

VACUUM FLUORESCENT DISPLAY MODULE

ENGINEERING PROPOSAL

M12BY02AA

EVALUATION ACCEPTED WITHOUT ANY CHANGE THE FOLLOWING CHANGE IS DECLINED.	
☐ THE FOLLOWING CHANGE IS REQUIRED	
	·

MAR 10,2008

Engineering Group

Electronic Components Division

Futaba Corporation

ISSUED BY	yasuo Olmo
CHECKED BY	Hirogiki Takano.
CHECKED BY	Katownori Koce
APPROVED BY	Soichi Slund
•	

!\ Important Safety Notice

Please read this note carefully before using the product.

Warning

- The module should be disconnected from the power supply before handling.
- The power supply should be switched off before connecting or disconnecting the power or interface cables.
- Do not touch the electronic components of the module with any metal objects.
- The VFD used on the module is made of glass and should be handled with care. When handling the VFD, it is recommended that cotton gloves be used.
- The module is equipped with a circuit protection Reset table Fuse.
- Under no circumstances should the module be modified or repaired.

 Any unauthorized modifications or repairs will invalidate the product warranty.
- The module should be abolished as the factory waste.

1. FEATURES

M12BY02AA can be displayed dot matrix characters.

The module can be configured for a I2C interface.

The necessary power supply is 5V DC only.

The module has 3pcs LED and IR Reciver.

2. GENERAL DESCRIPTION

2-1. DIMENSIONS, WEIGHT (Refer to FIGURE-4)

Table-1

Item	Specification	Unit	
	(W) 115±1		
Outer dimensions	$(H)25\pm1$	mm	
	(T)21.9max.		
Weight	T.B.D	g	

2-2. SPECIFICATIONS OF THE DISPLAY PANEL

Table-2

Item	Specification	Unit
Display Area	64.7(W)×7.0(H)	mm
Number of Characters	12 characters	_
Luminance	Green 1000 (Typ.)	cd/m ²

2-3. ENVIRONMENT CONDITIONS

Table-3

Item	Symbol	Min.	Max.	Unit
Operation Temperature	Topr	-20	+70	°C
Storage Temperature	Tstg	-40	+85	°C
Operating Humidity	Hopr	0	80	%
Storage Humidity	Hstg	0	90	%
Vibration (10 ~ 55Hz)	_	_	4	G
Shock	_	_	40	G

Note) Avoid operations and or storage in moist environmental conditions

2-4. ABSOLUTE MAXIMUM RATINGS

Table-4

Item	Symbol	Min.	Max.	Unit
Supply Voltage	Vcc	-0.3	6.0	Vdc
Input Signal Voltage	$V_{ m IS}$	-0.3	Vcc+0.3	V

2-5. RECOMMEND OPERATING CONDITIONS

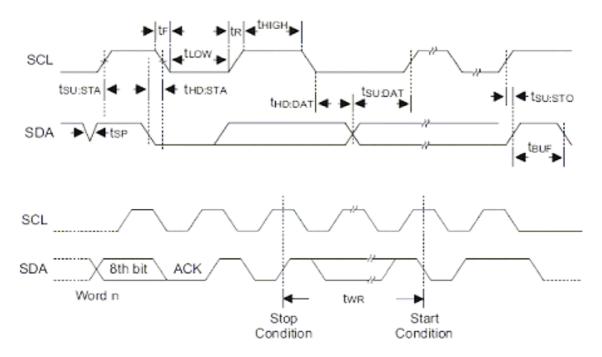
Table-5

Item	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	Vdc
L-Level Input Voltage	$V_{ m IL}$	0	_	$Vcc \times 0.3$	V
H-Level Input Voltage	$V_{ m IH}$	$Vcc \times 0.7$	1	Vcc	V

2-6. ELECTRICAL CHARACTERISTICS

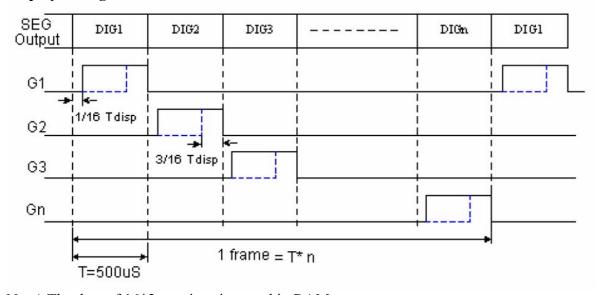
Table-6

Item	Symbol	Condition	Min.	Typ.	Max.	Unit
Supply Current (Note)	<i>I</i> cc	Vcc=5.0Vdc	_	240	350	mA
Power Consumption	_	/ cc — 3.0 v dc	_	1.20	1.75	W
Luminance (VFD)	L(G)	Vcc=5.0Vdc	500	1000	_	cd/m ²
Luminance (LED)	L(G)	$I_{\rm F}={\rm T.B.D}$	T.B.D	T.B.D	_	cd/m ²
Luminance (LED)	L(R)	$I_{\rm F}={\rm T.B.D}$	T.B.D	T.B.D	_	cd/m ²
Luminance (LED)	L(Y)	$I_{\rm F}={\rm T.B.D}$	T.B.D	T.B.D	_	cd/m ²


Note) The surge current can be approx. 5times the specified supply current at power on.

2-7. AC CHARACTERISTICS

Table-7


Symbol	Parameter	Remark	Min	Max	Unit
f_{sk}	Clock Frequency	-	-	400	KHz
t_{HIGH}	Clock High Time	-	600	-	ns
t_{LOW}	Clock Low Time	-	1200	-	ns
t_{R}	SDA and SCL Rise Time	-	-	300	ns
t_{F}	SDA and SCL Fall Time	-	-	300	ns
t _{HD:STA}	START Condition Hold Time	After this period the first	600	-	ns
		clock pulse is generated			
$t_{\mathrm{SU:STA}}$	START Condition Setup Time	Only relevant for repeated	600	-	ns
		START condition			
$t_{\rm HD:DAT}$	Data Input Hold Time	-	0	-	ns
$t_{SU:DAT}$	Data Input Setup Time	-	100	-	ns
$t_{\rm SU:STO}$	STOP Condition Setup Time	-	600	-	ns
$t_{ m BUF}$	Bus Free Time	Time in which the bus	1200	-	ns
		mustbe free before a new			
		transmisson can start			
t_{SP}	Input Filter Time Constant	Noise supperession time	-	50	ns
t_{WR}	Write Cycle Time	-	1	-	us

Timing Diagrams

Note) The write cycle time t_{WR} is the time from a valid stop condition of a write sequence to the end of the valid start condition of sequential command.

Display timing

Note) The data of 16*2 matrixes is stored in RAM

3.FUNCTION DESCRIPTION

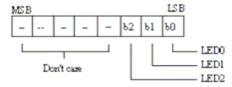
3-1. Display RAM and display mode

The static display RAM stores the data which is transmitted form external device to the controller IC through a serial interface. The contents of the RAM are directly mapped to the outputs of the VFD driver. Data in the RAM can be accessed through the data setting , address setting and display control commands. It is assigned addresses in 8-bit unit as follows.

Seg1	Seg4	Seg8	Seg12	Seg16	Seg20	Seg24	Į.
00	Hı.	00 Hu	01 HL	01 Hu	02 HL	02Hu	DIG1
03	Hı.	03 Hu	04 Hı.	04 H u	05 Hı.	05 Hu	DIG2
06	Ht	06 Hu	07 Hı.	07 H u	08 Hı.	08 Hu	DIG3
09	Hı.	09 H u	0A HL	0A H υ	OB Hi.	OB Hu	DIG4
0C	Ht.	0C Hu	0D H1.	0D Hu	0E Hı	0E Hu	DIG5
0F	Hı.	0F H∪	10 H t.	10 Hu	11 Hı.	11 H u	DIG6
12	Hı.	12 Hu	13 Hı.	13 Hu	14 Hւ	14 H ս	DIG7
15	HL	15 Hu	16 HL	16 H∪	17 Hı.	17 H∪	DIG8
18	Hı.	18 Hu	19 H t.	19 H∪	1A Hı.	1A Hu	DIG9
1B	Hu	1B Hu	1C Hı.	1C Ηυ	1D Hı.	1D Hu	DIG10
1E	Hı.	1E Hu	1FHı.	1F Hu	20 Hı.	20 Hu	DIG11
21	Hı.	21 Hu	22 Hı.	22 Hu	23 Hı.	23 Hu	DIG12

bo		b ₃ b ₄	b ₇
	XX HL	X	XΗυ
	Lower 4 bits	Higher	4 hits

3-2. Diming control


Controller IC provides 15-step dimmer function on display by controlling the 4-bit binary command mode. The full pulse width of grid signal is divides into 16 uniform sections by PWM(pulse width modulation)technology.

The 16 uniform sections available form 15 steps dimmer via 3-bit binary code. The 1/16 pulse width indicates minimum lightness. The 15/16 pulse width represents maximum lightness (Refer to the display control command)

3-3. LED port

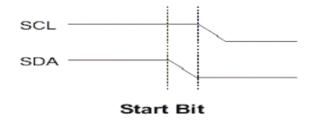
Data is written to the LED port with the write command, starting form the least port's least significant bit.

When a bit of this port is 0,the corresponding LED lights; when the bit is 1,the LED turns off. The data of bit 3 through 7 are ignored.

4.INTERFACE

The I2C interface supports write command only.

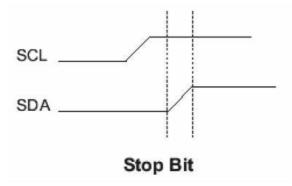
If the bit following device address is set "1", The controller IC will not assert ACK.


· A0,A1,A2

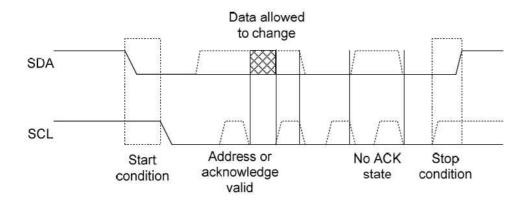
As many as eight devices may be addressed on a single bus system.

Start condition

The START signal is generated only by the master device.


A high-to-low transition of SDA with SCL high is a start condition which must precede any other command.

· Stop condition


The Stop signal is generated only by the master device. A low-to-high transition of SDA with SCL High is a stop condition.

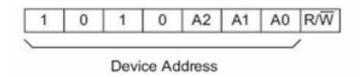
After a read sequence, the stop command will place the controller IC in a initial state.

Acknowledge

All addresses and data words are serially transmitted to and from the controller IC in 8-bit words. The controller IC sends a zero to acknowledge that it has received each word. This happens during the ninth clock cycle.

Device Addressing

The Controller IC requires an 8-bit device address word following a start condition to enable the chip for a write operation. The device address word consist of a mandatory one, zero sequence for the first four most significant bits(refer to the diagram showing the Device Address). This is common to all the control IC.


The next three bits are the A2, A1 and A0 device address bits for the controller IC.

These three bits must compare to their corresponding hard-wired input pin.

If the comparison of the device address succeed, the controller IC will output a zero at ACK bit. If not, the chip will return to a standby state.

The R/W bit must set to "0" because controller IC only supports write command.

If the bit following device address is set "1", the controller IC will not assert ACK.

Write Operations

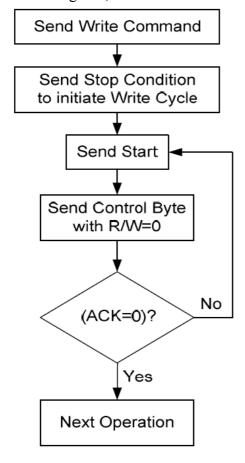
Command write:


- 1. Command write include Device address word and Command word.(refer to Command writetiming)
- 2. A write operation requires an 8-bit data word include the device address and a "0"bit. Upon receipt of this address, The controller IC will respond with a zero and receive anther 8-bit command Data word, then controller IC will again respond with a zero. The micro controller must terminate the Command write sequence with a stop condition.

Byte write:

- 1. Byte write include Device address and a "0"bit, Command word and data word (refer to Command write timing)
- 2. A write operation requires an 8 bit data word include the device address and a"0"bit. Upon receipt of this address, the controller IC will respond with a zero and receive first 8-bit command data word, then the controller IC will respond with a zero and receive second 8-bit data word.finally controller IC will again respond with a zero. The microcontroller must terminate the Byte write Sequence with a stop condition.

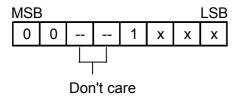
Page write:


- 1. A page write is initiated in the same way as a byte write, but the microcontroller does not send a stop condition after the first data word is clocked in Instead, after the controller IC acknowledges the receipt of the first data word, the microcontroller can transmit up to 35 more data words. The controller IC will respond with a stop condition (refer to Page write timing)
- 2. The address defined by address setting command is incremented internally following the receipt of each data word.

Acknowledge polling:

To maximize bus throughput, one technique is to allow the master to poll for an acknowledge signal After the start condition and the control byte for a write command have been sent. If the device is still busy implementing its write cycle, then no ACK will be returned. The master can send the next command/data when ACK singnal has finally been received.

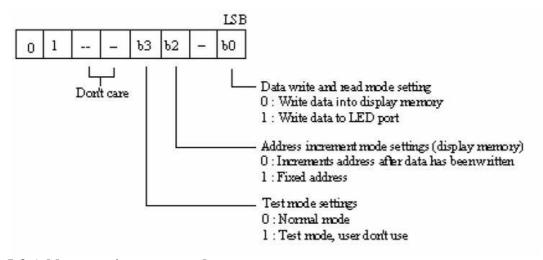
If no acknowledge bit, the master must send a STOP bit and end the communication.



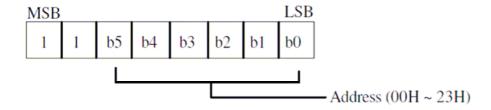
Acknowledge Polling Flow

5.COMMANDS

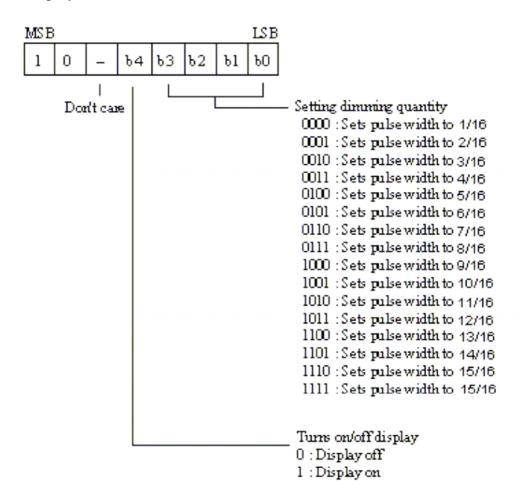
5-1. Display mode setting commands


This command is selects the number of segments and number of grid.(12digits,16segments)

Power on status: 12-digit, 16 segment mode is selected.


5-2.Data setting commands

These commands set the data write and data read modes.


5-3. Address setting commands

These command set the address of the display command.

If address 24H or higher is set, the data is ignored, until a correct address is set. Power on status: the address is set to 00H.

5-4. Display control commands

Note:

- 1. Display off: The Gird is set to Low-level.
- 2. Power on status: 1/16 pulse width is set and the display is turned off.

6.INTERFACE CONNECTION

The using connector

1227SM-08-40 (Neltron Industrial CO.,Ltd.)

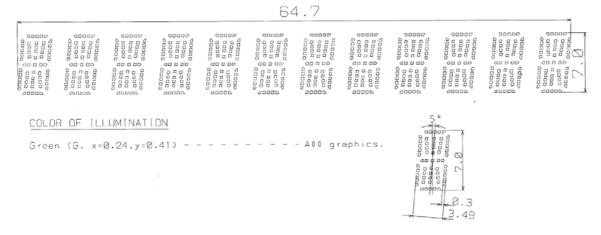
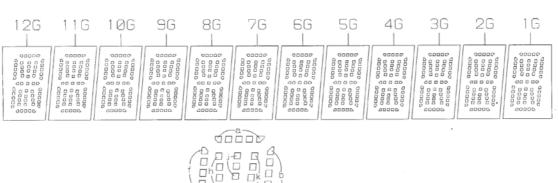

1.25mm FFC Connector

Table-8


Pin No.	Symbol	Descriptions
1	5V	VCC(5V)
2	GND	GND
3	SCL	Serial Clock
4	SDL	Serial Data
5	A0	Device Address A0
6	A1	Device Address A1
7	A2	Device Address A2
8	IR _{OUT}	IR Output(f_0 =37.9KHz)

7.VFD PATTERN DETAIL

FIGURE-1

FIGURE-2

8. The environmental specifications for this product

1. With respect to EU RoHS Directive

The contained amount of six prohibited substances in this product, which are cadmium, hexavalent chromium, lead, mercury, polybrominated biphenyl:PBB and polybrominated diphenyl ether:PBDE, is less than the permitted level stipulated in the EU RoHS Directive, or these substances are not included in the Directive.

The substances excluded are based on Article 4 of the EU RoHS Directive.

2. With respect to Chinese RoHS

This product contains only "lead and its compound" from among six controlled substances, which are cadmium, hexavalent chromium, lead, mercury, polybrominated biphenyl:PBB and polybrominated diphenyl ether :PBDE.

The contained amount of the controlled substances except lead and its compound in this product is less than the level stipulated in the Chinese RoHs.

As for the display of information on containing EHS, please refer to the following.

- < Display of information on containing EHS >
- *Product and part the substances are contained : Vacuum Fluorescent Display(VFD)
- *Chemical materials contained : Lead and its compound
- *Time limit of use for environmental protection: 10 years
- *Reason for containing the substances: No materials are available except them under the current technology.

CIRCUIT BLOCK DIAGRAM

FIGURE-3

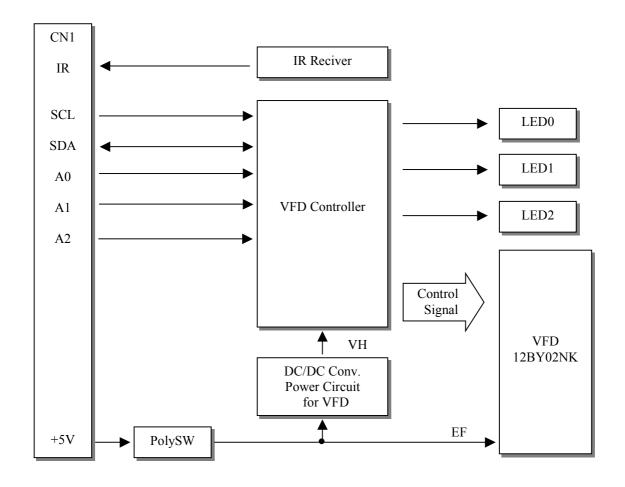
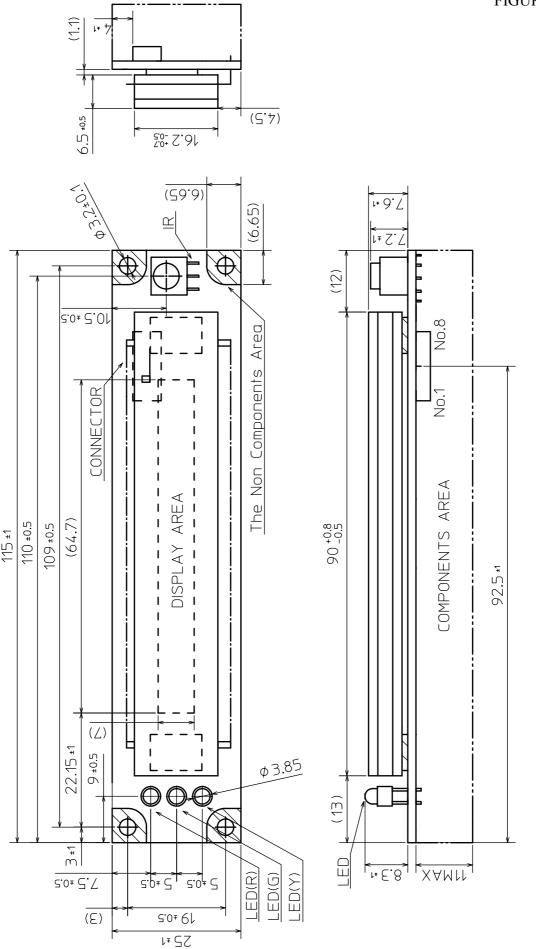
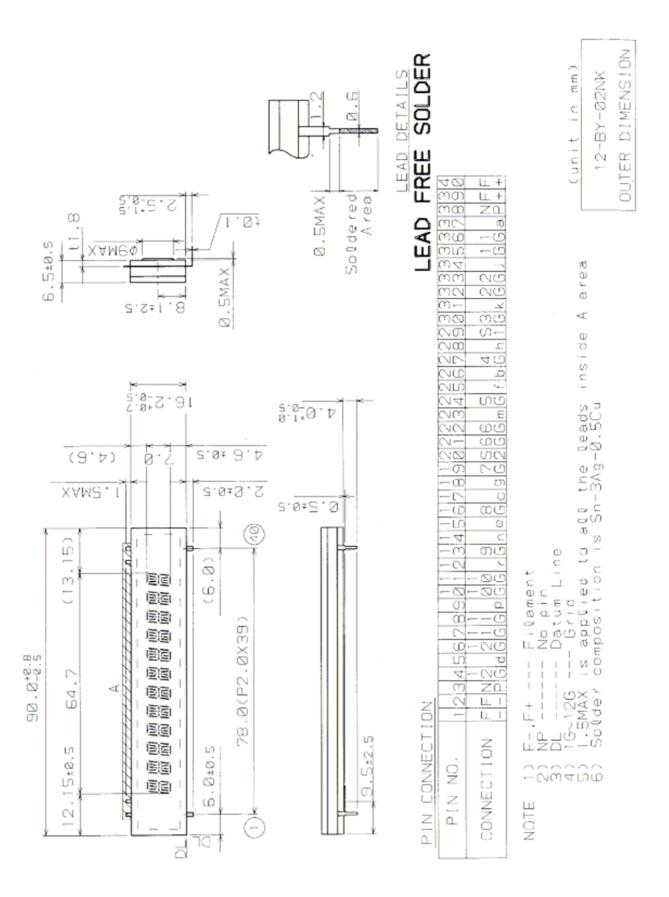




FIGURE-4

M12BY02AA REV.B

FIGURE-5

DISPLAY RAM – VFD Connection

FIGURE-6

Display RAM	Connection	Display RAM	Connection
SEG1	a	DIG1	1G
SEG2	b	DIG2	2G
SEG3	С	DIG3	3G
SEG4	d	DIG4	4G
SEG5	e	DIG5	5G
SEG6	f	DIG6	6G
SEG7	g	DIG7	7G
SEG8	h	DIG8	8G
SEG9	j	DIG9	9G
SEG10	k	DIG10	10G
SEG11	m	DIG11	11G
SEG12	n	DIG12	12G
SEG13	p	-	-
SEG14	r	-	-
SEG15	S1	-	-
SEG16	S2	-	-

9. CAUTIONS FOR OPERATION

- 9-1. Applying lower voltage than the specified may cause non activation for selected pixels. Conversely, higher voltage may cause non-selected pixel to be activated. If such a phenomenon is observed, check the voltage level of the power supply.
- 9-2. The DC/DC converter generates approximately 31Vdc, avoid touching it with bare hands, or to other circuits.
- 9-3. Avoid using the module where excessive noise interface is expected.Noise affects the interface signal and causes improper operation.Keep the length of the interface cable less than 30cm.(When the longer cable is required, please confirm there is no noise affection.)
- 9-4. When power is turned off, the capacitor will not discharge immediately.

 Avoid touching IC and others.

 The shorting of the mounted components within 30 sec., after power off, may cause damage.
- 9-5. When fixed pattern is displayed for a long time, you may see uneven luminance. It is recommended to change the display patterns sometimes in order to keep best display quality.
- 9-6. DC/DC converter is equipped on the module, the surge current may be approximately 5 times the specified supply current at the power on.