

SKM36-HFA0-K02

SKS/SKM36

MOTOR-FEEDBACK-SYSTEME ROTATIV HIPERFACE®

Bestellinformationen

Тур	Artikelnr.
SKM36-HFA0-K02	1034094

Weitere Geräteausführungen und Zubehör → www.sick.com/SKS_SKM36

Abbildung kann abweichen

Technische Daten im Detail

Performance

Sinus-/Cosinusperioden pro Umdrehung	128
Anzahl der absolut erfassbaren Umdrehungen	4.096
Gesamtschrittzahl	16.777.216
Messschritt	2,5 " bei Interpolation der Sinus-/Cosinussignale mit z. B. 12 Bit
Integrale Nichtlinearität	± 80 Winkelsekunden, Fehlergrenzen bei Auswertung der Sinus-/Cosinussignale
Differentielle Nichtlinearität	± 40 ", Nichtlinearität einer Sinus-/Cosinusperiode
Arbeitsdrehzahl	≤ 9.000 min ⁻¹ , bis zu der die Absolutposition zuverlässig gebildet werden kann
Verfügbarer Speicherbereich	1.792 Byte

Schnittstellen

Codeart für den Absolutwert	Binär
Codeverlauf	Steigend, bei Drehung der Welle. Im Uhrzeigersinn mit Blick in Richtung "A" (siehe Maßzeichnung), bei Drehung der Welle im Uhrzeigersinn mit Blick in Richtung "A" (siehe Maßzeichnung)
Kommunikationsschnittstelle	HIPERFACE [®]

Elektrische Daten

Anschlussart	Stecker, 8-polig, radial
Versorgungsspannung	7 V DC 12 V DC
Empfohlene Versorgungsspannung	8 V DC
Stromaufnahme	60 mA ¹⁾
Ausgabefrequenz für Sinus-/Cosinussignale	≤ 65 kHz

 $^{^{1)}}$ Ohne Last.

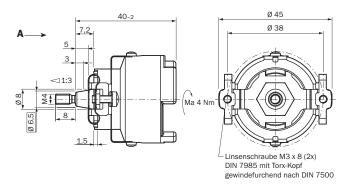
Mechanische Daten

Wellenausführung	Konuswelle
Flanschart / Drehmomentstütze	Federblechabstützung, Drehmomentstütze
Abmessungen/Maße	Siehe Maßzeichnung
Gewicht	≤ 0,07 kg
Trägheitsmoment des Rotors	4,5 gcm ²
Betriebsdrehzahl	9.000 min ⁻¹ , 9.000 U/min

Winkelbeschleunigung	≤ 500.000 rad/s²
Betriebsdrehmoment	0,2 Ncm
Anlaufdrehmoment	+ 0,3 Ncm
Zulässige radiale Wellenbewegung	± 0,15 mm
Zulässige axiale Wellenbewegung	± 0,3 mm
Zulässige Wellenbewegung des Antriebselements, statisch	± 0,1 mm radial - 0,4 mm axial + 0,2 mm axial
Zulässige Wellenbewegung des Antriebselements, dynamisch	± 0,05 mm radial ± 0,1 mm axial
Lebensdauer der Kugellager	3,6 x 10^9 Umdrehungen

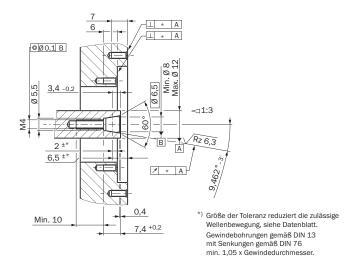
Umgebungsdaten

Betriebstemperaturbereich	-20 °C +110 °C
Lagertemperaturbereich	-40 °C +125 °C, ohne Verpackung
Relative Luftfeuchtigkeit/Betauung	90 %, Betauung nicht zulässig
Widerstandsfähigkeit gegenüber Schocks	100 g, 6 ms, 6 ms (nach EN 60068-2-27)
Frequenzbereich der Widerstandsfähigkeit gegenüber Vibration	50 g, 10 Hz 2.000 Hz (nach EN 60068-2-6)
EMV	Nach EN 61000-6-2 und EN 61000-6-3 ¹⁾
Schutzart	IP50, bei aufgestecktem Gegenstecker und geschlossener Abdeckung (nach IEC 60529)


¹⁾ Die EMV entsprechend den angeführten Normen wird gewährleistet, wenn das Motor-Feedback-System in einem elektrisch leitenden Gehäuse montiert ist, das über einen Kabelschirm mit dem zentralen Erdungspunkt des Motorreglers verbunden ist. Der GND-(0 V) Anschluss der Versorgungsspannung ist dort ebenfalls mit Erde verbunden. Bei Verwendung anderer Schirmkonzepte muss der Anwender eigene Tests durchführen.

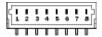
Klassifikationen

ECI@ss 5.0	27270590
ECI@ss 5.1.4	27270590
ECI@ss 6.0	27270590
ECI@ss 6.2	27270590
ECI@ss 7.0	27270590
ECI@ss 8.0	27270590
ECI@ss 8.1	27270590
ECI@ss 9.0	27270590
ETIM 5.0	EC001486
ETIM 6.0	EC001486
UNSPSC 16.0901	41112113


Maßzeichnung (Maße in mm)

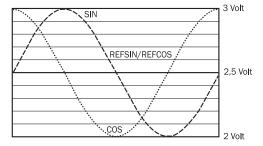
Allgemeintoleranzen nach DIN ISO 2768-mk

Anbauvorgaben


Allgemeintoleranzen nach DIN ISO 2768-mk

PIN-Belegung

PIN	Signal Farbe der Adern Erklärung		Erklärung
1	U _s	rot	7 12 V Versorgungsspannung
2	+ SIN	weiß	Prozessdatenkanal
3	REFSIN	braun	Prozessdatenkanal
4	+ COS	rosa	Prozessdatenkanal
5	REFCOS	schwarz	Prozessdatenkanal
6	GND	blau	Masseanschluss
7	Daten +	grau oder gelb	RS-485-Parameterkanal
8	Daten -	grün oder violett	RS-485-Parameterkanal


Das Gehäuse ist über die Statorkupplung mit dem Motorgehäuse elektrisch verbunden. Der GND-(0V) Anschluss der Versorgungsspannung hat keine Verbindung zum Gehäuse.

Ansicht Steckseite

Diagramme

Signalverlauf bei Drehen der Welle im Uhrzeigersinn mit Blick in Richtung "A" (siehe Maßzeichnung) 1 Periode = 360°: 128

Empfohlenes Zubehör

Weitere Geräteausführungen und Zubehör → www.sick.com/SKS_SKM36

	Kurzbeschreibung	Тур	Artikelnr.
Programmier- und Konfigurationswerkzeuge			
[00.10]	SVip® LAN Programmiertool für alle Motor-Feedback-Systeme	PGT-11-S LAN	1057324
	SVip® WLAN Programmiertool für alle Motor-Feedback-Systeme	PGT-11-S WLAN	1067474

SICK AUF EINEN BLICK

SICK ist einer der führenden Hersteller von intelligenten Sensoren und Sensorlösungen für industrielle Anwendungen. Ein einzigartiges Produkt- und Dienstleistungsspektrum schafft die perfekte Basis für sicheres und effizientes Steuern von Prozessen, für den Schutz von Menschen vor Unfällen und für die Vermeidung von Umweltschäden.

Wir verfügen über umfassende Erfahrung in vielfältigen Branchen und kennen ihre Prozesse und Anforderungen. So können wir mit intelligenten Sensoren genau das liefern, was unsere Kunden brauchen. In Applikationszentren in Europa, Asien und Nordamerika werden Systemlösungen kundenspezifisch getestet und optimiert. Das alles macht uns zu einem zuverlässigen Lieferanten und Entwicklungspartner.

Umfassende Dienstleistungen runden unser Angebot ab: SICK LifeTime Services unterstützen während des gesamten Maschinenlebenszyklus und sorgen für Sicherheit und Produktivität.

Das ist für uns "Sensor Intelligence."

WELTWEIT IN IHRER NÄHE:

Ansprechpartner und weitere Standorte → www.sick.com

