { (SDCLKL_Add) }}$	Address valid time	-	3.5	
$\mathrm{t}_{\text {d(SDCLKL_S }}$ SDNWE)	SDNWE valid time	-	1.5	
$\mathrm{t}_{\text {h(SDCLKL_SDNWE) }}$	SDNWE hold time	0.5	-	
$\mathrm{t}_{\mathrm{d}(\text { SDCLKL_ }}$ SDNE)	Chip select valid time	-	1.5	
$\mathrm{th}_{\mathrm{h} \text { (SDCLKL-_SDNE) }}$	Chip select hold time	0.5	-	
$\mathrm{t}_{\mathrm{d} \text { (SDCLKL_SDRAS) }}$	SDNRAS valid time	-	1	
$\mathrm{t}_{\mathrm{h} \text { (SDCLKL_SDNRAS) }}$	SDNRAS hold time	0.5	-	
$\mathrm{t}_{\mathrm{d} \text { (SDCLKL_SDNCAS) }}$	SDNCAS valid time	-	1	
$\mathrm{t}_{\mathrm{d} \text { (SDCLKL_SDNCAS) }}$	SDNCAS hold time	0.5	-	

1. Guaranteed by characterization results.

Table 118. LPSDR SDRAM write timings ${ }^{(1)}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{t}_{\mathrm{w} \text { (SDCLK) }}$	FMC_SDCLK period	$2 \mathrm{~T}_{\text {HCLK }}-0.5$	$2 \mathrm{~T}_{\text {HCLK }}+0.5$	ns
$\left.\mathrm{t}_{\mathrm{d}(\text { SDCLKL_ _Data }}\right)$	Data output valid time	-	2.5	
$\mathrm{t}_{\mathrm{h} \text { (SDCLKL _Data) }}$	Data output hold time	0	-	
$\mathrm{t}_{\mathrm{d}(\text { SDCLKL_Add) }}$	Address valid time	-	2.5	
$\mathrm{t}_{\text {d(SDCLKL-SDNWE) }}$	SDNWE valid time	-	2.5	
$\mathrm{t}_{\mathrm{h} \text { (SDCLKL-SDNWE) }}$	SDNWE hold time	0	-	
$\mathrm{t}_{\mathrm{d} \text { (SDCLKL- SDNE) }}$	Chip select valid time	-	0.5	
$\mathrm{t}_{\text {(}}$ SDCLKL- SDNE)	Chip select hold time	0	-	
$\mathrm{t}_{\mathrm{d} \text { (SDCLKL-SDNRAS) }}$	SDNRAS valid time	-	1.5	
t_{h} (SDCLKL-SDNRAS)	SDNRAS hold time	0	-	
$\mathrm{t}_{\mathrm{d} \text { (SDCLKL-SDNCAS) }}$	SDNCAS valid time	-	1.5	
$\mathrm{t}_{\mathrm{d} \text { (SDCLKL-SDNCAS) }}$	SDNCAS hold time	0	-	

1. Guaranteed by characterization results.

5.3.31 Quad-SPI interface characteristics

Unless otherwise specified, the parameters given in Table 119 and Table 120 for Quad-SPI are derived from tests performed under the ambient temperature, $\mathrm{f}_{\text {AHB }}$ frequency and V_{DD} supply voltage conditions summarized in Table 18: General operating conditions, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load $C=20 \mathrm{pF}$
- Measurement points are done at CMOS levels: $0.5 \times \mathrm{V}_{\mathrm{DD}}$

Refer to Section 5.3.20: I/O port characteristics for more details on the input/output alternate function characteristics.

Table 119. Quad-SPI characteristics in SDR mode ${ }^{(1)}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Fck1/t(CK)	Quad-SPI clock frequency	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$ $\mathrm{CL}=20 \mathrm{pF}$	-	-	108	
		$1.71 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$ $\mathrm{CL}=15 \mathrm{pF}$	-	-	100	MHz

Table 119. Quad-SPI characteristics (continued)in SDR mode ${ }^{(1)}$ (continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
tw(CKH)	Quad-SPI clock high and low time	-	$\mathrm{t}(\mathrm{CK}) / 2$ - 1	-	$\mathrm{t}(\mathrm{CK}) / 2$	ns
tw(CKL)			t(CK)/2	-	$\mathrm{t}(\mathrm{CK}) / 2+1$	
ts(IN)	Data input setup time	-	0.5	-	-	
th(IN)	Data input hold time		3	-	-	
tv(OUT)	Data output valid time	$2.7 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$	-	1.5	3.5	
		$1.71 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$	-	1.5	2	
th(OUT)	Data output hold time	-	0.5	-	-	

1. Guaranteed by characterization results.

Table 120. Quad SPI characteristics in DDR mode ${ }^{(1)}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Fck1/t(CK)	Quad-SPI clock frequency	$\begin{gathered} 2.7 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V} \\ \mathrm{CL}=20 \mathrm{pF} \end{gathered}$	-	-	80	$\begin{gathered} \mathrm{MH} \\ \mathrm{z} \end{gathered}$
		$\begin{gathered} 1.8 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V} \\ \mathrm{CL}=15 \mathrm{pF} \end{gathered}$	-	-	80	
		$\begin{gathered} 1.71 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V} \\ C L=10 \mathrm{pF} \end{gathered}$	-	-	80	
tw(CKH)	Quad-SPI clock high and low time	-	$\mathrm{t}(\mathrm{CK}) / 2$ - 1	-	t(CK)/2	ns
tw(CKL)			$\mathrm{t}(\mathrm{CK}) / 2$	-	$\begin{gathered} \mathrm{t}(\mathrm{CK}) / 2 \\ +1 \end{gathered}$	
ts(IN), $\operatorname{tsf}(\mathrm{IN})$	Data input setup time	$2.7 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$	0.75	-	-	
		$1.71 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<2 \mathrm{~V}$	0.5	-	-	
thr(IN), thf(IN)	Data input hold time	$2.7 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$	2	-	-	
		$1.71 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<2 \mathrm{~V}$	3	-	-	
$\operatorname{tvr}(\mathrm{OUT})$, tvf(OUT)	Data output valid time	$2.7 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$	-	8.5	10	
		$\begin{gathered} 1.71 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V} \\ \mathrm{DHHC}=0 \end{gathered}$	-	8	12	
		$\begin{gathered} \text { DHHC=1 } \\ \text { Pres=1, 2... } \end{gathered}$	-	$\underset{\substack{\mathrm{T}_{\mathrm{HCLK}} / 2}}{ }$	$\begin{gathered} \mathrm{T}_{\mathrm{HCLK}} / 2 \\ +2.5 \end{gathered}$	
thr(OUT), thf(OUT)	Data output hold time	DHHC=0	7.5	-	-	
		$\begin{gathered} \mathrm{DHHC}=1 \\ \text { Pres=1, } 2 \ldots \end{gathered}$	$\begin{gathered} \mathrm{T}_{\text {HCLK }} / 2 \\ +0.5 \end{gathered}$	-	-	

[^7]Figure 76. Quad-SPI timing diagram - SDR mode

Figure 77. Quad-SPI timing diagram - DDR mode

5.3.32 Camera interface (DCMI) timing specifications

Unless otherwise specified, the parameters given in Table 121 for DCMI are derived from tests performed under the ambient temperature, $\mathrm{f}_{\mathrm{HCLK}}$ frequency and V_{DD} supply voltage summarized in Table 18, with the following configuration:

- DCMI_PIXCLK polarity: falling
- DCMI_VSYNC and DCMI_HSYNC polarity: high
- Data formats: 14 bits

Table 121. DCMI characteristics ${ }^{(1)}$

Symbol	Parameter	Min	Max	Unit
-	Frequency ratio DCMI_PIXCLK/f ${ }_{\text {HCLK }}$	-	0.4	-
DCMI_PIXCLK	Pixel clock input	-	54	MHz
$\mathrm{D}_{\text {Pixel }}$	Pixel clock input duty cycle	30	70	\%
$\mathrm{t}_{\text {su(}}$ (DATA)	Data input setup time	2	-	ns
t_{h} (DATA)	Data input hold time	0.5	-	
t_{su} (HSYNC) $\mathrm{t}_{\text {su(VSYNC) }}$	DCMI_HSYNC/DCMI_VSYNC input setup time	2.5	-	
$\mathrm{t}_{\mathrm{h} \text { (HSYNC) }}$ t_{h} (VSYNC)	DCMI_HSYNC/DCMI_VSYNC input hold time	3	-	

1. Guaranteed by characterization results.

Figure 78. DCMI timing diagram

5.3.33 LCD-TFT controller (LTDC) characteristics

Unless otherwise specified, the parameters given in Table 122 for LCD-TFT are derived from tests performed under the ambient temperature, $f_{H C L K}$ frequency and $V_{D D}$ supply voltage summarized in Table 18, with the following configuration:

- LCD_CLK polarity: high
- LCD_DE polarity: low
- LCD_VSYNC and LCD_HSYNC polarity: high
- Pixel formats: 24 bits

Table 122. LTDC characteristics ${ }^{(1)}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{f}_{\text {CLK }}$	LTDC clock output frequency	-	83	MHz
$\mathrm{D}_{\text {CLK }}$	LTDC clock output duty cycle	45	55	\%
$\mathrm{t}_{\mathrm{w} \text { (CLKH) }}$ $\mathrm{t}_{\mathrm{w}(\mathrm{CLKL})}$	Clock High time, low time	tw(CLK)/2-0.5	tw(CLK)/2+0.5	ns
$\mathrm{t}_{\mathrm{v} \text { (DATA) }}$	Data output valid time	-	6	
$\mathrm{t}_{\mathrm{h} \text { (DATA) }}$	Data output hold time	0	-	
$\mathrm{t}_{\mathrm{v} \text { (HSYNC), }}$ $\mathrm{t}_{\mathrm{v}(\mathrm{VSYNC})}$, $\mathrm{t}_{\mathrm{v} \text { (DE) }}$	HSYNC/VSYNC/DE output valid time	-	3.5	
$t_{h(H S Y N C)}$, $t_{h(V S Y N C)}$, $t_{\text {(}}$ (E)	HSYNC/VSYNC/DE output hold time	0.5	-	

1. Guaranteed by characterization results.

Figure 79. LCD-TFT horizontal timing diagram

Figure 80. LCD-TFT vertical timing diagram

5.3.34 Digital filter for Sigma-Delta Modulators (DFSDM) characteristics

Unless otherwise specified, the parameters given in Table 123 for DFSDM are derived from tests performed under the ambient temperature, $f_{\text {PCLK2 }}$ frequency and $V_{D D}$ supply voltage summarized in Table 18, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load $C=30 \mathrm{pF}$
- Measurement points are done at CMOS levels: $0.5 \times$ VDD

Refer to Section 5.3.20: I/O port characteristics for more details on the input/output alternate function characteristics (DFSDM1_CKINx, DFSDM1_DATINx, DFSDM1_CKOUT for DFSDM1).

Table 123. DFSDM measured timing 1.71-3.6V
$\left.\begin{array}{|c|c|c|c|c|c|c|}\hline \text { Symbol } & \text { Parameter } & \text { Conditions } & \text { Min } & \text { Typ } & \text { Max } & \text { Unit } \\ \hline \mathrm{f}_{\text {DFSDMCLK }} & \text { DFSDM clock } & \begin{array}{c}1.71<\mathrm{V}_{\text {DD }}<3.6 \mathrm{~V}\end{array} & - & - & \mathrm{f}_{\text {SYSCLK }}\end{array}\right]$

Table 123. DFSDM measured timing 1.71-3.6V (continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$t_{\text {wh (CKIN) }}$ $\mathrm{t}_{\mathrm{wl}}(\mathrm{CKIN})$	Input clock high and low time	$\begin{aligned} & \text { SPI mode (SITP[1:0]=0,1), } \\ & \text { External clock mode } \\ & \text { (SPICKSEL[1:0]=0), } \\ & 1.71<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V} \end{aligned}$	TCKIN/2-0.5	$\mathrm{T}_{\text {CKIN }} / 2$	-	ns
$\mathrm{t}_{\text {su }}$	Data input setup time	SPI mode (SITP[1:0]=0,1), External clock mode (SPICKSEL[1:0]=0), $1.71<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$	2	-	-	
$t_{\text {h }}$	Data input hold time	$\begin{aligned} & \text { SPI mode (SITP[1:0]=0,1), } \\ & \text { External clock mode } \\ & \text { (SPICKSEL[1:0]=0), } \\ & 1.71<\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V} \end{aligned}$	3	-	-	
$\mathrm{T}_{\text {Manchester }}$	Manchester data period (recovered clock period)	Manchester mode (SITP[1:0]=2,3), Internal clock mode (SPICKSEL[1:0] $=0$), $1.71<V_{D D}<3.6 \mathrm{~V}$	$\begin{aligned} & \text { (CKOUTDIV+1) } \\ & { }^{*} \mathrm{~T}_{\text {DFSDMCLK }} \end{aligned}$	-	(2*CKOUTDIV) * ${ }_{\text {DFSDMCLK }}$	

5.3.35 DFSDM timing diagrams

Figure 81. Channel transceiver timing diagrams

∞ 0 \vdots \vdots 11 4 0 0 0 0 0 0 0 0 $=$ 0 0	
Manchester timing	

5.3.36 SD/SDIO MMC card host interface (SDMMC) characteristics

Unless otherwise specified, the parameters given in Table 124 for the SDIO/MMC interface are derived from tests performed under the ambient temperature, $f_{P C L K 2}$ frequency and $V_{D D}$ supply voltage conditions summarized in Table 18, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load $\mathrm{C}=30 \mathrm{pF}$
- Measurement points are done at CMOS levels: $0.5 \mathrm{~V}_{\mathrm{DD}}$

Refer to Section 5.3.20: I/O port characteristics for more details on the input/output characteristics.

Figure 82. SDIO high-speed mode

Figure 83. SD default mode

Table 124. Dynamic characteristics: $S D / M M C$ characteristics, $V_{D D}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}^{(1)}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
f_{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz
-	SDMMC_CK/fPCLK2 frequency ratio	-	-	-	8/3	-
${ }^{\text {tw }}$ (CKL)	Clock low time	$\mathrm{fpp}=50 \mathrm{MHz}$	9.5	10.5	-	ns
${ }^{\text {W }}$ (CKKH)	Clock high time	fpp $=50 \mathrm{MHz}$	8.5	9.5	-	

CMD, D inputs (referenced to CK) in MMC and SD HS mode

$\mathrm{t}_{I S U}$	Input setup time HS	fpp $=50 \mathrm{MHz}$	3.5	-	-	ns
t_{IH}	Input hold time HS	fpp $=50 \mathrm{MHz}$	2.5	-	-	

CMD, D outputs (referenced to CK) in MMC and SD HS mode

t_{OV}	Output valid time HS	$\mathrm{fpp}=50 \mathrm{MHz}$	-	11	12	ns
	t_{OH}	Output hold time HS	$\mathrm{fpp}=50 \mathrm{MHz}$	9	-	

CMD, D inputs (referenced to CK) in SD default mode

tISUD	Input setup time SD	fpp $=25 \mathrm{MHz}$	3.5	-	-	ns
tIHD	Input hold time SD	fpp $=25 \mathrm{MHz}$	2.5	-	-	

CMD, D outputs (referenced to CK) in SD default mode

tOVD	Output valid default time SD	fpp $=25 \mathrm{MHz}$	-	0.5	1.5	ns
tOHD	Output hold default time SD	fpp $=25 \mathrm{MHz}$	0	-	-	

1. Guaranteed by characterization results.

Table 125. Dynamic characteristics: eMMC characteristics, $\mathrm{V}_{\mathrm{DD}}=1.71 \mathrm{~V}$ to $1.9 \mathrm{~V}^{(1)(2)}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
f_{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz
-	SDMMC_CK/fPCLK2 frequency ratio	-	-	-	8/3	-
$t_{\text {W(CKL) }}$	Clock low time	fpp $=50 \mathrm{MHz}$	9.5	10.5	-	
${ }^{\text {tw(CKH) }}$	Clock high time	fpp $=50 \mathrm{MHz}$	8.5	9.5	-	
CMD, D inputs (referenced to CK) in emmC mode						
$\mathrm{t}_{\text {ISU }}$	Input setup time HS	fpp $=50 \mathrm{MHz}$	3	-	-	
t_{H}	Input hold time HS	fpp $=50 \mathrm{MHz}$	4	-	-	ns
CMD, D outputs (referenced to CK) in eMMC mode						
t_{OV}	Output valid time HS	fpp $=50 \mathrm{MHz}$	-	11	15.5	ns
t_{OH}	Output hold time HS	$\mathrm{fpp}=50 \mathrm{MHz}$	9.5	-	-	

1. Guaranteed by characterization results.
2. Cload $=20 \mathrm{pF}$.

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

6.1 LQFP100 14x 14 mm, low-profile quad flat package information

Figure 84. LQFP100, $14 \times 14 \mathrm{~mm}$ 100-pin low-profile quad flat package outline

[^8]Table 126. LQPF100, 14×14 mm 100-pin low-profile quad flat package mechanical data

Symbol	millimeters			inches $^{(1)}$		
	Min	Typ	Max	Min	Typ	Max
A	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
c	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3	-	12.000	-	-	0.4724	-
E	15.800	16.000	16.200	0.6220	0.6299	0.6378
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591
E3	-	12.000	-	-	0.4724	-
e	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
ccc	-	-	0.080	-	-	0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits

Figure 85. LQFP100, $14 \times 14 \mathrm{~mm}, 100$-pin low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

LQFP100 device making

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 86. LQFP100, $14 \times 14 \mathrm{~mm}, 100$-pin low-profile quad flat package top view example

1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

6.2 TFBGA100, $8 \times 8 \times 0.8 \mathrm{~mm}$ thin fine-pitch ball grid array package information

Figure 87. TFBGA100, $8 \times 8 \times 0.8 \mathrm{~mm}$ thin fine-pitch ball grid array package outline

1. Drawing is not to scale.

Table 127. TFBGA100, $8 \times 8 \times 0.8 \mathrm{~mm}$ thin fine-pitch ball grid array package mechanical data

Symbol	millimeters			inches $^{(1)}$		
	Min	Typ	Max	Min	Typ	Max
A	-	-	1.100	-	-	0.0433
A1	0.150	-	-	0.0059	-	-
A2	-	0.760	-	-	0.0299	-
b	0.350	0.400	0.450	0.0138	0.0157	0.0177

Table 127. TFBGA100, $8 \times 8 \times 0.8 \mathrm{~mm}$ thin fine-pitch ball grid array package mechanical data (continued)

Symbol	millimeters			inches $^{(1)}$		
	Min	Typ	Max	Min	Typ	Max
D	7.850	8.000	8.150	0.3091	0.3150	0.3209
D1	-	7.200	-	-	0.2835	-
E	7.850	8.000	8.150	0.3091	0.3150	0.3209
E1	-	7.200	-	-	0.2835	-
e	-	0.800	-	-	0.0315	-
F	-	0.400	-	-	0.0157	-
G	-	0.400	-	-	0.0157	-
ddd	-	-	0.100	-	-	0.0039
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.080	-	-	0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 88. TFBGA100, $8 \times 8 \times 0.8 \mathrm{~mm}$ thin fine-pitch ball grid array package recommended footprint

1. Dimensions are expressed in millimeters.

Table 128. TFBGA100 recommended PCB design rules (0.8 mm pitch BGA)

Dimension	Recommended values
Pitch	0.8
Dpad	0.400 mm
Dsm	0.470 mm typ (depends on the soldermask registration tolerance)
Stencil opening	0.400 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.120 mm

TFBGA100 device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 89. TFBGA100, $8 \times 8 \times 0.8 \mathrm{~mm}$ thin fine-pitch ball grid array package top view example

1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

6.3 LQFP144 20×20 mm, low-profile quad flat package information

Figure 90. LQFP144, $20 \times 20 \mathrm{~mm}$, 144-pin low-profile quad flat package outline

1. Drawing is not to scale.

Table 129. LQFP144, $20 \times 20 \mathrm{~mm}$, 144-pin low-profile quad flat package mechanical data

Symbol	millimeters			inches $^{(1)}$		
	Min	Typ	Max	Min	Typ	Max
A	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
c	0.090	-	0.200	0.0035	-	0.0079
D	21.800	22.000	22.200	0.8583	0.8661	0.874
D1	19.800	20.000	20.200	0.7795	0.7874	0.7953
D3	-	17.500	-	-	0.689	-
E	21.800	22.000	22.200	0.8583	0.8661	0.8740
E1	19.800	20.000	20.200	0.7795	0.7874	0.7953
E3	-	17.500	-	-	0.6890	-
e	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
ccc	-	-	0.080	-	-	0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 91. LQFP144, $20 \times 20 \mathrm{~mm}$, 144-pin low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

LQFP144 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 92. LQFP144, $20 \times 20 \mathrm{~mm}$, 144-pin low-profile quad flat package top view example

1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

6.4 LQFP176 24×24 mm, low-profile quad flat package information

Figure 93. LQFP176, $24 \times 24 \mathrm{~mm}$, 176-pin low-profile quad flat package outline

1. Drawing is not to scale.

Table 130. LQFP176, $24 \times 24 \mathrm{~mm}$, 176-pin low-profile quad flat package mechanical data

Symbol	millimeters			inches $^{(1)}$		
	Min	Typ	Max	Min	Typ	Max
A	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	-	1.450	0.0531	-	0.0060
b	0.170	-	0.270	0.0067	-	0.0106
C	0.090	-	0.200	0.0035	-	0.0079
D	23.900	-	24.100	0.9409	-	0.9488
E	23.900	-	24.100	0.9409	-	0.9488
e	-	0.500	-	-	0.0197	-
HD	25.900	-	26.100	1.0200	-	1.0276
HE	25.900	-	26.100	1.0200	-	1.0276
L	0.450	-	0.750	0.0177	-	0.0295
L1	-	1.000	-	-	0.0394	-
ZD	-	1.250	-	-	0.0492	-
ZE	-	1.250	-	-	0.0492	-
ccc	-	-	0.080	-	-	0.0031
k	0°	-	7°	$0{ }^{\circ}$	-	7°

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 94. LQFP176, $24 \times 24 \mathrm{~mm}$, 176-pin low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

LQFP176 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 95. LQFP176, $24 \times 24 \mathrm{~mm}$, 176-pin low-profile quad flat package top view example

1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

6.5 LQFP208 28×28 mm low-profile quad flat package information

Figure 96. LQFP208, $28 \times 28 \mathrm{~mm}$, 208-pin low-profile quad flat package outline

1. Drawing is not to scale.

Table 131. LQFP208, $28 \times 28 \mathrm{~mm}$, 208-pin low-profile quad flat package mechanical data

Symbol	millimeters			inches $^{(1)}$		
	Min	Typ	Max	Min	Typ	Max
A	-	-	1.600	--	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
c	0.090	-	0.200	0.0035	-	0.0079
D	29.800	30.000	30.200	1.1732	1.1811	1.1890
D1	27.800	28.000	28.200	1.0945	1.1024	1.1102
D3	-	25.500	-	-	1.0039	-
E	29.800	30.000	30.200	1.1732	1.1811	1.1890
E1	27.800	28.000	28.200	1.0945	1.1024	1.1102
E3	-	25.500	-	-	1.0039	-
e	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7.0°	0°	3.5°	7.0°
ccc	-	-	0.080	-	-	0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 97. LQFP208, 28×28 mm, 208-pin low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

LQFP208 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 98. LQFP208, $28 \times 28 \mathrm{~mm}$, 208-pin low-profile quad flat package top view example

1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

6.6 WLCSP 180-bump, 5.5×6 mm, wafer level chip scale package information

Figure 99. WLCSP 180-bump, $5.5 \times 6 \mathrm{~mm}, 0.4 \mathrm{~mm}$ pitch wafer level chip scale package outline

1. Drawing is not to scale.

Table 132. WLCSP 180-bump, $5.5 \times 6 \mathrm{~mm}$, 0.4 mm pitch wafer level chip scale package mechanical data

Symbol	millimeters			inches $^{(1)}$		
	Min	Typ	Max	Min	Typ	Max
A	0.525	0.555	0.585	0.0207	0.0219	0.230
A1	-	0.175	-	-	0.0069	-
A2	-	0.380	-	-	0.0150	-
A3	-	0.025	-	-	0.0010	-
b $^{(2)}$	0.220	0.250	0.280	0.0087	0.0098	0.0110
D	5.502	5.537	5.572	0.2166	0.2180	0.2194
E	6.060	6.095	6.130	0.2386	0.2400	0.2413
e	-	0.400	-	-	0.0157	-
e1	-	4.800	-	-	0.1890	-
e2	-	5.200	-	-	0.2047	-
F	-	0.368	-	-	0.0145	-
G	-	0.477	-	-	0.0188	-
aaa	-	0.110	-	-	0.0043	-
bbb	-	0.110	-	-	0.0043	-
ccc	-	0.110	-	-	0.0043	-
ddd	-	0.050	-	-	0.0020	-
eee	-	0.050	-	-	0.0020	-

1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Dimension is measured at the maximum bump diameter parallel to primary datum Z .

Figure 100. WLCSP 180-bump, $5.5 \times 6 \mathrm{~mm}$, 0.4 mm pitch wafer level chip scale package recommended footprint

1. Dimensions are expressed in millimeters.

Table 133. WLCSP 180-bump, $5.5 \times 6 \mathrm{~mm}$, recommended PCB design rules (0.4 mm pitch)

Dimension	Recommended values
Pitch	0.4
Dpad	0.225 mm
Dsm	0.290 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.250 mm
Stencil thickness	0.1 mm

WLCSP180 device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 101. WLCSP180-bump, $5.5 \times 6 \mathrm{~mm}, 0.4 \mathrm{~mm}$ pitch wafer level chip scale package top view example

1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

6.7 UFBGA176+25, $10 \times 10,0.65 \mathrm{~mm}$ ultra thin fine-pitch ball grid array package information

Figure 102. UFBGA176+25, $10 \times 10 \times 0.65 \mathrm{~mm}$ ultra thin fine-pitch ball grid array package outline

1. Drawing is not to scale.

Table 134. UFBGA176+25, $10 \times 10 \times 0.65 \mathrm{~mm}$ ultra thin fine-pitch ball grid array package mechanical data

Symbol	millimeters			inches $^{(1)}$		
	Min	Typ	Max	Min	Typ	Max
A	0.460	0.530	0.600	0.0181	0.0209	0.0236
A1	0.050	0.080	0.110	0.002	0.0031	0.0043
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197
b	0.230	0.280	0.330	0.0091	0.0110	0.0130
D	9.950	10.000	10.050	0.3917	0.3937	0.3957
E	9.950	10.000	10.050	0.3917	0.3937	0.3957
e	-	0.650	-	-	0.0256	-
F	0.400	0.450	0.500	0.0157	0.0177	0.0197
ddd	-	-	0.080	-	-	0.0031
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.080	-	-	0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 103. UFBGA176+25, $10 \times 10 \mathrm{~mm} \times 0.65 \mathrm{~mm}$, ultra fine-pitch ball grid array package recommended footprint

Table 135. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA)

Dimension	Recommended values
Pitch	0.65 mm
Dpad	0.300 mm
Dsm	0.400 mm typ. (depends on the soldermask reg- istration tolerance)
Stencil opening	0.300 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.100 mm

UFBGA 176+25 device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 104. UFBGA $176+25,10 \times 10 \times 0.65 \mathrm{~mm}$ ultra thin fine-pitch ball grid array package top view example

MS41049V 1

1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

6.8 TFBGA216, $13 \times 13 \times 0.8 \mathrm{~mm}$ thin fine-pitch ball grid array package information

Figure 105. TFBGA216, $13 \times 13 \times 0.8 \mathrm{~mm}$ thin fine-pitch ball grid array package outline

1. Drawing is not to scale.

Table 136. TFBGA216, $13 \times 13 \times 0.8 \mathrm{~mm}$ thin fine-pitch ball grid array package mechanical data

Symbol	millimeters			inches ${ }^{(1)}$		
	Min	Typ	Max	Min	Typ	Max
A	-	-	1.100	-	-	0.0433
A1	0.150	-	-	0.0059	-	-
A2	-	0.760	-	-	0.0299	-
b	0.350	0.400	0.450	0.0138	0.0157	0.0177
D	12.850	13.000	13.150	0.5118	0.5118	0.5177
D1	-	11.200	-	-	0.4409	-
E	12.850	13.000	13.150	0.5118	0.5118	0.5177
E1	-	11.200	-	-	0.4409	-
e	-	0.800	-	-	0.0315	-
F	-	0.900	-	-	0.0354	-

Table 136. TFBGA216, $13 \times 13 \times 0.8 \mathrm{~mm}$ thin fine-pitch ball grid array package mechanical data (continued)

Symbol	millimeters			inches $^{(1)}$		
	Min	Typ	Max	Min	Typ	Max
G	-	0.900	-	-	0.0354	-
ddd	-	-	0.100	-	-	0.0039
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.080	-	-	0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits

Figure 106. TFBGA216, $13 \times 13 \mathrm{~mm}, 0.8 \mathrm{~mm}$ pitch, thin fine-pitch ball grid array package recommended footprint

Table 137. TFBGA216 recommended PCB design rules (0.8 mm pitch BGA)

Dimension	Recommended values
Pitch	0.8
Dpad	0.400 mm
Dsm	0.470 mm typ. (depends on the soldermask reg- istration tolerance $)$
Stencil opening	0.400 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.120 mm

TFBGA216 device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 107. TFBGA216, $13 \times 13 \times 0.8 \mathrm{~mm}$ thin fine-pitch ball grid array package top view example

1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

6.9 Thermal characteristics

The maximum chip-junction temperature, T_{J} max, in degrees Celsius, may be calculated using the following equation:
$T_{J} \max =T_{A} \max +\left(P_{D} \max x \Theta_{J A}\right)$
Where:

- $\quad \mathrm{T}_{\mathrm{A}}$ max is the maximum ambient temperature in ${ }^{\circ} \mathrm{C}$,
- $\quad \Theta_{J A}$ is the package junction-to-ambient thermal resistance, in ${ }^{\circ} \mathrm{C} / \mathrm{W}$,
- $\quad P_{D}$ max is the sum of $P_{I N T} \max$ and $P_{I / O} \max \left(P_{D} \max =P_{I N T} \max +P_{I / O} m a x\right)$,
- $\quad P_{I N T} m a x$ is the product of $I_{D D}$ and $V_{D D}$, expressed in Watts. This is the maximum chip internal power.
$\mathrm{P}_{\mathrm{I} / \mathrm{O}}$ max represents the maximum power dissipation on output pins where:

$$
\mathrm{P}_{\mathrm{I} / \mathrm{O}} \max =\Sigma\left(\mathrm{V}_{\mathrm{OL}} \times \mathrm{I}_{\mathrm{OL}}\right)+\Sigma\left(\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{OH}}\right) \times \mathrm{I}_{\mathrm{OH}}\right),
$$

taking into account the actual $\mathrm{V}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OL}}$ and $\mathrm{V}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OH}}$ of the I / Os at low and high level in the application.

Table 138. Package thermal characteristics

Symbol	Parameter	Value	Unit
$\Theta_{J A}$	Thermal resistance junction-ambient LQFP100-14 $\times 14 \mathrm{~mm} / 0.5 \mathrm{~mm}$ pitch	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	Thermal resistance junction-ambient TFBGA100-8×8 mm / 0.8 mm pitch	36.2	
	Thermal resistance junction-ambient WLCSP180-0.4 mm pitch	30	
	Thermal resistance junction-ambient LQFP144-20 $\times 20 \mathrm{~mm} / 0.5 \mathrm{~mm}$ pitch	40	
	Thermal resistance junction-ambient LQFP176-24 $\times 24 \mathrm{~mm} / 0.5 \mathrm{~mm}$ pitch	38	
	Thermal resistance junction-ambient LQFP208-28 $\times 28 \mathrm{~mm} / 0.5 \mathrm{~mm}$ pitch	19	
	Thermal resistance junction-ambient UFBGA176-10× $10 \mathrm{~mm} / 0.5 \mathrm{~mm}$ pitch	39	
	Thermal resistance junction-ambient TFBGA216-13 $\times 13 \mathrm{~mm} / 0.8 \mathrm{~mm}$ pitch	29	

Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

7 Ordering information

Table 139. Ordering information scheme
Example:
Device family
STM32 = Arm-based 32-bit microcontroller

Product type
F = general-purpose

Device subfamily

$765=$ STM32F765xx, USB OTG FS/HS, camera interface, Ethernet
767= STM32F767xx, USB OTG FS/HS, camera interface,
Ethernet, LCD-TFT
768 = STM32F768Ax, USB OTG FS/HS, camera interface,
DSI host, WLCSP with internal regulator OFF
769= STM32F769xx, USB OTG FS/HS, camera interface,
Ethernet, DSI host

Pin count
$\mathrm{V}=100$ pins
$Z=144$ pins
I = 176 pins
$\mathrm{A}=180$ pins
$B=208$ pins
$\mathrm{N}=216$ pins
Flash memory size
G = 1024 Kbytes of Flash memory
I = 2048 Kbytes of Flash memory
Package
T = LQFP
$\mathrm{K}=\mathrm{UFBGA}$
H = TFBGA
$Y=$ WLCSP
Temperature range
6 = Industrial temperature range, -40 to $85^{\circ} \mathrm{C}$.
$7=$ Industrial temperature range, -40 to $105^{\circ} \mathrm{C}$.

Options

xxx = programmed parts
TR = tape and reel

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

Appendix A Recommendations when using internal reset OFF

When the internal reset is OFF, the following integrated features are no longer supported:

- The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
- The brownout reset (BOR) circuitry must be disabled
- The embedded programmable voltage detector (PVD) is disabled
- $\quad V_{B A T}$ functionality is no more available and VBAT pin should be connected to $V_{D D}$
- The over-drive mode is not supported

A. 1 Operating conditions

Table 140. Limitations depending on the operating power supply range
$\begin{array}{|l|c|c|c|l|l|}\hline & & \begin{array}{c}\text { Maximum } \\ \text { Operating } \\ \text { power } \\ \text { supply } \\ \text { range }\end{array} & \begin{array}{c}\text { ADC } \\ \text { operation }\end{array} & \begin{array}{c}\text { memory } \\ \text { access } \\ \text { frequency } \\ \text { with no wait } \\ \text { states } \\ \left(f_{\text {Flashmax }}\right.\end{array} & \begin{array}{c}\text { Maximum Flash } \\ \text { memory access } \\ \text { frequency with } \\ \text { wait states (1)(2) }\end{array}\end{array}$ I/O operation $\left.\begin{array}{c}\text { Possible Flash } \\ \text { memory } \\ \text { operations }\end{array}\right]$

1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is required.
2. Thanks to the ART accelerator on ITCM interface and L1-cache on AXI interface, the number of wait states given here does not impact the execution speed from the Flash memory since the ART accelerator or L1cache allows to achieve a performance equivalent to 0 -wait state program execution.
3. $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDA}}$ minimum value of 1.7 V , with the use of an external power supply supervisor (refer to Section 2.18.1: Internal reset ON).

Revision history

Table 141. Document revision history

Date	Revision	Changes
21-Mar-2016	1	Initial release.
26-Apr-2016	2	DFSDM replaced by DFSDM1 in: - Table 11: STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions. - Table 13: STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx alternate function mapping. - Table 14: STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx register boundary addresses. - Section 5.3.34: Digital filter for Sigma-Delta Modulators (DFSDM) characteristics. Updated Table 2: STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx features and peripheral counts adding DFSDM1 features. Updated Table 40: Peripheral current consumption adding DFSDM1 current consumption. Updated cover in 2 pages. Update cover replacing for SPI 'up to $50 \mathrm{Mbit} / \mathrm{s}$ ' by 'up to $54 \mathrm{Mbit} / \mathrm{s}$ '.
06-May-2016	3	Updated Table 2: STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx features and peripheral counts GPIO number. Updated Table 13: STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx alternate function mapping adding CAN3_RX alternate function on PA8/AF11.
22-Dec-2016	4	Updated Table 98: Dynamics characteristics: Ethernet MAC signals for RMII. Updated Table 72: ADC characteristics sampling rate. Updated all the notes removing 'not tested in production'. Updated Figure 47: SPI timing diagram - slave mode and CPHA $=0$ and Figure 48: SPI timing diagram - slave mode and CPHA $=1$ (1) with modified NSS timing waveforms (among other changes). Updated Table 122: LTDC characteristics clock output frequency at 65 MHz . Updated Section 5.2: Absolute maximum ratings. Updated Section 6: Package information adding information about other optional marking or inset/upset marks.

Table 141. Document revision history (continued)

Date	Revision	Changes
09-Aug-2017	5	Updated note 1 below all the package device marking figures. Updated cover title. Updated Section 1: Description. Updated Section 2.47: DSI Host (DSIHOST) video mode interface features. Added Table 9: DFSDM implementation. Updated Figure 11: STM32F76xxx LQFP100 pinout pin 43 and pin 44. Updated Table 65: I/O current injection susceptibility note by 'injection is not possible'. Updated Table 122: LTDC characteristics LTDC clock frequency at 83 MHz . Updated Table 72: ADC characteristics $\mathrm{R}_{\mathrm{ADC}}$ min at 1.5 Kohm. Updated Figure 41: Recommended NRST pin protection note about the 0.1 uF capacitor. Updated Table 83: DAC characteristics $\mathrm{R}_{\text {LOAD }}$ feature.
11-Sep-2017	6	Added TFBGA100 package: - Updated cover page. - Updated Table 2: STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx features and peripheral counts. - Updated Table 4: Regulator ON/OFF and internal reset ON/OFF availability. - Added Figure 12: STM32F76xxx TFBGA100 pinout. - Updated Table 11: STM32F765xx, STM32F767xx, STM32F768Ax and STM32F769xx pin and ball definitions. - Updated Table 18: General operating conditions. - Updated Table 63: ESD absolute maximum ratings. - Updated note below Figure 44: Power supply and reference decoupling (VREF+ not connected to VDDA). - Updated note below Figure 45: Power supply and reference decoupling (VREF+ connected to VDDA). - Added Section 6.2: TFBGA100, $8 \times 8 \times 0.8 \mathrm{~mm}$ thin fine-pitch ball grid array package information. - Updated Table 138: Package thermal characteristics.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

$$
\text { © } 2017 \text { STMicroelectronics - All rights reserved }
$$

[^0]: The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.

 1. For the LQFP100 package, only FMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select.

 SDMMC2 supports a dedicated power rail for clock, command and data $0 . .4$ lines, feature available starting from 144 pin package.
 DSI host interface is only available on STM32F769x sales types.
 $V_{D D} / V_{\text {DDA }}$ minimum value of 1.7 V is obtained when the internal reset is OFF (refer to Section 2.18.2: Internal reset OFF).
 UFBGA176 is not available for STM32F769x sales types.

[^1]: 1. Guaranteed by characterization results, unless otherwise specified.
[^2]: 1. Data based on characterization, tested in production.
[^3]: 1. The typical current consumption values are given with PDR OFF (internal reset OFF). When the PDR is OFF (internal reset OFF), the typical current consumption is reduced by additional $1.2 \mu \mathrm{~A}$.
 2. Guaranteed by characterization results, unless otherwise specified.
 3. Guaranteed by test in production.
[^4]: 1. Guaranteed based on test during characterization.
[^5]: 1. Guaranteed by design.
[^6]: 1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.
[^7]: 1. Guaranteed by characterization results.
[^8]: 1. Drawing is not to scale.
