

DESCRIPTION

The MP8833 is a monolithic thermoelectric cooler controller with built-in internal power MOSFETs. It achieves 1.5A of continuous output current from a 2.7V to 5.5V input voltage range with a thermoelectric cooler (TEC) voltage range. The TEC voltage is linearly controlled by the analog voltage.

Features such as TEC voltage and current limiting are controlled by the 400kHz I²C serial interface. The MP8833 is ideal for TEC device applications, such as optical laser diodes and fiber communication networks.

Full protection features include internal soft start, over-current protection (OCP), overvoltage protection (OVP), and over-temperature protection (OTP).

The MP8833 is available in a QFN-16 (2mmx3mm) package for a minimum solution size.

FEATURES

- 1% 2.5V REF Accuracy
- Wide 2.7V to 5.5V Operating Input Range
- Up to 1.5A TEC Current
- TEC Current Monitor
- 30mΩ Internal MOSFETs for PWM Switches and Linear Switches
- Default 1MHz Switching Frequency
- External SYNC Function
- EN/SD for Power Sequencing
- Available in a QFN-16 (2mmx3mm) Package

APPLICATIONS

- Optical Laser Diode Modules
- Fiber Communication Networks
- Systems with TEC Temperature Control

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are trademarks of Monolithic Power Systems, Inc. or its subsidiaries.

TYPICAL APPLICATION

OTP-EFUSE SELECTED TABLE BY DEFAULT (MP8833GD-0000-Z):

ORDERING INFORMATION

* For Tape & Reel, add suffix –Z (e.g. MP8833GD-xxxx–Z).

** "xxxx" is the configuration code identifier for the register setting stored in the OTP. The default number is "0000". Each "x" can be a hexadecimal value between 0 and F. Work with an MPS FAE to create this unique number, even if ordering the "0000" code. MP8833GD-0000 is the default version.

TOP MARKING

BAP YWW LLL

BAP: Product code of MP8833GD Y: Year code WW: Week code LLL: Lot number

EVALUATION KIT EVKT-MP8833

EVKT-MP8833 kit contents (the items listed below can be ordered separately, and the GUI installation file and supplemental documents can be downloaded from the MPS website.):

Order directly from MonolithicPower.com or our distributors.

PIN FUNCTIONS

ABSOLUTE MAXIMUM RATINGS (1)

ESD Rating

Recommended Operating Conditions (3)

Thermal Resistance θJA θJC

Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J (MAX), the junction-toambient thermal resistance θ_{JA} , and the ambient temperature T_A . The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_J (MAX) - T_A) / θ_{JA} . Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- 3) The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on MPS demo board, 4-layer 63mmx63mm PCB.
- 5) The value of θJA given in this table is only valid for comparison with other packages and cannot be used for design purposes. These values were calculated in accordance with JESD51-7, and simulated on a specified JEDEC board. They do not represent the performance obtained in an actual application.

ELECTRICAL CHARACTERISTICS

 V_{IN} = 3.3V, T_J = -40°C to +125°C, typical value is tested at T_J = 25°C. The over-temperature limit is **guaranteed by characterization, unless otherwise noted.**

ELECTRICAL CHARACTERISTICS *(continued)*

VIN = 3.3V, T^J = -40°C to +125°C, Typical value is tested at T^J = 25°C. The over-temperature limit is guaranteed by characterization, unless otherwise noted.

ELECTRICAL CHARACTERISTICS *(continued)*

VIN = 3.3V, T^J = -40°C to +125°C, Typical value is tested at T^J = 25°C. The over-temperature limit is guaranteed by characterization, unless otherwise noted.

Notes:

6) I/O level characteristics.

7) Guaranteed by characterization test, not tested in production.

8) Guaranteed by EVB characterization test, not tested in production.

TYPICAL PERFORMANCE CHARACTERISTICS

 $V_{IN} = 3.3V$, $L = 1\mu H$, $C_{OUT} = 10\mu F$, $T_A = 25^{\circ}C$, unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS *(continued)*

 V_{IN} = 3.3V, L = 1 μ H, C_{OUT} = 10 μ F, T_A = 25°C, unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS *(continued)*

 V_{IN} = 3.3V, L = 1 μ H, C_{OUT} = 10 μ F, T_A = 25°C, unless otherwise noted.

50ms/div. 10ms/div.

5V/div.

5V/div.

TYPICAL PERFORMANCE CHARACTERISTICS *(continued)*

 $V_{IN} = 3.3V$, $L = 1\mu H$, $C_{OUT} = 10\mu F$, $T_A = 25^{\circ}C$, unless otherwise noted.

FUNCTIONAL BLOCK DIAGRAM

Figure 2: Functional Block Diagram

OPERATION

The MP8833 is a monolithic thermoelectric cooler controller with built-in internal power MOSFETs. It achieves 1.5A of continuous output current across a 2.7V to 5.5V input voltage range. The thermoelectric cooler (TEC) voltage is linearly controlled by the analog voltage.

Features such as TEC voltage and current limiting are controlled on the fly through the 400kHz I ²C serial interface, which requires minimal external components. Contained within a 2mmx3mm QFN package, the MP8833 offers a minimum solution size.

Full protection features include internal soft start, over-current protection (OCP), overvoltage protection (OVP), and over-temperature protection (OTP).

TEC Voltage Control

The TEC voltage (V_{TEC}) is formed by the VO1 and VOS voltage gap. VO1 is the linear regulator output, and VOS senses the pulsewidth modulation (PWM) regulator output voltage. The VO1 and VOS voltages (as well as the TEC device's voltage) are controlled by the CTL pin's voltage (see Figure 3). Use a CTL input from a digital PID controller or an external analog control loop to automatically set the VO1 and VOS voltages internally.

Figure 3: V_{CTL} **vs.** V_{TEC}

 V_{TEC} is limited by V_{IN} and V_{LIMIT} . It can be calculated with Equation (1):

$$
V_{\text{TEC}}(V) = -5 \times (V_{\text{CTL}}(V) - 1.25V) \quad (1)
$$

The VO1 voltage (V_{VO1}) can be calculated with Equation (2):

$$
V_{\text{VO1}}(V) = V_{\text{MID}} - 40 \times (V_{\text{CTL}}(V) - 1.25V) (2)
$$

Where V_{MID} is 1.5V.

The VOS voltage (V_{VOS}) can be estimated with Equation (3):

$$
V_{VOS}(V) = V_{VOS}(V) + 5 \times (V_{CTL}(V) - 1.25V) \quad (3)
$$

VO1 and VOS are also limited by V_{IN} and V_{LIMIT} . For example, if V_{CTL} is 0.8V, V_{VO1} should be 19.5V when using Equation (2). If V_{IN} is the highest voltage at about $3.3V$, V_{VQ1} is $3.3V$, and V_{VOS} is about 1.05V.

Both the linear and PWM regulators have a current source and sink capability up to 1.5A. The device's TEC voltage can be positive or negative, depending on the application.

TEC Current Monitor

The MP8833 provides a current monitoring function through the TEC. The ITEC pin outputs a voltage proportional to the device's current.

The ITEC voltage is calculated with Equation (4) and Equation (5) for cooling and heating, respectively:

respectively:
\n
$$
V_{\text{ITEC}}(V) = 1.25V + I_{\text{OUT}}(A) \times 0.5(V/A)
$$
 (4)

$$
V_{\text{ITEC}}(V) = 1.25V + I_{\text{OUT}}(A) \times 0.5(V/A)
$$
 (4)
 $V_{\text{ITEC}}(V) = 1.25V - I_{\text{OUT}}(A) \times 0.5(V/A)$ (5)

The accuracy of the equation degrades when I_{OUT} is below 500mA. The TEC current monitor also provides current info to the TEC current limit comparator. The TEC current limit value is set by the l^2C .

Reference

The MP8833 provides a 1% accuracy reference voltage (V_{REF}). V_{REF} outputs 2.5V if V_{IN} exceeds 2.7V on the EN/SYNC, SD, and I²C bits.

Power Stage

The MP8833 provides an H-bridge integrated power stage. The power stage includes an LDO and buck converter. The power stage activates if all of the following conditions are met:

- 1. V_{IN} and V_{CC} exceed their UVLO thresholds.
- 2. EN/SYNC is high or has an external synchronization input.
- 3. The SD voltage is high.
- 4. The I²C on bit (Reg00 D[0]) is set to 1.

MP8833 Rev. 1.0 www.MonolithicPower.com **13** 1/17/2020 MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2020 MPS. All Rights Reserved.

EN/SYNC

When the input voltage exceeds the undervoltage lockout (UVLO) threshold (typically 2.6V), the MP8833 power stage can be enabled by pulling the EN pin above 1.2V. Float EN or pull it down to ground to disable the MP8833. There is an internal 1.3MΩ resistor from the EN pin to ground.

When EN is on, the MP8833 discharges the TEC pre-biased voltage to 0V and begins to ramp up the VO1 and VOS voltages.

By pulling EN high, the switching frequency of the PWM regulator is set by a default internal setting. For external clock synchronization, connect a clock with a frequency range between 1MHz and 3MHz to EN/SYNC. When the frequency is too high, the buck voltage may be limited by a minimum on time and minimum off time, so a 1MHz to 1.5MHz range is recommended. After the output voltage is set, the internal clock rising edge synchronizes with the external clock rising edge.

By pulling EN low, the power stage is disabled after the EN turn-off delay.

Shutdown

The MP8833 has a shutdown pin to turn off the power stage. When it is low, it disables the power stage.

Soft Start (SS)

The MP8833 has a soft start (SS) function that ramps up the output voltage at a controlled slew rate to avoid overshoot at start-up.

Start-up includes three stages. First, after EN turns on, the power stage discharges VO1 and VOS to guarantee there is no TEC voltage. The discharge time is about 35ms or 70ms, based on the value set by the l^2C .

When VO1 and VOS reach 0V (or drop below 0.4V) after the discharge time, the MP8833 initiates start-up. The first start-up slew rate is controlled by an external SS capacitor. The SS pin sources a current and charges to V_{MID} . VO1 and VOS follow the SS pin voltage.

When VO1 and VOS reach V_{MID} , the second start-up procedure begins. VO1 and VOS are regulated to the target TEC voltage. The second slew rate is also controlled by the SS pin. For both procedures, the SS capacitor is charged or discharged by a fixed current (the I^2C sets the capacitor to discharge by 1x, 2x, 4x, or 8x the charge current). The SS voltage eventually equals $V_{\text{CTL}} + V_{\text{MID}} - 1.25V$.

TEC Voltage Limit

The MP8833 has TEC voltage limit protection. The limit value can be set by the I²C without an external component.

When the TEC voltage exceeds the value set by the I ²C (see Table 1), the buck output voltage for VOS is regulated to the limit value and not controlled by CTL. The limited voltage helps avoid risky operations (see Figure 5).

Figure 5: TEC Voltage Limit Protection

The TEC heating and cooling voltage limit is set by the I ²C (Reg03 VLIM_HEAT [D5:D0], Reg04 VLIM_COOL [D5:D0]), respectively (see Table 1). The voltage limit has a 97.6mV step from 100mV to 5.5V. The MP8833 has a secondary TEC voltage limit that is set internally. Its typical

value is the TEC voltage limit plus 1V. When a short condition occurs (e.g. one TEC terminal shorts to VIN or GND), the TEC voltage exceeds its secondary limit. The MP8833 immediately stops switching and enters hiccup mode.

Table 1: I ²C Table

TEC Current Limit

The MP8833 has two-level current limit protection. The limit value can be set by the l^2C without an external component. The full current limit protection can be set and adjusted by the I ²C (see Table 2).

The I ²C (Reg01 ILIM_HEAT [D5:D0], Reg02 ILIM_COOL [D5:D0]) can set the first current limit level, respectively. The current limit has a 39mA step from 40mA to 2A. The MP8833 also has an LDO secondary TEC current limit and a buck current limit that are set by I ²C (Reg05 LIMIT[D7:D6]). Address 05 in Table 2 show the secondary current limit for each.

When the TEC current exceeds its first current limit, the buck output voltage for VOS is regulated to the limit value and cannot be controlled by CTL.

The MP8833's VO1 pin has two-level current limiting with a first and second current limit. If the load ramp reaches VO1's first current limit, the MP8833 maintains VO1's output voltage and regulates VOS's output voltage. By limiting the TEC voltage, the TEC current is limited to the first current limit (see Figure 6).

When VO1 has error conditions, such as short to VIN or GND, the current ramps up very quickly and exceeds the second current limit. It triggers fast-off and enters hiccup mode immediately.

The MP8833's VOS has one-level current limiting. If the load ramp reaches the VOS current limit, the MP8833 tries to recover. The device enters hiccup mode if the short condition is not removed during the 100µs waiting period (see Table 3).

Table 3: Current Limiting

Hiccup Protection

The MP8833 enters hiccup protection in certain conditions. These conditions include:

- VO1 exceeds its second current limit
- VOS exceeds its current limit
- \bullet V_{TEC} exceeds its second voltage limit

After confirming the condition, the MP8833 enters hiccup mode.

With this strategy, the MP8833 has full current protection for different risk conditions.

VIN Over-Voltage Protection (OVP)

The MP8833 has V_{IN} over-voltage detection and protection, enabled by OTP. When V_{IN} exceeds 5.9V, the MP8833 stops the power stage and discharges VO1 and VOS until V_{IN} drops to 5.6V. After V_{IN} drops to 5.6V, the MP8833 starts a hiccup procedure. When the fault is removed, hiccup mode stops and soft start initiates.

Over-Temperature Protection (OTP)

The MP8833 employs thermal shutdown by internally monitoring the junction temperature of the IC. If the junction temperature exceeds the thermal shutdown threshold (typically 160°C), the IC shuts down. After the junction temperature drops to its recovery threshold, the MP8833 auto-restarts.

I ²C Slave Address

The I²C slave address of the MP8833 is 0xC0H and 0xC1H internally. If another slave address is required, contact the factory. The I^2C address can be adjusted by the factory OTP fuse (See Table 4).

Table 4: Address Register

I ²C Control Power Stage

The EN/SYNC and SD pins can start up and shut down the device. The I^2C bit I2C ON can also control the device. Reg00 SYS_SET D0 bit is an l^2C -controlled pin. When writing $D0 = 0$, the power stage is off. When writing $D0 = 1$, the power stage is on. The power stage is operational only when SD or I2C_ON is high, or when EN/SYNC is high or in the SYNC frequency range (see Table 5).

Table 5: Power Stages

EN/SYNC	SD	I2C ON	Power Stage	
High	High	High	Active	
Low	High	High	Standby	
High	Low	High	Standby	
High	High	Low	Standby	
Ext. SYNC	High	High	Active	

Switching Frequency

The MP8833's default internal switching frequency is 1MHz. If an external EN/SYNC pin has external synchronization input, the internal frequency is auto-masked. The recommended external synchronization range is 1MHz to 1.5MHz. With external EN/SYNC functionality, the MP8833 can be used in parallel with different slave addresses and the same switching frequency.

Soft-Start Time

The MP8833 can adjust the soft-start current using the I^2C . By writing soft-start current bits (Reg00 SYS_SET [D3:D2]), the soft-start time can be programmed to one of four possible values. After changing the values with the l^2C , the soft-start current can be set to 1x, 2x, 4x, or 8x the soft current. It can accelerate the set-up time.

Discharge

The MP8833 has a discharge function. The discharge path exists through both VO1 and VOS. The MP8833 discharges VO1 and VOS by its internal resistance to pull down its voltage. The discharge path is always on during the hiccup off time.

TEC Current and Voltage Limit

Adjust the TEC cooling and heating current limit using the I ²C (Reg01 ILIM_HEAT [D5:D0], Reg02 ILIM_COOL [D5:D0]). When the current limit enable signal (Reg01 ILIM_HEAT [D7], Reg02 ILIM_COOL [D7]) is high, the current limit is active.

The MP8833 can adjust the TEC cooling and heating voltage limit through the I²C bits (Reg03 VLIM_HEAT [D5:D0], Reg04 VLIM_COOL [D5:D0]). When the voltage limit enable signal (Reg03 VLIM_HEAT [D7], Reg04 VLIM_COOL [D7]) is high, the voltage limit is active.

When the TEC current and voltage exceed the values set by the I^2C (see Table 2), the buck output voltage VOS is regulated to the limit value and not controlled by CTL. The TEC current and voltage are limited, and risky operations are avoided.

When considering the TEC voltage and current limit accuracy, it is recommended to leave a 25% margin for limit setting. For example, if the maximum TEC current is 1A, set the current limit over 1.25A.

TEC Current Monitor

Except the ITEC voltage, the MP8833 provides the TEC current info by an internal 8-bit ADC. It can be read by the I ²C (Reg07 IMON [D7:D0]). Compared with the ITEC voltage, the 8-bit ADC is easily used; however, its resolution is not higher than the analog ITEC voltage.

The TEC current (I_{TEC}) can be calculated with Equation (6):

 $\Pi_{\rm{TEC}}(\text{mA})$ = ABS(19.53mA \times (128 – DEC(IMON[D7 : D0]))) (6)

The equation's accuracy decreases when I_{TEC} 's sink or source current is below 500mA. I_{TEC} is an absolute positive value, and its direction is designated by Reg09 Status [D7:D6]. These bits show heating or cooling mode.

TEC Voltage Monitor

The MP8833 provides the TEC voltage (V_{TEC}) through an internal, 8-bit ADC. It can be read by the I^2C (Reg08 VTEC [D7:D0]). V_{TEC} can be calculated with Equation (7):

 $V_{\text{\tiny TEC}}(\text{mA}) = \text{ABS}(50\text{mV} \times (128-\text{DEC}(\text{VTEC}[D7:D0])) \text{ (7)}$

A small V_{TEC} decreases the equation's accuracy. As with the TEC current monitor, the TEC voltage monitor also provides an absolute positive value. Its direction is also informed in Reg09 Status [D7:D6].

I ²C Status

The MP8833 provides a status register to indicate the TEC operation status. The register is Reg09 Status [D7:D0].

Status [D7:D6] is a bit that indicates whether the TEC device is heating or cooling. If the bits are 10, it indicates heating mode. If the bits are 01, it indicates cooling mode. When it is 00, it means the IC works near the cooling and heating mode boundary. The 2 bits are changed in real time to describe the TEC device operation mode.

Status [D5] is the VLIM status. If VLIM is triggered, it is high. The bit latches if VLIM changes from low to high. The latch is removed by the refresh bit defined in Reg00

SYS, SETID11. Its default value is 0 and does not refresh the status. When it is set to 1, it refreshes the status bit and auto-recovers to 0 after writing code.

Status [D4] is an ILIM status. If ILIM is triggered, it is high. The bit latches if VLIM changes from low to high. The latch is removed by a refresh bit.

Status [D3] is PWOR. The high logic output means its power stage is operating normally. The bit latches low if protections occur.

This bit changes in real time. The following events make PWOR low:

- EN/SYNC or SD or I²C ON is low
- Over-temperature shutdown
- Normal start before the first soft-start stage completes

Status [D1] is an over-temperature (OT) status. When an over-temperature fault occurs, this bit latches to 1 and the MP8833 shuts down.

The latch is removed by a refresh bit. Status [D0] is an over-temperature warning (OTW) status. When the OTW threshold is triggered, it does not shut down the MP8833, but makes the OTW bit high. This is also a latch bit that requires a refresh bit for recovery.

Refresh Bit

The MP8833 provides a status byte to indicate the TEC device operation condition. When a fault condition occurs, it indicates this via the status byte. Some bits latch after an action occurs, and an eraser bit is required to remove the latch. Write the Reg00 Refresh [D1] Eraser bit to logic high to refresh the latched status in the status register once. The bit should be set to high if a refresh is once again required.

I ²C INTERFACE

I ²C Serial Interface Description

The I ²C is a two-wire, bidirectional, serial interface consisting of a data line (SDA) and a clock line (SCL). The lines are externally pulled to a bus voltage when they are idle. A master device connected to the line generates the SCL signal and the device address, and arranges the communication sequence.

The MP8833 interface is an I²C slave that can support fast mode (400kHz). The I²C interface adds flexibility to the power supply solution. The TEC voltage limit, TEC current limit, and other parameters are instantaneously controlled by the I ²C interface. When the master sends the address as an 8-bit value, the 7-bit address should be followed by 0 or 1 to indicate a write or read operation, respectively.

Start and Stop Conditions

Start (S) and stop (P) conditions are signaled by the master device to indicate the beginning and the end of the I²C transfer. A start condition is defined as the SDA signal transitioning from high to low while the SCL is high. A stop condition is defined as the SDA signal transitioning from low to high while the SCL is high (see Figure 7).

Figure 7: Start and Stop Conditions

After the start condition, the master generates the SCL clocks, then transmits the device address and the read/write direction bit (R/W) on the SDA line.

Transfer Data

Data is transferred in 8-bit bytes by the SDA line. Each byte of data should be followed by an acknowledge (ACK) bit.

I ²C Update Sequence

The MP8833 requires a start condition, valid I²C address, register address byte, and data byte for a single data update. After receiving each byte, the MP8833 acknowledges by pulling the SDA line low during the high period of a single clock pulse. A valid I^2C address selects the MP8833. The MP8833 then performs an update on the falling edge of the LSB byte. Figure 8, Figure 9, and Figure 10 show examples of an I²C write and read sequence.

Figure 8: I 2C Write Example (Write Single Register)

APPLICATION INFORMATION

COMPONENT SELECTION

Selecting the Inductor

It is recommended to use a 0.68µH to 1.5µH inductor for the 1MHz switching frequency. Select an inductor with a DC resistance below $20mΩ$ to optimize efficiency.

A high-frequency, switch-mode power supply with a magnetic device has strong electromagnetic inference (EMI). Any unshielded power inductors should be avoided. Metal alloy or multiplayer chip power inductors are ideal shielded inductors since they can decrease the influence effectively.

For most designs, estimate the inductance value with Equation (8):

$$
L_1 = \frac{V_{\text{OUT}} \times (V_{\text{IN}} - V_{\text{OUT}})}{V_{\text{IN}} \times \Delta l_L \times f_{\text{osc}}}
$$
(8)

Where ∆I_L is the inductor ripple current.

Choose the inductor current to be approximately 30% of the maximum load current. Calculate the maximum inductor peak current with Equation (9):

$$
I_{L(MAX)} = I_{LOAD} + \frac{\Delta I_L}{2}
$$
 (9)

A 1μH inductor is recommended.

Selecting the Input Capacitor

The device has a discontinuous input current, and requires a capacitor to supply the AC current to the device while maintaining the DC input voltage. Use low-ESR capacitors for the best performance. Ceramic capacitors with X5R or X7R dielectrics are highly recommended because of their low ESR and small temperature coefficients. For most applications, a 10µF capacitor is sufficient.

The input capacitor requires an adequate ripple current rating because it absorbs the input switching current. Estimate the RMS current in the input capacitor with Equation (10):

$$
I_{C1} = I_{LOAD} \times \sqrt{\frac{V_{OUT}}{V_{IN}} \left(1 - \frac{V_{OUT}}{V_{IN}}\right)} \tag{10}
$$

The worst-case scenario occurs at $V_{IN} = 2V_{OUT}$, calculated by Equation (11):

$$
I_{C1} = \frac{I_{LOAD}}{2}
$$
 (11)

For simplification, choose an input capacitor with an RMS current rating greater than half of the maximum load current.

The input capacitor can be electrolytic, tantalum, or ceramic. When using electrolytic or tantalum capacitors, add a small, high-quality 0.1μF ceramic capacitor as close to the IC as possible. When using ceramic capacitors, ensure that they have enough capacitance to provide sufficient charge to prevent excessive voltage ripple at the input. The input voltage ripple caused by the capacitance can be estimated with Equation (12):

$$
\Delta V_{IN} = \frac{I_{LOAD}}{f_{SW} \times C1} \times \frac{V_{OUT}}{V_{IN}} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right) \tag{12}
$$

Selecting the Output Capacitor

The output capacitor stabilizes the DC output voltage. Ceramic capacitors are recommended. Low-ESR capacitors are preferred to limit the output voltage ripple. Estimate the output voltage ripple of the PWM regulator with Equation (13):

$$
\Delta V_{\text{OUT}} = \frac{V_{\text{OUT}}}{f_{\text{SW}} \times L_1} \times \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}}\right) \times \left(R_{\text{ESR}} + \frac{1}{8 \times f_{\text{SW}} \times C2}\right) (13)
$$

Where L_1 is the inductor value, and R_{ESR} is the equivalent series resistance (ESR) value of the output capacitor.

When using ceramic capacitors, the capacitance dominates the impedance at the switching frequency and causes most of the output voltage ripple. For simplification, the output voltage ripple can be estimated with Equation (14):

$$
AU_{OUT} = \frac{V_{OUT}}{8 \times f_{SW}^{2} \times L_{1} \times C2} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)
$$
 (14)

For tantalum or electrolytic capacitors, the ESR dominates the impedance at the switching frequency. For simplification, the output ripple can be estimated with Equation (15):

$$
\Delta V_{\text{OUT}} = \frac{V_{\text{OUT}}}{f_{\text{SW}} \times L_1} \times \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}}\right) \times R_{\text{ESR}} \tag{15}
$$

The characteristics of the output capacitor also affect the stability of the regulation system. It is recommended to use a 1μF LDO output capacitor.

Selecting the ITEC Filter

The ITEC filter can be ignored if the ITEC pin and IMON function in the I ²C are not used.

For general applications, a 0.1μF decoupling capacitor is sufficient.

In some applications, an appropriate filter improves the MP8833's ITEC monitor accuracy. In general applications, it is recommended to use a low-pass RC filter (see Figure 11).

Figure 11: ITEC Filter

The cutoff frequency of the RC filter can be calculated with Equation (16):

$$
f_{\rm C} = \frac{1}{2\pi RC}
$$
 (16)

For most applications, a 100Hz cut-off frequency is sufficient, so a 15kΩ resistor and 0.1μF capacitor are recommended.

Selecting the Soft-Start (SS) Capacitor

The MP8833 has two stages during the soft start (SS) process. These stages prevent VTEC overshoot and nonlinearity. The MP8833 has two ways to adjust the SS time: I²C Reg00 SYS SET D[3:2] and the SS capacitor. If the SS current is set to 1x through the I^2C , the SS current is typically 3μA. The first stage time can be calculated with Equation (17):

$$
t_{\text{SS}_{-1}} = \frac{V_{\text{MID}} \times C_{\text{SS}}}{I_{\text{SS}}}
$$
 (17)

Where V_{MID} is 1.5V, and I_{SS} is typically 3µA with a 1x SS current.

For the second stage, the SS time can be calculated with Equation (18):

$$
t_{SS_{-2}} = \frac{(1.25V - V_{\text{CTL}}) \times C_{SS}}{I_{SS}}
$$
 (18)

Where V_{CTL} is the CTL voltage, and I_{SS} is typically 3µA with a 1x soft-start current. For general applications, a 0.1μF soft-start capacitor is recommended.

Selecting the REF Pin Capacitor

The decoupling capacitor on the REF pin stabilizes the device. Adding a 0.1μF capacitor is recommended.

Design Example

Table 6 shows the recommended component values for general applications.

Table 6: Recommended Component Values

Component	Recommended Value		
C ₁	$10\mu F$		
C ₂	$0.1\mu F$		
C ₃	$0.1\mu F$		
C ₄	1µF		
C ₅	$10\mu F$		
C ₆	$0.1\mu F$		
R ₄	$15k\Omega$		
l 1	1uH		

PCB Layout Guidelines

Proper PCB is important for proper functioning. For a high-frequency switching converter, poor layout design can result in poor line or load regulation and stability issues. For the best results, refer to Figure 12 and follow the guidelines below:

- 1. Place the high-current paths (PGND, VIN, and SW) very close to the device with short, direct, and wide traces.
- 2. Place the input capacitor as close as possible to the IN and PGND pins.
- 3. Ensure all the PGND pins are connected together by the PCB.
- 4. Keep the switching (SW) node short, and route it away from the feedback network.
- 5. Keep the V_{OUT} sense line as short as possible, and route it away from all power inductors. GND VOUT

Top PCB Layer

Bottom PCB Layer Figure 12: Recommended PCB Layout

OTP eFuse Configuration Table

OTP REGISTER DESCRIPTION

OTP00 Register

OTP01 Register

OTP02 Register

OTP03 Register

OTP04 Register

OTP05 Register

OTP06 Register

D[5:0]	ILIM (mA)	D[5:0]	ILIM (mA)	D[5:0]	ILIM (mA)	D[5:0]	ILIM (mA)
00 0000	39	01 0000	663	10 0000	1287	11 0000	1911
00 0001	78	01 0001	702	10 0001	1326	11 0001	1950
00 0010	117	01 0010	741	10 0010	1365	11 0010	1989
00 0011	156	01 0011	780	10 0011	1404	11 0011	2028
00 0100	195	01 0100	819	10 0100	1443	11 0100	Reserved
00 0101	234	01 0101	858	10 0101	1482	11 0101	Reserved
00 0110	273	01 01 10	897	10 01 10	1521	11 0110	Reserved
00 0111	312	01 0111	936	10 0111	1560	11 0111	Reserved
00 1000	351	01 1000	975	10 1000	1599	11 1000	Reserved
00 1001	390	01 1001	1014	10 1001	1638	11 1001	Reserved
00 1010	429	01 1010	1053	10 10 10	1677	11 1010	Reserved
00 1011	468	01 1011	1092	10 10 11	1716	11 1011	Reserved
00 1100	507	01 1100	1131	10 1100	1755	11 1100	Reserved
00 1101	546	01 1101	1170	10 1101	1794	11 1101	Reserved
00 1110	585	01 1110	1209	10 11 10	1833	11 11 10	Reserved
00 1111	624	01 1111	1248	10 1111	1872	11 1111	Reserved

Table 7: ILIM Table

Table 8: VLIM Table

I ²C REGISTER MAP

Default Register Values

I2C REGISTER DESCRIPTION

Reg00 SYS_SET

Reg01 ILIM_HEAT

Reg02 ILIM_COOL

Reg03 VLIM_HEAT

Reg04 VLIM_COOL

Reg05 LIMIT

Reg06 Address

Reg07 IMON

Reg08 VTEC

Reg09 Status

Reg0A ID

TYPICAL APPLICATION CIRCUITS

Figure 13: Typical Application Circuit

PACKAGE INFORMATION

QFN-16 (2mmx3mm)

TOP VIEW

 $\frac{0.80}{1.00}$ 0.20 REF \Box \Box \Box $\frac{10.00}{0.05}$

SIDE VIEW

RECOMMENDED LAND PATTERN

NOTE:

1) ALL DIMENSIONS ARE IN MILLIMETERS. 2) EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH. 3) LEAD COPLANARITY SHALL BE 0.10 MILLIMETERS MAX. 4) JEDEC REFERENCE IS MO-220. 5) DRAWING IS NOT TO SCALE.

CARRIER INFORMATION

Notice: The information in this document is subject to change without notice. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.