

Description:

The resistors are constructed in a high grade ceramic body (aluminum oxide). Internal metal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the substrate. The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to within tolerance by laser cutting of this resistive layer.

The resistive layer is covered with a protective coat. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is a Tin (lead free) alloy.

Features:

- High reliability and stability
- Reduced size of final equipment
- Lower assembly costs
- Higher component and equipment reliability

Application:

- Consumer electrical equipment
- EDP, Computer application

Quick Reference Data

- Telecom application

Item	General Specification			
Series No.	MCWR12	MCWR08	MCWR06	MCWR04
Size code	1206(3216)	0805(2012)	0603(1608)	0402(1005)
Resistance Range	1Ω to10M 1% tolerance			
Resistance Tolerance	$\begin{gathered} \text { 1\% } \\ \text { E96/E24 } \end{gathered}$			
$\begin{gathered} \mathrm{TCR}\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \\ 10 \mathrm{M} \Omega \geq \mathrm{R}>10 \\ \mathrm{R} \leq 10 \Omega \end{gathered}$	$\begin{gathered} \leq \pm 100 \\ -200 \text { to }+400 \end{gathered}$			
Max. dissipation @ $\mathrm{T}_{\text {amb }}=70^{\circ} \mathrm{C}$	1/4 W	1/8 W	1/10 W	1/16 W
Max. Operation Voltage (DC or RMS)	200V	150V	75V	50V
Max. Overload Voltage (DC or RMS)	400V	300 V	150V	100V
Climatic category	55/155/56			

Note :

1. Max. Operation Voltage : So called RCWV (Rated Continuous Working Voltage) is determined by RCWV $=\sqrt{\text { Rated Power } \times \text { Resistance Value }}$ or Max. RCWV listed above, whichever is lower. 2. The resistance of Jumper is defined $<0.05 \Omega$.

	MCWR12	MCWR08	MCWR06	MCWR04
\mathbf{L}	3.1 ± 0.1	2 ± 0.1	1.6 ± 0.1	1 ± 0.05
\mathbf{W}	1.6 ± 0.1	1.25 ± 0.1	0.8 ± 0.1	0.50 ± 0.05
\mathbf{T}	0.6 ± 0.15	0.5 ± 0.15	0.45 ± 0.15	0.35 ± 0.05
$\mathbf{T b}$	0.45 ± 0.2	0.4 ± 0.2	0.3 ± 0.15	0.25 ± 0.1
$\mathbf{T t}$	0.5 ± 0.2	0.4 ± 0.2	0.3 ± 0.1	0.2 ± 0.1

Dimensions : Millimetres

Functional Description:

Product characterization

Standard values of nominal resistance is E96 series for resistors with a tolerance of $\pm 1 \%$.

Derating

The power that the resistor can dissipate depends on the operating temperature; see Fig. 2

Figure 2 Maximum dissipation in percentage of rated power as a function of the ambient temperature for MCWR12, MCWR08, MCWR06, MCWR04

Mounting

Due to their rectangular shapes and small tolerances, Surface Mountable Resistors are suitable for handling by automatic placement systems.
Chip placement can be on ceramic substrates and printed-circuit boards (PCBs).
Electrical connection to the circuit is by individual soldering condition.
The end terminations guarantee a reliable contact.

Soldering Condition:

The robust construction of chip resistors allows them to be completely immersed in a solder bath of $260^{\circ} \mathrm{C}$ for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).
Surface Mount Resistors are tested for solderability at $235^{\circ} \mathrm{C}$ during 2 seconds. The test condition for no leaching is $260^{\circ} \mathrm{C}$ for 30 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 3.

Fig 3. Infrared soldering profile for Chip Resistors

Catalogue Numbers:

The resistors have a catalogue number starting with

MCWR12	X	472	J	T	L
Size code MCWR12 : 1206 MCWR08: 0805 MCWR06 : 0603 MCWR04: 0402	```Type code X : \(\pm 1 \%, 10 \Omega\) to \(1 \mathrm{M} \Omega\) w : \(\pm 1 \%,<10 \Omega ;>1 \mathrm{M} \Omega\)```	Resistance code 4.7Ω $=4 \mathrm{R} 7 _$ 10Ω $=100_{-}$ 220Ω $=221_{-}$ Jumper $=000_{-}$ ("_" means a blank) $\pm 1 \%$, E24+E96: 3 significant digits followed by no. of zeros 102Ω $=1020$ $37.4 \mathrm{~K} \Omega$ $=3742$	Tolerance F: $\pm 1 \%$ P: Jumper	Packaging code T:7" Reeled taping Q:10" Reeled taping G:13" Reeled taping H: 13" reel 50Kpcs only for 0402 B : Bulk D: 7" reel 20Kpcs only for 0402 A: 7" reel 15 Kpcs only for 0402	Termination code $\mathrm{L}=\mathrm{Sn}$ base (lead free)

MCWR12, MCWR08, MCWR06:

1. Reeled tape packaging : 8 mm width paper taping 5,000 pcs per 7 " reel, 10 kpcs per 10 " reel, 20 kpcs per 13 " reel.
2. Bulk packaging : 5,000pcs per poly-bag

MCWR04:

1. Reeled tape packaging : 8 mm width paper taping 10,000 pcs per 7 " reel, 20,000 pcs per 10 " reel. 70,000 pcs per $13^{\prime \prime}$ reel.
2. Bulk packaging : 10,000pcs per poly-bag

Test and Requirements:

Essentially all tests are carried out according to the schedule of IEC publication 115-8, category LCT/UCT/56 (rated temperature range : Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days). The testing also meets the requirements specified by EIA, EIAJ and JIS.
The tests are carried out in accordance with IEC publication 68, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to IEC 60068-1, subclause 5.3. Unless otherwise specified, the following value supplied:
Temperature: $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$.
Relative humidity: 45% to 75%.
Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar).
All soldering tests are performed with midly activated flux.

Test	Procedure / Test Method	Requirement	
		Resistor	0Ω
Electrical Characteristics JISC5201-1: 1998 Clause 4.8	- DC resistance values measurement - Temperature Coefficient of Resistance (T.C.R) Natural resistance change per change in degree centigrade. $\frac{R_{2}-R_{1}}{R_{1}\left(t_{2}-t_{1}\right)} \times 10^{6}\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \mathrm{t}_{1}: 20^{\circ} \mathrm{C}+5^{\circ} \mathrm{C} /-1^{\circ} \mathrm{C} ; \mathrm{t}_{2}:-55^{\circ} \mathrm{C} \text { or }+155^{\circ} \mathrm{C}$ R_{1} : Resistance at reference temperature $\left(20^{\circ} \mathrm{C}+5^{\circ} \mathrm{C} /-1^{\circ} \mathrm{C}\right)$ R_{2} : Resistance at test temperature $\left(-55^{\circ} \mathrm{C}\right.$ or $\left.+155^{\circ} \mathrm{C}\right)$	Within the specified tolerance Refer to "QUICK REFERENCE DATA"	$<50 \mathrm{~m} \Omega$
Resistance to soldering heat(R.S.H) JISC5201-1:1998 Clause 4.18	Un-mounted chips completely immersed for 10 ± 1 second in a SAC solder bath at $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$	$\pm 1 \%: \Delta \mathrm{R} / \mathrm{Rmax}$. $\pm(0.5 \%+0.05 \Omega)$ no visible damage	$<50 \mathrm{~m} \Omega$
Solderability JISC5201-1: 1998 Clause 4.17	Un-mounted chips completely immersed for 10 ± 1 second in a SAC solder bath at $235^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$	95% coverage min., good tinning and no visible damage	
Temperature cycling JISC5201-1: 1998 Clause 4.19	30 minutes at $-55^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, 2-3$ minutes at $20^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}-1^{\circ} \mathrm{C}$, 30 minutes at $+155^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, 2-3$ minutes at $20^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}-1^{\circ} \mathrm{C}$, total 5 continuous cycles	$\pm 1 \%: \Delta \mathrm{R} / \mathrm{Rmax}_{\text {ma }}$. $\pm(0.5 \%+0.05 \Omega)$ No visible damage	$<50 \mathrm{~m} \Omega$
High Temperature Exposure MIL-STD-202 method 108	$1,000+48 /-0$ hours; without load in a temperature chamber controlled $155 \pm 3^{\circ} \mathrm{C}$	$\pm 1 \%: \Delta \mathrm{R} /$ Rmax. $\pm(1 \%+0.1 \Omega)$ No visible damage	$<50 \mathrm{~m} \Omega$
Bending strength JISC5201-1: 1998 Clause 4.33	Resistors mounted on a 90 mm glass epoxy resin PCB(FR4), bending once 3 mm for $10 \mathrm{sec}, 5 \mathrm{~mm}$ for MCWR04	$\begin{aligned} & \pm 1 \%: \Delta \mathrm{R} / \\ & \mathrm{Rmax} . \pm(1 \%+0.05 \Omega) \end{aligned}$ No visual damaged	$<50 \mathrm{~m} \Omega$
Adhesion JISC5201-1: 1998 Clause 4.32	Pressurizing force: 5 N , Test time: $10 \pm 1 \mathrm{sec}$.	No remarkable damage or removal of the terminations	
Short Time Overload (STOL) JISC5201-1: 1998 Clause 4.13	2.5 times RCWV or max. overload voltage, for 5seconds	$\begin{aligned} & \pm 1 \%: \Delta \mathrm{R} / \mathrm{R} \text { max. } \\ & \pm(1 \%+0.05 \Omega) \\ & \text { No visible damage } \end{aligned}$	$<50 \mathrm{~m} \Omega$

Test	Procedure / Test Method	Requirement	
		Resistor	0Ω
Load life in Humidity JISC5201-1: 1998 Clause 4.24	$1000+48 /-0$ hours, loaded with RCWV or Vmax in humidity chamber controller at $40^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ and 90 to 95% relative humidity, 1.5 hours on and 0.5 hours off	$\begin{array}{\|l} \pm 1 \%: \Delta R / R \text { max. } \\ \pm(1 \%+0.1 \Omega) \\ \text { No visible damage } \\ \hline \end{array}$	$<50 \mathrm{~m} \Omega$
Load life (endurance) JISC5201-1: 1998 Clause 4.25	$1000+48 /-0$ hours, loaded with RCWV or Vmax in chamber controller $70 \pm 2^{\circ} \mathrm{C}, 1.5$ hours on and 0.5 hours off	$\begin{array}{\|l\|} \hline \pm 1 \%: \Delta \mathrm{R} / \mathrm{R} \text { max. } \\ \pm(1 \%+0.1 \Omega) \\ \text { No visible damage } \end{array}$	$<50 \mathrm{~m} \Omega$
Insulation Resistance JISC5201-1: 1998 Clause 4.6	Apply the maximum overload voltage (DC) for 1 minute	$R \geqq 10 \mathrm{G} \Omega$	
Dielectric Withstand Voltage JISC5201-1: 1998 Clause 4.7	Apply the maximum overload voltage (AC) for 1 minute	No breakdown or flashover	

Test Condition For Jumper (0Ω)

Item	MCWR12	MCWR08	MCWR06	MCWR04	
Power Rating At $70^{\circ} \mathrm{C}$	$1 / 4 \mathrm{~W}$	$1 / 8 \mathrm{~W}$	$1 / 10 \mathrm{~W}$	$1 / 16 \mathrm{~W}$	
Resistance	MAX. $50 \mathrm{~m} \Omega$				
Rated Current	2 A	1.5 A	1 A	1 A	
Peak Current	5 A	3.5 A	3 A	2 A	
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$				

Packaging:

Paper Tape specifications

Dimensions : Millimetres

Newark.com/multicomp-pro
Farnell.com/multicomp-pro
Element14.com/multicomp-pro

Thick Film Chip Resistors

Series No.	A	B	W	F	E
MCWR12	3.6 ± 0.2	2 ± 0.2			
MCWR08	2.4 ± 0.2	1.65 ± 0.2	8 ± 0.3	3.5 ± 0.2	1.75 ± 0.1
MCWR06	1.9 ± 0.2	1.1 ± 0.2			
MCWR04	1.2 ± 0.1	0.7 ± 0.1			

Series No.	P1	P0	D	T
MCWR12/WR08	4 ± 0.1	4 ± 0.1	Ф1.5 ${ }_{-0.0}^{+0.1}$	Max. 1
MCWR06				0.65 ± 0.05
MCWR04	2 ± 0.1			0.4 ± 0.05

7" Reel dimensions:

Symbol	A	B	C	D
$7 "$ reel	$\Phi 178 \pm 2$	$\Phi 60 \pm 1$	13 ± 0.2	9 ± 0.5
10 " reel	$\Phi 254 \pm 2$	$\Phi 100 \pm 1$	13 ± 0.2	9 ± 0.5
13 " reel	$\Phi 330 \pm 2$	$\Phi 100 \pm 1$	13 ± 0.2	9 ± 0.5

[^0]
[^0]: Important Notice : This data sheet and its contents (the "Information") belong to the members of the AVNET group of companies (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability of the products for their purpose and not make any assumptions based on information included or omitted. Liability for loss or damage resulting from any reliance on the Information or use of it (including liability resulting from negligence or where the Group was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict the Group's liability for death or personal injury resulting from its negligence. Multicomp Pro is the registered trademark of Premier Farnell Limited 2019.

