INTERNATIONAL

Druckfilter für Plattenaufbau und für reversierbaren Ölstrom **DFP / DFPF**

bis 600 l/min, bis 315 bar

1. TECHNISCHE **BESCHREIBUNG**

1.1 FILTERGEHÄUSE Aufbau

Die Filtergehäuse sind entsprechend den internationalen Regelwerken ausgelegt. Sie bestehen aus dem Filterkopf, in den der Filtertopf eingeschraubt ist. Die Filter DFPF sind für beide Durchflussrichtungen geeignet.

Serienausstattung:

- generelle Anschlussmögichkeit für eine Verschmutzungsanzeige
- 2-teiliger Topf ab DFP/F 990 (wahlweise ab DFP/F 660)
- Ölablassschraube mit Druckentlastung (ab DFP/F 330 Serie)

1.2 FILTERELEMENTE

HYDAC-Filterelemente werden nach den folgenden Standards validiert und ständig qualitätsüberwacht:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968 ● ISO 11170
- ISO 16889
- Schmutzaufnahmekanazitäten in d

OCHILL	ıtzauma	IIIIIekap	azitatei	<u> </u>
	Вє	etamicron®	(BN4HC)	
DFP/F	3 µm	5 µm	10 µm	20 µm
60	6,5	7,3	7,8	8,0
110	13,8	15,5	16,4	16,9
140	18,1	20,3	21,5	22,2
160	19,8	22,2	23,5	24,3
240	32,3	36,3	38,4	39,6
280	70,6	79,3	83,9	86,6
330	47,2	53,1	56,1	57,9
500	76,9	86,5	91,5	94,4
660	102,2	114,9	121,5	125,4
990	154,5	173,7	183,7	189,5
1320	209,9	236,0	249,6	257,5
		•	•	

Betamicron® (BH4HC)									
DFP/F	3 µm	5 µm	10 μm	20 µm					
60	4,6	4,5	5,0	5,7					
110	10,1	9,9	10,9	12,4					
140	13,3	13,0	14,3	16,3					
160	12,9	12,6	13,9	15,9					
240	21,6	21,1	23,2	26,5					
280	48,1	47,1	51,8	59,1					
330	34,6	33,9	37,2	42,5					
500	57,5	56,3	61,8	70,5					
660	76,8	75,2	82,6	94,3					
990	111,8	109,4	120,2	137,2					
1320	153,8	150,7	165,5	188,8					

1.3 FILTERKENNDATEN

Nenndruck	315 bar
Ermüdungsfestigkeit	bei Nenndruck 10 ⁶ Lastwechsel von 0 bis Nenndruck
Temperaturbereich	-30 °C bis +100 °C (-30 °C bis -10 °C: p _{max} = 157,5 bar)
Material Filterkopf	EN-GJS 400-15
Material Filtertopf	Stahl
Typ der Verschmutzungsanzeige	VD (Differenzdruckmessung bis 420 bar Betriebsdruck)
Ansprechdruck der Verschmutzungsanzeige	5 bar (andere auf Anfrage)
Öffnungsdruck Bypass (optional)	6 bar (andere auf Anfrage)

Filterelemente sind mit nachfolgenden Kollapsdruckfestigkeiten lieferbar:

Betamicron® (BN4HC): 20 bar Betamicron® (BH4HC): 210 bar Drahtgewebe (W): 20 bar 210 bar Edelstahlvlies (V):

1.4 DICHTUNGEN

NBR (=Perbunan)

1.5 EINBAU

Als Druckfilter-Plattenaufbau mit oder ohne reversierbaren Ölstrom

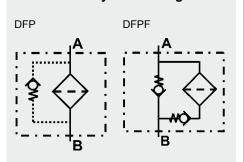
1.6 SONDERAUSFÜHRUNGEN **UND ZUBEHÖR**

- im Kopf integriertes Bypassventil
- Dichtungen aus FPM, EPDM

1.7 ERSATZTEILE

siehe Original-Ersatzteilliste

1.8 ZERTIFIKATE UND ABNAHMEN auf Anfrage


1.9 VERTRÄGLICHKEIT MIT **DRUCKFLÜSSIGKEITEN ISO 2943**

- Hydrauliköle H bis HLPD DIN 51524
- Schmieröle DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Verdichteröle DIN 51506
- Biologisch schnell abbaubare Druckflüssigkeiten VDMA 24568 HETG, HEES, HEPG
- Schwerentflammbare Druckflüssigkeiten HFA, HFB, HFC und HFD
- hoch wasserhaltige Druckflüssigkeiten (>50% Wasseranteil) auf Anfrage

1.10 WARNHINWEISE

- Filtergehäuse müssen geerdet werden
- Bei Einsatz von optischen Verschmutzungsanzeigen sollte nur die Version BM (optisch mit manueller Rückstellung) eingesetzt werden.
- Bei Einsatz von elektrischen Verschmutzungsanzeigen muss vor der Demontage des Verschmutzungsanzeigensteckers die Anlage spannungsfrei geschaltet werden.

Sinnbild für Hydraulikanlagen

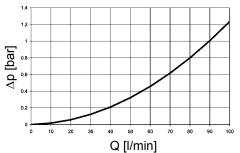
3. FILTERAUSLEGUNG / DIMENSIONIERUNG

Der Gesamtdruckverlust eines Filters bei einem bestimmten Volumenstrom Q besteht aus Gehäuse-Δp und Element-Δp, und ermittelt sich wie folgt:

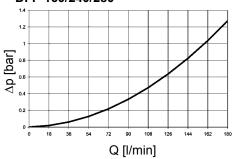
$$\Delta p_{Gesamt} = \Delta p_{Gehäuse} + \Delta p_{Element}$$

 $\Delta p_{Gehäuse} = (siehe Pkt. 3.1)$

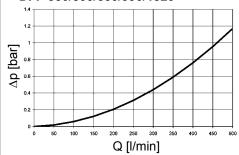
$$\Delta p_{\text{Element}} = Q \cdot \frac{\text{SK}^*}{1000} \cdot \frac{\text{Viskosität}}{30}$$
(*siehe Pkt. 3.2)


Eine komfortable Auslegung ohne Rechenaufwand ermöglicht unser Filterauslegungsprogramm, das wir Ihnen gerne kostenlos zusenden.

NEU: Auslegung online unter <u>www.hydac.com</u>

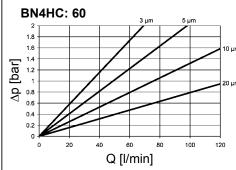

3.1 ∆p-Q-GEHÄUSEKENNLINIEN IN ANLEHNUNG AN ISO 3968

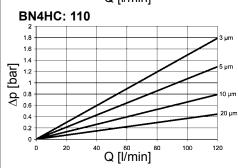
Die Gehäusekennlinien gelten für Mineralöl mit der Dichte 0,86 kg/dm³ und der kinematischen Zähigkeit 30 mm²/s. Der Differenzdruck ändert sich hierbei proportional zur Dichte.

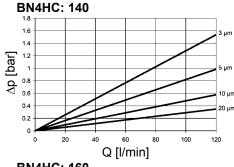

DFP 60/110/140

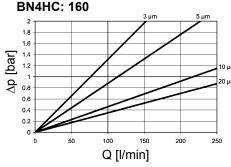
DFP 160/240/280

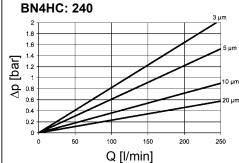
DFP 330/500/660/990/1320

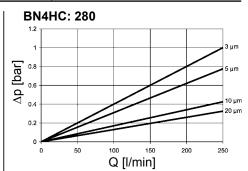


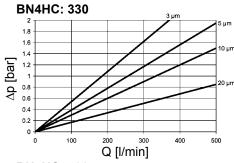

DFPF Δp -Q-Gehäusekennlinien auf Anfrage

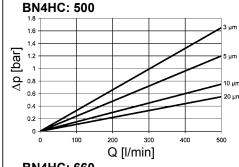

3.2 STEIGUNGSKOEFFIZIENTEN (SK) FÜR FILTERELEMENTE

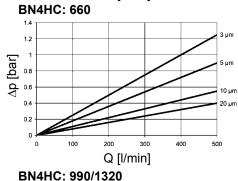

Die Steigungskoeffizienten in mbar/(I/min) gelten für Mineralöle mit einer kinematischen Viskosität von 30 mm²/s. Der Druckverlust ändert sich proportional zur Viskositätsänderung.

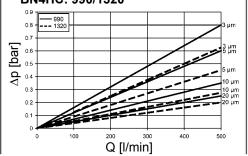

DFP/	٧				W	ВН4НС			
DFPF	3 µm	5 µm	10 µm	20 µm	-	3 µm	5 μm	10 µm	20 µm
60	16,0	11,0	6,5	3,3	1,683	58,6	32,6	18,1	12,2
110	8,3	6,0	4,2	2,1	0,918	25,4	14,9	8,9	5,6
140	5,9	3,8	3,0	1,7	0,721	19,9	11,3	8,1	4,3
160	4,5	3,2	2,3	1,4	0,631	16,8	10,4	5,9	4,4
240	3,2	2,4	1,9	1,1	0,421	10,6	6,8	3,9	2,9
280	1,5	1,2	1,0	0,8	0,361	5,7	3,4	1,8	1,6
330	2,1	1,5	1,3	0,8	0,307	7,7	4,5	2,8	2,0
500	1,4	1,0	0,8	0,5	0,202	4,2	2,6	1,5	1,2
660	1,1	0,9	0,6	0,3	0,153	3,3	1,9	1,0	0,9
990	0,7	0,5	0,4	0,3	0,102	2,2	1,3	0,8	0,6
1320	0,6	0,5	0,3	0,2	0,077	1,6	1,0	0,6	0,4

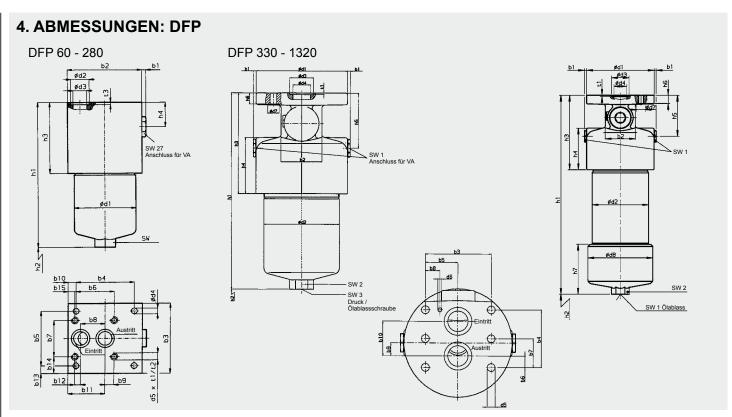


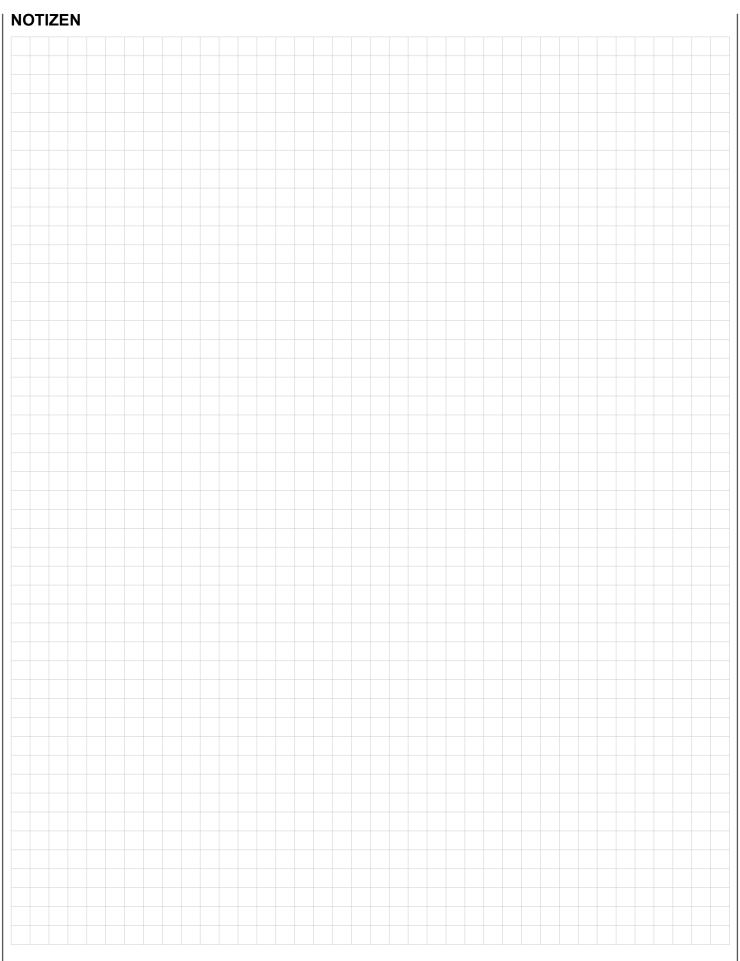












DFP	60	110	140	160	240	280	330	500	660	990	1320
b1	6	6	6	6	6	6	5	5	5	5	5
b2	104	104	104	115	115	115	70	70	70	70	70
b3	80	80	80	110	110	110	96,8	96,8	96,8	96,8	96,8
b4	89	89	89	90	90	90	84,1	84,1	84,1	84,1	84,1
b5	31,8	31,8	31,8	86	86	86	48,4	48,4	48,4	48,4	48,4
b6	_	Ī-	_	61	61	61	16,7	16,7	16,7	16,7	16,7
b7	_	_	_	57	57	57	42,05	42,05	42,05	42,05	42,05
b8	31,6	31,6	31,6	38	38	38	21,4	21,4	21,4	21,4	21,4
b9	_	_	_	14	14	14	19	19	19	19	19
b10	7,5	7,5	7,5	12,5	12,5	12,5	50,7	50,7	50,7	50,7	50,7
b11	55,9	55,9	55,9	57,5	57,5	57,5	_	-	_	_	_
b12	_	_	_	9	9	9	_	-	_	_	_
b13	24,1	24,1	24,1	12	12	12	_	_	_	_	_
b14	_	_	_	26,5	26,5	26,5	_	-	_	_	_
b15	_	_	_	10,5	10,5	10,5	_	1-	_	_	_
d1	68,2	68,2	68,2	95,2	95,2	95,2	158	158	158	158	158
d2	25,3	25,3	25,3	28,6	28,6	28,6	130	130	130	130	130
d3	17,5	17,5	17,5	21,4	21,4	21,4	41	41	41	41	41
d4	8,5	8,5	8,5	9	9	9	30	30	30	30	30
d5	_	_	_	7/18–14 UNC	7/18-14 UNC	7/18-14 UNC	11,5	11,5	11,5	11,5	11,5
d6	_	_	_	_	_	-	6	6	6	6	6
d7	_	_	_	_	_	_	20	20	20	20	20
d8	_	_	_	_	_	_	_	_	_	152	152
h1	158,5	227,5	269,5	199,5	259,5	441,5	339,5	432,5	510,0	660,0	826,0
h2	75	75	75	85	85	85	95	95	95	500	670
h3	76	76	76	83	83	83	174,5	174,5	174,5	174,5	174,5
h4	25	25	25	25	25	25	98	98	98	98	98
h5	_	-	_	_	_	_	96	96	96	96	96
h6	_	-	_	_	_	_	19	19	19	19	19
h7	_	Ī-	_	_	_	_	_	-	Ī-	112	112
t1	_	-	_	13	13	13	2,6	2,6	2,6	2,6	2,6
t2	_	-	_	18	18	18	_	_	_	_	_
t3	2	2	2	2	2	2	_	-	_	_	_
SW	27	27	27	32	32	32	_	-	_	_	-
SW1	_	-	_	_	_	_	27	27	27	27	27
SW2	_	_	_	_	_	_	36	36	36	36	36
SW 3	_	_	_	_	_	_	10	10	10	10	10
Gewicht mit Element [kg]	5,1	6,0	6,6	9,1	10,4	14,7	21,0	25,5	29,0	39,2	47,1
Inhalt des Druckraumes [I]	0,20	0,33	0,40	0,60	0,80	1,60	1,50	2,30	3,00	4,20	5,60

DFPF	60	110	140	160	240	280	330	500	660	990	1320
b1	6	6	6	6	6	6	5	5	5	5	5
b2	104	104	104	120	120	120	70	70	70	70	70
b3	80	80	80	110	110	110	96,8	96,8	96,8	96,8	96,8
b4	89	89	89	90	90	90	84,1	84,1	84,1	84,1	84,1
b5	31,8	31,8	31,8	86	86	86	48,4	48,4	48,4	48,4	48,4
b6	_ ′		_ ′	61	61	61	16,7	16,7	16,7	16,7	16,7
b7	_		_	57	57	57	42,05	42,05	42,05	42,05	42,05
b8	31,6	31,6	31,6	38	38	38	21,4	21,4	21,4	21,4	21,4
b9			 _	14	14	14	19	19	19	19	19
b10	7,5	7,5	7,5	17,5	17,5	17,5	50,7	50,7	50,7	50,7	50,7
b11	55,9	55.9	55,9	62,5	62,5	62,5		<u> </u>	–	_	1-
b12	_	_	_	9	9	9	-	_	-	_	T-
b13	24,1	24,1	24,1	12	12	12	-	_	 -	_	T-
b14	_	_	_	26,5	26,5	26,5	 	-	 -	_	T-
b15	_	-	_	15,5	15,5	15,5	_	-	-	_	T-
d1	68,2	68,2	68,295,2	95,2	95,2	158	158	158	158	158	158
d2	25,3	25,3	25,3	28,6	28,6	28,6	130	130	130	130	130
d3	17,5	17,5	17,5	21,4	21,4	21,4	41	41	41	41	41
d4	8,5	8,5	8,5	9	9	9	30	30	30	30	30
d5	_	_	_	7/8-14 UNC	7/8-14 UNC	7/8-14 UNC	11,5	11,5	11,5	11,5	11,5
d6	_	_	_	_	_	_	6	6	6	6	6
d7	_	_	_	_	_	_	20	20	20	20	20
d8	_	_	_	_	_	_	_	_	_	152	152
h1	158,5	227,5	269,5	206,5	266,5	448,5	339,5	432,5	510,0	660,0	826,0
h2	75	75	75	85	85	85	95	95	95	95	95
h3	76	76	76	90	90	90	174,5	174,5	174,5	174,5	174,5
h4	21	21	21	32	32	32	98	98	98	98	98
h5	_	_	_	_	_	_	96	96	96	96	96
h6	_	_	_	_	_	_	19	19	19	19	19
h7	_	_	_	_	_	_	_	-	_	112	112
t1	-	_	_	13	13	13	2,6	2,6	2,6	2,6	2,6
t2	-	_	_	18	18	18	_	-	_	_	-
t3	2	2	2	2	23	2		_	-		-
SW	27	27	27	32	32	32			-	_	 -
SW1		_	_	_	_	_	27	27	27	27	27
SW2		_	_	_	_	_	36	36	36	36	36
SW 3	_	_	_	_	_	_	10	10	10	10	10
Gewicht mit Element [kg]	5,1	6,0	6,6	9,1	10,4	14,7	21,0	25,5	29,0	39,2	47,1
Inhalt des Druckraumes [I]	0,20	0,33	0,40	0,60	0,80	1,60	1,50	2,30	3,00	4,20	5,60

ANMERKUNG

Die Angaben in diesem Prospekt beziehen sich auf die beschriebenen Betriebsbedingungen und Einsatzfälle. Bei abweichenden Einsatzfällen und/oder Betriebsbedingungen wenden Sie sich bitte an die entsprechende Fachabteilung. Technische Änderungen sind vorbehalten.

Industriegebiet
D-66280 Sulzbach/Saar
Tel.: 0 68 97 / 509-01

Telefax: 0 68 97 / 509-300 Internet: www.hydac.com E-Mail: filter@hydac.com