

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-99/0010 vom 23. Juli 2018

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Bolzenanker BZ plus und BZ-IG

Kraftkontrolliert spreizender Dübel zur Verankerung im Beton

MKT

Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach

MKT

Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach

36 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330232-00-0601

ETA-99/0010 vom 6. April 2016

Z43585.18

Europäische Technische Bewertung ETA-99/0010

Seite 2 von 36 | 23. Juli 2018

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z43585.18 8.06.01-561/18

Europäische Technische Bewertung ETA-99/0010

Seite 3 von 36 | 23. Juli 2018

Besonderer Teil

1 Technische Beschreibung des Produkts

Der Bolzenanker BZ plus und BZ-IG ist ein Dübel aus verzinktem Stahl, aus nichtrostendem Stahl oder aus hochkorrosionsbeständigem Stahl, der in ein Bohrloch gesetzt und durch kraftkontrollierte Verspreizung verankert wird. Er umfasst die folgenden Dübeltypen:

- Dübeltyp BZ plus mit Außengewinde, Unterlegscheibe und Sechskantmutter, Größen M8 bis M27,
- Dübeltyp BZ-IG S mit Innengewinde, Sechskantschraube und Unterlegscheibe S-IG, Größen M6 bis M12,
- Dübeltyp BZ-IG SK mit Innengewinde, Senkschraube und Senkscheibe SK-IG, Größen M6 bis M12,
- Dübeltyp BZ-IG B mit Innengewinde, Sechskantmutter und Unterlegscheibe MU-IG, Größen M6 bis M12.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäisch Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand für statische und quasi-statische Einwirkungen	für den BZ plus siehe Anhang C1 bis C5 für den BZ-IG siehe Anhang C11 bis C13
Verschiebungen	für den BZ plus siehe Anhang C9 bis C10 für den BZ-IG siehe Anhang C15
Charakteristische Werte für die seismischen Leistungskategorien C1 und C2	für den BZ plus siehe Anhang C6

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	für den BZ plus siehe Anhang C7 bis C8 für den BZ-IG siehe Anhang C14

Z43585.18 8.06.01-561/18

Europäische Technische Bewertung ETA-99/0010

Seite 4 von 36 | 23. Juli 2018

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

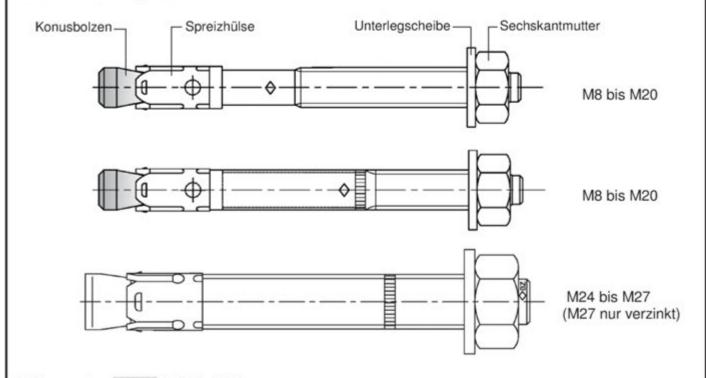
Gemäß dem Europäischen Bewertungsdokument EAD 330232-00-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 23. Juli 2018 vom Deutschen Institut für Bautechnik

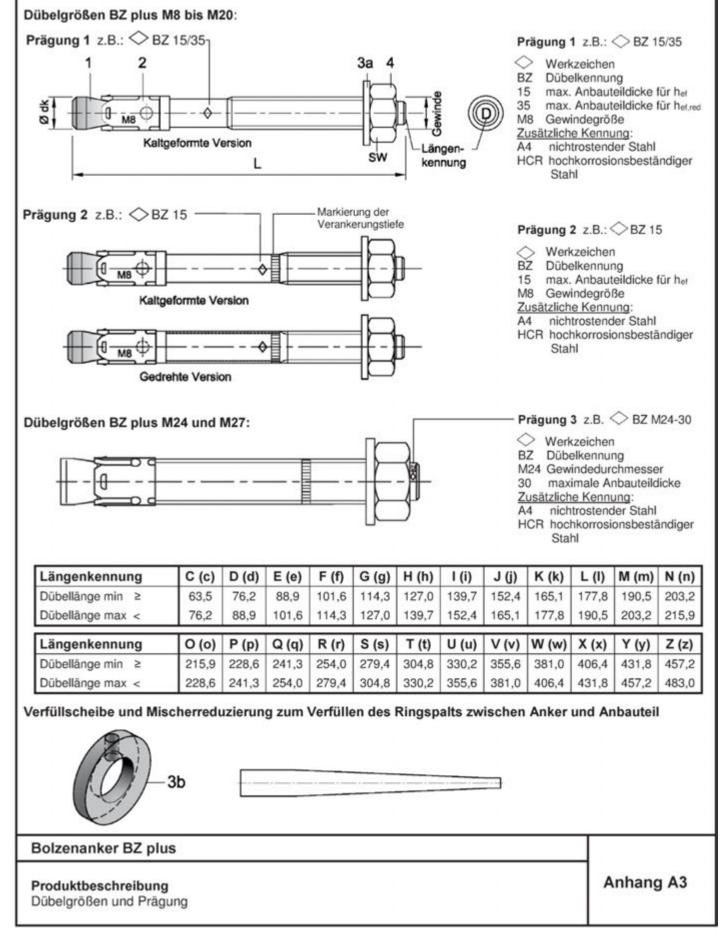

Dr.-Ing. Lars Eckfeldt i. V. Abteilungsleiter

Produkttyp	Produktbeschreibung	Verwendungszweck	Leistung
BZ plus	Anhang A1 - Anhang A4	Anhang B1 – Anhang B7	Anhang C1 - Anhang C10
BZ-IG	Anhang A1 Anhang A5 – Anhang A7	Anhang B1 – Anhang B2 Anhang B8 – Anhang B10	Anhang C11 - Anhang C15

Bolzenanker BZ plus

Bolzenanker BZ-IG M6 bis M12

Dübelsystem Sechskant-BZ-IG S Unterlegscheibe schraube Konusbolzen Senkscheibe Senkschraube **BZ-IG SK** Spreizhülse Sechs-Handelsübliche Unterlegkantmutter scheibe Gewindestange BZ-IG B


Bolzenanker BZ plus und BZ-IG Produktbeschreibung Anhang A1

Dübeltypen

Einbauzustand Bolzenanker BZ plus h ≥ hmin,1 bzw. hmin,2 h₁ hef tfix hef,red tfix h1,red h≥hmin,3 Bolzenanker BZ plus Anhang A2 Produktbeschreibung Einbauzustand BZ plus

Tabelle A1: Dübelabmessungen BZ plus

Dübelgröße			M8	M10	M12	M16	M20	M24	M27
Konusbolzen		Gewinde	M8	M10	M12	M16	M20	M24	M27
		Ø dk =	7,9	9,8	12,0	15,7	19,7	24	28
	Stahl, verzinkt	L	65 + t _{fix}	80 + t _{fix}	96,5+tfix	118+tfix	137+tfix	161+tfix	178+t _{fix}
Dübellänge 1)	Nichtrostender Stahl A4, HCR	L	65 + t _{fix}	80 + t _{fix}	96,5+t _{fix}	118+t _{fix}	137+t _{fix}	168+t _{fix}	-
	reduzierte Verankerungstiefe	Lhef,red	54 + t _{fix}	60 + t _{fix}	76,5+t _{fix}	98+tsix			
Sechskantmut	ter	SW	13	17	19	24	30	36	41

¹⁾ Bei zusätzlicher Verwendung der Verfüllscheibe 3b reduziert sich die nutzbare Klemmstärke um 5mm

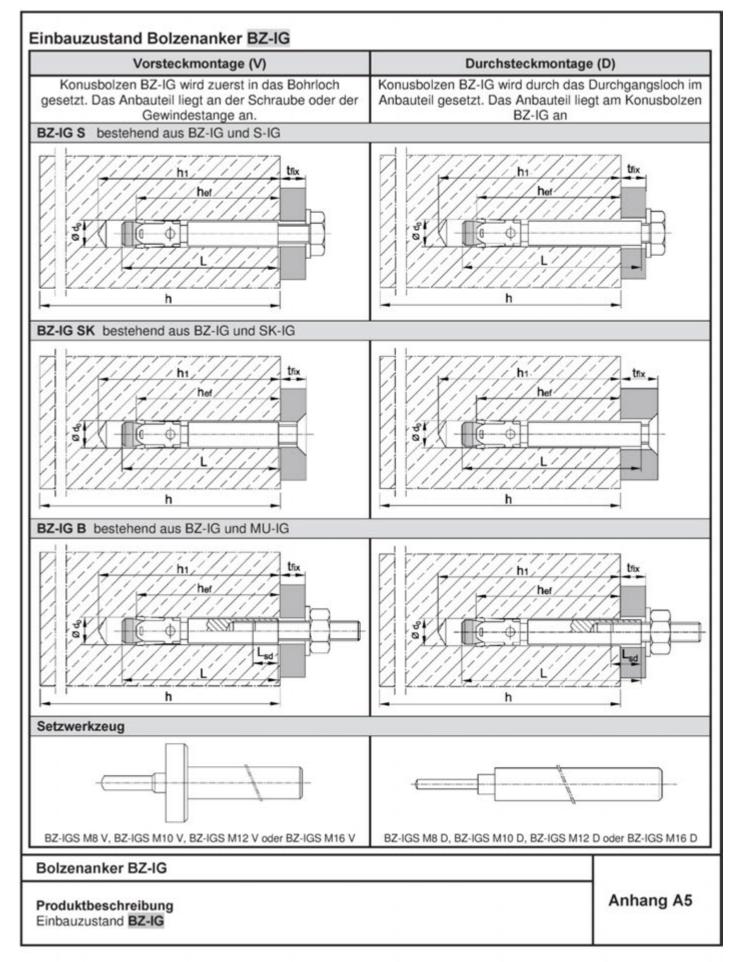
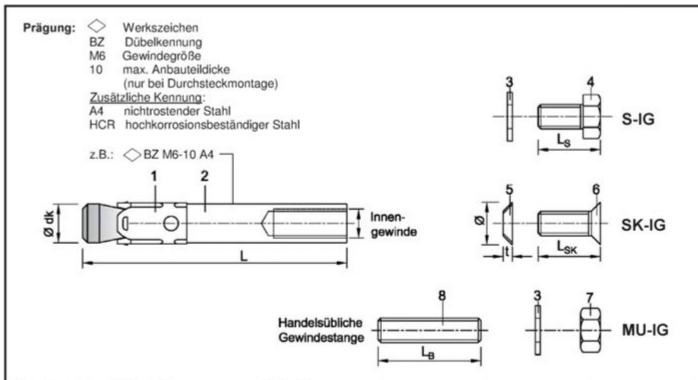

Maße in mm

Tabelle A2: Material BZ plus


		BZ	plus	BZ plus A4	BZ plus HCR		
Nr.	Teil	Stahl,	verzinkt	Nichtrostender	Hochkorrosions-		
		galvanisch verzinkt ≥ 5μm	Diffusionsverzinkt ≥ 40µm		beständiger Stahl (HCR)		
1	Konusbolzen	M8 bis M20: Kaltstauch- oder Automatenstahl, galvanisch verzinkt, Konus mit Kunststoffüberzug	M8 bis M20: Kaltstauch- oder Automatenstahl, diffusionsverzinkt, Konus mit Kunststoffüberzug	M8 bis M20: Nichtrostender Stahl (z.B. 1.4401, 1.4404, 1.4578, 1.4571) EN 10088:2014, Konus mit Kunststoffüberzug	M8 bis M20: Hochkorrosions- beständiger Stahl 1.4529 oder 1.4565, EN 10088:2014, Konus mit Kunststoffüberzug		
	Gewindebolzen	M24 und M27: Stabl. galvanisch diffusie		M24: Nichtrostender Stahl	M24: Hochkorrosions- beständiger Stahl		
	Spreizkonus	verzinkt	M24 und M27: Stahl, galvanisch verzinkt	(z.B. 1.4401, 1.4404) EN 10088:2014	1.4529 oder 1.4565, EN 10088:2014		
2	Spreizhülse	M8 bis M20: Stahl (z.B: 1.4301 oder 1.4401) EN 10088:2014, M24 und M27: Stahl nach EN 10139:1997	M8 bis M20: Stahl (z.B. 1.4301 oder 1.4401) EN 10088:2014, M24 und M27: Stahl nach EN 10139:1997	Nichtrostender Stahl (z.B. 1.4401, 1.4404, 1.4571) EN 10088:2014	Nichtrostender Stahl (z.B. 1.4401, 1.4404, 1.4571) EN 10088:2014		
За	Unterlegscheibe	Stahl, galvanisch	Stahl, verzinkt	Nichtrostender Stahl (z.B. 1.4401, 1.4571)	Hochkorrosions- beständiger Stahl		
3b	Verfüllscheibe	verzinkt	Otalii, Foreign	EN 10088:2014	1.4529 oder 1.4565, EN 10088:2014		
4	Sechskantmutter	Stahl, galvanisch verzinkt, beschichtet	Stahl, verzinkt	Nichtrostender Stahl (z.B. 1.4401, 1.4571) EN 10088:2014, beschichtet	Hochkorrosions- beständiger Stahl 1.4529 oder 1.4565, EN 10088:2014, beschichtet		

Bolzenanker BZ plus	
Produktbeschreibung Dübelabmessungen und Material	Anhang A4

Tabelle A3: Dübelabmessungen BZ-IG

Nr.	Dübelgröße			M6	M8	M10	M12
.,	Konusbolzen mit Innengewinde		Ø dk	7,9	9,8	11,8	15,7
1	Vorsteckmontage		L	50	62	70	86
	Durchsteckmontage		L	50 + t _{fix}	62 + t _{fix}	70 + t _{fix}	86 + t _{fix}
2	Spreizhülse				siehe Ta	abelle A4	
3	Unterlegscheibe				siehe Ta	abelle A4	
	Sechskantschraube	Schlü	sselweite	10	13	17	19
4	Vorsteckmontage		Ls	t _{fix} + (13 bis 21)	tsx + (17 bis 23)	t _{fix} + (21 bis 25)	t _{fix} + (24 bis 29)
	Durchsteckmontage	-	Ls	14 bis 20	18 bis 22	20 bis 22	25 bis 28
5	Cankashaiha	Ø Ser	nkung	17,3	21,5	25,9	30,9
5	Senkscheibe -		t	3,9	5,0	5,7	6,7
6	Senkschraube		Antrieb	Torx T30	Torx T45 (Stahl, verzinkt) T40 (nichtrostender Stahl A4, HCR)	Innensechskant 6 mm	Innensechskant 8 mm
	Vorsteckmontage		Lsk	tsix + (11 bis 19)	t _{fix} + (15 bis 21)	tsx + (19 bis 23)	t _{fix} + (21 bis 27)
	Durchsteckmontage		Lsk	16 bis 20	20 bis 25	25	30
7	Sechskantmutter	Schlüs	selweite	10	13	17	19
0	Handelsübliche	Typ V	L _B ≥	t _{fix} + 21	t _{fix} + 28	t _{fix} + 34	t _{fix} + 41
8	Gewindestange ¹⁾	Typ D	L _B ≥	21	28	34	41

¹⁾ Ausführung gemäß Spezifikation (Tabelle A4)

Maße in mm

Bolzenanker BZ-IG

Produktbeschreibung

Dübelkomponenten, Prägung und Abmessungen BZ-IG

Anhang A6

Tabelle A4: Material BZ-IG

		BZ-IG	BZ-IG A4	BZ-IG HCR	
Nr.	Teil	Stahl, galvanisch verzinkt ≥ 5 µm nach EN ISO 4042:1999	Nichtrostender Stahl A4	Hochkorrosions- beständiger Stahl HCR	
1	Konusbolzen BZ-IG mit Innengewinde	Automatenstahl, Konus kunststoffbeschichtet	Nichtrostender Stahl (z. B. 1.4401, 1.4404, 1.4571, 1.4362) EN 10088:2014, Konus kunststoffbeschichtet	Hochkorrosions- beständiger Stahl, 1.4529, 1.4565, EN 10088:2014, Konus kunststoffbeschichtet	
2	Spreizhülse BZ-IG	Nichtrostender Stahl (z.B. 1.4301, 1.4401) EN 10088:2014	Nichtrostender Stahl (z. B. 1.4401, 1.4571) EN 10088:2014	Nichtrostender Stahl (z. B.: 1.4401, 1.4571) EN 10088:2014	
3	Unterlegscheibe Stahl, galvanisch verzinkt		Nichtrostender Stahl (z. B. 1.4401, 1.4571) EN 10088:2014	Hochkorrosions- beständiger Stahl, 1.4529, 1.4565, EN 10088:2014	
4	Sechskantschraube S-IG	echskantschraube S-IG Stahl, galvanisch verzinkt, beschichtet		Hochkorrosions- beständiger Stahl, 1.4529, 1.4565, EN 10088:2014, beschichtet	
5	Senkscheibe SK-IG	Senkscheibe SK-IG Stahl, galvanisch verzinkt		Hochkorrosions- beständiger Stahl, 1.4529, 1.4565, EN 10088:2014, verzinkt, beschichtet	
6	Senkschraube SK-IG	Stahl, galvanisch verzinkt, beschichtet	Nichtrostender Stahl (z. B. 1.4401, 1.4571) EN 10088:2014, beschichtet	Hochkorrosions- beständiger Stahl, 1.4529, 1.4565, EN 10088:2014, beschichtet	
7	Sechskantmutter MU-IG	Stahl, galvanisch verzinkt, beschichtet	Nichtrostender Stahl (z. B. 1.4401, 1.4571) EN 10088:2014, beschichtet	Hochkorrosions- beständiger Stahl, 1.4529, 1.4565, EN 10088:2014, beschichtet	
8	Handelsübliche Gewindestange	Festigkeitsklasse 8.8, EN ISO 898-1:2013 A ₅ > 8 % Duktilität	Nichtrostender Stahl (z. B. 1.4401, 1.4571) EN 10088:2014, Festigkeitsklasse 70, EN ISO 3506:2009	Hochkorrosions- beständiger Stahl, 1.4529, 1.4565, EN 10088:2014, Festigkeitsklasse 70, EN ISO 3506:2009	

Bolzenanker BZ-IG	
Produktbeschreibung Material BZ-IG	Anhang A7

Spezifizierung des Verwendungszwecks

Bolzenanker BZ plus							
Standardverankerungstiefe	M8	M10	M12	M16	M20	M24	M27
Stahl, galvanisch verzinkt				~			
Stahl, diffusionsverzinkt				V			
Nichtrostender Stahl A4 und hochkorrosionsbeständiger Stahl HCR			0	/			¥
Statische oder quasi-statische Einwirkung	Ĭ,			✓.			
Brandbeanspruchung				✓			
Seismische Einwirkung (C1 und C2) 1)		00	V				2
Reduzierte Verankerungstiefe 1)	M8	M10	M12	M16			

Reduzierte Verankerungstiefe 1)	M8	M10	M12	M16
Stahl, galvanisch verzinkt			√	
Stahl, diffusionsverzinkt			✓	
Nichtrostender Stahl A4 und hochkorrosionsbeständiger Stahl HCR		1 3	~	
Statische oder quasi-statische Einwirkung			✓	
Brandbeanspruchung			√	
Seismische Einwirkung (C1 und C2)			-	

¹⁾ nur für kaltgeformte Dübel nach Anhang A3

Bolzenanker BZ-IG	M6	M8	M10	M12
Stahl, galvanisch verzinkt		9	1	
Nichtrostender Stahl A4 und hochkorrosionsbeständiger Stahl HCR		P	V	
Statische oder quasi-statische Einwirkung			V	
Brandbeanspruchung	✓			
Seismische Einwirkung (C1 und C2)			-	

Verankerungsgrund:

- Verdichteter, bewehrter oder unbewehrter Normalbeton (ohne Fasern) nach EN 206:2013
- Festigkeitsklasse C20/25 bis C50/60 nach EN 206:2013
- Gerissener oder ungerissener Beton

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter Bedingungen trockener Innenräume (Stahl verzinkt, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien, einschließlich Industrieatmosphäre und Meeresnähe oder Bauteile in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl)

Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Verwendungszweck Spezifikationen Anhang B1

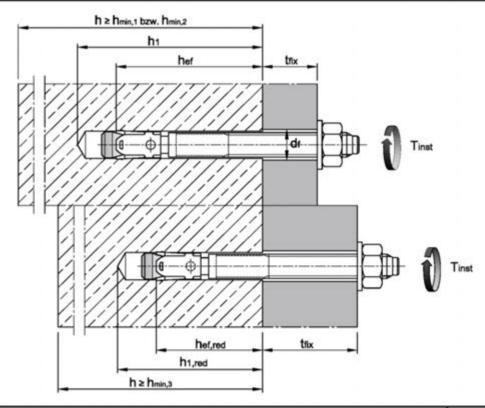
Spezifizierung des Verwendungszwecks

Bemessung:

- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) anzugeben.
- Bemessung der Verankerungen unter statischer oder quasi-statischer Einwirkung, seismischer Einwirkung oder Brandbeanspruchung erfolgt nach FprEN 1992-4:2016 in Verbindung mit TR 055

Einbau:

- Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters
- Bohrloch erstellen mit Hammerbohrer oder Saugbohrer
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile
- Optional kann beim BZ plus der Ringspalt zwischen Bolzen und Anbauteil zur Reduzierung des Lochspiels verfüllt werden. Dazu ist die Verfüllscheibe (3b) zusätzlich zur mitgelieferten Unterlegscheibe (3a) zu verwenden. Zur Verfüllung hochfesten Mörtel mit Druckfestigkeit ≥ 50N/mm² verwenden (VMZ, VMU plus oder VMH)
- Bei Fehlbohrung: Anordnung eines neuen Bohrlochs im Abstand > 2 x Tiefe der Fehlbohrung oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem M\u00f6rtel verf\u00fcllt wird und wenn sie bei Quer- oder Schr\u00e4gzuglast nicht in Richtung der aufgebrachten Last liegt


Bolzenanker BZ plus und BZ-IG	
Verwendungszweck Spezifikationen	Anhang B2

746477 18 8 06 01-561/18

Tabelle B1: Montage- und Dübelkennwerte, BZ plus

Dübelgröße				M8	M10	M12	M16	M20	M24	M27
Bohrernenndur	chmesser	d ₀	[mm]	8	10	12	16	20	24	28
Bohrerschneide	endurchmesser	d _{cut} ≤	[mm]	8,45	10,45	12,5	16,5	20,55	24,55	28,55
	Stahl galvanisch verzinkt	Tinst	[Nm]	20	25	45	90	160	200	300
Montage- drehmoment	Stahl diffusionsverzinkt	Tinst	[Nm]	16	22	40	90	160	260	300
	nichtrostender Stahl A4, HCR	T _{inst}	[Nm]	20	35	50	110	200	290	(4.)
Durchgangsloc anzuschließend		$d_{f}\leq$	[mm]	9	12	14	18	22	26	30
Standardverar	nkerungstiefe									i i
	Stahl verzinkt	h₁ ≥	[mm]	60	75	90	110	125	145	160
Bohrlochtiefe	nichtrostender Stahl A4, HCR	$h_1 \geq$	[mm]	60	75	90	110	125	155	927
Effektive	Stahl verzinkt	het	[mm]	46	60	70	85	100	115	125
Verankerungs- tiefe	nichtrostender Stahl A4, HCR	hef	[mm]	46	60	70	85	100	125	-
Reduzierte Ve	rankerungstiefe									
Bohrlochtiefe		h _{1,red} ≥	[mm]	49	55	70	90			
Reduzierte, effe Verankerungsti		h _{ef,red}	[mm]	35	40	50	65	-	(-	98.5

Bolzenanker BZ plus

Verwendungszweck Montagekennwerte

Dübelgröße			M8	M10	M12	M16	M20	M24	M27
Standardbauteildicke		1978			41	di	***	(A)	272-
Stahl verzinkt			0			341	227	200	100
Standardbauteildicke	h _{min,1}	[mm]	100	120	140	170	200	230	250
Gerissener Beton									
Minimaler Achsabstand	Smin	[mm]	40	45	60	60	95	100	125
Willimator Mondadorana	fürc≥	[mm]	70	70	100	100	150	180	300
Minimaler Randabstand	Cmin	[mm]	40	45	60	60	95	100	180
200 000 000	fürs≥	[mm]	80	90	140	180	200	220	540
Ungerissener Beton		-							
Minimaler Achsabstand	Smin	[mm]	40	45	60	65	90	100	125
	für c ≥	[mm]	80	70	120	120	180	180	300
Minimaler Randabstand	Cmin	[mm]	50	50	75	80	130	100	180
	fürs≥	[mm]	100	100	150	150	240	220	540
Nichtrostender Stahl A4, HC				T					
Standardbauteildicke	h _{min,1}	[mm]	100	120	140	160	200	250	
Gerissener Beton				T 50			0.5	105	
Minimaler Achsabstand	Smin	[mm]	40	50	60	60	95	125	
	für c ≥	[mm]	70	75	100	100	150	125	-
Minimaler Randabstand	Cmin	[mm]	40	55	60	60	95	125	
Unandanana Batan	für s ≥	[mm]	80	90	140	180	200	125	9
Ungerissener Beton		formal	40	50	- 00	C.E.	- 00	105	
Minimaler Achsabstand	Smin	[mm]	40	50	60	65	90	125	
	für c ≥	[mm]	80	75	120	120	180	125	-
Minimaler Randabstand	Cmin	[mm]	50	60	75	80	130	125	
	fürs≥	[mm]	100	120	150	150	240	125	
Mindestbauteildicke				.71					4
Stahl verzinkt, nichtrostend	-								
Mindestbauteildicke	h _{min,2}	[mm]	80	100	120	140	-	-	-
Gerissener Beton				T	1				
Minimaler Achsabstand	Smin	[mm]	40	45	60	70	· id		
THIRD THE	für c ≥	[mm]	70	90	100	160		2	
Minimaler Randabstand	Cmin	[mm]	40	50	60	80			
	für s ≥	[mm]	80	115	140	180			
Ungerissener Beton		f>	- 10	T 00	- 00	- 00			
Minimaler Achsabstand	Smin	[mm]	40	60	60	80	8		
	fürc≥	[mm]	80	140	120	180		-	-
Minimaler Randabstand	Cmin	[mm]	50	90	75	90			
	für s ≥	[mm]	100	140	150	200			
Brandbeanspruchung von e	einer Seite			W.	× ×	83			3.
Minimaler Achsabstand	Smin.fi	[mm]	-		Si	ehe Norm	altempera	tur	
Minimaler Randabstand	Cmin,fi	[mm]					altempera		
Brandbeanspruchung von n									
Minimaler Achsabstand	Smin.fi	[mm]			Si	ehe Norm	altempera	tur	
Minimaler Randabstand	Cmin.fi	[mm]				≥ 300			
wischenwerte dürfen interpoliert		[······]				- 000			

Verwendungszweck

Minimale Achs- und Randabstände für Standardverankerungstiefe

Tabelle B3: Minimale Achs- und Randabstände, reduzierte Verankerungstiefe, BZ plus

Dübelgröße			M8	M10	M12	M16
Mindestbauteildicke	h _{min,3}	[mm]	80	80	100	140
Gerissener Beton						
Minimalar Ashashatand	Smin	[mm]	50	50	50	65
Minimaler Achsabstand	für c ≥	[mm]	60	100	160	170
Minimaler Randabstand	Cmin	[mm]	40	65	65	100
Millimaler naridabstarid	für s ≥	[mm]	185	180	250	250
Ungerissener Beton		25 797			7/	15
Minimaler Achsabstand	Smin	[mm]	50	50	50	65
	für c ≥	[mm]	60	100	160	170
Minimaler Randabstand	Cmin	[mm]	40	65	100	170
Millimater narioabstario	für s ≥	[mm]	185	180	185	65
Brandbeanspruchung von ei	iner Seite					
Minimaler Achsabstand	Smin,fi	[mm]		Siehe Norma	altemperatur	
Minimaler Randabstand	Cmin,fi	[mm]		Siehe Norm	altemperatur	
Brandbeanspruchung von m	ehr als einer S	Seite				
Minimaler Achsabstand	Smin,fi	[mm]		Siehe Norm	altemperatur	
Minimaler Randabstand	Cmin,fi	[mm]		≥ 300	0 mm	

Zwischenwerte dürfen interpoliert werden.

Bolzenanker BZ plus

Verwendungszweck

Minimale Achs- und Randabstände für reduzierte Verankerungstiefe

Montageanweisung BZ plus Bohrloch senkrecht zur Oberfläche des Verankerungsgrunds erstellen. Bei Verwendung eines Saugbohrers mit Schritt 3 fortfahren. Bohrloch vom Grund her ausblasen oder aussaugen. Position der Mutter kontrollieren. Dübel soweit einschlagen, bis her bzw. her,red erreicht ist. Diese Bedingung ist erfüllt, wenn die Dicke des Anbauteils nicht größer ist als die maximale Anbauteildicke laut Dübelprägung gemäß Anhang A3. Montagedrehmoment Tinst mit kalibriertem Drehmomentschlüssel aufbringen. Bolzenanker BZ plus Anhang B6 Verwendungszweck Montageanweisung

Montageanweisung BZ plus mit Ringspaltverfüllung Bohrloch senkrecht zur Oberfläche des Verankerungsgrunds erstellen. Bei Verwendung eines Saugbohrers mit Schritt 3a fortfahren. Bohrloch vom Grund her ausblasen oder aussaugen. Position der Mutter kontrollieren. Verfüllscheibe an Dübel montieren. 3b Die Dicke der Verfüllscheibe muss bei tfix berücksichtigt werden. Dübel mit Verfüllscheibe soweit einschlagen, bis her bzw. herreicht ist. Diese Bedingung ist erfüllt, wenn die Dicke des Anbauteils um 5mm kleiner ist, als die maximale Anbauteildicke laut Dübelprägung gemäß Anhang A3. Montagedrehmoment Tinst mit kalibriertem Drehmomentschlüssel aufbringen. Ringspalt zwischen Bolzen und Anbauteil mit Mörtel verfüllen (Druckfestigkeit ≥ 50 N/mm² VMH, VMZ oder VMU plus). Beiliegende Mischerreduzierung verwenden. Verarbeitungshinweise des Mörtels beachten! Der Ringspalt ist komplett verfüllt, wenn aus dem Loch der Verfüllscheibe Mörtel austritt.

Bolzenanker BZ plus	
Verwendungszweck Montageanweisung für Verfüllscheibe	Anhang B7

Tabelle B4: Montage- und Dübelkennwerte BZ-IG

Dübelgröße				M6	M8	M10	M12
Effektive Verankerungstiefe		het	[mm]	45	58	65	80
Bohrernenndurchmesser		d ₀	[mm]	8	10	12	16
Bohrerschneidendurchmesser		d _{cut} ≤	[mm]	8,45	10,45	12,5	16,5
Bohrlochtiefe		h₁ ≥	[mm]	60	75	90	105
Einschraubtiefe der Gewindestange		$L_{sd}^{(2)} \ge$	[mm]	9	12	15	18
D		S	[Nm]	10	30	30	55
Drehmoment beim Verankern, Stahl verzinkt	Tinst	SK	[Nm]	10	25	40	50
Statii verzinkt		В	[Nm]	8	25	30	45
		S	[Nm]	15	40	50	100
Drehmoment beim Verankern, nichtrostender Stahl A4, HCR	Tinst	SK	[Nm]	12	25	45	60
		В	[Nm]	8	25	40	80
Vorsteckmontage							
Durchgangsloch im Anbauteil		d₁≤	[mm]	7	9	12	14
		S	[mm]	1	1	1	1
Minimale Anbauteildicke	t _{fix} ≥	SK	[mm]	5	7	8	9
		В	[mm]	1	1	1	1
Durchsteckmontage							
Durchgangsloch im Anbauteil		d₁≤	[mm]	9	12	14	18
		S	[mm	5	7	8	9
Minimale Anbauteildicke 1)	t _{fix} ≥	SK	[mm]	9	12	14	16
		В	[mm]	5	7	8	9

Die Anbauteildicke kann bis zu dem Wert für Vorsteckmontage reduziert werden, wenn die Querlast mit Hebelarm bemessen wird.
Siehe Anhang A5

Tabelle B5: Minimale Achs- und Randabstände BZ-IG

Dübelgröße			M6	M8	M10	M12
Mindestbauteildicke	h _{min}	[mm]	100	120	130	160
Gerissener Beton	30,00					
Minimaler Achsabstand	Smin	[mm]	50	60	70	80
Minimaler Achsabstand	fürc≥	[mm]	60	80	100	120
Minimalar Dandahatand	Cmin	[mm]	50	60	70	80
Minimaler Randabstand	für s ≥	[mm]	75	100	100	120
Ungerissener Beton						
Minimaler Achsabstand	Smin	[mm]	50	60	65	80
	fürc≥	[mm]	80	100	120	160
Minimaler Achsabstand Minimaler Randabstand	Cmin	[mm]	50	60	70	100
Minimaler Handabstand	fürs≥	[mm]	115	155	170	210
Brandbeanspruchung von einer Se	eite			50051005 DAY	10	
Minimaler Achsabstand	Smin,fi	[mm]		Siehe Norma	altemperatur	
Minimaler Randabstand	Cmin,fi	[mm]		Siehe Norma	altemperatur	
Brandbeanspruchung von mehr al	s einer Seite					
Minimaler Achsabstand	Smin,fi	[mm]		Siehe Norma	altemperatur	
Minimaler Randabstand	Cmin,fi	[mm]		≥ 30	0 mm	

Bolzenanker BZ-IG

Zwischenwerte dürfen interpoliert werden.

Verwendungszweck

Montage- und Dübelkennwerte, minimale Achs- und Randabstände BZ-IG

Montageanweisung BZ-IG Vorsteckmontage Bohrloch senkrecht zur Oberfläche des Verankerungsgrunds erstellen. Bei Verwendung eines Saugbohrers mit Schritt 3 fortfahren. 2 Bohrloch vom Grund her ausblasen oder aussaugen. 3 Setzwerkzeug für Vorsteckmontage in Dübel hineinstecken. Dübel mit Hilfe des Setzwerkzeugs einschlagen. Schraube eindrehen. Tinst Montagedrehmoment Tinst mit kalibriertem Drehmomentschlüssel aufbringen.

Bolzenanker BZ-IG	
Verwendungszweck Montageanweisung für Vorsteckmontage BZ-IG	Anhang B9

Montageanweisung BZ-IG Durchsteckmontage Bohrloch senkrecht zur Oberfläche des Verankerungsgrunds erstellen. Bei Verwendung eines Saugbohrers mit Schritt 3 fortfahren. 2 Bohrloch vom Grund her ausblasen oder aussaugen. Setzwerkzeug für Durchsteckmontage in Dübel hineinstecken. BZ-IGS BZ-IGS Dübel mit Hilfe des Setzwerkzeugs einschlagen. Schraube eindrehen. Montagedrehmoment Tinst mit kalibriertem Drehmomentschlüssel aufbringen.

Bolzenanker BZ-IG	
Verwendungszweck Montageanweisung für Durchsteckmontage BZ-IG	Anhang B10

8.06.01-561/18

Tabelle C1: Charakteristische Werte bei **Zugbeanspruchung**, BZ plus **verzinkt**, **gerissener Beton**, statische oder quasi-statische Belastung

Dübelgröße			М8	M10	M12	M16	M20	M24	M27
Montagebeiwert	γinst	[-]				1,0			
Stahlversagen									
Charakteristischer Widerstand	N _{Rk,s}	[kN]	16	27	40	60	86	126	196
Teilsicherheitsbeiwert	γMs	[-]	1,	53	1	,5	1,6	1	,5
Herausziehen									
Standardverankerungstiefe									
Charakteristischer Widerstand in gerissenem Beton C20/25	$N_{Rk,p}$	[kN]	5	9	16	25	1)	1)	1)
Reduzierte Verankerungstiefe									
Charakteristischer Widerstand in gerissenem Beton C20/25	$N_{Rk,p}$	[kN]	5	7,5	1)	1)	-	-	-
Erhöhungsfaktor für N _{Rk,p}	ψс	[-]				$\left(\frac{f_{ck}}{20}\right)^{0.5}$			
Betonausbruch									
Effektive Verankerungstiefe	h _{ef}	[mm]	46	60	70	85	100	115	125
Reduzierte Verankerungstiefe	h _{ef,red}	[mm]	35 ²⁾	40	50	65	-	-	-
Faktor für gerissenen Beton	$k_1 = k_{cr,N}$	[-]				7,7			

¹⁾ Herausziehen ist nicht maßgebend

Leistung
Charakteristische Werte bei Zugbeanspruchung, BZ plus verzinkt, gerissener Beton, statische oder quasi-statische Belastung

²⁾ Die Verwendung ist auf die Verankerung statisch unbestimmter Systeme beschränkt

Tabelle C2: Charakteristische Werte bei **Zugbeanspruchung**, BZ plus **A4 / HCR**, **gerissener Beton**, statische oder quasi-statische Belastung

Dübelgröße			М8	M10	M12	M16	M20	M24
Montagebeiwert	γinst	[-]			1	,0		
Stahlversagen								
Charakteristischer Widerstand	$N_{\text{Rk,s}}$	[kN]	16	27	40	64	108	110
Teilsicherheitsbeiwert	γMs	[-]		1	,5		1,68	1,5
Herausziehen								
Standardverankerungstiefe								
Charakteristischer Widerstand in gerissenem Beton C20/25	$N_{Rk,p}$	[kN]	5	9	16	25	1)	40
Reduzierte Verankerungstiefe								
Charakteristische Tragfähigkeit in gerissenem Beton C20/25	$N_{Rk,p}$	[kN]	5	7,5	1)	1)	-	-
Erhöhungsfaktor für N _{Rk,p}	ψс	[-]			$\left(\frac{f_{ck}}{20}\right)$	0,5		
Betonausbruch								
Effektive Verankerungstiefe	h _{ef}	[mm]	46	60	70	85	100	125
Reduzierte Verankerungstiefe	h _{ef,red}	[mm]	35 ²⁾	40	50	65	-	-
Faktor für gerissenen Beton	$k_1 = k_{cr,N}$	[-]			7	,7		

¹⁾ Herausziehen ist nicht maßgebend

Leistung
Charakteristische Werte bei Zugbeanspruchung, BZ plus A4 / HCR,
gerissener Beton, statische oder quasi-statische Belastung

Anhang C2

²⁾ Die Verwendung ist auf die Verankerung statisch unbestimmter Systeme beschränkt

Tabelle C3: Charakteristische Werte bei **Zugbeanspruchung**, BZ plus **verzinkt**, **ungerissener Beton**, statische oder quasi-statische Belastung

Dübelgröße			М8	M10	M12	M16	M20	M24	M27
Montagebeiwert	γinst	[-]				1,0			
Stahlversagen									
Charakteristischer Widerstand	N _{Rk,s}	[kN]	16	27	40	60	86	126	196
Teilsicherheitsbeiwert	γMs	[-]	1,	53	1	,5	1,6	1	,5
Herausziehen	1,	.,							
Standardverankerungstiefe									
Charakteristischer Widerstand im ungerissenen Beton C20/25	N _{Rk,p}	[kN]	12	16	25	35	1)	1)	1)
Reduzierte Verankerungstiefe		12 71				ri ====================================			
Charakteristischer Widerstand im ungerissenen Beton C20/25	N _{Rk,p}	[kN]	7,5	9	1)	1)	-	0.50	3+0
Spalten									
Standardverankerungstiefe									
Spalten bei Standardbauteildicke c _{cr.sp} darf für Bauteildicken h _{min.2} < h < h _r						2 angesetzi	t werden;		
Standardbauteildicke	h _{min,1} ≥	[mm]	100	120	140	170	200	230	250
Fall 1									
Charakteristische Tragfähigkeit im ungerissenen Beton C20/25	$N^0_{\text{Rk,sp}}$	[kN]	9	12	20	30	40	62,3	50
Randabstand	C _{cr,sp}	[mm]				1,5 hef			
Fall 2									
Charakteristische Tragfähigkeit im ungerissenen Beton C20/25	N ⁰ _{Rk,sp}	[kN]	12	16	25	35	50,5	62,3	70,6
Randabstand	C _{cr,sp}	[mm]		2	hef		2,2 her	1,5 hef	2,5 he
Spalten bei Mindestbauteildicke				3'	·				
Mindestbauteildicke	h _{min,2} ≥	[mm]	80	100	120	140			
Charakteristische Tragfähigkeit im ungerissenen Beton C20/25	$N^0_{\text{Rk,sp}}$	[kN]	12	16	25	35		-	-
Randabstand	C _{cr,sp}	[mm]		2,5	hef				
Reduzierte Verankerungstiefe									
Mindestbauteildicke	h _{min,3} ≥	[mm]	80	80	100	140			
Charakteristische Tragfähigkeit im ungerissenen Beton C20/25	N ⁰ Rk,sp	[kN]	7,5	9	17,9	26,5	-		
Randabstand	C _{cr,sp}	[mm]	100	100	125	150			
Erhöhungsfaktor für N _{Rk,p} und N ⁰ _{Rk,sp}	ψс					$\left(\frac{f_{ck}}{20}\right)^{0.5}$			
Betonausbruch									
Effektive Verankerungstiefe	het	[mm]	46	60	70	85	100	115	125
Reduzierte Verankerungstiefe	h _{ef,red}	[mm]	35 ²⁾	40	50	65	-	-	- 7
Faktor für ungerissenen Beton	$k_1 = k_{ucr,N}$	-				11,0			-

¹⁾ Herausziehen ist nicht maßgebend

Bolzenanker BZ plus

Leistung

Charakteristische Werte bei **Zugbeanspruchung**, BZ plus **verzinkt**, **ungerissener Beton**, statische oder quasi-statische Belastung

Anhang C3

²⁾ Die Verwendung ist auf die Verankerung statisch unbestimmter Systeme beschränkt

Tabelle C4: Charakteristische Werte bei **Zugbeanspruchung**, BZ plus **A4 / HCR**, **ungerissener Beton**, statische oder quasi-statische Belastung

Dübelgröße			М8	M10	M12	M16	M20	M24
Montagebeiwert	γinst	[-]			1,	,0		
Stahlversagen								
Charakteristischer Widerstand	N _{Rk,s}	[kN]	16	27	40	64	108	110
Teilsicherheitsbeiwert	γMs	[-]		1	,5		1,68	1,5
Herausziehen								
Standardverankerungstiefe								
Charakteristischer Widerstand im ungerissenen Beton C20/25	N _{Rk,p}	[kN]	12	16	25	35	1)	1)
Reduzierte Verankerungstiefe								
Charakteristischer Widerstand im ungerissenen Beton C20/25	$N_{Rk,p}$	[kN]	7,5	9	1)	1)	-	-
Spalten								
Standardverankerungstiefe								
<u>Spalten bei Standardbauteildicke</u> ($c_{cr,sp}$ darf für Bauteildicken $h_{min,2} < h < h_n$	nin,1 (Fall 2) line	ar interp				setzt werder	1;	
Standardbauteildicke	h _{min,1} ≥	[mm]	100	120	140	160	200	250
Fall 1								
Charakteristischer Widerstand im ungerissenen Beton C20/25	$N^0_{\text{Rk,sp}}$	[kN]	9	12	20	30	40	-
Randabstand	C _{cr,sp}	[mm]	1,5 het					
Fall 2								
Charakteristischer Widerstand im ungerissenen Beton C20/25	$N^0_{\text{Rk},\text{sp}}$	[kN]	12	16	25	35	50,5	70,6
Randabstand	Ccr,sp	[mm]	115	125	140	200	220	250
Spalten bei Mindestbauteildicke								
Mindestbauteildicke	h _{min,2} ≥	[mm]	80	100	120	140		
Charakteristischer Widerstand im ungerissenen Beton C20/25	$N^0_{Rk,sp}$	[kN]	12	16	25	35	-	-
Randabstand	C _{cr,sp}	[mm]		2,5	hef			
Reduzierte Verankerungstiefe								
Mindestbauteildicke	h _{min,3} ≥	[mm]	80	80	100	140		
Charakteristischer Widerstand im ungerissenen Beton C20/25	$N^0_{\text{Rk,sp}}$	[kN]	7,5	9	17,9	26,5	-	
Randabstand	C _{cr,sp}	[mm]	100	100	125	150		
Erhöhungsfaktor für N _{Rk,p} und N ⁰ _{Rk,sp}	ψc	[-]	$\left(\frac{f_{\rm ck}}{20}\right)^{0.5}$					
Betonausbruch								
Effektive Verankerungstiefe	hef	[mm]	46	60	70	85	100	125
Reduzierte Verankerungstiefe	h _{ef,red}	[mm]	35 ²⁾	40	50	65	-	-
Faktor für ungerissenen Beton	$k_1 = k_{ucr,N}$	[-]			1	1,0		
Herausziehen ist nicht maßgebend		.,						

¹⁾ Herausziehen ist nicht maßgebend

Bolzenanker BZ plus

Leistung

Charakteristische Werte bei **Zugbeanspruchung**, BZ plus **A4** / **HCR**, **ungerissener Beton**, statische oder quasi-statische Belastung

²⁾ Die Verwendung ist auf die Verankerung statisch unbestimmter Systeme beschränkt

Tabelle C5: Charakteristische Werte bei Querbeanspruchung, BZ plus, gerissener und ungerissener Beton, statische oder quasi-statische Belastung

Dübelgröße				M8	M10	M12	M16	M20	M24	M27
Montagebeiwert γ _{inst}			[-]				1,0			
Stahlversagen oh	ne Hebelarm, Stah	l verzink	ct							
Charakteristischer	Widerstand	$V^0_{Rk,s}$	[kN]	12,2	20,1	30	55	69	114	169,4
Duktilitätsfaktor		k ₇	[-]				1,0			
Teilsicherheitsbeiw	ert	γMs	[-]		1,	25		1,33	1,25	1,25
Stahlversagen oh	ne Hebelarm, nicht	trostend	er Stah	I A4, HC	R					
Charakteristischer	Widerstand	$V^0_{\text{Rk},s}$	[kN]	13	20	30	55	86	123,6	
Duktilitätsfaktor		k ₇	[-]			1,	0			-
Teilsicherheitsbeiwert		γMs	[-]		1,	25		1,4	1,25	
Stahlversagen mi	t Hebelarm, Stahl v	erzinkt								
Charakteristischer Biegewiderstand		M ⁰ Rk,s	[Nm]	23	47	82	216	363	898	1331,
Teilsicherheitsbeiwert γ _{Ms}		γMs	[-]	1,25			1,33	1,25	1,25	
Stahlversagen mi	t Hebelarm, nichtro	stender	Stahl	A4, HCR						
Charakteristischer	Biegewiderstand	M ⁰ Rk,s	[Nm]	26	52	92	200	454	785,4	
Teilsicherheitsbeiw	ert	γMs	[-]	1,25			1,4	1,25] -	
Betonausbruch au	uf der lastabgewan	dten Se	ite							
Pry-out Faktor		k ₈	[-]		2,	4			2,8	
Betonkantenbruck	h									
Wirksame	Stahl verzinkt	lt	[mm]	46	60	70	85	100	115	125
Dübellänge bei Querlast mit h er	nichtrostender Stahl A4, HCR	lt	[mm]	46	60	70	85	100	125	-
Dübellänge bei	Stahl verzinkt	$I_{f,red}$	[mm]	35 ¹⁾	40	50	65			
	nichtrostender Stahl A4, HCR	$I_{f,red}$	[mm]	35 ¹⁾	40	50	65			
Wirksamer Außend	durchmesser	d _{nom}	[mm]	8	10	12	16	20	24	27

¹⁾ Die Verwendung ist auf die Verankerung statisch unbestimmter Systeme beschränkt

Bolzenanker BZ plus

Leistung
Charakteristische Werte bei Querbeanspruchung, BZ plus,
gerissener und ungerissener Beton, statische oder quasi-statische Belastung

Anhang C5

Tabelle C6: Charakteristische Werte bei **seismischer Beanspruchung**, BZ plus, **Standardverankerungstiefe**, Kategorie **C1** und **C2**

Dübelgröße			М8	M10	M12	M16	M20
Zugbeanspruchung							
Montagebeiwert	γinst	[-]			1,0		
Stahlversagen, Stahl ve	erzinkt						
Charakteristischer Widerstand, C1	N _{Rk,s,eq,C1}	[kN]	16	27	40	60	86
Charakteristischer Widerstand, C2	N _{Rk,s,eq,C2}	[kN]	16	27	40	60	86
Teilsicherheitsbeiwert	γMs	[-]	1	,53	1	,5	1,6
Stahlversagen, nichtros	stender Stah	1 A4, HC	CR				
Charakteristischer Widerstand, C1	N _{Rk,s,eq,C1}	[kN]	16	27	40	64	108
Charakteristischer Widerstand, C2	N _{Rk,s,eq,C2}	[kN]	16	27	40	64	108
Teilsicherheitsbeiwert	γMs	[-]		1	, 5		1,68
Herausziehen (Stahl ver	zinkt, nichtros	stender	Stahl A4 und	HCR)			
Charakteristischer Widerstand, C1	N _{Rk,p,eq,C1}	[kN]	5	9	16	25	36
Charakteristischer Widerstand, C2	N _{Rk,p,eq,C2}	[kN]	2,3	3,6	10,2	13,8	24,4
Querbeanspruchung							
Stahlversagen ohne He	belarm, Stah	l verzin	ıkt				
Charakteristischer Widerstand, C1	V _{Rk,s,eq,C1}	[kN]	9,3	20	27	44	69
Charakteristischer Widerstand, C2	V _{Rk,s,eq,C2}	[kN]	6,7	14	16,2	35,7	55,2
Teilsicherheitsbeiwert	γMs	[-]		1,	, 25		1,33
Stahlversagen ohne He	belarm, nich	trosten	der Stahl A	4, HCR			
Charakteristischer Widerstand, C1	V _{Rk,s,eq,C1}	[kN]	9,3	20	27	44	69
Charakteristischer Widerstand, C2	$V_{\text{Rk,s,eq,C2}}$	[kN]	6,7	14	16,2	35,7	55,2
Teilsicherheitsbeiwert	γMs	[-]		1	, 25		1,4
ohne Faktor für Ringspaltverf	üllung ^{α_{gap}}	[-]			0,5		
Ringspalt mit Ringspaltverf	üllung α _{gap}	[-]			1,0		

Bolzenanker BZ plus	
Leistung Charakteristische Werte bei seismischer Beanspruchung, BZ plus, Standardverankerungstiefe, Kategorie C1 und C2	Anhang C6

Tabelle C7: Charakteristische Werte bei **Zug- und Querbeanspruchung** unter **Brandeinwirkung**, BZ plus, **Standardverankerungstiefe**, gerissener und ungerissener Beton C20/25 bis C50/60

Dübelgröße				M8	M10	M12	M16	M20	M24	M27
Zugbeanspruchur	ng							-		
Stahlversagen										
Stahl, verzinkt										
	R30			1,5	2,6	4,1	7,7	9,4	13,6	17,6
Charakteristischer	R60	N	[kN]	1,1	1,9	3,0	5,6	8,2	11,8	15,3
Widerstand	R90	N _{Rk,s,fi}	[KIN]	8,0	1,4	2,4	4,4	6,9	10,0	13,0
	R120			0,7	1,2	2,2	4,0	6,3	9,1	11,8
Nichtrostender Sta	hl A4, HCI	R								
	R30			3,8	6,9	12,7	23,7	33,5	48,2	
Charakteristischer	R60	NI-	ri-An	2,9	5,3	9,4	17,6	25,0	35,9	
Widerstand	R90	$N_{Rk,s,fi}$	[kN]	2,0	3,6	6,1	11,5	16,4	23,6	
	R120			1,6	2,8	4,5	8,4	12,1	17,4	
Querbeanspruchu	ng									
Stahlversagen ohn	e Hebelari	m								
Stahl, verzinkt										
	R30	60		1,6	2,6	4,1	7,7	11	16	20,6
Charakteristischer	R60		ri-An	1,5	2,5	3,6	6,8	11	15	19,8
Widerstand	R90	$V_{\text{Rik},s,fi}$	[kN]	1,2	2,1	3,5	6,5	10	15	19,0
	R120			1,0	2,0	3,4	6,4	10	14	18,6
Nichtrostender Sta	hl A4, HCI	R			9 4		577			
	R30			3,8	6,9	12,7	23,7	33,5	48,2	
Charakteristischer	R60		0.00	2,9	5,3	9,4	17,6	25,0	35,9	
Widerstand	R90	$V_{\text{Rk},s,fi}$	[kN]	2,0	3,6	6,1	11,5	16,4	23,6	
	R120		. 1	1,6	2,8	4,5	8,4	12,1	17,4	
Stahlversagen mit	Hebelarm	1								
Stahl, verzinkt										
	R30			1,7	3,3	6,4	16,3	29	50	75
Charakteristischer	R60		(NICO)	1,6	3,2	5,6	14	28	48	72
Widerstand	R90	M ⁰ Rk,s,fi	[Nm]	1,2	2,7	5,4	14	27	47	69
	R120			1,1	2,5	5,3	13	26	46	68
Nichtrostender Sta	hl A4, HCI	R								
	R30			3,8	9,0	19,7	50,1	88,8	153,5	
Charakteristischer	R60	N 40		2,9	6,8	14,6	37,2	66,1	114,3	5 5 6860
Widerstand	R90	M ⁰ Rk,s,fi	[Nm]	2,1	4,7	9,5	24,2	43,4	75,1	-
	R120			1,6	3,6	7,0	17,8	32,1	55,5	6

Wenn Herausziehen nicht maßgebend ist, muss in Gleichung (D.4) und (D.5) FprEN1992, N_{RK,p} durch N⁰_{RK,c} ersetzt werden.

Bolzenanker BZ plus

Leistund

Charakteristische Werte bei **Zug- und Querbeanspruchung** unter **Brandeinwirkung**, BZ plus, **Standardverankerungstiefe**, gerissener und ungerissener Beton C20/25 bis C50/60

Tabelle C8: Charakteristische Werte bei **Zug- und Querbeanspruchung** unter **Brandeinwirkung**, BZ plus, **reduzierte Verankerungstiefe**, gerissener und ungerissener Beton C20/25 bis C50/60

Dübelgröße				M8	M10	M12	M16
Zugbeanspruchung							
Stahlversagen							
Stahl, verzinkt							
	R30			1,5	2,6	4,1	7,7
Charakteristischer	R60	N _{Rk,s,fi}	(IAN)	1,1	1,9	3,0	5,6
Widerstand	R90	INRk,s,fi	[kN]	0,8	1,3	1,9	3,5
	R120			0,6	1,0	1,3	2,5
Nichtrostender Stahl A	A4, HCR						
	R30			3,2	6,9	12,7	23,7
Charakteristischer	R60	No.	(IAN)	2,5	5,3	9,4	17,6
Widerstand	R90	N _{Rk,s,fi}	[kN]	1,9	3,6	6,1	11,5
	R120			1,6	2,8	4,5	8,4
Querbeanspruchung							
Stahlversagen ohne H	ebelarm						
Stahl, verzinkt							
Charakteristischer Widerstand	R30			1,5	2,6	4,1	7,7
	R60	.,	n.a.n	1,1	1,9	3,0	5,6
	R90	$V_{Rk,s,fi}$	[kN]	0,8	1,3	1,9	3,5
	R120			0,6	1,0	1,3	2,5
Nichtrostender Stahl A	A4, HCR						
	R30		T	3,2	6,9	12,7	23,7
Charakteristischer	R60	.,	fl-A fl	2,5	5,3	9,4	17,6
Widerstand	R90	V _{Rk,s,fi}	[kN]	1,9	3,6	6,1	11,5
	R120			1,6	2,8	4,5	8,4
Stahlversagen mit Heb	oelarm						
Stahl, verzinkt							
	R30			1,5	3,3	6,4	16,3
Charakteristischer	R60	N 40	(NIma)	1,2	2,5	4,7	11,9
Widerstand	R90	M ⁰ Rk,s,fi	[Nm]	0,8	1,7	3,0	7,5
	R120			0,6	1,2	2,1	5,3
Nichtrostender Stahl A	A4, HCR						
	R30			3,2	8,9	19,7	50,1
Charakteristischer	R60	N.40	(NI3	2,6	6,8	14,6	37,2
Widerstand	R90	M ⁰ Rk,s,fi	[Nm]	2,0	4,7	9,5	24,2
	R120			1,6	3,6	7,0	17,8

Wenn Herausziehen nicht maßgebend ist, muss in Gleichung (D.4) und (D.5) FprEN1992, N_{Rk,p} durch N⁰_{Rk,c} ersetzt werden

Bolzenanker BZ plus

Leistund

Charakteristische Werte bei **Zug- und Querbeanspruchung** unter **Brandeinwirkung**, BZ plus, **reduzierte Verankerungstiefe**, gerissener und ungerissener Beton C20/25 bis C50/60

Anhang C8

Tabelle C9: Verschiebung ur	nter Zuglast, BZ plus
-----------------------------	-----------------------

Dübelgröße			М8	M10	M12	M16	M20	M24	M27	
Standardverankerungstiefe										
Stahl verzinkt										
Zuglast im gerissenen Beton	N	[kN]	2,4	4,3	7,6	11,9	17,1	21,1	24	
Vereshiebung	δηο	[mm]	0,6	1,0	0,4	1,0	0,9	0,7	0,9	
Verschiebung	δ _{N∞}	[mm]	1,4	1,2	1,4	1,3	1,0	1,2	1,4	
Zuglast im ungerissenen Beton	N	[kN]	5,7	7,6	11,9	16,7	23,8	29,6	34	
Varachichung	δηο	[mm]	0,4	0,5	0,7	0,3	0,4	0,5	0,3	
Verschiebung	δ _{N∞}	[mm]	0	,8	1,4		0,8		1,4	
Verschiebung unter seismischer Einv	virkung C2									
Verschiebung für DLS	$\delta_{N,eq(DLS)}$	[mm]	2,3	4,1	4,9	3,6	5,1			
Verschiebung für ULS	δN,eq(ULS)	[mm]	8,2	13,8	15,7	9,5	15,2] -	- -	
Nichtrostender Stahl A4, HCR										
Zuglast im gerissenen Beton	N	[kN]	2,4	4,3	7,6	11,9	17,1	19,0		
Verschiebung	δηο	[mm]	0,7	1,8	0,4	0,7	0,9	0,5	-	
	δ _{N∞}	[mm]	1,2	1,4	1,4	1,4	1,0	1,8		
Zuglast im ungerissenen Beton	N	[kN]	5,8	7,6	11,9	16,7	23,8	33,5		
	δηο	[mm]	0,6	0,5	0,7	0,2	0,4	0,5	-	
Verschiebung	δ _{N∞}	[mm]	1,2	1,0	1,4	0,4	0,8	1,1		
Verschiebung unter seismischer Einv	virkung C2									
Verschiebung für DLS	$\delta_{N,eq(DLS)}$	[mm]	2,3	4,1	4,9	3,6	5,1			
Verschiebung für ULS	δN,eq(ULS)	[mm]	8,2	13,8	15,7	9,5	15,2	1 -	-	
Reduzierte Verankerungstiefe										
Stahl verzinkt, nichtrostender Stah	I A4, HCR									
Zuglast im gerissenen Beton	N	[kN]	2,4	3,6	6,1	9,0				
Vorashishung	δηο	[mm]	0,8	0,7	0,5	1,0	-	-	-	
Verschiebung	δ _{N∞}	[mm]	1,2	1,0	0,8	1,1				
Zuglast im ungerissenen Beton	N	[kN]	3,7	4,3	8,5	12,6				
Vorashishung	δησ	[mm]	0,1	0,2	0,2	0,2	-	-	-	
Verschiebung	δηνο	[mm]	0,7	0,7	0,7	0,7	1			

Ro	lzer	an	ker	R7	plus
	201	ıaıı	VC!		Dius

Leistung

Verschiebung unter Zuglast

Tabelle C10: Verschiebung	n unter Querlast, BZ plus
---------------------------	---------------------------

Dübelgröße			М8	M10	M12	M16	M20	M24	M27
Standardverankerungstiefe	9								
Stahl verzinkt									
Querlast in gerissenem und ungerissenem Beton	٧	[kN]	6,9	11,4	17,1	31,4	36,8	64,9	96,8
Verschiebung	δνο	[mm]	2,0	3,2	3,6	3,5	1,8	3,5	3,6
verscriebung	δν∞	[mm]	3,0	4,7	5,5	5,3	2,7	5,3	5,4
Verschiebung unter seismisc	her Querla	ast C2							
Verschiebung DLS	$\delta_{V,eq(DLS)}$	[mm]	3,0	2,7	3,5	4,3	4,7		
Verschiebung ULS	$\delta_{V,eq(ULS)}$	[mm]	5,9	5,3	9,5	9,6	10,1	_	_
Nichtrostender Stahl A4, H	CR								
Querlast in gerissenem und ungerissenem Beton	٧	[kN]	7,3	11,4	17,1	31,4	43,8	70,6	
Verschiebung	δνο	[mm]	1,9	2,4	4,0	4,3	2,9	2,8	-
	δν∞	[mm]	2,9	3,6	5,9	6,4	4,3	4,2	
Verschiebung unter seismisc	her Querla	ast C2							
Verschiebung DLS	δv,eq(DLS)	[mm]	3,0	2,7	3,5	4,3	4,7		
Verschiebung ULS	$\delta_{V,eq(ULS)}$	[mm]	5,9	5,3	9,5	9,6	10,1	_	_
Reduzierte Verankerungsti	efe								
Stahl verzinkt									
Querlast in gerissenem und ungerissenem Beton	٧	[kN]	6,9	11,4	17,1	31,4			
Voreshishung	δ_{V0}	[mm]	2,0	3,2	3,6	3,5	-	-	-
Verschiebung	δν∞	[mm]	3,0	4,7	5,5	5,3			
Nichtrostender Stahl A4, H	CR								
Querlast in gerissenem und ungerissenem Beton	٧	[kN]	7,3	11,4	17,1	31,4			
Verschiebung	δνο	[mm]	1,9	2,4	4,0	4,3	-	- -	
verschiebung	δν∞	[mm]	2,9	3,6	5,9	6,4			

Rol	lzer	an	ker	R7	plus
	201	ıaıı	VC!	-	Dius

Leistung

Verschiebung unter Querlast

Tabelle C11: Charakteristische Werte bei **Zugbeanspruchung**, **BZ-IG**, **gerissener Beton**, statische oder quasi-statische Belastung

Dübelgröße			М6	М8	M10	M12
Montagebeiwert	γinst	[-]	1,2			
Stahlversagen						
Charakteristischer Widerstand, Stahl verzinkt	$N_{Rk,s}$	[kN]	16,1	22,6	26,0	56,6
Teilsicherheitsbeiwert	γMs	[-]		1	,5	
Charakteristischer Widerstand, nichtrostender Stahl A4, HCR	$N_{Rk,s}$	[kN]	14,1	25,6	35,8	59,0
Teilsicherheitsbeiwert	γMs	[-]	1,87			
Herausziehen						
Charakteristischer Widerstand im gerissenen Beton C20/25	$N_{Rk,p}$	[kN]	5	9	12	20
Erhöhungsfaktor für N _{Rk,p}	ψс	[-]	$\left(\frac{\mathrm{f_{ck}}}{20}\right)^{0.5}$			
Betonausbruch						
Effektive Verankerungstiefe	h _{ef}	[mm]	45	58	65	80
Faktor für gerissenen Beton	$k_1 = k_{cr,N}$	[-]	7,7			

Bolzenanker BZ-IG

Leistung

Charakteristische Werte bei **Zugbeanspruchung**, **BZ-IG**, **gerissener Beton**, statische oder quasi-statische Belastung

Tabelle C12: Charakteristische Werte bei Zugbeanspruchung, BZ-IG, ungerissener Beton, statische oder quasi-statische Belastung

Dübelgröße			М6	M8	M10	M12
Montagebeiwert	γinst	[-]		1,	2	
Stahlversagen						
Charakteristischer Widerstand, Stahl verzinkt	N _{Rk,s}	[kN]	16,1	22,6	26,0	56,6
Teilsicherheitsbeiwert	γMs	[-]		1,	5	
Charakteristischer Widerstand, nichtrostender Stahl A4, HCR	$N_{Rk,s}$	[kN]	14,1	25,6	35,8	59,0
Teilsicherheitsbeiwert	γMs	[-]		1,8	37	
Herausziehen						
Charakteristischer Widerstand im ungerissenen Beton C20/25	N _{Rk,p}	[kN]	12	16	20	30
Spalten (Es darf der höhere Widerstand a	us Fall 1 und Fa	Il 2 angese	tzt werden.)			
Mindestbauteildicke	h _{min}	[mm]	100	120	130	160
Fall 1						
Charakteristischer Widerstand im ungerissenen Beton C20/25	$N^0_{Rk,sp}$	[kN]	9	12	16	25
Randabstand	C _{cr,sp}	[mm]		1,5	h _{ef}	
Fall 2						
Charakteristischer Widerstand im ungerissenen Beton C20/25	$N^0_{\text{Rk,sp}}$	[kN]	12	16	20	30
Randabstand	C _{cr,sp}	[mm]		2,5	hef	
Erhöhungsfaktor für N _{Rk,p} und N ⁰ _{Rk,sp}	ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0.5}$			
Betonausbruch						
Effektive Verankerungstiefe	h _{ef}	[mm]	45	58	65	80
Faktor für ungerissenen Beton	$k_1 = k_{ucr,N}$	[-]		11	,0	

Bolzenanker BZ-IG

Leistung

Charakteristische Werte bei **Zugbeanspruchung**, **BZ-IG**, **ungerissener Beton**, statische oder quasi-statische Belastung

Tabelle C13: Charakteristische Werte bei Querbeanspruchung, BZ-IG, gerissener und ungerissener Beton, statische oder quasi-statische Belastung

Dübelgröße			М6	M8	M10	M12
Montagebeiwert	ontagebeiwert γ _{inst} [-]		1,0			
BZ-IG, Stahl verzinkt						
Stahlversagen ohne Hebelarm, Vorsteck	montage					
Charakteristischer Widerstand	V^0 Rk,s	[kN]	5,8	6,9	10,4	25,8
Stahlversagen ohne Hebelarm, Durchste	ckmontage	-				
Charakteristischer Widerstand	V ⁰ Rk,s	[kN]	5,1	7,6	10,8	24,3
Stahlversagen mit Hebelarm, Vorsteckme	ontage			•		
Charakteristischer Biegewiderstand	M ⁰ Rk,s	[Nm]	12,2	30,0	59,8	104,6
Stahlversagen mit Hebelarm, Durchsteck	montage					
Charakteristischer Biegewiderstand	M ⁰ Rk,s	[Nm]	36,0	53,2	76,0	207
Teilsicherheitsbeiwert für V _{Rk,s} und M ⁰ _{Rk,s}	γMs	[-]		1,	25	
Duktilitätsfaktor	k ₇	[-]		1	,0	
BZ-IG, nichtrostender Stahl A4, HCR						
Stahlversagen ohne Hebelarm, Vorsteck	montage					
Charakteristischer Widerstand	$V^0_{Rk,s}$	[kN]	5,7	9,2	10,6	23,6
Teilsicherheitsbeiwert	γMs	[-]		1,25		
Stahlversagen ohne Hebelarm, Durchste	ckmontage	,				
Charakteristischer Widerstand	$V^0_{Rk,s}$	[kN]	7,3	7,6	9,7	29,6
Teilsicherheitsbeiwert	γMs	[-]		1,	25	
Stahlversagen mit Hebelarm, Vorsteckme	ontage					
Charakteristischer Biegewiderstand	$M^0_{Rk,s}$	[Nm]	10,7	26,2	52,3	91,6
Teilsicherheitsbeiwert	γMs	[-]		1,	56	
Stahlversagen mit Hebelarm, Durchsteck	montage					
Charakteristischer Biegewiderstand	$M^0_{Rk,s}$	[Nm]	28,2	44,3	69,9	191,2
Teilsicherheitsbeiwert	γMs	[-]		1,	25	
Duktilitätsfaktor	k ₇	[-]	1,0			
Betonausbruch auf der lastabgewandten	Seite					
Pry-out Faktor	k ₈	[-]	1,5	1,5	2,0	2,0
Betonkantenbruch						
Wirksame Dübellänge bei Querlast	If	[mm]	45	58	65	80
Wirksamer Außendurchmesser	d _{nom}	[mm]	8	10	12	16

Во	Izenan	ker	BZ-I	G
----	--------	-----	------	---

Leistung

Charakteristische Werte bei Querbeanspruchung, BZ-IG, gerissener und ungerissener Beton, statische oder quasi-statische Belastung

Tabelle C14: Charakteristische Werte bei Zug- und Querbeanspruchung unter Brandeinwirkung, BZ-IG, gerissener und ungerissener Beton C20/25 bis C50/60

Dübelgröße				М6	М8	M10	M12
Zugbeanspruchun	g						
Stahlversagen							
Stahl verzinkt							
Charakteristischer	R30			0,7	1,4	2,5	3,7
	R60	NI	(IAN)	0,6	1,2	2,0	2,9
Widerstand	R90	$N_{Rk,s,fi}$	[kN]	0,5	0,9	1,5	2,2
	R120			0,4	0,8	1,3	1,8
Nichtrostender Sta	hl A4, HCR						
	R30			2,9	5,4	8,7	12,6
Charakteristischer	R60	N.	(IAN)	1,9	3,8	6,3	9,2
Widerstand	R90	N _{Rk,s,fi}	[kN]	1,0	2,1	3,9	5,7
	R120			0,5	1,3	2,7	4,0
Querbeanspruchu	ng						
Stahlversagen ohr	e Hebelarm						
Stahl verzinkt							
	R30	.,		0,7	1,4	2,5	3,7
Charakteristischer Widerstand	R60		T	0,6	1,2	2,0	2,9
	R90	$V_{\text{Rik},s,fi}$	[kN]	0,5	0,9	1,5	2,2
	R120			0,4	0,8	1,3	1,8
Nichtrostender Sta	hl A4, HCR						
	R30			2,9	5,4	8,7	12,6
Charakteristischer	R60	V	nasn	1,9	3,8	6,3	9,2
Widerstand	R90	$V_{\text{Rk},s,fi}$	[kN]	1,0	2,1	3,9	5,7
	R120			0,5	1,3	2,7	4,0
Stahlversagen mit	Hebelarm						
Stahl verzinkt							
	R30			0,5	1,4	3,3	5,7
Charakteristischer	R60	MAO	[NIm]	0,4	1,2	2,6	4,6
Biegewiderstand	R90	M ⁰ Rk,s,fi	[Nm]	0,4	0,9	2,0	3,4
	R120			0,3	0,8	1,6	2,8
Nichtrostender Sta	hl A4, HCR						
	R30			2,2	5,5	11,2	19,6
Charakteristischer	R60	M ⁰ Rk,s,fi	[NIm]	1,5	3,9	8,1	14,3
Biegewiderstand	R90	IVI Rk,s,fi	[Nm]	0,7	2,2	5,1	8,9
	R120			0,4	1,3	3,5	6,2

Bolzenanker BZ-IG

Leistung

Charakteristische Werte bei **Zug-** und **Querbeanspruchung** unter **Brandeinwirkung**, **BZ-IG**, gerissener und ungerissener Beton C20/25 bis C50/60

Tabelle C15: Verschiebungen unter Zuglast, BZ-IG

Dübelgröße			М6	M8	M10	M12
Zuglast im gerissenen Beton	N	[kN]	2,0	3,6	4,8	8,0
Voraskiskuuses	δ_{N0}	[mm]	0,6	0,6	0,8	1,0
Verschiebungen	δn∞	[mm]	0,8	0,8	1,2	1,4
Zuglast im ungerissenen Beton	N	[kN]	4,8	6,4	8,0	12,0
Verachichungen	δνο	[mm]	0,4	0,5	0,7	0,8
Verschiebungen	δ _{N∞}	[mm]	0,8	0,8	1,2	1,4

Tabelle C16: Verschiebungen unter Querlast, BZ-IG

Dübelgröße			М6	М8	M10	M12
Querlast im gerissenen Beton	V	[kN]	4,2	5,3	6,2	16,9
Verschiebungen	δνο	[mm]	2,8	2,9	2,5	3,6
	δγ∞	[mm]	4,2	4,4	3,8	5,3

Bolzenanker BZ-IG

Leistung

Verschiebungen unter Zuglast und Querlast BZ-IG