

### ALS-PDIC17-81B/TR8

#### Features

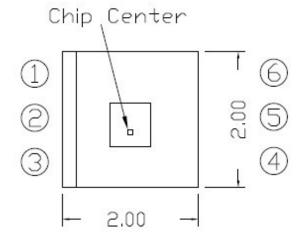
- Close to human eye spectral response.
- CMOS IC Technology.
- 20bits effective resolution.
- High dynamic sensing range from 0Lux to 10,500Klux.
- High resolution 0.04Lux/count. (ITIME=1275ms.)
- 50Hz/60Hz flicker rejection.
- Standard I<sup>2</sup>C protocol interface.
- Convert light intensity to digital data.
- Supply voltage 2.4V ~ 3.6V.
- Low-power consumption.
- Low shutdown current 1uA.
- Package size : 2.0mm x 2.0mm x 0.6mm.
- RoHS complaint & Pb Free.

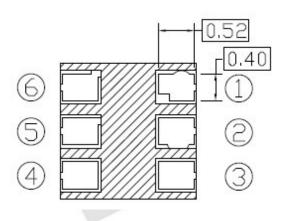
#### Description



The ALS-PDIC17-81B is an advance digital output ambient light sensor (ALS) with I<sup>2</sup>C protocol interface that is compatible SMBus. The ALS-PDIC17-81B consists of a light shielded photodiode and an opened photodiode to improve the dark noise and provide an effective 20 bit dynamic range on a CMOS integrated circuit.

The ALS-PDIC17-81B has been coated IR-filter on package and best spectral response to be close to human eye of visible wavelength, software shutdown mode is provided which reduces power consumption to be less than 1uA and operation voltages from 2.4V to 3.6V, and the maximum detecting range is to 10,500KLux.


#### Applications


- Detection of ambient light for backlight dimming control of Digital LCD TV, tablet PC, Notebook PC,
  - LCD Monitor, Navigation system and display-equipment.
- Automatic residential and commercial light management
- Automatic contrast enhancement for electronic signboard



### Surface - Mount I<sup>2</sup>C Digital Ambient Light Sensor

Package Dimensions





C0.2 r 0.60 8.90 1.30 -0.40 T 0.65 F 0.65 1.70 ł. 1 0.40 soldering pattern SDA INT 4 ADRS VDD GND 6 SCL

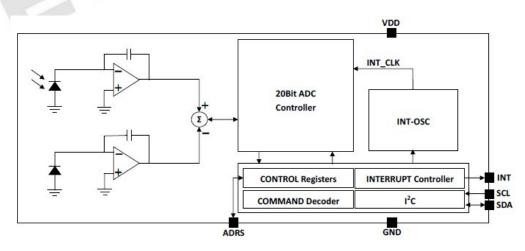
ALS-PDIC17-81B/TR8

Unit: mm Tolerances: ±0.1mm

3)



### ALS-PDIC17-81B/TR8


#### **Pin Description**

| PIN NO | SYMBOL | FUNCTION                           |
|--------|--------|------------------------------------|
| 1      | SDA    | I <sup>2</sup> C Serial Data Line  |
| 2      | ADRS   | Address Select                     |
| 3      | GND    | Ground                             |
| 4      | INT    | Interrupt; Logic output            |
| 5      | VDD    | Power Supply                       |
| 6      | SCL    | I <sup>2</sup> C Serial Clock Line |

#### Absolute Maximum Ratings (Ta=25)

| PARAMETER                       | SYMBOL          | MIN  | MAX | UNIT |
|---------------------------------|-----------------|------|-----|------|
| Storage temperature             | Tstg            | -40  | 85  | °C   |
| Operating temperature           | Topr            | -40  | 85  | °C   |
| Supply voltage                  | V <sub>DD</sub> | 0    | 4.0 | V    |
| Digital output voltage          | Vo              | -0.5 | 4.0 | V    |
| Digital output current          | Io              | -1   | 20  | mA   |
| ESD tolerance, Human Body Model | НВМ             | 8    | -   | KV   |

Block Diagram





Everlight Electronics Co., Ltd. Document No: DLS-0000086 Rev1 Revision : 1 LifecyclePhase: 正式發行

http://www.everlight.com Mar. 15, 2013 Release Date:2013-03-24 02:25:10.0

**Expired Period: Forever** 

### ALS-PDIC17-81B/TR8

## Surface - Mount

Electrical and Optical Characteristics (Ta=25  $V_{DD}$ =3.3V)

| PARAMETER                             | SYMBOL             | CONDITIONS                  | MIN                  | TYP    | MAX                  | UNIT   |
|---------------------------------------|--------------------|-----------------------------|----------------------|--------|----------------------|--------|
| Power supply voltage                  | V <sub>DD</sub>    |                             | 2.4                  | _      | 3.6                  | V      |
| I <sup>2</sup> C Bus pin voltage      | V <sub>Bus</sub>   |                             | 2.4                  | -      | 3.6                  | V      |
|                                       | I <sub>DD1</sub>   | Normal mode                 | -                    | 200    | 250                  | uA     |
| Supply Current                        | I <sub>DD2</sub>   | Fast mode                   | -                    | 600    | 750                  | uA     |
| Shutdown Current                      | $I_{DDQ}$          | Power down                  |                      | 1      | 3                    | uA     |
| I <sup>2</sup> C output low voltage   | V <sub>OL</sub>    | 8mA sink current            | 0                    | -      | 0.4                  | V      |
| High level input voltage              | $V_{\mathrm{IH}}$  |                             | V <sub>DD</sub> *0.7 | -      | -                    | V      |
| Low level input voltage               | $V_{IL}$           |                             | -                    | -      | V <sub>DD</sub> *0.3 | V      |
| ADC<br>integration/conversion<br>time | $t_{INT}$          | 20-bit ADC data             | -                    | 100    | 1275                 | ms     |
| Detection                             |                    | Full scale                  | -                    | -      | 1048576              | count  |
| Detection                             |                    | ITIME= 100ms                | -                    | 526000 |                      | Lux    |
| Peak sensitivity<br>wavelength        | $\lambda_{p}$      |                             | -                    | 580    | _                    | nm     |
| Response in dark<br>environment       | R <sub>DARK</sub>  | Ev= 0Lux,<br>ITIME= 100mS   | -                    | -      | 1                    | counts |
| Response to incandescent lamp         | R <sub>ICD</sub>   | Ev= 100Lux<br>ITIME= 100mS  | -                    | 220    | -                    | counts |
| Response to fluorescent<br>lamp       | R <sub>FRST1</sub> | Ev= 100Lux<br>ITIME= 100mS  | 120                  | 180    | 240                  | counts |
| Response to fluorescent<br>lamp       | R <sub>FRST2</sub> | Ev= 1000Lux<br>ITIME= 100mS | 1200                 | 1800   | 2400                 | counts |

Notice:

1. Fluorescent light (Color Temperature= 6500K) is used as light source. However, white LED is substituted in mass production.

2. Illuminance by CIE standard illuminant-A / 2856K, incandescent lamp.



### ALS-PDIC17-81B/TR8

#### I<sup>2</sup>C Characteristics

The following table and figure show the timing condition of SDA and SCL bus lines for fast mode  $I^2C$  bus devices. NOTE1

|                                                                                              | $(V_{DD} = 5.0V)$   | ±10%, GND | )=0V, T <sub>OPR</sub> = | -40~85) |
|----------------------------------------------------------------------------------------------|---------------------|-----------|--------------------------|---------|
| PARAMETER                                                                                    | SYMBOL              | MIN       | MAX                      | UNIT    |
| SCL clock frequency                                                                          | f <sub>SCL</sub>    | 0         | 400                      | KHz     |
| Hold time (repeated) START condition. After this period, the first clock pulse is generated. | t <sub>hd;sta</sub> | 0.6       | -                        | us      |
| Low period of SCL clock                                                                      | $t_{LOW}$           | 1.3       | -                        | us      |
| High period of SCL clock                                                                     | t <sub>HIGH</sub>   | 0.6       | -                        | us      |
| Set-up time for a repeated START condition                                                   | t <sub>su;sta</sub> | 0.6       | -                        | us      |
| Data hold time                                                                               | t <sub>hd;dat</sub> | 0         | 0.9                      | us      |
| Data set-up time                                                                             | t <sub>su;dat</sub> | 100       | -                        | ns      |
| Clock/data rise time                                                                         | t <sub>R</sub>      | 0         | 300                      | ns      |
| Clock/data fall time                                                                         | t <sub>F</sub>      | 0         | 300                      | ns      |
| Set-up time for STOP condition                                                               | t <sub>su;sto</sub> | 0.6       |                          | us      |
| Bus free time between STOP and START condition                                               | t <sub>BUF</sub>    | 1.3       |                          | us      |

NOTE1: All timing is shown with respect to 30%  $V_{DD}$  and 70%  $V_{DD}$ 

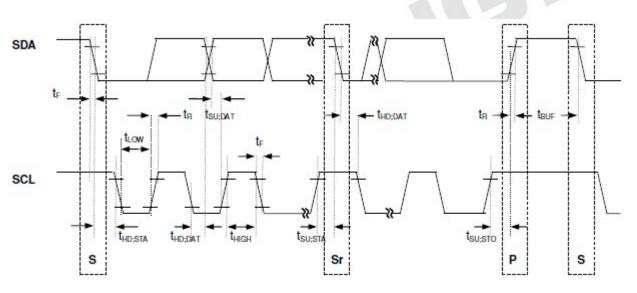
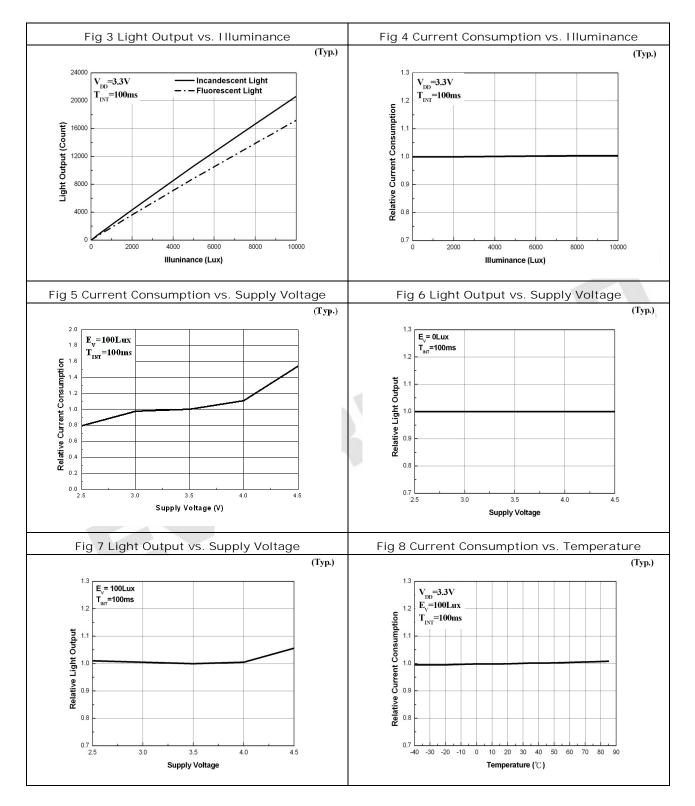



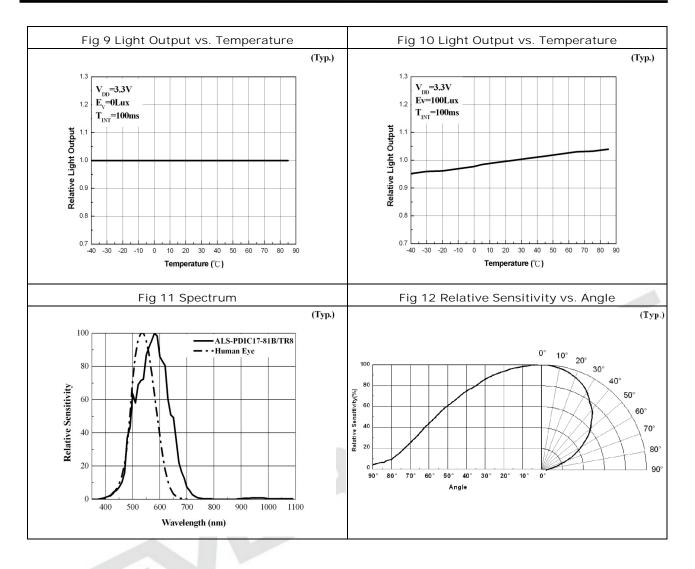

Figure 2 I<sup>2</sup>C Timing Diagram

### ALS-PDIC17-81B/TR8

## Surface - Mount

### Typical Electrical and Optical Characteristics Curves




Everlight Electronics Co., Ltd. Document No: DLS-0000086 Rev1 Revision : 1 LifecyclePhase: Approved

http://www.everlight.com Mar. 15, 2013 Release Date:2013-03-24 02:25:10.0

**Expired Period: Forever** 



### ALS-PDIC17-81B/TR8





**Communication Protocol** 

- 1. I<sup>2</sup>C Protocol
- 1-1 Overview

The  $I^2C$  is one of industrial standard serial communication protocols and which uses 2 bus lines Serial Data Line (SDA) and Serial Clock Line (SCL) to exchange data. Because both SDA and SCL lines are open-drain output, each line needs pull-up resistor. The features are as shown below,

- Compatible with I<sup>2</sup>C bus standard
- Up to 400KHz data transfer
- Support two 7-bits slave address
- Slave operation only

#### 1-2 I<sup>2</sup>C Bit Transfer

The data on the SDA line must be stable during HIGH period of the clock (SCL). The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW. The exceptions are START(S), repeated START(Sr) and STOP(P) condition where data line changes when clock line is high.

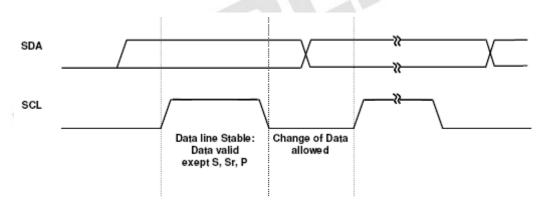



Figure 13 Bit Transfer on the I<sup>2</sup>C-Bus



### ALS-PDIC17-81B/TR8

## Surface - Mount

1-3 Start/ Repeated Start/ Stop

One master can issue a START(S) condition to notice other devices connected to the SCL, SDA lines that is will use the bus. A STOP(P) condition is generated by the master to release the bus lines, so that other devices can use it.

A high to low transition on the SDA line while SCL is high defines a START (S) condition.

A Low to high transition on the SDA line while SCL is high defines a STOP (P) condition.

START and STOP conditions are always generated by a master. The bus is considered to be busy after START condition. The bus is considered to be free again after STOP condition, ie, the bus is busy between START and STOP condition. If a repeated START condition (Sr) is generated instead of STOP condition, the bus stays busy. So, the START and repeated START condition are functionally identical.

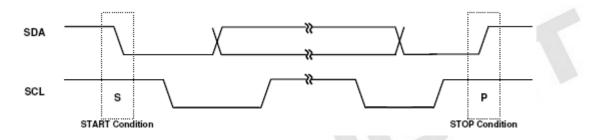
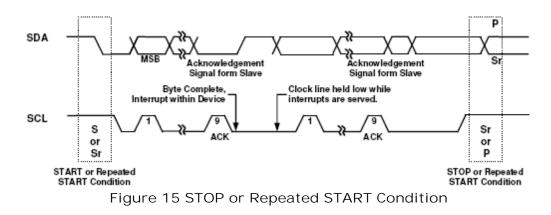




Figure 14 START and STOP Condition

#### 1-4 Data Transfer

Every byte put on the SDA line must be 8-bits long. The number of bytes that can be transmitted per transfer is unlimited. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first. If a slave can't receive or transmit another complete byte of data until it has performed some other function, it can hold the clock line SCL LOW to force the master into a wait state. Data transfer then continues when the slave is ready for another byte of data and releases clock line SCL.

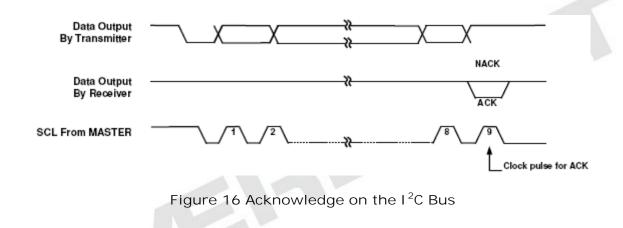


Everlight Electronics Co., Ltd. Document No: DLS-0000086 Rev1 Revision : 1 LifecyclePhase: Approved

9

http://www.everlight.com Mar. 15, 2013 Release Date:2013-03-24 02:25:10.0

**Expired Period: Forever** 




### Surface - Mount |<sup>2</sup>C Digital Ambient Light Sensor

#### 1-5 Acknowledge

Acknowledge related clock pulse is generated by the master. The transmitter releases the SDA line (HIGH) during the acknowledge clock pulse. The receiver must pull down the SDA line during the acknowledge clock pulse so that it remains stable LOW during the HIGH period of this clock pulse. When a slave is addressed by a master (Address Packet), and if it's unable to receive or transmit because it's performing some real time function, the data line must be left HIGH by the slave else, when a slave addressed by a master is unable to receive more data bits, the slave receiver must release the SDA line (Data Packet). The master can then generate either a STOP condition to abort the transfer or a repeated START condition to start a new transfer.

If a master receiver is involved in a transfer, it must signal the end of data to the slave transmitter by not generating an acknowledge on the last byte that was clocked out of the slave. The slave transmitter must release the data line to allow the master to generate a STOP or repeated START condition.



1-6 Operation

The  $I^2C$  is byte-oriented serial protocol and data transfer between master and this slave device is initiated by a start condition(S) from master. After start condition, the master sends 7-bits slave address and 1-bit read-write control bit. We call these 8-bits data address packet.

The next bytes followed by address packet are all data packet unless another start condition is detected before a stop condition. When a byte sent from master right after address packet with the most significant bit (MSB) equal to "1" will be interpreted as a COMMAND byte. The lower 5-bits of the COMMAND bytes from the register select address, which is used to select the destination for the subsequent bytes transferred.

The ALS-PDIC17-81B's  $I^2C$  interface slave address is configured as "10101000" or "01010110" according to the input condition of ADRS pin.



Although I<sup>2</sup>C is byte-oriented and has no limit for number of data byte, we use "4" kinds of transfer protocol based on I<sup>2</sup>C standard. This is because there is no CPU in this device and consequently all controls like preparing data to be transmitted or handling data to be received are all treated by hardware. The 4 kinds of transfers are (1) Byte write Protocol (2) Byte Read Protocol (3) Multi Byte Write Protocol (4) Multi Byte Read Protocol.

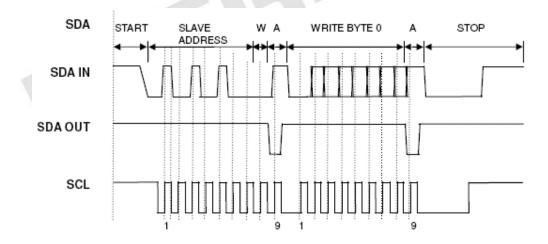
The multi byte protocols are needed to select register address to be accessed. Note that multi byte protocol must have a COMMAND byte or the data byte to be transferred has no meaning.

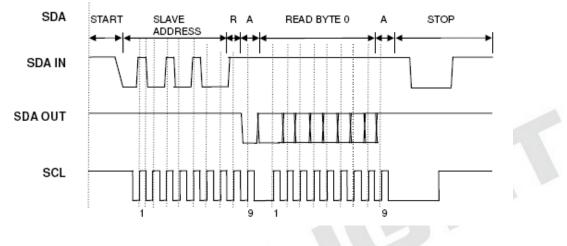
#### 1-6-1 Byte Write Protocol

The master transmits a start condition(S), slave address and Write bit. If the high 7-bits of address packet equal to the device's slave address, the ALS-PDIC17-81B acknowledges by pulling down the SDA line at the 9<sup>th</sup> SCL clock period. After address packet and acknowledge bit, the master transmits data to be written and sends a stop condition regardless of the acknowledged for the data.

The destination address for the data byte is  $00_{H}$  if no multi byte transfer is performed before or "predetermined address" by previously performed multi byte transfer. This applies to Byte Read Protocol also.

Cautions: When Byte Write Protocol is used, the MSB of data packet should be "0" or it will interpreted as a COMMAND byte and communication will not succeed.





Figure 17 Byte Write Protocol



### Surface - Mount |<sup>2</sup>C Digital Ambient Light Sensor

#### 1-6-2 Byte Read Protocol

The master transmits a start condition(S), slave address and Read bit. If the high 7-bits of address packet equal to the device's slave address, the ALS-PDIC17-81B acknowledges by pulling down the SDA line at the 9<sup>th</sup> SCL clock period. After address packet and acknowledge bit, the ALS-PDIC17-81B transmits data and the master does not acknowledges by releasing the SDA line to send a stop condition and finish the transfer.





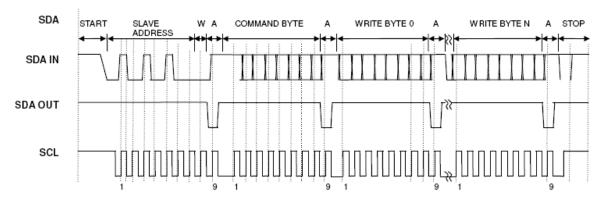
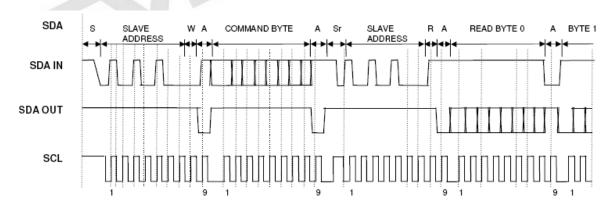
#### 1-6-3 Multi Byte Write Protocol

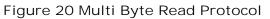
The master transmits a start condition(S), slave address and Read bit. If the high 7-bits of address packet equal to the device's slave address, the ALS-PDIC17-81B acknowledges by pulling down the SDA line at the 9<sup>th</sup> SCL clock period. After address packet and acknowledge bit, the master transmits a data with MSB "1" to notify COMMAND byte. At 9<sup>th</sup> SCL clock, the base address for subsequent data transmit is defined. The master transmits a number of data to be written and the slave always acknowledges for every data received. To finish transfer the master sends a stop condition regardless of the acknowledgement.

The destination addresses for incoming data byte increments automatically by one data packet. For example, if master transmits 5 data bytes including a COMMAND byte and the base address (=command address) is configured as 03H, the internal address ids defined as  $03_H$  for  $1^{st}$  data byte,  $04_H$  for  $2^{nd}$  data byte,  $05_H$  for  $3^{rd}$  data byte and  $06_H$  for  $4^{th}$  data byte. This applies to Multi Byte Read Protocol also.

### ALS-PDIC17-81B/TR8





Figure 19 Multi Byte Write Protocol

#### 1-6-4 Multi Byte Read Protocol

The master transmits a start condition(S), slave address and Read bit. If the high 7-bits of address packet equal to the device's slave address, the ALS-PDIC17-81B acknowledges by pulling down the SDA line at the 9<sup>th</sup> SCL clock period. After address packet and acknowledge bit, the master transmits a data with MSB "1" to notify COMMAND byte. At 9<sup>th</sup> SCL clock, the base address for subsequent data transmit is defined. To initiate read operations, the master sends repeated start condition and slave address with Read bit. After this address packet, the master reads data bytes until it does not acknowledge. Note that to send a stop condition after receiving last data byte, the master must generate a NACK (not acknowledging) on the last data byte received.

Note that transfer direction changes in this protocol.







#### 2. Registers

#### 2-1 Overview

The ALS-PDIC17-81B contains an eight bit registers accessed via the  $I^2C$  bus, controlled and monitored by 13 registers. These registers provide a variety of control functions and can be read to determine results of the ADC conversion.

#### 2-2 Register Description

| ADRS            | REG NAME | DIR | DESCRIPTION                              | RESET VALUE     |
|-----------------|----------|-----|------------------------------------------|-----------------|
| -               | COMMAND  | W   | Command Register                         | -               |
| 00 <sub>H</sub> | CONTROL  | R/W | Control Register                         | 00 <sub>н</sub> |
| 01 <sub>H</sub> | INTR     | R/W | Interrupt Control Register               | 00 <sub>H</sub> |
| 02 <sub>H</sub> | ITIME    | R/W | Integration Time Register                | FF <sub>H</sub> |
| 03 <sub>н</sub> | THDL1    | R/W | [7:0] 0~7 bit Thresholds Low Register    | 00 <sub>н</sub> |
| 04 <sub>H</sub> | THDL2    | R/W | [7:0] 8~15 bit Thresholds Low Register   | 00 <sub>H</sub> |
| 05 <sub>н</sub> | THDL3    | R/W | [3:0] 16~19 bit Thresholds Low Register  | 00 <sub>H</sub> |
| 06 <sub>H</sub> | THDH1    | R/W | [7:0] 0~7 bit Thresholds High Register   | 00 <sub>H</sub> |
| 07 <sub>H</sub> | THDH2    | R/W | [7:0] 8~15 bit Thresholds High Register  | 00 <sub>H</sub> |
| 08 <sub>H</sub> | THDH3    | R/W | [3:0] 16~19 bit Thresholds High Register | 00 <sub>H</sub> |
| 14 <sub>H</sub> | DATA1    | R   | [7:0] 0~7 bit Data Register              | 00 <sub>H</sub> |
| 15 <sub>н</sub> | DATA2    | R   | [7:0] 8~15 bit Data Register             | 00 <sub>H</sub> |
| 16 <sub>H</sub> | DATA3    | R   | [3:0] 16~19 bit Data Register            | 00 <sub>H</sub> |



### ALS-PDIC17-81B/TR8

### Surface - Mount I<sup>2</sup>C Digital Ambient Light Sensor

#### 2-3 Salve Address

ALS-PDIC17-81B provides the address selective function for the system design convenience. The address can be defined by ADRS pin via high, low voltage and floating. In following table, it describes the salve address selection method and the cooperation with the command setting.

| ADRS PIN   | I D<br>Address | COMMAND<br>ADDRESS | OPERATION     |
|------------|----------------|--------------------|---------------|
| PULL LOW   | 0xA8           | 0xA8               | Write command |
| TOLL LOW   | 0,40           | 0xA9               | Read command  |
| PULL HIGH  | 0x56           | 0x56               | Write command |
| I OLE HIGH | 0,50           | 0x57               | Read command  |
| FLOATING   | 0x34           | 0x34               | Write command |
| TLOATING   | 0734           | 0x35               | Read command  |

#### 2-4 Function Description

|                 | 2-4 Functio | on Descri | ption   |        |        |          |          | 1        |          |                 |
|-----------------|-------------|-----------|---------|--------|--------|----------|----------|----------|----------|-----------------|
| ADRS            | REG<br>NAME | 7         | 6       | 5      | B<br>4 | 1T<br>3  | 2        | 1        | 0        | RESET<br>VALUE  |
| -               | COMMAND     | CMD       | 0       | 0      | ADRS4  | ADRS3    | ADRS2    | ADRS1    | ADRS0    | -               |
| 00 <sub>H</sub> | CONTROL     | 0         | 0       | ADCIF  | VALID  | 0        | 0        | ADCEN    | POWER    | 00 <sub>H</sub> |
| 01 <sub>H</sub> | INTR        | INTCLR    | ONESHOT | 0      | 0      | PERSIST3 | PERSIST2 | PERSIST1 | PERSIST1 | 00 <sub>H</sub> |
| 02 <sub>H</sub> | ITIME       | ITIME7    | ITIME6  | ITIME5 | ITIME4 | ITIME3   | ITIME2   | ITIME1   | ITIME0   | FF <sub>H</sub> |
| 03 <sub>H</sub> | THDL1       | THDL7     | THDL6   | THDL5  | THDL4  | THDL3    | THDL2    | THDL1    | THDL0    | 00 <sub>H</sub> |
| 04 <sub>H</sub> | THDL2       | THDL15    | THDL14  | THDL13 | THDL12 | THDL11   | THDL10   | THDL9    | THDL8    | 00 <sub>H</sub> |
| 05н             | THDL3       | 0         | 0       | 0      | 0      | THDL19   | THDL18   | THDL17   | THDL16   | 00 <sub>H</sub> |
| 06 <sub>H</sub> | THDH1       | THDH7     | THDH6   | THDH5  | THDH4  | THDH3    | THDH2    | THDH1    | THDH0    | 00 <sub>H</sub> |
| 07 <sub>Н</sub> | THDH2       | THDH15    | THDH14  | THDH13 | THDH12 | THDH11   | THDH10   | THDH9    | THDH8    | 00 <sub>H</sub> |
| 08 <sub>H</sub> | THDH3       | 0         | 0       | 0      | 0      | THDH19   | THDH18   | THDH17   | THDH16   | 00 <sub>H</sub> |
| 14 <sub>H</sub> | DATA1       | DATA7     | DATA6   | DATA5  | DATA4  | DATA3    | DATA2    | DATA1    | DATA0    | 00 <sub>H</sub> |
| 15 <sub>H</sub> | DATA2       | DATA15    | DATA14  | DATA13 | DATA12 | DATA11   | DATA10   | DATA9    | DATA8    | 00 <sub>H</sub> |
| 16 <sub>Н</sub> | DATA3       | 0         | 0       | 0      | 0      | DATA19   | DATA18   | DATA17   | DATA16   | 00 <sub>H</sub> |



### ALS-PDIC17-81B/TR8

2-4-1 Command Register

| 7   | 6 | 5 | 4     | 3     | 2     | 1     | 0             |
|-----|---|---|-------|-------|-------|-------|---------------|
| CMD | 0 | 0 | ADRS4 | ADRS3 | ADRS2 | ADRS1 | ADRS0         |
|     |   |   |       |       |       | Re    | eset Value: - |

1. CMD: Select command register. A Master must write "1" to this bit when addressing COMMAND register. The right after data byte after address packet can be COMMAND byte. Subsequent bytes are just data bytes.

| BIT 7 | OPERATION                               |
|-------|-----------------------------------------|
| 0     | 1 Byte transfer is initiated by master. |
| 1     | Transaction is command.                 |

#### 2-4-2 Control Register (00hex)

 $\mathbf{00}_{H}$ 

| 7 | 6 | 5     | 4     | 3 | 2 | 1     | 0                          |
|---|---|-------|-------|---|---|-------|----------------------------|
| 0 | 0 | ADCIF | VALID | 0 | 0 | ADCEN | POWER                      |
|   |   |       |       |   |   | Re    | set Value: 00 <sub>H</sub> |

1. ADCIF: ADC Interrupt Flag; Bit 5. Indicates that the device is asserting an interrupt, read only.

| BIT 5 | OPERATION                              |
|-------|----------------------------------------|
| 0     | Interrupt is cleared or not triggered. |
| 1     | Interrupt is triggered.                |

2. VALID: ADC Valid; Bit 4. This is ADC channel has completed an integration cycle, read only.

| BIT 4 | OPERATION                                        |
|-------|--------------------------------------------------|
| 0     | Integration cycle is ongoing or ADC is disabled. |
| 1     | Integration cycle elapsed.                       |

3. ADCEN: Shutdown; Bit 1. This is enable ADC channel to begin integration.

| BIT 1 | OPERATION                    |
|-------|------------------------------|
| 0     | Disable Photo Diode and ADC. |
| 1     | Enable Photo Diode and ADC.  |

4. POWER; Bit 0. This is for proper operation the bit must be enable prior to the ADCEN bit.

| BIT 0 | OPERATION  |
|-------|------------|
| 0     | Turns off. |
| 1     | Turns on.  |

# Surface - Mount

### ALS-PDIC17-81B/TR8

2-4-3 Interrupt Control Register (01hex)

| 0 | 1 <sub>H</sub> |         |   |   |          |          |          |                            |
|---|----------------|---------|---|---|----------|----------|----------|----------------------------|
|   | 7              | 6       | 5 | 4 | 3        | 2        | 1        | 0                          |
|   | INTCLR         | ONESHOT | 0 | 0 | PERSIST3 | PERSIST2 | PERSIST1 | PERSIST0                   |
|   |                |         |   |   |          |          | Res      | set Value: 00 <sub>H</sub> |

#### 1. INTCLR: Clears Interrupt; Bit 7.

| BIT 7 | OPERATION                                       |
|-------|-------------------------------------------------|
| 0     | No operation.                                   |
| 1     | Clear ADC interrupt pending, it's auto-cleared. |

#### 2. ONESHOT: Stop ADC integration on interrupt; Bit 6.

| BIT 6 | OPERATION                                                                                                                                                                                                                                               |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | Continuous operation.                                                                                                                                                                                                                                   |
| 1     | Once an interrupt is asserted, ADC integration will stop and also the ADCEN bit in CONTROL register is to be cleared. To resume operation 1 <sup>st</sup> clear interrupt flag by setting INTCLR bit in this register, 2 <sup>nd</sup> re-assert ADCEN. |

3. PERSIST[3:0]: Interrupt persistence; These bit field control the rate of interrupt request to host chip

| BITS [3:0] | OPERATION                             | BITS [3:0] | OPERATION                          |
|------------|---------------------------------------|------------|------------------------------------|
| 0000       | Every cycle generates interrupt.      | 1000       | 8 integration time periods range.  |
| 0001       | Any value outside of threshold range. | 1001       | 9 integration time periods range.  |
| 0010       | 2 integration time periods range.     | 1010       | 10 integration time periods range. |
| 0011       | 3 integration time periods range.     | 1011       | 11 integration time periods range. |
| 0100       | 4 integration time periods range.     | 1100       | 12 integration time periods range. |
| 0101       | 5 integration time periods range.     | 1101       | 13 integration time periods range. |
| 0110       | 6 integration time periods range.     | 1110       | 14 integration time periods range. |
| 0111       | 7 integration time periods range.     | 1111       | 15 integration time periods range. |

# Surface - Mount

### ALS-PDIC17-81B/TR8

2-4-4 Integration Time Control Register (02hex)

 $02_{\text{H}}$ 

| 7            | 6      | 5      | 4      | 3      | 2      | 1      | 0      |  |
|--------------|--------|--------|--------|--------|--------|--------|--------|--|
| ITIME7       | ITIME6 | ITIME5 | ITIME4 | ITIME3 | ITIME2 | ITIME1 | ITIME0 |  |
| Reset Value: |        |        |        |        |        |        |        |  |

ITIME[7:0]: Specifics the integration time in 5.0ms intervals.

|                 | e= 5ms x ITIME[7:0]  |                 | 1                    |
|-----------------|----------------------|-----------------|----------------------|
| BITS [7:0]      | REFRESH TIMING TABLE | BITS [7:0]      | REFRESH TIMING TABLE |
| 00 <sub>H</sub> | Invalid.             | 14 <sub>H</sub> | 100ms.               |
| 01 <sub>H</sub> | 5ms.                 | 28 <sub>H</sub> | 200ms.               |
| 02 <sub>H</sub> | 10ms.                | 50 <sub>H</sub> | 400ms.               |
| 04 <sub>H</sub> | 20ms.                | 78 <sub>H</sub> | 600ms.               |
| 0A <sub>H</sub> | 50ms.                | FF <sub>H</sub> | 1275ms.              |

| ITIME  | MAX DETECT RANGE | LUX/COUNT |  |  |
|--------|------------------|-----------|--|--|
| 50ms   | 1052KLux         | 1.006     |  |  |
| 100ms  | 526KLux          | 0.503     |  |  |
| 200ms  | 263KLux          | 0.252     |  |  |
| 400ms  | 131KLux          | 0.126     |  |  |
| 600ms  | 87.6KLux         | 0.084     |  |  |
| 800ms  | 65.7KLux         | 0.063     |  |  |
| 1275ms | 41.2KLux         | 0.04      |  |  |

Resolution & Max Detect Range Comparison Table

### ALS-PDIC17-81B/TR8

## Surface - Mount

2-4-5 Interrupt Threshold Register (03, 04, 05, 06, 07 and 08hex)

| 03 <sub>н</sub>      |        |        |        |        |        |        |                            |
|----------------------|--------|--------|--------|--------|--------|--------|----------------------------|
| 7                    | 6      | 5      | 4      | 3      | 2      | 1      | 0                          |
| THDL7                | THDL6  | THDL5  | THDL4  | THDL3  | THDL2  | THDL1  | THDL0                      |
|                      |        |        |        |        |        | Re     | set Value: 00 <sub>H</sub> |
| 04 <sub>H</sub>      |        |        |        |        |        |        |                            |
| 7                    | 6      | 5      | 4      | 3      | 2      | 1      | 0                          |
| THDL15               | THDL14 | THDL13 | THDL12 | THDL11 | THDL10 | THDL9  | THDL8                      |
|                      |        |        |        |        |        | Re     | set Value: 00 <sub>H</sub> |
| 05 <sub>н</sub>      |        |        |        |        |        |        |                            |
| озн<br>7             | 6      | 5      | 4      | 3      | 2      | 1      | 0                          |
| 0                    | 0      | 0      | 0      | THDL19 | THDL18 | THDL17 | THDL16                     |
|                      |        |        |        |        |        | Re     | set Value: 00 <sub>H</sub> |
| 06 <sub>H</sub>      |        |        |        |        |        |        |                            |
| оо <sub>н</sub><br>7 | 6      | 5      | 4      | 3      | 2      | 1      | 0                          |
| THDH7                | THDH6  | THDH5  | THDH4  | THDH3  | THDH2  | THDH1  | THDH0                      |
|                      |        |        |        |        |        | Re     | set Value: 00 <sub>H</sub> |
| 07 <sub>н</sub>      |        |        |        |        |        |        |                            |
| олн<br>7             | 6      | 5      | 4      | 3      | 2      | 1      | 0                          |
| THDH15               | THDH14 | THDH13 | THDH12 | THDH11 | THDH10 | THDH9  | THDH8                      |
|                      |        |        |        |        |        | Re     | set Value: 00 <sub>H</sub> |
| 08 <sub>H</sub>      |        |        |        |        |        |        |                            |
| оо <sub>н</sub><br>7 | 6      | 5      | 4      | 3      | 2      | 1      | 0                          |
| 0                    | 0      | 0      | 0      | THDH19 | THDH18 | THDH17 | THDH16                     |
|                      |        |        |        |        |        | Re     | set Value: 00 <sub>H</sub> |

An interrupt event (ADCIF) is governed by the high and low thresholds in register 03, 04, 05, 06, 07 and 08hex (THDL1, THDL2, THDL3, THDH1, THDH2 and THDH3). The store value to be used as the high and low trigger points for the DATA registers 14, 15 and 16hex crosses below or equal to the low or high threshold specified.

Note: These low and high threshold registers are 20bit wide.

### ALS-PDIC17-81B/TR8

## Surface - Mount

2-4-6 ADC Data Register (14, 15 and 16Hex)

| 14 <sub>H</sub> |        |        |        |        |        |        |                            |
|-----------------|--------|--------|--------|--------|--------|--------|----------------------------|
| 7               | 6      | 5      | 4      | 3      | 2      | 1      | 0                          |
| DATA7           | DATA6  | DATA5  | DATA4  | DATA3  | DATA2  | DATA1  | DATA0                      |
|                 |        |        |        |        |        | Re     | set Value: 00 <sub>H</sub> |
| 15 <sub>н</sub> |        |        |        |        |        |        |                            |
| 7               | 6      | 5      | 4      | 3      | 2      | 1      | 0                          |
| DATA15          | DATA14 | DATA13 | DATA12 | DATA11 | DATA10 | DATA9  | DATA8                      |
|                 |        |        |        |        |        | Re     | set Value: 00 <sub>H</sub> |
| 16 <sub>H</sub> |        |        |        |        |        |        |                            |
| 7               | 6      | 5      | 4      | 3      | 2      | 1      | 0                          |
| 0               | 0      | 0      | 0      | DATA19 | DATA18 | DATA17 | DATA16                     |
|                 |        |        |        |        |        | Re     | set Value: 00 <sub>H</sub> |
|                 |        |        |        |        |        |        |                            |

The ADC included in ALS-PDIC17-81B has 20bit resolution and the integrated values appear on three register DATA1, DATA2 and DATA3 respectively. All ADC data registers are read only and default to 00<sub>H</sub> on power up.



3. Application Information

#### 3-1 Software

After applying  $V_{DD}$ , the device will initially in the power down mode. To operate the device, issue a command to access the CONTROL register followed by the data value  $01_{H}$  to the CONTROL register to power up the device. The ITIME register should be configured for the preferred integration time, and then the ADCEN bit in CONTROL register should be set to 1 to enable ADC channel.

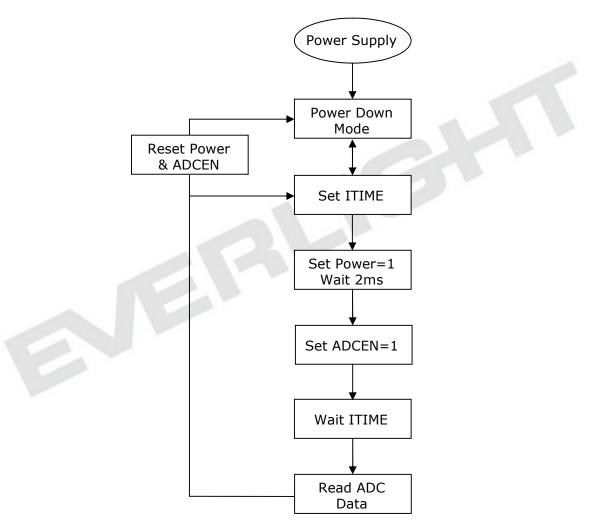



Figure 21 Operating Modes

The below explains matters to be attended to when customer develops a program for ALS-PDIC17-81B.

**Everlight Electronics Co., Ltd.** Document No: DLS-0000086 Rev1 **Revision** :1 正式發行 LifecyclePhase: Approved

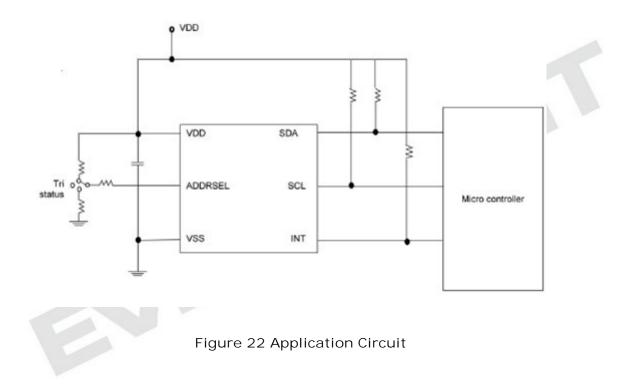
## Surface - Mount

1. Operation Voltage 2.4 to 3.6V.

Set slave address (ADRS pin)
Pull Low: Write command: 0xA8, Read command: 0xA9.
Pull High: Write command: 0x56, Read command: 0x57.
Floating: Write command: 0x34, Read command: 0x35.

3.  $I^{2}C$  speed is the standard, about 100kHz. When writing  $I^{2}C$  Multi bytes. (Single byte read and write rarely is used.)

Multi bytes Writing: START(M)+SlaveAddress\_W(0xA8,M)+ACK(S)+COMMAND(0x80,M)+ACK(S)+WRITE\_BYTE0+ACK (S)...+STOP(M) For example, When ADRS pin is low and want to write 0x33 in CONTROL (00<sub>H</sub>) Register, it should follow the sequence. START+0xA8+ACK+0x80+ACK+0x33+ACK+STOP


When reading I<sup>2</sup>C Multi bytes. Multi bytes reading: START(M)+SlaveAddress\_W(0xA8,M)+ACK(S)+COMMAND(0x80,M)+ACK(S)+START+ SlaveAddress\_R(0xA9,M)+ACK(S)+READ\_BYTE0(S)+ACK(M)...+NACK+STOP(M) For example, when ADRS pin is low and want to read values of ADC Data (address 14H~16H) register, it should follow the below sequence. START+0xA8+ACK+0x94+ACK+START+0xA9+ACK+DATA1+ACK+...+NACK+STOP

After sending I<sup>2</sup>C Read/Write command, delay time needs about 2ms for protocol transferring.



#### 3-2 Application Circuit

ALS-PDIC17-81B is a Ambient Light Sensor (ALS) with I<sup>2</sup>C bus interface. The standard serial digital interface is easy to access. Adding a 0.1uF capacitor should be close to VDD pin for power supply noise rejection. The hardware design is shown in Figure 21. The pull up resister of two line serial bus "SCL" and "SDA" are recommended to be around 4.7Kohm, the pull up resistor for "INT" connected to Micro controller must be 100Kohm. The Pull up Voltage of "SCL", "SDA" and "INT" has to be the same as supply Voltage of ALS-PDIC17-81B.



### ALS-PDIC17-81B/TR8

## Surface - Mount

Recommended method of storage

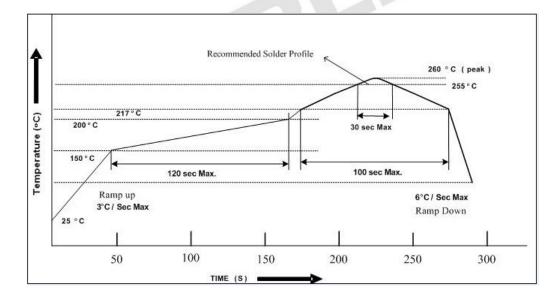
1. Do not open moisture proof bag before devices are ready to use.

2. Shelf life in sealed bag from the bag seal date:

18 months at  $10^{\circ}C \sim 30^{\circ}C$  and < 90% RH.

3. After opening the package, the devices must be stored at  $10^{\circ}C\sim30^{\circ}C$  and  $\leq 60\%$ RH, and used within 168 hours (floor life).

4. If the moisture absorbent material (desiccant material) has faded or unopened bag has exceeded the shelf life or devices (out of bag) have exceeded the floor life, baking treatment is required.


5. If baking is required, refer to IPC/JEDEC J-STD-033 for bake procedure or recommend the following conditions:

192 hours at 40°C +5/-0°C and < 5 % RH (reeled/tubed/loose units) or

96 hours at 60°C  $\pm$  5°C and < 5 % RH (reeled/tubed/loose units) or

24 hours at  $125^{\circ}C \pm 5^{\circ}C$ , not suitable for reel or tubes.

#### Recommended Solder Profile

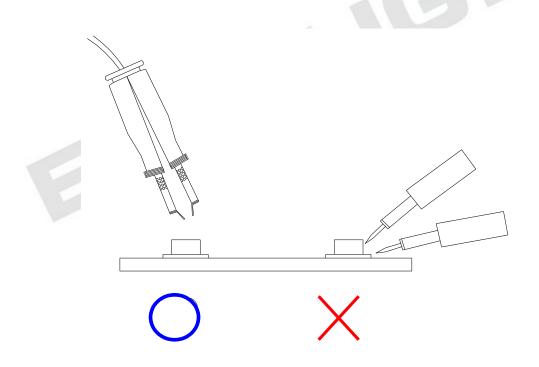


Notice:

- 1. Reflow soldering should not be done more than two times.
- 2. When soldering, do not put stress on the devices during heating.
- 3. After soldering, do not warp the circuit board.

Everlight Electronics Co., Ltd. Document No: DLS-0000086 Rev1 Revision : 1 LifecyclePhase: Approved

http://www.everlight.com Mar. 15, 2013 Release Date:2013-03-24 02:25:10.0




#### Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than 350 for 3 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

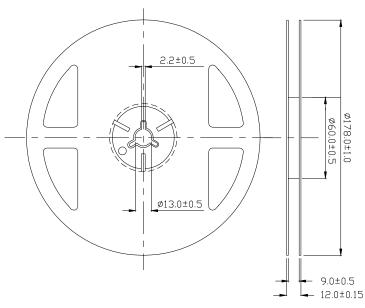
#### Repairing

Repair should not be done after the device have been soldered. When repairing is unavoidable, a double-head soldering iron should be used (as below figure). It should be confirmed beforehand whether the characteristics of the device will or will not be damaged by repairing.




http://www.everlight.com Mar. 15, 2013 Release Date:2013-03-24 02:25:10.0

**Expired Period: Forever** 




Packing Quantity Specification 2000 PCS/ 1 Reel

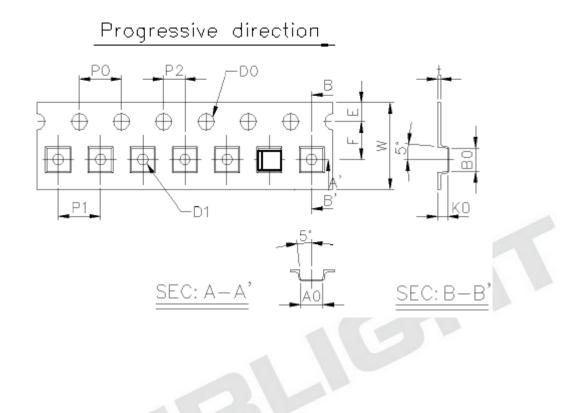
#### Label Format



#### **Reel Dimensions**



#### Unit: mm Tolerance: ± 0.1mm


Everlight Electronics Co., Ltd. Document No: DLS-0000086 Rev1 Revision : 1 LifecyclePhase: Approved

http://www.everlight.com Mar. 15, 2013 Release Date:2013-03-24 02:25:10.0

**Expired Period: Forever** 



Tape Dimensions



#### Note:

- 1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- 2. When using this product, please observe the absolute maximum ratings and the instructions for using outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 3. These specification sheets include materials protected under copyright of EVERLIGHT Corporation. Please don't reproduce or cause anyone to reproduce them without EVERLIGHT's consent.