
PRINZIPIELLE FUNKTION

Verstärkung und Wandlung von differentiellen Eingangsspannungen in einstellbare 0(4)...20mA Ausgangssignale für 2- und 3-Draht Anwendungen

TYPISCHE ANWENDUNGEN

Messumformer für differentielle Eingangssignale in Stromausgangswerte für:

- Messumformer für Sensoranwendungen mit interner Messzellenversorgung
- Treiber für analoges Industrienetz (z. B. Fernanzeige)
- Differentieller Impedanzwandler
- Modulare Signalauswertung mit digitaler Korrektur (Frame-Konzept[1])

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz Telefon:+49 (0)6131/91 073-0 Telefax: +49 (0)6131/91 073-30

Internet:

http://www.analogmicro.deE-Mail: info@analogmicro.deNovember2007 - Rev1.1 - Page 1/18

INHALTSVERZEICHNIS

EIGENSCHAFTEN	3
BLOCKDIAGRAMM	3
ALLGEMEINE BESCHREIBUNG	3
ELEKTRISCHE SPEZIFIKATIONEN	4
RANDBEDINGUNGEN	7
AUSFÜHRLICHE FUNKTIONSBESCHREIBUNG	8
1. Der Instrumentenverstärker (IA)	8
2. Die Operationsverstärkerstufe (OP1)	8
3. Der Spannungs-/Stromwandler (U/I-Wandler)	8
4. Die Referenzspannungsquelle	9
5. Der Zusatz-Operationsverstärke (OP2)	9
INBETRIEBNAHME DES AM452	9
Allgemeines zur 2- und 3-Draht-Anwendung mit dem AM452 [2]	9
Wahl der Versorgungsspannung	11
Einstellung des Offset und des Ausgangsstrombereichs für den Fall: $V_{IN} = 0$	11
WICHTIGE HINWEISE ZUR INBETRIEBNAHME	12
DIMENSIONIERUNG	13
ANWENDUNGEN	13
Typische 3-Draht-Anwendung mit differentiellem Eingangssignal	14
Typische 2-Draht-Anwendung mit differentiellem Eingangssignal	15
LIEFERFORMEN	18
GEHÄUSEABMESSUNGEN	18
WEITERFÜHRENDE LITERATUR	18
NOTIZEN	18

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz Telefon:+49 (0)6131/91 073-0 Telefax: +49 (0)6131/91 073-30

Internet:

http://www.analogmicro.de E-Mail: info@analogmicro.de November2007 -Rev1.1- Page 2/18

EIGENSCHAFTEN

- Instrumentenverstärkereingang mit weitem Spannungsbereich: ±400mV
- Einstellbare Verstärkung und Offset
- Einstellbarer Stromausgang (z.B. 0/4...20mA)
- Zwei- und Dreidraht-Betrieb
- Verpolschutz, Kurzschlussschutz
- Ausgangssignalbegrenzung
- Integrierte Stromquelle
- Einstellbare integrierte Referenzspannungsquelle: 5 bis 10V
- Modularer Aufbau
- Versorgungsspannung: 6...35V
- Temperaturbereich: -40°C...+85°C
- RoHS-konform

ALLGEMEINE BESCHREIBUNG

Der AM452 ist ein integrierter Messumformer mit einem einstellbaren Stromausgang, der speziell für die Aufbereitung von differentiellen Eingangssignalen entwickelt worden ist.

Das IC besteht aus verschiedenen Funktionsmodulen. Es verfügt neben dem Instrumentenverstärkereingang über einen zweiten Verstärker, der zur Verstärkungseinstellung dient. Der Fußpunkt kann über den Instrumentenverstärker oder über den U/I-Wandler eingestellt werden.

Zur Versorgung externer Komponenten stehen integrierte Spannungs- und Stromquellen in einem weiten Wertebereich zur Verfügung. Die einstellbare Stromausgangsstufe ermöglicht den 2- und den 3-Draht-Betrieb durch eine einfache Änderung der Beschaltung.

BLOCKDIAGRAMM

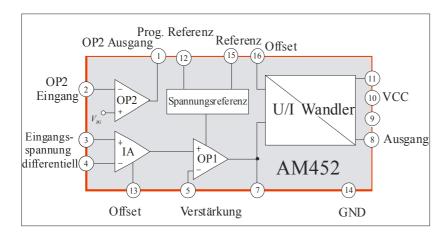


Abbildung 1: Blockschaltbild AM452

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz Telefon:+49 (0)6131/91 073-0 Telefax: +49 (0)6131/91 073-30

Internet:

http://www.analogmicro.de E-Mail: info@analogmicro.de November2007 -Rev1.1- Page 3/18

ELEKTRISCHE SPEZIFIKATIONEN

 $T_{amb} = 25$ °C, $V_{CC} = 24$ V, $V_{REF} = 5$ V, $I_{REF} = 1$ mA (unless otherwise noted).

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply Voltage Range	V_{CC}	VSET not connected	6		35	V
Quiescent Current	I_{CC}	$T_{amb} = -40+85$ °C, $I_{REF} = 0$ mA			1.5	mA
Temperature Specifications						
Operating	T_{amb}		-40		85	°C
Storage	T_{st}		-55		125	°C
Junction	T_J				150	°C
Voltage Reference						
Voltage	V_{REF}	VSET not connected	4.75	5.00	5.25	V
	$V_{\it REF}$	$VSET = GND, V_{CC} \ge 11V$	9.5	10.0	10.5	V
Current	$I_{REF}*$		0		10.0	mA
V_{REF} vs. Temperature	$\mathrm{d}V_{\mathit{REF}}/\mathrm{d}T$	$T_{amb} = -40+85$ °C		±90	±140	ppm/°C
Line Regulation	$\mathrm{d}V_{\mathit{REF}}/\mathrm{d}V$	$V_{CC} = 6V35V$		30	80	ppm/V
	$\mathrm{d}V_{\mathit{REF}}/\mathrm{d}V$	$V_{CC} = 6$ V35V, $I_{REF} \approx 5$ mA		60	150	ppm/V
Load Regulation	$\mathrm{d}V_{\mathit{REF}}/\mathrm{d}I$			0.05	0.10	%/mA
	$\mathrm{d}V_{\mathit{REF}}/\mathrm{d}I$	$I_{REF} \approx 5 \text{mA}$		0.06	0.15	%/mA
Load Capacitance	C_L		1.9	2.2	5.0	μF
Current/Voltage Source OP2						
Internal Reference	V_{BG}		1.20	1.27	1.35	V
V_{BG} vs. Temperature	$\mathrm{d}V_{BG}/\mathrm{d}T$	$T_{amb} = -40+85$ °C		±60	±140	ppm/°C
Current Source: $I_{CV} = V_{BG}/R_{EXT}$						
Adjustable Current Range*	I_{CV} *		0		10	mA
Output Voltage	V_{CV}	V_{CC} < 19V	V_{BG}		$V_{CC}-4$	V
	V_{CV}	$V_{CC} \ge 19V$	V_{BG}		15	V
Voltage Source: $V_{CV} = V_{BG}(R_{EXT1} + R_{EXT2})$) / R _{EXT2}					
Adjustable Voltage Range	V_{CV}	V_{CC} < 19V	0.4		$V_{CC}-4$	V
	V_{CV}	$V_{CC} \ge 19V$	0.4		15	V
Output Current	$I_{CV}*$	Source			10	mA
	I_{CV}	Sink			-100	μΑ
Load Capacitance	C_L	Source mode	0	1	10	nF

^{*} In 2-wire operation a maximum current of $I_{OUTmin} - I_{CC}$ is valid

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz Telefon:+49 (0)6131/91 0730-0 Telefax: +49 (0)6131/91 073-30

Internet:

http://www.analogmicro.de E-Mail: info@analogmicro.de

November2007 -Rev1.1- Page 4/18

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Instrumentation Amplifier (cont.)						
Internal Gain	G_{LA}		4.9	5	5.1	
Differential Input Voltage Range	V_{IN}		0		±400	mV
Common Mode Input Range	CMIR	V_{CC} < 9V, I_{CV} < 2mA	1.5		$V_{CC}-3$	V
	CMIR	$V_{CC} \ge 9V$, $I_{CV} < 2mA$	1.5		6.0	V
Common Mode Rejection Ratio	CMRR		80	90		dB
Power Supply Rejection Ratio	PSRR		80	90		dB
Offset Voltage	V_{OS}		-9.0	-1.5	+6.0	mV
V_{OS} vs. Temperature	$\mathrm{d}V_{OS}/\mathrm{d}T$			±5		μV/°C
Input Bias Current	I_B			-100	-250	nA
I_B vs. Temperature	$\mathrm{d}I_{B}/\mathrm{d}T$			-0.4	-0.9	nA/°C
Output Voltage	V_{OUTIA}	V_{CC} < 9V			$V_{CC}-4$	V
	V_{OUTIA}	$V_{CC} \ge 9V$			5	V
Minimum Output Voltage	V _{OUTIAmin}			4.5	16	mV
Load Capacitance	C_L				250	pF
Zero Adjust Stage			<u>.</u>			
Internal Gain	G_{ZA}		0.94	1	1.06	
Zero Adjust Voltage	V_{ZA}	$V_{ZA} \leq V_{OUTIAmax} - G_{IA} \Delta V_{IN}$; $Vcc < 9V$, $\Delta V_{IN} = 400mV$, $G_{IA} = 5$	0		Vcc-6	V
		$V_{ZA} \leq V_{OUTIAmax} - G_{IA} \Delta V_{IN}; Vcc \geq 9V,$ $\Delta V_{IN} = 400mV, G_{IA} = 5$	0		3	V
Offset Voltage	V_{OS}			±0.5	±2.0	mV
V_{OS} vs. Temperature	$\mathrm{d}V_{OS}/\mathrm{d}T$			±1.6	±5	μV/°C
Input Bias Current	I_B			47	120	nA
I_B vs. Temperature	$\mathrm{d}I_B/\mathrm{d}T$			18	30	pA/°C
Operational Amplifier – Gain Stage	(OP1)					
Adjustable Gain	G_{GAIN}		1			
Input Range	IR	$V_{CC} < 10 \text{V}$	0		V_{CC} – 5	V
	IR	$V_{CC} \ge 10 \text{V}$	0		5	V
Power Supply Rejection Ratio	PSRR		80	90		dB
Offset Voltage	V_{OS}		-3.0	-1.0	1.0	mV
V_{OS} vs. Temperature	$\mathrm{d}V_{OS}/\mathrm{d}T$			±3	±7	μV/°C
Input Bias Current	I_B			10	25	nA
I_B vs. Temperature	$\mathrm{d}I_B/\mathrm{d}T$			7	20	pA/°C
Output Voltage Limitation	V_{LIM}			$V_{\it REF}$		V
Output Voltage Range	V_{OP}	$V_{CC} < 10 \text{V}$	0		V_{CC} – 5	V
	V_{OP}	$V_{CC} \ge 10 \text{V}$	0		$V_{\it REF}$	V
Load Capacitance	C_L				250	pF

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz Telefon:+49 (0)6131/91 0730-0 Telefax: +49 (0)6131/91 073-30

Internet:

Parameter	Symbol	Symbol Conditions		Тур.	Max.	Unit
U/I Converter						
Internal Gain	G_{VI}		0.122	0.125	0.128	
Trim Range		adjustable by R_0	0.60	1.00	1.40	
Voltage Range at R ₀ FS	$V_{R0}FS$		320	540	760	mV
Offset Voltage	V_{OS}	$\beta_F \ge 100$		±2	±4	mV
V_{OS} vs. Temperature	$\mathrm{d}V_{OS}/\mathrm{d}T$	$\beta_F \ge 100$		±7	±14	μV/°C
Input Resistance	R_{IN}		120	160		kΩ
R_{IN} vs. Temperature	dR_{IN}/dT		0.2	0.3		kΩ/°C
Output Offset Current	I_{OUTOS}	3-wire operation		-25	-35	μΑ
I_{OUTOS} vs. Temperature	dI_{OUTOS}/dT	3-wire operation		16	26	nA/°C
Output Offset Current	I_{OUTOS}	2-wire operation		9.5	14	μΑ
I_{OUTOS} vs. Temperature	dI_{OUTOS}/dT	2-wire operation		6	8	nA/°C
Output Control Current	I_{OUTC}	2-wire operation, $V_{R0}/100$ mV		6	8	μΑ
I_{OUTC} vs. Temperature	$\mathrm{d}I_{OUTC}/\mathrm{d}T$	2-wire operation		-10	-15	nA/°C
Output Voltage Range	V_{OUT}	$V_{OUT} = R_L I_{OUT}, V_{CC} < 18V$	0		V_{CC} – 6	V
	V_{OUT}	$V_{OUT} = R_L I_{OUT}, V_{CC} \ge 18V$	0		12	V
Output Current Range FS	I_{OUTFS}	$I_{OUT} = V_{R0}/R_0$, 3-wire operation		20		mA
Output Resistance	R_{OUT}		0.5	1.0		ΜΩ
Load Capacitance	C_L		0		500	nF
SET Stage						
Internal Gain	G_{SET}			0.5		
Input Voltage	V_{SET}		0		1.15	V
Offset Voltage	V_{OS}		-4.0	-1.0	+2.0	mV
V_{OS} vs. Temperature	$\mathrm{d}V_{OS}/\mathrm{d}T$			±1.6	±5	μV/°C
Input Bias Current	I_B			8	20	nA
I_B vs. Temperature	$\mathrm{d}I_B/\mathrm{d}T$			7	18	pA/°C
Protection Functions						
Voltage Limitation at R ₀	V_{LIMR0}	$V_{R0} = V_{IN} G_I$, $SET = GND$		$V_{REF}/8$		mV
	V_{LIMR0}	$V_{IN} = 0, \ V_{R0} = V_{SET}/2$	580	635	690	mV
Protection against reverse polarity		Ground vs. V_S vs. V_{OUT}			35	V
		Ground vs. V_S vs. I_{OUT}			35	V
Current in case of reverse polarity		$Ground = 35V, V_S = I_{OUT} = 0$		4.5		mA
System Parameters						
Nonlinearity		ideal input		0.05	0.15	%FS

Tabelle 1: Specifications

Remark: currents flowing into the IC are negative

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz Telefon:+49 (0)6131/91 0730-0 Telefax: +49 (0)6131/91 073-30

Internet:

http://www.analogmicro.de E-Mail: info@analogmicro.de

November2007 -Rev1.1-Page 6/18

RANDBEDINGUNGEN

Parameter	Symbol Conditions		Min.	Тур.	Max.	Unit
Sense Resistor	R_0	$I_{OUTFS} = 20 \text{mA}$	16	27	38	Ω
	R_0	$c = 20 \text{mA}/I_{OUTFS}$	c · 16	$c \cdot 27$	c · 38	Ω
Stabilisation Resistor	R_5	$I_{OUTFS} = 20 \text{mA}$	35	40	45	Ω
	R_5	$c = 20 \text{mA}/I_{OUTFS}$	c · 35	$c \cdot 40$	$c \cdot 45$	Ω
Load Resistance	R_L	limitation only for 3-wire operation	0		600	Ω
Sum Gain Resistors	$R_1 + R_2$		20		200	kΩ
Sum Offset Resistors	$R_3 + R_4$		20		200	kΩ
Sum IA-Offset Resistor	$R_6 + R_7$		20		200	kΩ
V_{REF} Capacitance	C_1	min value for T _{amb} 85°C	1.9	2.2	5.0	μF
Output Capacitance	C_2	only for 2-wire operation	90	100	250	nF
D ₁ Breakdown Voltage	V_{BR}		35	50		V
T ₁ Forward Current Gain	$eta_{\!F}$	BCX54/55/56 for example	50	150		

Tabelle 2: Boundary Conditions

Hinweis: Für die 4...20mA Anwendungen (sowohl 2- als auch 3-Draht-Anwendung) gilt für den positiven Offset des Eingangssignals: Offset|< 1/5 (V_{IN+} - V_{IN-})

DiePins und 2 müssen gemäß Anwendung angeschlossen werden.

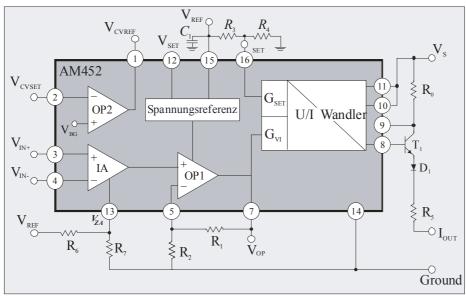


Abbildung 2: Blockschaltbild AM452 (3-Draht-Version).

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz Telefon:+49 (0)6131/91 0730-0 Telefax: +49 (0)6131/91 073-30

Internet:

http://www.analogmicro.de E-Mail: info@analogmicro.de

November2007 -Rev1.1-Page 7/18

AUSFÜHRLICHE FUNKTIONSBESCHREIBUNG

Der AM452 ist ein modular aufgebauter, monolithisch integrierter Verstärker, der speziell für die Aufbereitung von differentiellen Spannungssignalen entwickelt wurde. Er besteht aus mehreren Funktionsblöcken, deren Werte in den elektrischen Spezifikationen einzeln beschrieben sind. Der AM452 ist er für industrielle Anwendungen sowohl für den 3-Draht- als auch für den 2-Draht-Betrieb geeignet (vgl. Kapitel ANWENDUNGEN). Seine Funktionsblöcke werden anhand des Blockschaltbildes (Siehe: *Abbildung 2*) erläutert.

Die Funktionsblöcke im Einzelnen:

1. **Der Instrumentenverstärker (IA)** mit einer internen festen Verstärkung $G_{IA} = 5$ dient als Eingangsstufe für differentielle Spannungssignale von maximal \pm 400mV. Aufgrund seines speziellen Aufbaus wird eine hohe Gleichtaktunterdrückung (CMIR) erreicht. Das Bezugspotential des Verstärkers kann über den Pin ZA des AM452 extern eingestellt werden, wodurch der Fußpunkt des Ausgangssignals (z.B. 4mA) beeinflusst werden kann.

Für die Übertragungsfunktion des Instrumentenverstärkers gilt:

$$V_{OUTIA} = G_{IA} V_{IN} + V_{ZA} \text{ mit } V_{OUTIA} > 0$$

$$\tag{1}$$

wobei V_{IN} die Differenzspannung zwischen den Eingängen und V_{ZA} die Spannung am Pin ZA des Instrumentenverstärkers IA bezeichnet.

2. **Die Operationsverstärkerstufe (OP1)** ermöglicht eine variable Verstärkung des Ausgangssignals des IA. Die Verstärkung G_{GAIN} des OP1 ist über die externen Widerstände R_1 und R_2 einstellbar. Als Schutzfunktion ist ein Überspannungsschutz integriert, der auf den Wert der eingestellten Referenz begrenzt ist (Siehe Pkt.4). Die Ausgangsspannung am OP1 kann zur Kontrolle am Pin V_{OP} abgegriffen werden. Sie errechnet sich zu:

$$V_{OP} = V_{OUTIA} \cdot G_{GAIN} \text{ mit } G_{GAIN} = \left(\frac{R_1}{R_2} + 1\right)$$
 (2)

wobei V_{OUTLA} extern nicht zugänglich, sondern intern mit dem Eingang des OP1 verbunden ist.

3. **Der Spannungs-/Stromwandler (U/I-Wandler)** liefert ein spannungsgesteuertes Stromsignal am IC-Ausgangs PIN IOUT, welches einen externen Transistor T_1 ansteuert. Dieser liefert den Ausgangsstrom I_{OUT} und übernimmt die Verlustleistung der Ausgangsstufe. Er sollte durch eine zusätzliche Diode D_1 gegen Verpolung geschützt werden.

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz Telefon:+49 (0)6131/91 0730-0 Telefax: +49 (0)6131/91 073-30

Internet

Über den Pin SET kann ein Offsetstrom I_{SET} am Ausgang IOUT eingestellt werden (z.B. mit Hilfe der internen Spannungsreferenz und einem externen Spannungsteiler wie in $Abbildung\ 2$). Der externe Widerstand R_0 ermöglicht eine Feinjustage des Ausgangsstromes. Für den durch T_1 verstärkten Ausgangsstrom I_{OUT} gilt die Beziehung

$$I_{OUT} = \frac{V_{OP} \cdot G_{VI}}{R_0} + I_{SET} = \frac{V_{OP}}{8R_0} + I_{SET} \text{ mit } I_{SET} = \frac{V_{SET} \cdot G_{SET}}{R_0} = \frac{V_{SET}}{2R_0}$$
(3)/(4)

wobei V_{OP} der Eingangsspannung des U/I-Wandlers und V_{SET} der Spannung am Pin SET entspricht.

4. **Die Referenzspannungsquelle** des AM452 erlaubt die Spannungsversorgung von externen Komponenten (z.B. Sensoren, μ P usw.). Der Wert der Referenzspannung V_{REF} kann über den Pin VSET eingestellt werden. Bei nicht angeschlossenem Pin VSET ist $V_{REF} = 5$ V; wenn Pin VSET an Masse geschaltet ist, wird $V_{REF} = 10$ V. Unter Verwendung von zwei externen Widerständen (zwischen Pin VSET und Pin VSET sowie Pin VSET und GND) lassen sich auch Zwischenwerte einstellen.

Die externe Kapazität C_1 dient zur Stabilisierung der Referenzspannung. Sie <u>muß</u> auch dann kontaktiert werden, wenn die Spannungsreferenz nicht benutzt wird. Sie darf den angegebenen Minimalwert nicht unterschreiten.

5. *Der Zusatz-Operationsverstärke (OP2)* ist als Strom- bzw. Spannungsquelle zur Versorgung von externen Komponenten einsetzbar. Der positive Eingang ist dabei intern auf die Bandgap Spannung V_{BG} gelegt, so dass die Ausgangsspannung des OP2 am Pin V_{CVREF} durch einen bzw. zwei externe Widerstände über einen weiten Bereich einstellbar ist.

Die einzelnen Module sind in den Spezifikationen separat beschrieben. Die Referenzspannungsquelle mit V_{REF} und der Operationsverstärker OP2 können als unabhängige Schaltungselemente betrieben und dimensioniert werden. Der Instrumentenverstärker IA, der Operationsverstärker OP1 und der U/I-Wandler bilden schaltungstechnisch eine Einheit, mit der Aufgabe, das Spannungseingangssignal in den Ausgangsstrom umzuwandeln.

INBETRIEBNAHME DES AM452

Allgemeines zur 2- und 3-Draht-Anwendung mit dem AM452 [2]

Da der AM452 durch äußere Kontaktierung sowohl im 2-Draht wie auch im 3-Draht Betrieb arbeiten kann, soll zunächst der Unterschied zwischen beiden Schaltungsversionen dargestellt werden.

Die IC-Masse im 2-Draht-Betrieb ist "virtuell" (floatend), da sich die IC-Versorgungsspannung V_{CC} je nach Strom bei konstantem Lastwiderstand ändert. Allgemein gilt für den 2-Draht-Betrieb folgende Gleichung:

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz Telefon:+49 (0)6131/91 0730-0 Telefax: +49 (0)6131/91 073-30

Internet

http://www.analogmicro.de E-Mail: info@analogmicro.de

November2007 -Rev1.1-Page 9/18

$$V_{CC} = V_S - I_{OUT}(V_{IN}) R_L \tag{5}$$

Der Grund dafür ist, dass das IC im 2-Draht-Betrieb in Reihe zum eigentlichen Lastwiderstand R_L geschaltet ist. In *Abbildung 3* ist dieser Sachverhalt graphisch dargestellt.

Im 3-Draht-Betrieb gilt Formel 5 nicht mehr, da die IC-Masse an die Systemmasse angeschlossen wird. Für den 3-Draht-Betrieb lässt sich für die Versorgungsspannung schreiben

$$V_{CC} = V_{S} \tag{6}$$

Die Stromaufnahme des Gesamtsystems (AM452 und alle externen Komponenten inklusive der Einstellwiderstände) dürfen in einem 2-Draht-System in der Summe nicht mehr als $I_{OUT_{min}}$ (z.B. 4mA) verbrauchen.

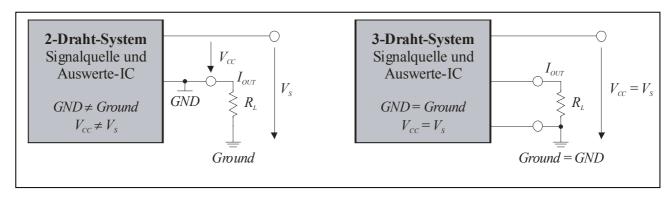


Abbildung 3: Grundsätzlicher Unterschied zwischen 2-Draht- und 3-Draht-Schaltung

Hinweis: Unbedingt auf den Unterschied zwischen GND und Ground achten -

Im 3-Draht-Betrieb (vgl. z.B. *Abbildung 2*) wird der Masseanschluß des ICs (Pin *GND*) mit der von außen zugeführten Systemmasse *Ground* verbunden. Die System-Versorgungsspannung V_S wird an Pin VCC angeschlossen und Pin VCC mit Pin RS+ verbunden.

Im 2-Draht-Betrieb (vgl. *Abbildung 6*) wird die System-Versorgungsspannung V_S an den Pin RS+ angeschlossen und der Pin VCC mit Pin RS- verbunden. Der Masseanschluß des IC (Pin GND) wird am Knotenpunkt zwischen dem Widerstand R_5 und dem Lastwiderstand R_L (Stromausgang I-OUT) kontaktiert. Damit ist die Masse GND des ICs <u>nicht</u> gleich der Systemmasse GRD der Systemmasse GRD der Systemmasse GRD der Systemmasse GRD mit der Systemmasse verbindet.

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz Telefon:+49 (0)6131/91 0730-0 Telefax: +49 (0)6131/91 073-30

Internet

Wahl der Versorgungsspannung

Die zum Betrieb des AM452 benötigte "System"-Versorgungspannung V_S hängt von dem jeweils gewählten Betriebsmodus ab:

Bei Nutzung des Stromausganges Pin IOUT (in Verbindung mit dem externen Transistor) hängt V_S von dem jeweiligen Lastwiderstand R_L der Anwendung ab. Für die minimale System-Versorgungsspannung V_S gilt:

$$V_S \ge I_{OUT \max} R_L + V_{CC \min} \tag{7}$$

Darin bezeichnet I_{OUTmax} den maximalen Ausgangsstrom und V_{CCmin} die minimale IC-Versorgungsspannung, die vom Wert der gewählten Referenzspannung abhängt:

$$V_{CC\min} \ge V_{REF} + 1V \tag{8}$$

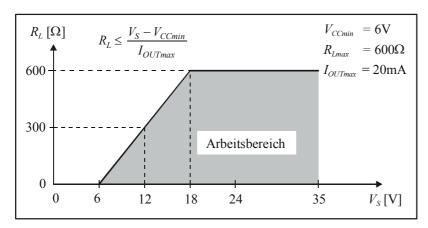


Abbildung 4: Arbeitsbereich in Abhängigkeit des Lastwiderstands

Einstellung des Offset und des Ausgangsstrombereichs für den Fall: $V_{IN} = 0$

Bei der Einstellung des AM452 sollte zunächst ein Voreinstellung durchgeführt werden. Dazu wird zunächst der Offset(Fußpunkt)-Abgleich des Ausgangsstroms durchgeführt, indem in einem ersten Schritt die beiden Eingänge des IA kurzgeschlossen werden ($V_{IN} = 0$) und gemeinsam auf ein erlaubtes Potential (vgl. *CMIR* in den *Elektrischen Spezifikationen*) gelegt werden. Mit dem Kurzschluss am Eingang ergibt sich unter Berücksichtigung eines Spannungsteilers für die Referenzspannung V_{REF} : (siehe z.B. *Abbildung 5*):

$$I_{OUT}(V_{IN} = 0) = I_{SET} \text{ mit } I_{SET} = \frac{V_{REF}}{2R_0} \cdot \frac{R_4}{R_3 + R_4}$$
 (9)

Die Einstellung des Ausgangsstrombereichs (z.B. 16mA) erfolgt durch die Wahl der externen Widerstände R_1 und R_2 (bzw. Feinjustage mit R_0). Für den Ausgangsstrom I_{OUT} ergibt sich:

$$I_{OUT} = V_{IN} \frac{G_I \cdot G_{VI}}{R_0} + I_{SET} \text{ mit } G_I = G_{IA} \cdot G_{GAIN} \text{ und } V_{ZA} = 0$$
 (10)

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz Telefon:+49 (0)6131/91 0730-0 Telefax: +49 (0)6131/91 073-30

Internet

http://www.analogmicro.de E-Mail: info@analogmicro.de

November 2007 - Rev 1.1 - Page 11/18

Durch die Einstellung des Ausgangsstrombereiches (Verstärkung) wird bei nicht vernachlässigbarem Offset von Signalquelle und Eingangsverstärker (IA) des AM452 auch $I_{OUT}(V_{IN}=0)$ verändert. Dieser Verschiebung muß gegebenenfalls durch ein Feinjustieren von R_3 und R_4 Rechnung getragen werden. Sind der Offset von Signalquelle und Eingangsverstärker für die gewünschte Genauigkeit nicht relevant, gelten uneingeschränkt die Formel (9) und (10).

Falls die Signalquelle einen positiven Offset hat, gilt für den Einsatz des AM452 für den Offset des Eingangssignals: Offset< 1/5 (V_{IN+} - V_{IN-}).

Falls die Signalquelle einen negativen Offset hat, kann über den ZA-Pin der Offset über den Spannungsteiler R₆ und R₇ eingestellt werden.

WICHTIGE HINWEISE ZUR INBETRIEBNAHME

- 1. Zum Betrieb des AM452 muß <u>immer</u> die externe Kapazität C_1 (Keramikkapazität) kontaktiert werden. Es ist zu beachten, dass der Wert der Kapazität auch über den Temperaturbereich nicht den Wertebereich in den Randbedingungen (siehe *Tabelle2*) unterschreitet. Im 2-Draht-Betrieb ist zusätzlich die Keramikkapazität C_2 zu verwenden.
- 2. Alle in einer Applikation nicht benutzten Funktionsblöcke des AM452 (OP2 oder VREF) müssen in einen definierten (und erlaubten) Betriebszustand gebracht werden.
- 3. Die Spannungen an den Eingängen des IA (Pin *IN*+ und Pin *IN*-) müssen <u>immer</u> innerhalb des Eingangsspannungsbereichs *CMIR* liegen.
- 4. Am Stromausgang ist für den 2-Draht-Betrieb ein Lastwiderstand von **maximal** 600Ω zulässig.
- 5. Die Werte der externen Widerstände R_0 , R_1 , R_2 , R_3 , R_4 , R_5 , R_6 und R_7 müssen innerhalb des erlaubten Bereichs gewählt werden, der in den Randbedingungen spezifiziert ist.
- 6. Die Toleranzen der Widerstände sowie ihre Temperaturkoeffizienten gehen in den Gesamtfehler ein.
- 7. Es ist zur Vermeidung von Temperaturgradienten dringend darauf zu achten, dass der Transistor **genügend weit** vom IC AM452 entfernt platziert wird und dass für eine ausreichende Temperaturabführung gesorgt ist.
- 8. Beim 2-Draht-Betrieb ist auf die Strombilanz (gesamte Eigenstromaufnahme auch über den Temperaturbereich <4mA) des ICs und aller angeschlossenen Bauelemente z.B. Sensor zu achten.

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz Telefon:+49 (0)6131/91 0730-0 Telefax: +49 (0)6131/91 073-30

Internet

DIMENSIONIERUNG

Es werden zwei Wege zur Dimensionierung vorgeschlagen.

- a) Dimensionierung gemäß den im Datenblatt angegebenen Formeln. Hier muß insbesondere auf den Offset des Eingangssignals des AM452 geachtet werden. Die Formeln gelten für den Fall eines Eingangsignals mit einem Offset zwischen null und < 1/5 (V_{IN^+} - V_{IN^-}). Beispiele in den ANWENDUNGEN.
- b) Die Dimensionierung der externen Bauelemente des AM452 kann mit Hilfe des Excel-Sheets: **Kali_AM452.xls** durchgeführt werden. Siehe dazu [3]. Diese Dimensionierung gilt für den Fall eines Eingangsignals mit einem Offset von negativen Werten bis zu einem positiven Wert < 1/5 (V_{IN+} - V_{IN-}). (Der größere Abstimmbereich wird dadurch erreicht, dass der Eingangsoffset über den ZA-Pin des Instrumentenverstärkers und nicht durch einen Offsetstrom am U/I-Wandler eingestellt wird).

Das Programm berücksichtigt durch den zugrunde liegenden Algorithmus auch die Exemplarstreuungen der ICs und der angeschlossenen Bauelemente.

ANWENDUNGEN

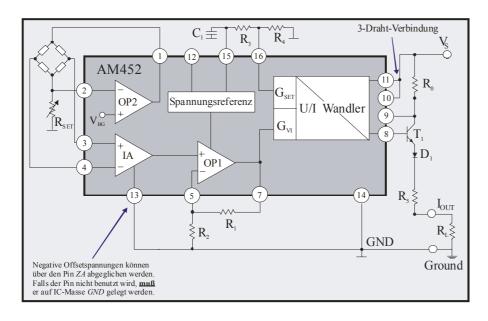


Abbildung 5: Typische 3-Draht-Anwendung für differentielle Eingangssignale

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz Telefon:+49 (0)6131/91 0730-0 Telefax: +49 (0)6131/91 073-30

Internet:

Typische 3-Draht-Anwendung mit differentiellem Eingangssignal

Im 3-Draht-Betrieb (vgl. z.B. Abbildung 5) wird der Masseanschluß des ICs (Pin 14 = GND) mit der von außen zugeführten Systemmasse Ground verbunden. Die System-Versorgungsspannung V_S wird an Pin VCC angeschlossen und Pin VCC mit Pin RS+ verbunden. Der Ruhestrom des AM452 fließt in dieser Konfiguration nicht über den Widerstand R_0 .

Abbildung 5 zeigt die 3-Draht-Anwendung, bei der das differentielle Ausgangssignal einer stromgespeisten Messbrücke verstärkt und gewandelt wird. Die Stromspeisung der Messbrücke erfolgt mit dem Operationsverstärker OP2. Der Versorgungsstrom I_S der Brücke kann über den Widerstand R_{SET} eingestellt werden:

$$I_S = \frac{V_{BG}}{R_{SET}} = \frac{1,27 \,\mathrm{V}}{R_{SET}} \tag{11}$$

Für die Anwendung wird angenommen, dass keine negativen Eingangsdifferenzspannungen auftreten. Der Pin ZA wird deshalb auf IC-Masse GND gelegt.

Für den Ausgangsstrom I_{OUT} gilt nach Gleichung (9) und (10)

$$I_{OUT} = V_{IN} \frac{G_I}{8R_0} + I_{SET} \text{ mit } V_{ZA} = 0$$
 (12)

mit
$$G_I = G_{IA} G_{GAIN} = 5 \left(1 + \frac{R_1}{R_2} \right) \text{ und } I_{SET} = \frac{V_{REF}}{2R_0} \cdot \frac{R_4}{R_3 + R_4}$$
 (13)

 $G_{\rm I}$ ist hierbei die Gesamtverstärkung des Instrumentenverstärkers (IA) und des nachfolgenden Operationsverstärkers (OP1). I_{SET} ist der zusätzliche Offsetstrom, der mittels einer Spannung am Set Pin eingestellt wird und den Ausgangsstrom des U/I-Wandlers um einen konstanten Wert erhöhen kann.

1) Beispiel 1: $V_{IN} = 0...100 \text{mV}$ differentiell, $I_{OUT} = 4...20 \text{mA}$ (3-Draht)

Für eine Messbrücke mit einem Signal $V_{IN} = 0...100$ mV (ohne Offset) am Eingang des IA sollen die externen Bauteile so dimensioniert werden, dass der Ausgangsstrom I_{OUT} 4...20mA beträgt.

Falls der Offset des Eingangssignals zu vernachlässigen ist, müssen die Widerstände R_0 , R_1 , R_2 , R_3 und R_4 bestimmt werden. Bei den beiden Spannungsteilern ist es ausreichend einen der beiden Widerstände zu berechnen; der andere kann innerhalb der Vorgaben der Randbedingungen frei gewählt werden. In dem Beispiel wird für R_2 ein Wert von $10k\Omega$ und für R_4 5k Ω gewählt. Am Widerstand R_0 sollen bei einem Strom von 20mA 540mV abfallen (typischer Wert). Man erhält mit Gleichung (14) und unter Anwendung der Formeln (12) und (13) die Werte für R_0 , R_1 und R_3 .

$$R_0 \cdot 0.02A = 0.54V \tag{14}$$

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz Telefon:+49 (0)6131/91 0730-0 Telefax: +49 (0)6131/91 073-30

Internet

Aus den Gleichungen (12) und (13) folgt mit den Werten des Beispiels 1:

$$0.02A = \frac{0.1V \cdot 5 \cdot (1 + \frac{R_1}{10k\Omega})}{8 \cdot R_0} + \left(\frac{5}{2 \cdot R_0} \cdot \frac{5k\Omega}{(R_3 + 5k\Omega)}\right)$$

$$0,004A = \frac{5}{2 \cdot R_0} \cdot \frac{5k\Omega}{(R_3 + 5k\Omega)}$$

Durch Lösen des Gleichungssystems und unter Berücksichtigung der Vorgaben ergeben sich folgende Werte für die 3-Draht 4-20mA Stromschnittstelle:

 $R_0 = 27\Omega$

 $R_1 = 59,12k\Omega$ $R_3 = 110,74k\Omega$

 $R_2 = 10$ k Ω

 $R_4 = 5k\Omega$

 $R_5 = 39\Omega$

 $R_L = 0...600\Omega$ $C_1 = 2.2 \mu F$

Typische 2-Draht-Anwendung mit differentiellem Eingangssignal

2) Beispiel 2: $V_{IN} = 0..100 \text{mV}$ differentiell, $I_{OUT} = 4...20 \text{mA}$ (2-Draht)

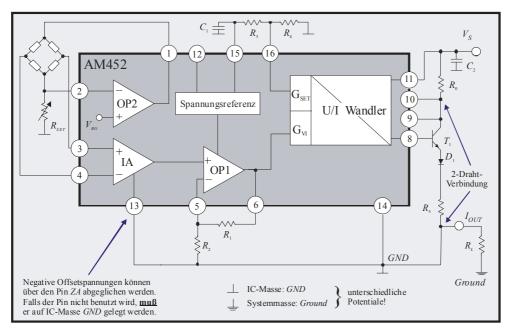


Abbildung 6: Typische 2-Draht-Anwendung für differentielle Eingangssignale

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz Telefon:+49 (0)6131/91 0730-0 Telefax: +49 (0)6131/91 073-30

Internet:

http://www.analogmicro.de E-Mail: info@analogmicro.de

November 2007 - Rev 1.1 - Page 15/18

Um das System zu bestimmen müssen die Widerstände R₀, R₁, R₂, R₃ und R₄ bestimmt werden.

Für eine Messbrücke mit einem Signal $V_{IN} = 0..100$ mV(ohne Offset) am Eingang des IA sollen die externen Bauteile zur Beschaltung des AM452 so dimensioniert werden, dass der Ausgangsstrombereich 4...20mA beträgt. Der AM452 wird hier nun so beschaltet, dass über R_0 der gesamte Strom, also auch der Ruhestrom des IC fließt.

Wie in Beispiel 1 können auch hier R_2 und R_4 unter Berücksichtigung der Randbedingungen frei gewählt werden. Hier soll beispielsweise $R_2=10k\Omega$ und $R_4=5k\Omega$ sein. Auch R_0 wird zu 33Ω gewählt. Es ergeben sich aus den beiden Gleichungen (12) und (13) die Werte für R_1 und R_3 :

$$0.02A = \frac{0.1V \cdot 5 \cdot (1 + \frac{R_1}{10k\Omega})}{8 \cdot 33\Omega} + \left(\frac{5}{2 \cdot 33\Omega} \cdot \frac{5k\Omega}{(R_3 + 5k\Omega)}\right)$$

$$0,004 A = \frac{5}{2 \cdot 33\Omega} \cdot \frac{5k\Omega}{(R_3 + 5k\Omega)}$$

Durch Lösen des Gleichungssystems und unter Berücksichtigung der Randbedingungen für die externen Bauteile ergeben sich dann die folgenden Werte:

$$R_0 = 33\Omega$$
 $R_1 = 74,48k\Omega$ $R_3 = 89,7k\Omega$ $R_2 = 10k\Omega$ $R_4 = 5k\Omega$ $R_5 = 39\Omega$ $R_L = 0...600\Omega$ $C_1 = 2,2\mu\text{F}$ $C_2 = 100\text{nF}$

Bei dieser Anwendung ist insbesondere auf die Gesamtstromaufnahme zu achten, die bei 85°C den Wert von 4mA nicht überschreiten darf.

Offsetabgleich mittels R₃ am Set Pin

Der Offsetwert des Ausgangsstroms kann mittels der Spannung am SET Pin 16 über den Spannungsteiler R_3 und R_4 nachgestellt werden. Ist beispielsweise , durch interne Offsets und Parasitäten der Ausgangsstrom um 0,1mA zu hoch (4,1mA und 20,1mA), so muß der Strom um 0,1mA reduziert werden, d.h. I_{SET} darf nur 3,9mA betragen. Es ergibt sich nach Formel (9) in diesem Beispiel:

$$I_{SET} = \frac{V_{REF}}{2R_0} \cdot \frac{R_4}{R_3 + R_4} = 3.9 mA = \frac{5V}{66\Omega} \cdot \frac{5k\Omega}{R_3 + 5k\Omega}$$

Nach R_3 aufgelöst erhält man: $R_3 \approx 92,125 k\Omega$ statt $89,7 k\Omega$. Die Spannung am SET Pin beträgt dann nur noch 257,4mV statt 264mV und der Ausgangstrom ist dadurch um 0,1 mA reduziert.

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz Telefon:+49 (0)6131/91 0730-0 Telefax: +49 (0)6131/91 073-30

Internet:

http://www.analogmicro.de E-Mail: info@analogmicro.de

November 2007 - Rev 1.1 - Page 16/18

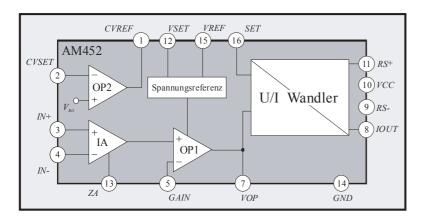


Abbildung 7: Blockschaltbild

BLOCKSCHALTBILD UND PINOUT

PIN	NAME	BEDEUTUNG		
1	CVREF	Strom-/Spannungsreferenz		
2	CVSET	Einstellen Strom-/Spannungsreferenz		
3	IN+	Positiver Eingang		
4	IN-	Negativer Eingang		
5	GAIN	Einstellen der Verstärkung		
6	NC	Non Connected		
7	VOP	Ausgang OP1		
8	IOUT	Stromausgang		
9	RS-	Senswiderstand –		
10	VCC	Versorgungsspannung		
11	RS+	Senswiderstand +		
12	VSET	Einstellung Referenzspannungsquelle		
13	ZA	Nullpunkteinstellung		
14	GND	IC-Masse		
15	VREF	Ausgang Referenzspannungsquelle		
16	SET	Einstellen des Ausgangsoffsetstroms		

Tabelle 3: Pinbelegung

CVREF	1	U	16 □ <i>SET</i>
CVSET	2		15 ☐ VREF
IN+	3		$14 \square GND$
IN-	4		$13 \square ZA$
GAIN	5		12 VSET
NC	6		$11 \square RS +$
VOP	7		10 □ VCC
IOUT	8		9 □ <i>RS</i> -

Abbildung 8: Pin Out

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz Telefon:+49 (0)6131/91 0730-0 Telefax: +49 (0)6131/91 073-30

Internet:

http://www.analogmicro.de E-Mail: info@analogmicro.de

November2007 -Rev1.1-Page 17/18

LIEFERFORMEN

Der AM452 ist lieferbar als:

• SOP 16(n)

GEHÄUSEABMESSUNGEN

Siehe Homepage Datenblätter: package.pdf

WEITERFÜHRENDE LITERATUR

[1] Konzept der Frame-ASICs: http://www.Frame-ASIC.de/

Alle nachstehenden Verweise beziehen sich auf die Homepage der Analog Microelectronics: http://www.analogmicro.de/

- [2] Technische Artikel: PR1012 AM462 Spannungs/Strom-Wandler IC für 2-Draht Stromschleifenanwendungen:
- [3] Dimensionierungsprogramm Down Load: Kali_AM452.xls

NOTIZEN

Analog Microelectronics behält sich Änderungen von Abmessungen, technischen Daten und sonstigen Angaben ohne vorherige Ankündigung vor.

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz Telefon:+49 (0)6131/91 0730-0 Telefax: +49 (0)6131/91 073-30

Internet:

http://www.analogmicro.de E-Mail: info@analogmicro.de

November2007 -Rev1.1-Page 18/18