

PRODUCT INFORMATION LETTER

PIL AMS-APD/12/7659 Dated 27 Dec 2012

Production line extension within ST Ang Mo Kio (Singapore) for AMS Group products

Sales Type/product family label	See here attached
Type of change	Waferfab additional location
Reason for change	Production capacity increase
Description	Progressing on the activities related to JFet diffusion manufacturing processes, ST is glad to announce line extension, for AMS products produced in JFet process within the same ST plant Ang Mo Kio in Singapore.
Forecasted date of implementation	20-Dec-2012
Forecasted date of samples for customer	20-Dec-2012
Forecasted date for STMicroelectronics change Qualification Plan results availability	20-Dec-2012
Involved ST facilities	ST Ang Mo Kio in Singapore

DOCUMENT APPROVAL

Name	Function
Camiolo, Jean	Marketing Manager
De marco, Alberto	Product Manager
Bugnard, Jean-Marc	Q.A. Manager

A7/.

19-12-2012 *QF212JV1*

PRODUCT/PROCESS CHANGE NOTIFICATION

PIL AMS-APD/12/7659

Analog, MEMS and Sensor Group

Line extension for JFET production in ST Singapore for AMS products

19-12-2012 *QF212JV1*

WHAT:

Progressing on the activities related to bipolar diffusion manufacturing processes, ST is glad to announce line extension, for AMS products produced in Jfet process.

	Current process	Modified process			
Material	JFET	JFET			
Diffusion location	ST Singapore	ST Singapore			
Building	AMK6	AMJ9			
Facilities	No change				
Equipments type	No Change				
Material	No change				

For the complete list of the part numbers affected by the change, please refer to the attached Products list.

WHY:

To increase our production capacity for bipolar process in ST Singapore.

HOW:

The change that covers AMS products is already qualified through attached report. Here below you'll find the details of qualification plan.

Qualification program and results:

The qualification program consists mainly of comparative electrical characterization and reliability tests. Please refer to Appendix 1 for all the details.

WHEN:

Production in ST Singapore AMJ9 for AMS is already started.

Marking and traceability:

Unless otherwise stated by customer specific requirement, the traceability of the parts assembled with the new material set will be ensured by new internal sales types.

The changes here reported will not affect the electrical, dimensional and thermal parameters keeping unchanged all information reported on the relevant datasheets.

There is as well no change in the packing process or in the standard delivery quantities.

19-12-2012 *QF212JV1*

Report ID 2012-W40 AMJ9

Reliability Report

AMJ9 JFET Technology Xfer Qualification

General Information Product Line

006401, 008401

Low power JFET quad operational amplifier / General pur-

Product Description pose JFET quad operational

amplifiers

P/N TL064CDT / TL084CN

Product Group AMS Product division Analog SO14 / DIP14 **Package**

JFET Silicon Process technology Production mask set rev.

Maturity level step from 10 to 30

	Locations						
Wafer fab	AMJ9						
Assembly plant	Bouskoura (SO14)						
Assembly plant	LGG (DIP14)						
Reliability Lab	Grenoble						

DOCUMENT INFORMATION

Version	Date	Pages	Prepared by	Approved by	Comment
1.0	03-Oct-2012	21	X. Gagnard	JM Bugnard	First issue

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

TABLE OF CONTENTS

1	APP	LICABLE AND REFERENCE DOCUMENTS	5
2	GLO	DSSARY	5
		IABILITY EVALUATION OVERVIEW	
	3.1	OBJECTIVES	
	3.2	CONCLUSION	
4	DEV	ICE CHARACTERISTICS	6
	4.1	DEVICE DESCRIPTION	6
	4.2	CONSTRUCTION NOTE	8
5	TES	TS RESULTS SUMMARY	9
	5.1	Test vehicle	9
	5.2	TEST PLAN AND RESULTS SUMMARY	9
6	ANN	IEXES	10
	6.1	DEVICE DETAILS	10
	6.2	TESTS DESCRIPTION	17
	6.3	ESD CERTIFICATES	18
	6.4	LU CERTIFICATES	

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description		
AEC-Q100 Stress test qualification for automotive grade integrated circuits			
AEC-Q101	Stress test qualification for automotive grade discrete semiconductors		
JESD47 Stress-Test-Driven Qualification of Integrated Circuits			
	A		

2 GLOSSARY

DUT	Device Under Test	
PCB	Printed Circuit Board	
SS	Sample Size	

3 RELIABILITY EVALUATION OVERVIEW

3.1 Objectives

The objective of this qualification is the transfer of the BIPOLAR/JFET technology in 6 inches, from AMK6 to AMJ9.

The transfer is based in a copy paste transfer of the equipments and the recipes.

In term of building the AMJ9 is located in the AMK5 building, but using the same informatics tracking systems than AMK6, the same facilities, and the same management of documentations & process control.

The qualification is using 2 tests vehicles in PRO and 2 tests vehicles in JFET. The qualification of AMJ9 is also based on 0431 product qualified by IPC/APM.

This report concerns only the JFET/BIPOLAR technology, the PRO/BIPOLAR being already qualified.

3.2 Conclusion

Qualification Plan requirements have been fulfilled without exception. It is stressed that reliability tests have shown that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

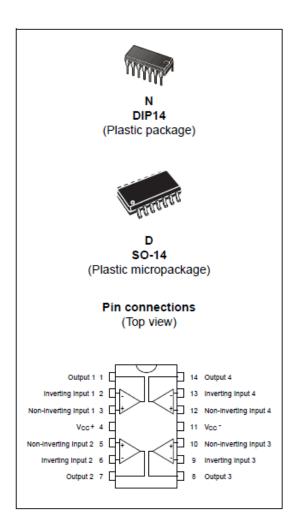
December 2012 5

4 DEVICE CHARACTERISTICS

4.1 **Device description**

TL064

Low power JFET quad operational amplifier


Features

- Very low power consumption: 200 µA
- Wide common-mode (up to V_{CC}⁺) and differential voltage ranges
- Low input bias and offset currents
- Output short-circuit protection
- High input impedance JFET input stage
- Internal frequency compensation
- Latch up free operation
- High slew rate: 3.5 V/µs

Description

The TL064, TL064A and TL064B are high-speed JFET input single operational amplifiers. Each of these JFET input operational amplifiers incorporates well matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit.

The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient.

TL084

General purpose JFET quad operational amplifiers

Features

- Wide common-mode (up to V_{CC}+) and differential voltage range
- Low input bias and offset current
- Output short-circuit protection
- High input impedance JFET input stage
- Internal frequency compensation
- Latch up free operation
- High slew rate: 16 V/µs (typical)

Description

The TL084, TL084A and TL084B are high-speed JFET input quad operational amplifiers incorporating well matched, high voltage JFET and bipolar transistors in a monolithic integrated circuit.

The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient.

4.2 **Construction note**

	Site AMJ9				
	P/N TL064CDT	P/N TL084CN			
Wafer/Die fab. information					
Wafer fab manufacturing location	АМЈ9				
Technology	JFI	ET			
Process family	JFET-	421A			
Die finishing back side	Raw s	ilicon			
Die size	2940 x 1520 μm ²	2480 x 1460 μm ²			
Bond pad metallization layers	AlS				
Passivation type	PVAPO	OX/SiN			
Poly silicon layers	N.	A			
Wafer Testing (EWS) information					
Electrical testing manufacturing location	Singa	pore			
Tester	AOT	Not yet defined			
Test program	H0064CW.01	Not yet defined			
Assembly information					
Assembly site	BSK	LGG			
Package description	SO14	DIP14			
Molding compound	EME-G700K	GR360A-ST			
Frame material	Cu	Cu			
Die attach process	Glue	Glue			
Die attach material	8601S-25	8390S25			
Die pad size	132 x 132 μm²	81 x 81 μm ²			
Wire bonding process	Wire	Wire			
Wires bonding materials/diameters	Cu 1 mil	Cu 1 mil			
Lead finishing process	Pre plated	Plating			
Lead finishing/bump solder material	NiPdAu	Sn			
Substrate supplier for BGA	NA	NA			
Final testing information					
Testing location	BSK	LGG			
Tester	ASL1000	ASL1000			
Test program	T0064AF4	T0084AF5			

5 TESTS RESULTS SUMMARY

5.1 **Test vehicle**

Lot #	Diffusion Lot	Assy Lot	Trace Code	Process/ Package	Product Line	Comments
1	W212NK7	CA1221N140	CZ2250EU	SO14	006401	TL064CDT\$DFWH
2	W129NTJ	0084QLAMJ9	G4145088	DIP14	008401	TL084CN\$LIW
3						

Detailed results in below chapter will refer to P/N and Lot #.

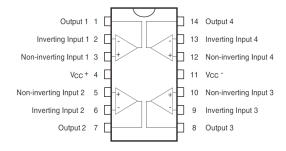
5.2 **Test plan and results summary**

P/N TL064CDT (lot 1) & TL084CN (lot 2)

Test	DC.	Std ref.	Conditions	SS	G4	Failure/SS			NT 4
Test	PC	Sta rei.	Conditions	22	Steps	Lot 1	Lot 2	Lot 3	Note
Die Oriented Tests									
НТВ	N	JESD22	Ti = 125°C RIAS 30V	158	168 H	0/78	0/80		
		A-108	,		1000 H		0/80		
HTSL	N	JESD22 A-103	$Ta = 150^{\circ}C$	78	168 H 1000 H		0/78		
Package	Ori	ented Tests							
PC		JESD22 A-113	Drying 24 H @ 125°C Store 168 H @ Ta=85°C Rh=85% Over Reflow @ Tpeak=260°C 3 times		Final		NA		
AC	Y	JESD22 A-102	Pa=2Atm / Ta=121°C	158	96 H 168 H		0/158		(1)
TC	Y	JESD22 A-104	$Ta = -65^{\circ}C \text{ to } 150^{\circ}C$	78	100 cy 1000 cy		0/78		
Env Seq	Y	no	Ta = -65°C to 150°C Then Pa=2Atm / Ta=121°C	78	100 cy 96h		0/78 0/78		(1)
ТНВ	Y	JESD22 A-101	$Ta = 85^{\circ}C$, RH = 85%, BIAS 30V	80	168 H 1000 H		0/80		
Other Te	sts			-	-				
ESD	N	JESD22- A114/A115 ANSI	HBM CDM MM	3 3 3	In V 1500V In V	900 Pass 200	800 Pass 150		
LU	N	JESD78C	Current Inj. Overvoltage		±200mA	Pass	Pass		

Note (1): Still strong difficulties to test DIP after PPT, due to Sn oxidation and mechanism of contact of DIP socket. After cleaning, test is functional.

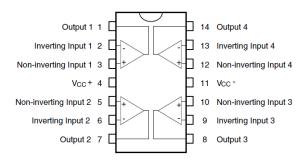
In case of rejects include a short description of the failure analysis and corrective actions.



6 ANNEXES

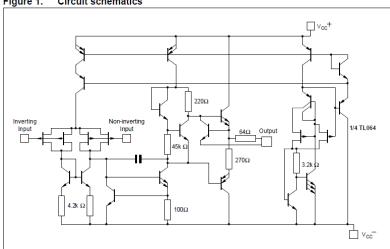
6.1 **Device details**

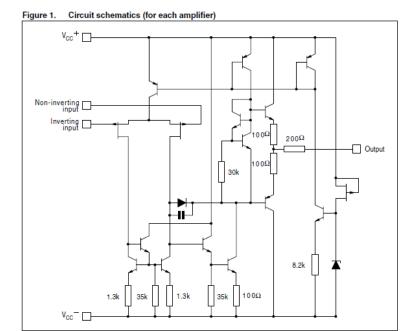
6.1.1 Pin connection


For SO14 package:

For DIP14 package:

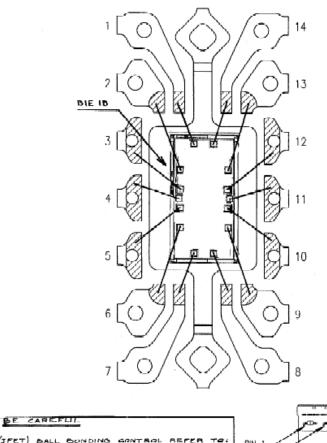
Pin connections

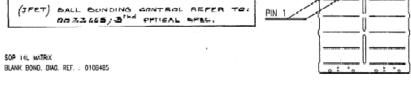

(Top view)


6.1.2 Block diagram

For TL064CDT product:

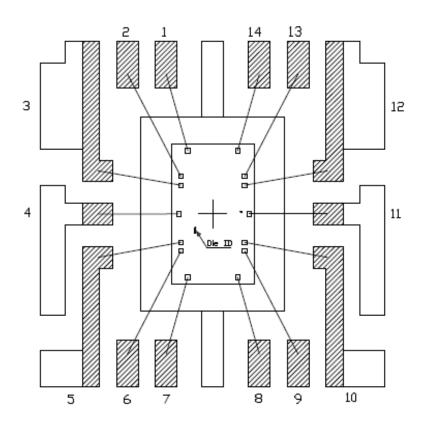
Figure 1. Circuit schematics

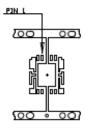



For TL084CN product:

6.1.3 Bonding diagram

For SO14 package:

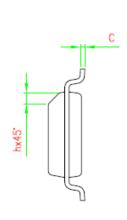

For DIP14 package:

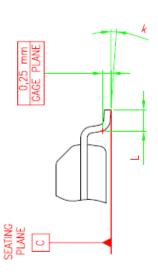

BONDING DIAGRAM FOR LINE : 0084

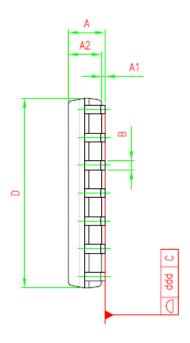
PACKAGE : X 7

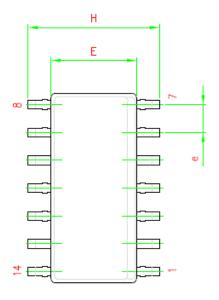
FRAME PAD
$$= \frac{.100 \times .135}{2,540 \times 3,429}$$
 mm

SCALE :




PD(P 14L


Package outline/Mechanical data


For SO14 package:

TITLE : PLASTIC SMALL OUTLINE PACKAGE 14L PACKAGE CODE : K7

TITLE: PLASTIC SMALL OUTLINE PACKAGE 14L

PACKAGE CODE: K7

JEDEC/EIAJ REFERENCE NUMBER: JEDEC MS012-VARIATION AB

DIMENSIONS						1	
		DATABOOK (mm)			DRAWING (mm)		
REF.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	NOTES
Α	1.35		1.75			1.75	
A1	0.10		0.25	0.10	0.15	0.20	
A2	1.10		1.65	1.48	1.52	1.60	
В	0.33		0.51	0.35	0.40	0.455	
С	0.19		0.25	0.19	0.20	0.238	
D	8.55		8.75	8.60	8.65	8.70	(1)
E	3.80		4.00	3.80	3.90	4.00	
е		1.27			1.27		
Н	5.80		6.20	5.90	6.00	6.10	
h	0.25		0.50	0.425		0.50	
L	0.40		1.27	0.50	0.635	0.685	
k	0		8	2	4	8	DEGREES
е		0.40			0.40		
ddd			0.10			0.04	

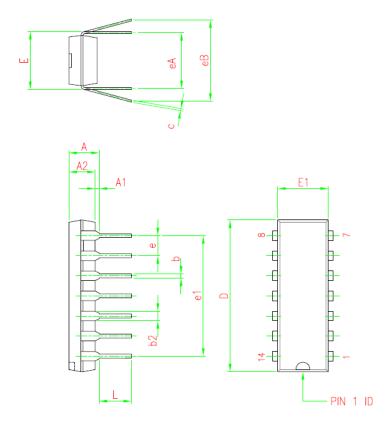
NOTES:

- Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15mm per side.
- (2) Drawing dimensions include Single and Matrix versions.

For DIP14 package:

TITLE: PLASTIC DIP 14 LEADS STD

PACKAGE CODE: X7


JEDEC/EIAJ REFERENCE NUMBER: JEDEC MS-001 VARIATION AA

			DIMEN	ISIONS			
		DATABOOK (mm)			DRAWING (mm)		
REF.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	NOTES
Α			5.33			5.10	
A1	0.38			0.51			
A2	2.92	3.30	4.95	3.18	3.30	3.43	
b	0.36	0.46	0.56	0.38	0.50	0.53	
b2	1.14	1.52	1.78	1.39		1.65	
С	0.20	0.25	0.36	0.20	0.25	0.30	
D	18.67	19.05	19.69	18.92	19.18	19.56	(1)
E	7.62	7.87	8.26		7.87		
E1	6.10	6.35	7.11	6.22	6.35	6.50	(1)
e		2.54		2.29	2.54	2.79	
e1		15.24		14.98	15.24	15.49	
eA		7.62		7.36	7.62	7.87	
eB			10.92	7.80	8.50	9.10	
١	2.92	3.30	3.81	3.00	3.30	3.70	

NOTES:

1- "D" AND "E1" DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTUSIONS. MOLD FLASH OR PROTUSIONS SHALL NOT EXCEED 0.25mm.

POA TITLE: PLASTIC DIP 14L STANDARD PACKAGE CODE: X7

6.2 **Tests Description**

Test name	Description	Purpose
Die Oriented	•	•
HTOL High Temperature Operating Life HTB High Temperature Bias	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. The typical failure modes are related to, silicon degradation, wire-bonds degradation, oxide faults.
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. temperature allowed by the pack- age materials, sometimes higher than the max. operative temperature.	To investigate the failure mechanisms activated by high temperature, typically wire-bonds sol- der joint ageing, data retention faults, metal stress-voiding.
ELFR Early Life Failure Rate	The device is stressed in biased conditions at the max junction temperature.	To evaluate the defects inducing failure in early life.
Package Oriented		
PC Preconditioning	The device is submitted to a typical temperature profile used for surface mounting devices, after a controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.
AC Auto Clave (Pressure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.
THB Temperature Humidity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.
Other		
ESD Electro Static Dis- charge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CBM: Charged Device Model HBM: Human Body Model MM: Machine Model	To classify the device according to his susceptibility to damage or degradation by exposure to electrostatic discharge.
LU Latch-Up	The device is submitted to a direct current forced/sunk into the input/output pins. Removing the direct current no change in the supply current must be observed.	To verify the presence of bulk parasitic effect inducing latch-up.

6.3 **ESD certificates**

ESD CERTIFICATE

According to ST 0061692

Date: 05/10/2012 Line: 008401

Raw Line: WLX7*0084BIW Die code: P0084BIW Traceability code: G4145088

Package(s): DIP14

Laboratory Site: ST Grenoble / Catane (CDM)

HBM (Human Body Model) Equipment reference: Zapmaster MK2-	S/N: 0507277	
Number of units: 3		
This product meets the electrostatic discharge sens and is compliant with :	sitivity specification of	1 KV
☐ MIL-883-H ☐ AEC_Q100-002D ■ JEDEC : JESD22-A114F	by pin group by pin group	
MM (Machine Model) Equipment reference: Zapmaster MK2- 2	S/N: 0507277	
Number of units: 3		
This product meets the electrostatic discharge sens and is compliant with : MIL-883-H	sitivity specification of	150 V
AEC Q100-003E JEDEC: JESD22-A115A	by pin group by pin group	
CDM (Charged Device Model) Equipment reference: : ORION CDM Test System	S/N: 200 23	
Number of units: 3		
This product meets the electrostatic discharge sens and is compliant with : MIL-883-H	sitivity specification of	1.5 KV
□ AEC_Q100-011B ■ ANSI/ESD STM5.3.1	□ by pin group	

ESD CERTIFICATE

According to ST 0061692

Date: 05/10/2012 Line: 006401

Finished Good: TL064CDT\$DFWH		
Die code : P0064AFW		
Traceability code: CZ2250EU		
Package(s): SO14		
Laboratory Site: ST Grenoble / Catane (CDM)		
HBM (Human Body Model)		
Equipment reference: Zapmaster MK2-	S/N: 0507277	
Number of units: 3		
This product meets the electrostatic discharge sensi and is compliant with:	tivity specification of	900 V
☐ MIL-883-H ☐ AEC_Q100-002D	by pin group	
JEDEC : JESD22-A114F	by pin group	
and a		
ADI Al-akia Madab		
MM (Machine Model) Equipment reference: Zapmaster MK2- 2	S/N: 0507277	
Number of units: 3	3/1N. 0301211	
	at the same of	200.37
This product meets the electrostatic discharge sensi and is compliant with:	nvity specification of	200 V
☐ MIL-883-H		
☐ AEC Q100-003E	by pin group	
■ JEDĒČ : JESD22-A115A	by pin group	
CDM (Charged Device Model)		
Equipment reference: : ORION CDM Test System	S/N: 200 23	
Number of units: 3	0/11. 200 25	
This product meets the electrostatic discharge sensi	tivity specification of	1.5 KV
and is compliant with :		
□ MIL-883-H		
AEC_Q100-011B		
ANSĪ/ESD STM5.3.1	by pin group	

6.4 **LU certificates**

LATCH-UP CERTIFICATE

According to ST 0018695 & JEDEC JESD78C STANDARDS

Date: 05/10/2012 Line: 008401

Raw Line: WLX7*0084BIW Die code: P0084BIW Traceability code: G4145088

Package(s): DIP14

Laboratory Site: Grenoble

Latch-up tester reference: MK2-2 S/N: 0507277

Latch-up testing classification: Class I

TEST CONDITIONS AND RESULTS

Current In	jection]				
Device	Sample N°	Pin n	umbers	Negative Current Injection	Positive Current Injection	Class
WLX7*0084 BIW	1-6	INPUTS	2-3-5-6	-200 mA	+ 200 mA	A +
	j		9-10-12-13	-200 mA	+ 200 mA	A+
	ĺ	OUTPUTS	1-7-8-14	-200 mA	+ 200 mA	A+

Supply Overv	oltage	[]			
Device	Sample N°	Pin nun	nbers	Overvoltage Test	Class
WLX7*0084BIW	1-6	SUPPLY	4	36V	Α

REFERENCE LEVELS

Test type	Trigger polarity	Quality Level	Trigger stress
Current injection	Positive	A+	+200 mA
	100000000000000000000000000000000000000	Α	+100 mA
	Negative	A+	-200 mA
	CONTROL BUILDING	Α	-100 mA
Supply Overvoltage		Α	1.5*Vmax

	Class I	Latchup tested at room temperature.	
73			- 83

LATCH-UP CERTIFICATE

According to ST 0018695 & JEDEC JESD78C STANDARDS

Date: 05/10/2012 Line: 006401

Finished Good: TL064CDT\$DFWH

Die code : P0064AFW Traceability code: CZ2250EU

Package(s): SO14

Laboratory Site: Grenoble

Latch-up tester reference: MK2-2 S/N: 0507277

Latch-up testing classification: Class I

TEST CONDITIONS AND RESULTS

Current I	njection					
Device	Sample N°	Pin n	umbers	Negative Current Injection	Positive Current Injection	Class
TL064CDT \$DFWH	1-6	INPUTS	2-3-5-6	-200 mA	+ 200 mA	A+
			9-10-12-13	-200 mA	+ 200 mA	A+
		OUTPUTS	1-7-8-14	-200 mA	+ 200 mA	A+

Supply Overvo	ltage			731	
Device	Sample N°	Pin nur		Overvoltage Test	Class
TL064CDT\$DFWH	1-6	SUPPLY	4	36V	Α

REFERENCE LEVELS

Test type	Trigger polarity	Quality Level	Trigger stress
Current injection	Positive	A+	+200 mA
		Α	+100 mA
	Negative	A+	-200 mA
	P. (2007) (2007) (2007)	Α	-100 mA
Supply Overvoltage		Α	1.5*Vmax

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2012 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

