
PRINZIPIELLE FUNKTION

Verstärkung und Wandlung von massebezogenen Spannungssignalen Integrierte Schutzfunktionen für IC und extern angeschlossene Bauteile Integrierte, einstellbare Strom-/Spannungsquellen für externe Komponenten

TYPISCHE ANWENDUNGEN

- Impedanzwandler
- Einstellbare Spannungs- und Stromquelle (Versorgungseinheit)
- Spannungsregler mit Zusatzfunktionen
- Industrielles Schutz- und Ausgangs-IC für Mikroprozessoren (Frame-ASIC-Konzept [1])
- Prozessor-Peripherie-IC (siehe Abbildung 12 auf Seite 16)

Industrielles Wandler- und Schutz-IC

AM460

INHALTSVERZEICHNIS

Eigenschaften	3
Kurzbeschreibung	3
Blockdiagramm	3
Elektrische Spezifikationen	4
Randbedingungen	6
Ausführliche Funktionsbeschreibung	6
Inbetriebnahme des AM460 Allgemeines zu 2- und 3-Draht-Anwendungen im Strombetrieb Einstellung der Spannungsverstärkung bei Nutzung des Spannungsausgangs Einstellung des Ausgangsstrombereichs bei Nutzung des Stromausgangs Wahl der Versorgungsspannung Verschaltung des OP2 als Stromquelle Verschaltung des OP2 als Spannungsreferenz	8 9 9 9 10 11
Wichtige Hinweise zur Inbetriebnahme	11
Anwendungen Typische 3-Draht-Anwendung mit massebezogenem Eingangssignal Typische 2-Draht-Anwendung mit massebezogenem Eingangssignal	12 12 13
Blockschaltbild und Pinout	15
Prinzipielle Anwendungsbeispiele	16
Lieferformen	17
ABBILDUNGSVERZEICHNIS	
Tabelle 1: Pinout des AM460	15
Abbildung 1: Blockschaltbild AM460	3
Abbildung 2: Blockschaltbild AM460 mit externen Bauelementen (3-Draht-Verschaltung für Stromausgang) Abbildung 3: Unterschied 2- und 3-Draht-Betrieb	7 8
Abbildung 4: Arbeitsbereich in Abhängigkeit des Lastwiderstands	10
Abbildung 5: Schaltung einer Konstantstromquelle	10
Abbildung 6: Schaltung einer Spannungsreferenz	11
Abbildung 7: Typische Anwendung für massebezogene Eingangssignale	12
Abbildung 8: Typische 2-Draht-Anwendung für massebezogene Eingangssignale Abbildung 9: Blockschaltbild des AM460	13 15
Abbildung 10: Pinout	15
Abbildung 11: Anwendung für massebezogene Eingangssignale (geschützte Ausgangsstufe, Impedanzwandler usw.)	
Abbildung 12: Komplexe Schaltung als Prozessor-Peripherie-IC	16
Abbildung 13: Wandlung eines 0,54,5V-Sensorsignals	16
LOUISWING TO MICHAEL CHICO CACHE IN TO MINOTOLISIAND	10

EIGENSCHAFTEN

- Versorgungsspannung: 6...35V
- Großer Arbeitstemperaturbereich: -40°C...+85°C
- Einstellbare integrierte Referenzspannungsquelle: 4,5 bis 10V
- Zusätzliche Spannungs-/Stromquelle
- Operationsverstärker mit integrierter Treiberstufe
- Einstellbare Verstärkung
- Analoger Spannungs- (0...5/10V) und Stromausgang (0/4...20mA) parallel
- Verpolschutz, Kurzschlußschutz
- Ausgangsstrombegrenzung
- Low-Cost: ersetzt eine Vielzahl diskreter Elemente
- Zwei- und Dreidraht-Betrieb

KURZBESCHREIBUNG

Der AM460 ist ein universell einsetzbares Wandler- und Verstärker-IC mit einer Vielzahl an Zusatzfunktionen. Das IC besteht im wesentlichen aus einem Verstärker mit extern einstellbarer Verstärkung und parallelen Aussgangsstufen zur Aufbereitung von massebezogenen Signalen in industrielle Spannungs- und Stromsignale. Zusätzlich ist eine Referenzspannungsquelle zur Versorgung von externen Komponenten integriert. Ein weiterer Operationsverstärker kann als Stromquelle, Spannungsreferenz oder Komparator verschaltet werden.

Ein Hauptmerkmal des ICs sind die vielfältigen integrierten Schutzfunktionen. Das IC ist gegen Verpolung geschützt und verfügt über eine integrierte Ausgangsstrombegrenzung. Mit dem Verstärker-IC AM460 ist es möglich, auf einfache Weise industrielle Standardspannungen (z.B. 0-5/10V) und Stromschleifensignale (z.B. 0/4-20mA) zu erzeugen.

BLOCKDIAGRAMM

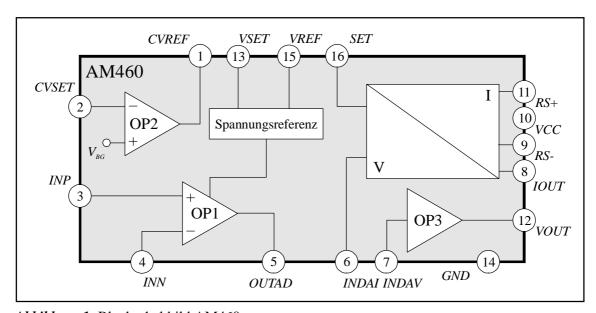


Abbildung 1: Blockschaltbild AM460

ELEKTRISCHE SPEZIFIKATIONEN

 $T_{amb} = 25$ °C, $V_{CC} = 24$ V, $V_{REF} = 5$ V, $I_{REF} = 1$ mA (unless otherwise noted), currents flowing into the IC are negative

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply Voltage Range	V_{CC}		6		35	V
Quiescent Current	I_{CC}	$T_{amb} = -40+85$ °C, $I_{REF} = 0$ mA			1.5	mA
Temperature Specifications						
Operating	T_{amb}		-40		85	°C
Storage	T_{st}		-55		125	°C
Junction	T_J				150	°C
Thermal Resistance	Θ_{ja}	DIL16 plastic package		70		°C/W
	Θ_{ja}	SO16 narrow plastic package		140		°C/W
Voltage Reference						
Voltage	V_{REF}	VSET not connected	4.75	5.00	5.25	V
	V_{REF10}	$VSET = GND, V_{CC} \ge 11V$	9.5	10.0	10.5	V
Trim Range	V_{REFADJ}		4.5		V_{REF10}	V
Current	$I_{REF}*$		0		10.0	mA
V_{REF} vs. Temperature	$\mathrm{d}V_{REF}/\mathrm{d}T$	$T_{amb} = -40+85^{\circ}\text{C}$		±90	±140	ppm/°C
Line Regulation	$\mathrm{d}V_{REF}/\mathrm{d}V$	$V_{CC} = 6V35V$		30	80	ppm/V
	$\mathrm{d}V_{REF}/\mathrm{d}V$	$V_{CC} = 6$ V35V, $I_{REF} \approx 5$ mA		60	150	ppm/V
Load Regulation	$\mathrm{d}V_{REF}/\mathrm{d}I$			0.05	0.10	%/mA
	$\mathrm{d}V_{REF}/\mathrm{d}I$	$I_{REF} \approx 5 \text{mA}$		0.06	0.15	%/mA
Load Capacitance	C_L		1.9	2.2	5.0	μF
Current/Voltage Source OP2						
Internal Reference	V_{BG}		1.20	1.27	1.35	V
V_{BG} vs. Temperature	$\mathrm{d}V_{BG}/\mathrm{d}T$	$T_{amb} = -40+85^{\circ}\text{C}$		±60	±140	ppm/°C
Current Source: $I_{CV} = V_{BG}/R_{SET}$, from	Abbildung 5					
Adjustable Current Range	I_{CV}^*		0		10	mA
Output Voltage	V_{CV}	$V_{CC} < 19V$	V_{BG}		$V_{CC}-4$	V
	V_{CV}	$V_{CC} \ge 19$ V	V_{BG}		15	V
Voltage Source: $V_{CV} = V_{BG} (1 + R_7 / R_7)$	R ₆), from Abbildung	g 6				
Adjustable Voltage Range	V_{CV}	$V_{CC} < 19V$	0.4		$V_{CC}-4$	V
	V_{CV}	$V_{CC} \ge 19\text{V}$	0.4		15	V
Output Current	I_{CV}^*	Source			10	mA
	I_{CV}	Sink			-100	μA
Load Capacitance	C_L	Source mode	0	1	10	nF
Operational Amplifier Gain Stage (OP1)					
Adjustable Gain	G_{GAIN}		1			
Input Range	IR	$V_{CC} < 10 \text{V}$	0		V_{CC} – 5	V
	IR	$V_{CC} \ge 10 \text{V}$	0		5	V
Power Supply Rejection Ratio	PSRR		80	90		dB
Offset Voltage	V_{OS}			±0.5	±2	mV
V_{OS} vs. Temperature	$\mathrm{d}V_{OS}/\mathrm{d}T$			±3	±7	μV/°C
Input Bias Current	I_B			10	25	nA
I_B vs. Temperature	$\mathrm{d}I_B/\mathrm{d}T$			7	20	pA/°C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Operational Amplifier Gain Stage (O	P1) (cont.)	1			<u> </u>	
Output Voltage Limitation	V_{LIM}			V_{REF}		V
Output Voltage Range	V_{OUTAD}	$V_{CC} < 10 \text{V}$	0		<i>V_{CC}</i> – 5	V
	V_{OUTAD}	$V_{CC} \ge 10 \text{V}$	0		V_{REF}	V
Load Capacitance	C_L				250	pF
Operational Amplifier Output Stage (OP3)					
Internal Gain	G_{OP}		2.15	2.20	2.25	
Input Range	IR	$V_{CC} < 11$ V	0		V_{CC} – 5	V
	IR	$V_{CC} \ge 11 \text{V}$	0		6	V
Power Supply Rejection Ratio	PSRR		80	90		dB
Offset Voltage	V_{OS}			±0.5	±2	mV
V_{OS} vs. Temperature	$\mathrm{d}V_{OS}/\mathrm{d}T$			±3	±7	μV/°C
Input Bias Current	I_B			10	25	nA
I_B vs. Temperature	$\mathrm{d}I_B/\mathrm{d}T$			7	20	pA/°C
Output Voltage Range	V_{OUT}	$V_{CC} < 19V$	0		V_{CC} – 5	V
	V_{OUT}	$V_{CC} \ge 19 \text{V}$	0		14	V
Output Current Limitation	I_{LIM}	$V_{OUT} \ge 10 \text{V}$	5	7	10	mA
Output Current	I_{OUT}		0		I_{LIM}	mA
Load Resistance	R_L		2			kΩ
Load Capacitance	C_L				500	nF
V/I Converter						
Internal Gain	G_{VI}			0.125		
Trim Range		adjustable by R_0	0.75	1.00	1.25	
Voltage Range at R ₀ FS	$V_{R0}FS$		350		750	mV
Offset Voltage	V_{OS}	$\beta_F \ge 100$		±2	±4	mV
V_{OS} vs. Temperature	$\mathrm{d}V_{OS}/\mathrm{d}T$	$\beta_F \ge 100$		±7	±14	μV/°C
Input Resistance	R_{IN}		120	160		kΩ
R_{IN} vs. Temperature	$\mathrm{d}R_{IN}/\mathrm{d}T$		0.2	0.3		kΩ/°C
Output Offset Current	I_{OUTOS}	3-wire operation		-25	-35	μA
I _{OUTOS} vs. Temperature	$\mathrm{d}I_{OUTOS}/\mathrm{d}T$	3-wire operation		16	26	nA/°C
Output Offset Current	I_{OUTOS}	2-wire operation		9.5	14	μA
I_{OUTOS} vs. Temperature	$\mathrm{d}I_{OUTOS}/\mathrm{d}T$	2-wire operation		6	8	nA/°C
Output Control Current	I_{OUTC}	2-wire operation, $V_{R0}/100 \text{mV}$		6	8	μA
I_{OUTC} vs. Temperature	$\mathrm{d}I_{OUTC}/\mathrm{d}T$	2-wire operation		-10	-15	nA/°C
Output Voltage Range	V_{OUT}	$V_{OUT} = R_L I_{OUT}, V_{CC} < 18V$	0		<i>V_{CC}</i> – 6	V
	V_{OUT}	$V_{OUT} = R_L I_{OUT}, V_{CC} \ge 18V$	0		12	V
Output Current Range FS	I_{OUTFS}	$I_{OUT} = V_{R0}/R_0$, 3-wire operation		20		mA
Output Resistance	R_{OUT}		0.5	1.0		ΜΩ
Load Capacitance	C_L		0		500	nF
SET Stage						
Internal Gain	G_{SET}			0.5		
Input Voltage	V_{SET}		0		1.15	V
Offset Voltage	V_{OS}			±0.5	±1.5	mV
V_{OS} vs. Temperature	$\mathrm{d}V_{OS}/\mathrm{d}T$			±1.6	±5	μV/°C
Input Bias Current	I_B			8	20	nA
I_B vs. Temperature	$\mathrm{d}I_B/\mathrm{d}T$			7	18	pA/°C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Protection Functions						
Voltage Limitation at R_0	V_{LIMR0}	$V_{R0} = V_{INDAI} G_{VI}, SET = GND$	580	635	690	mV
	V_{LIMR0}	$V_{INDAI} = 0$, $V_{R0} = G_{SET} V_{SET}$	580	635	690	mV
Protection against reverse polarity		Ground vs. V_S vs. V_{OUT}			35	V
		Ground vs. V_S vs. I_{OUT}			35	V
Current in case of reverse polarity		$Ground = 35V, V_S = I_{OUT} = 0$		4.5		mA
System Parameters						
Nonlinearity		ideal input		0.05	0.15	%FS

^{*} In 2-wire operation a maximum current of $I_{OUTmin} - I_{CC}$ is valid

RANDBEDINGUNGEN

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Sense Resistor	R_0	$I_{OUTFS} = 20 \text{mA}$	17	27	38	Ω
	R_0	$c = 20 \text{mA}/I_{OUTFS}$	$c \cdot 17$	$c \cdot 27$	$c \cdot 38$	Ω
Stabilisation Resistor	R_5	$I_{OUTFS} = 20$ mA	35	40	45	Ω
	R_5	$c = 20 \text{mA}/I_{OUTFS}$	c · 35	$c \cdot 40$	$c \cdot 45$	Ω
Load Resistance	R_L	limitation only for 3-wire operation	0		600	Ω
Sum Gain Resistors	$R_1 + R_2$		20		200	kΩ
Sum Offset Resistors	$R_3 + R_4$		20		200	kΩ
V_{REF} Capacitance	C_1	ceramic	1.9	2.2	5.0	μF
Output Capacitance	C_2	only for 2-wire operation	90	100	250	nF
D ₁ Breakdown Voltage	V_{BR}		35	50		V
T ₁ Forward Current Gain	β_F	BCX54/55/56 for example	50	150		

AUSFÜHRLICHE FUNKTIONSBESCHREIBUNG

Der AM460 ist ein modular aufgebautes, universelles Wandler- und Schutz-IC, welches speziell für die Aufbereitung von massebezogenen Spannungssignalen entwickelt wurde. Durch seine Konzeption ist er für industrielle Anwendungen sowohl für den 3-Draht- als auch für den 2-Draht-Betrieb¹ geeignet (vgl. Anwendung Seite 13). Die Funktion des AM460 wird anhand des Blockschaltbildes (Abbildung 2) erläutert, das auch die wenigen externen Bauteile aufzeigt, die für den Betrieb des AM460 nötig sind. Elektrische Randbedingungen für die externen Komponenten finden sich auf Seite 6.

Der AM460 besteht aus mehreren modularen Funktionsblöcken (OPs, V/I-Konverter und Referenzen), die durch externe Verknüpfungen zusammengeschaltet oder separat betrieben werden können (siehe Grundschaltung in Abbildung 2):

1. Die Operationsverstärkerstufe OP1 ermöglicht die Verstärkung eines positiven Spannungssignals. Die Verstärkung G_{GAIN} des OP1 ist über die externen Widerstände R_1 und R_2 einstellbar. Als Schutzfunktion ist ein Überspannungsschutz integriert, der die Spannung auf den eingestellten Wert der Referenzspannung begrenzt (vgl. Punkt 4 der Aufzählung). Die Ausgangsspannung V_{OUTAD} am Pin OUTAD berechnet sich zu:

$$V_{OUTAD} = V_{INP} \cdot G_{GAIN} \text{ mit } G_{GAIN} = 1 + \frac{R_1}{R_2}$$
 (1)

¹Prinzipbedingt läßt sich im 2-Draht-Betrieb nur der Stromausgang betreiben.

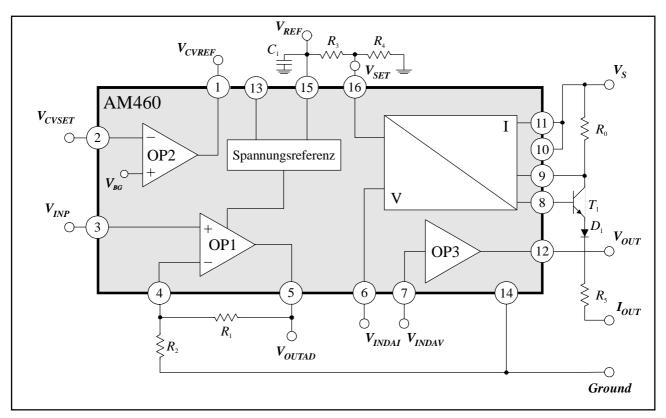


Abbildung 2: Blockschaltbild AM460 mit externen Bauelementen (3-Draht-Verschaltung für Stromausgang)

wobei V_{INP} die Spannung am Eingangs-Pin INP des OP1 bezeichnet.

2. Über die strombegrenzte *Operationsverstärkerstufe* (OP3) mit integriertem Verpolschutz kann ein industrielles Spannungssignal V_{OUT} realisiert werden. Die interne Verstärkung des OP3 ist auf einen festen Wert $G_{OP} = 2,2$ eingestellt. Der Ausgang ist als Treiber ausgelegt, so daß sich der OP3 besonders als Ausgangsstufe eignet. Für die Ausgangsspannung V_{OUT} des OP3 am Pin VOUT des ICs gilt

$$V_{OUT} = G_{OP} \cdot V_{INDAV} \tag{2}$$

worin V_{INDAV} die Spannung am Pin INDAV (Eingang des OP3) bezeichnet.

3. Der Spannungs-/Stromwandler (V/I-Wandler) liefert ein spannungsgesteuertes Stromsignal am IC-Ausgang IOUT (Pin 8), das einen externen Transistor T_1 ansteuern kann, der den eigentlichen Ausgangsstrom I_{OUT} liefert. Der Transistor ist aus Gründen der Verlustleistung extern ausgeführt und wird durch eine zusätzliche Diode D_1 gegen Verpolung geschützt. Über den Pin SET kann ein Offsetstrom I_{SET} am Ausgang IOUT eingestellt werden (z.B. mit Hilfe der internen Spannungsreferenz und einem externen Spannungsteiler wie in Abbildung 2 dargestellt). Der externe Widerstand R_0 ermöglicht bei gleichzeitigem Betrieb von Strom und Spannungsausgang eine Feinjustage des Ausgangsstromes. Für den durch T_1 verstärkten Ausgangsstrom I_{OUT} gilt die Beziehung

$$I_{OUT} = \frac{V_{INDAI}}{8R_0} + I_{SET} \quad \text{mit} \quad I_{SET} = \frac{V_{SET}}{2R_0}$$
(3)

worin V_{INDAI} die Spannung am Pin INDAI und V_{SET} die Spannung am Pin SET (Eingänge des V/I-

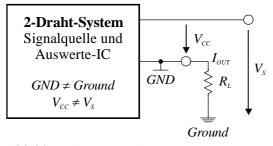
Wandlers, Abbildung 2) bezeichnen.²

- 4. Die *Referenzspannungsquelle* des AM460 erlaubt die Spannungsversorgung von externen Komponenten (z.B. Sensoren, μ P usw.). Der Wert der Referenzspannung V_{REF} kann über Pin 13 VSET eingestellt werden. Bei nicht angeschlossenem Pin VSET ist $V_{REF} = 5$ V; ist VSET an Masse geschaltet, gilt $V_{REF} = 10$ V. Unter Verwendung von zwei externen Widerständen (zwischen Pin VREF und Pin VSET sowie Pin VSET und GND) lassen sich auch Zwischenwerte einstellen.
 - Die externe Kapazität C_1 (Keramikkapazität) an Pin VREF dient zur Stabilisierung der Referenzspannung. Sie $\underline{\mathbf{muB}}$ auch dann kontaktiert werden, wenn die Spannungsreferenz nicht benutzt wird.
- 5. Die zusätzliche *Operationsverstärkerstufe* (OP2) ist als Strom- bzw. Spannungsquelle zur Versorgung von externen Komponenten einsetzbar. Der positive Eingang des OP2 ist dabei intern auf die Spannung V_{BG} gelegt, so daß der Ausgangsstrom bzw. die -spannung durch einen bzw. zwei externe Widerstände über einen weiten Bereich einstellbar ist.

INBETRIEBNAHME DES AM460

Allgemeines zu 2- und 3-Draht-Anwendungen im Strombetrieb

Im 3-Draht-Betrieb (vgl. Abbildung 3 rechts und Abbildung 7) wird der Masseanschluß des ICs (Pin GND) mit der von außen zugeführten Systemmasse Ground verbunden. Die System-Versorgungspannung V_S wird an Pin VCC angeschlossen und Pin VCC mit Pin RS+ verbunden.


Im 2-Draht-Betrieb (vgl. Abbildung 3 links und Abbildung 8) wird die System-Versorgungspannung V_S an den Pin RS+ angeschlossen und der Pin VCC mit Pin RS- verbunden. Der Masseanschluß des IC (Pin GND) wird am Knotenpunkt zwischen dem Widerstand R_5 und dem Lastwiderstand R_L (Stromausgang I_{OUT}) kontaktiert. Damit ist die Masse GND des ICs <u>nicht</u> gleich der Systemmasse Ground!!! Das Ausgangssignal wird über dem Lastwiderstand R_L abgegriffen, der den Stromausgang I_{OUT} mit der Systemmasse verbindet.

Die IC-Masse ist im 2-Draht-Betrieb "virtuell" (floatend), da sich die IC-Versorgungsspannung V_{CC} je nach Strom bei konstantem Lastwiderstand ändert. Allgemein gilt für den 2-Draht-Betrieb folgende Gleichung:

$$V_{CC} = V_S - I_{OUT}(V_{IN}) R_I \tag{4}$$

Der Grund dafür ist, daß das IC im 2-Draht-Betrieb zum eigentlichen Lastwiderstand R_L in Reihe geschaltet ist. In Abbildung 3 ist dieser Sachverhalt graphisch dargestellt.

Im 3-Draht-Betrieb gilt $V_{CC} = V_S$, da die IC-Masse an die Systemmasse angeschlossen wird.

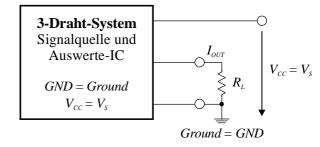


Abbildung 3: Unterschied 2- und 3-Draht-Betrieb

² Aufgrund der speziellen Konstruktion des V/I-Wandlers ist der Ausgangsstrom I_{OUT} weitgehend unabhängig von der Stromverstärkung β_F des externen Transistors T_1 . Produktionsbedingte Schwankungen in der Stromverstärkung der verwendeten Transistoren werden durch den V/I-Wandler intern ausgeglichen.

Einstellung der Spannungsverstärkung bei Nutzung des Spannungsausgangs

Bei Nutzung der Verstärkerstufen OP1 und OP3 zur Signalverarbeitung kann die Gesamtverstärkung durch eine geeignete Wahl der externen Widerstände R_1 und R_2 eingestellt werden. Die Transferfunktion für der Ausgangsspannung ergibt sich durch Multiplikation der Gleichungen 1 und 2 zu:

$$V_{OUT} = V_{INP} \cdot G_{GAIN} \cdot G_{OP} \tag{5}$$

mit $G_{GAIN} = 1 + R_1/R_2$ und $G_{OP} = 2,2$.

Einstellung des Ausgangsstrombereichs bei Nutzung des Stromausgangs

Bei Nutzung der Verstärkerstufe OP1 zusammen mit dem V/I-Wandler zur Signalverarbeitung sollte zunächst ein Offset-Abgleich des Ausgangsstroms durch geeignete Wahl der Widerstände R_3 und R_4 durchgeführt werden. Dazu muß der Eingang von OP1 auf Masse gelegt werden ($V_{INP} = 0$). Mit dem Kurzschluß am Eingang und einer Beschaltung des Pins VSET des V/I-Konverters nach Abbildung 2 ergibt sich für den Ausgangsstrom nach Gleichung 3:

$$I_{OUT}(V_{INDAI} = 0) = I_{SET} = \frac{V_{REF}}{2R_0} \cdot \frac{R_4}{R_3 + R_4}$$
 (6)

und damit für das Widerstandsverhältnis R_3/R_4

$$\frac{R_3}{R_4} = \frac{V_{REF}}{2R_0 I_{SET}} - 1 \tag{7}$$

Die Einstellung des Ausgangsstrombereichs erfolgt durch die Wahl der externen Widerstände R_1 und R_2 (bzw. Feinjustage mit R_0). Für den Ausgangsstrom I_{OUT} ergibt sich mit den Gleichungen 1 und 3:

$$I_{OUT} = V_{INP} \frac{G_{GAIN}}{8R_0} + I_{SET} \text{ mit } G_{GAIN} = 1 + \frac{R_1}{R_2}$$
 (8)

Wahl der Versorgungsspannung

Die zum Betrieb des AM460 benötigte System-Versorgungspannung V_S hängt von dem jeweils gewählten Betriebsmodus ab:

• Bei Nutzung des Spannungsausganges Pin VOUT richtet sich die minimale V_S , die zum Betrieb angelegt werden muß, nach der in der Applikation geforderten maximalen Ausgangsspannung $V_{OUT\text{max}}$. Es gilt

$$V_S \ge V_{OUT \max} + 5V \tag{9}$$

• Bei Nutzung des Stromausganges Pin IOUT (in Verbindung mit dem externen Transistor) hängt V_S von dem jeweiligen Lastwiderstand R_L (max. 600Ω) der Anwendung ab. Für die minimale System-Versorgungsspannung V_S gilt:

$$V_S \ge I_{OUT \max} R_L + V_{CC \min} \tag{10}$$

Darin bezeichnet I_{OUTmax} den maximalen Ausgangsstrom und V_{CCmin} die minimale Versorgungsspannung für das IC, die vom Wert der gewählten Referenzspannung abhängt:

$$V_{CC\min} \ge V_{REF} + 1V \tag{11}$$

Der aus Gleichung 10 resultierende Betriebsbereich ist in Abbildung 4 gezeigt. Beispielrechnungen und typische Werte für die externen Bauteile finden sich in den Anwendungsbeispielen ab Seite 12.

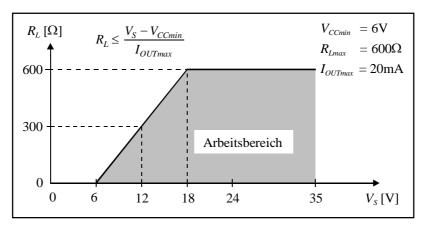


Abbildung 4: Arbeitsbereich in Abhängigkeit des Lastwiderstands

Verschaltung des OP2 als Stromquelle

Der zusätzliche Operationsverstärker OP2 kann auf einfache Art und Weise zu einer Konstantstromquelle verschaltet werden. Mit der Schaltung aus Abbildung 5 ergibt sich folgender Zusammenhang:

$$I_{S} = \frac{V_{BG}}{R_{SET}} = \frac{1,27 \,\mathrm{V}}{R_{SET}} \tag{12}$$

Das Brückensymbol soll das zu versorgende Bauelement (z.B. eine piezoresistive Meßzelle oder einen Temperatursensor) andeuten.

Beispiel 1:

Es soll ein Versorgungsstrom von $I_S = 1$ mA eingestellt werden. Mit Gleichung 12 ergibt sich für den externen Widerstand R_{SET} , welcher die Größe des Stroms bestimmt, ein Wert von

$$R_{SET} = \frac{V_{BG}}{I_S} = \frac{1,27 \text{ V}}{1 \text{mA}} = 1,27 \text{ k}\Omega$$

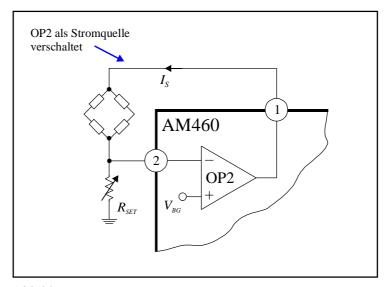


Abbildung 5: Schaltung einer Konstantstromquelle

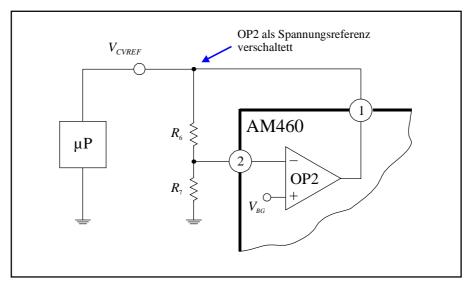


Abbildung 6: Schaltung einer Spannungsreferenz

Verschaltung des OP2 als Spannungsreferenz

Neben der integrierten Spannungsreferenz kann auch der OP2 als Spannungsversorgung für externe Komponenten wie z.B. A/D-Wandler oder Mikroprozessoren genutzt werden. Damit lassen sich niedrigere Versorgungsspannungen (z.B. 3,3V) generieren, die auf Grund der zunehmenden Miniaturisierung und dem Zwang zu geringeren Verlustleistungen bei digitalen Bauteilen zunehmend an Bedeutung gewinnen.

Der zusätzliche Operationsverstärker OP2 kann auf einfache Art und Weise zu einer Spannungsreferenz verschaltet werden. Mit der Schaltung aus Abbildung 6 ergibt sich folgender Zusammenhang:

$$V_{CVREF} = V_{BG} \left(1 + \frac{R_6}{R_7} \right) = 1,27 \,\text{V} \left(1 + \frac{R_6}{R_7} \right)$$
 (13)

Beispiel 2:

Es soll eine Spannung von $V_{CVREF} = 3.3$ V eingestellt werden. Mit Gleichung 13 ergibt sich für die externen Widerstände R_6 und R_7 ein Verhältnis von

$$\frac{R_6}{R_7} = \frac{V_{CVREF}}{V_{BG}} - 1 \approx 2,6 - 1 = 1,6$$

Für die Widerstände ergeben sich z.B. die folgenden Werte:

$$R_7 = 10 \text{k}\Omega$$
 $R_6 = 16 \text{k}\Omega$

WICHTIGE HINWEISE ZUR INBETRIEBNAHME

- 1. Zum Betrieb des AM460 muß <u>immer</u> die externe Kapazität C_1 (hochwertige Keramikkapazität) kontaktiert werden (vgl. Abbildung 2). Es ist zu beachten, daß der Wert der Kapazität auch über den Temperaturbereich nicht den Wertebereich in den Randbedingungen auf Seite 6 verläßt. Im 2-Draht-Betrieb ist zusätzlich die Keramikkapazität C_2 zu verwenden (vgl. Abbildung 8).
- 2. Die Stromaufnahme des Gesamtsystems (AM460 und alle externen Komponenten inklusive der Einstellwiderstände) dürfen in einem 2-Draht-System in der Summe <u>nicht mehr</u> als $I_{OUT_{min}}$ (meist 4mA) verbrauchen.

- 3. Alle in der Applikation nicht benutzten Funktionsblöcke des AM460 müssen auf ein definiertes (und erlaubtes) Potential gelegt werden.
- 4. Bei Betrieb des Spannungsausgangs muß der Lastwiderstand an Pin VOUT mindestens $2k\Omega$ betragen.
- 5. Bei Betrieb des Stromausgangs ist ein Lastwiderstand von maximal 600Ω zulässig.
- 6. Die Werte der externen Widerstände R_0 , R_1 , R_2 , R_3 , R_4 und R_5 müssen innerhalb des erlaubten Bereichs gewählt werden, der in den Randbedingungen auf Seite 6 auf spezifiziert ist.

ANWENDUNGEN

Typische 3-Draht-Anwendung mit massebezogenem Eingangssignal

In Abbildung 7 ist eine 3-Draht-Anwendung dargestellt, bei welcher der AM460 ein positives massebezogenes Spannungssignal verstärkt und wandelt. Die nicht genutzten Blöcke (z.B. OP2) sind in der Anwendung in definierte Arbeitspunkte gelegt worden. Alternativ können diese Funktionsgruppen natürlich weiterhin benutzt werden (z.B. zur Speisung externer Komponenten).

Für diese Anwendung ergibt sich mit den Gleichungen 1 und 2 die Ausgangsspannung V_{OUT} zu

$$V_{OUT} = G_V V_{INP} \text{ mit } G_V = G_{GAIN} G_{OP} = \left(1 + \frac{R_1}{R_2}\right) \cdot 2,2$$
 (14)

Für den Ausgangsstrom I_{OUT} gilt nach Gleichung 3

$$I_{OUT} = V_{INP} \cdot \frac{G_I}{8R_0} + I_{SET} \text{ mit } G_I = G_{GAIN} = 1 + \frac{R_1}{R_2} \text{ und } I_{SET} = 0$$

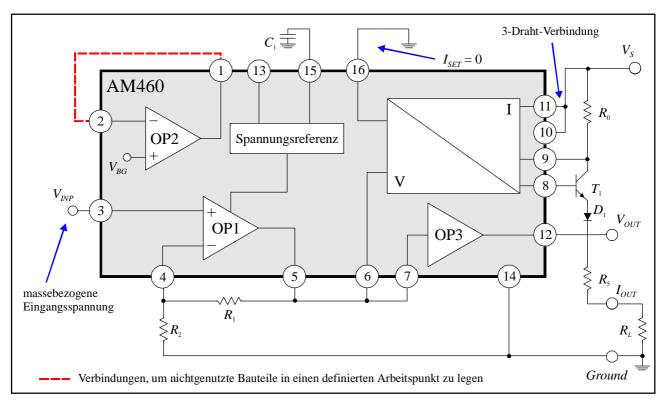


Abbildung 7: Typische Anwendung für massebezogene Eingangssignale

Beispiel 3:

Für ein Signal $V_{INP} = 0...1$ V am Eingang des OP1 sollen die externen Bauteile so dimensioniert werden, daß der Ausgangsstrombereich 0...20mA (d.h. $I_{SET} = 0 \Rightarrow SET = GND$) und der Ausgangsspannungsbereich 0...10V beträgt.

Für die Ausgangsspannung gilt mit Gleichung 14

$$V_{OUT} = V_{INP} \cdot \left(1 + \frac{R_1}{R_2}\right) \cdot 2,2 \implies \frac{R_1}{R_2} = \frac{V_{OUT}}{2,2 \cdot V_{INP}} - 1 = \frac{10\text{V}}{2,2 \cdot 1\text{V}} - 1 \approx 3,55$$

d.h.
$$G_{GAIN} = 1 + \frac{R_1}{R_2} = 4,55$$

Für den Ausgangsstrom gilt dann

$$I_{OUT} = V_{INP} \cdot \frac{G_I}{8R_0} + I_{SET} = V_{INP} \cdot \frac{G_{GAIN}}{8R_0} \quad \Rightarrow \quad R_0 = V_{INP} \cdot \frac{G_{GAIN}}{8I_{OUT}} = 1V \frac{4,55}{8 \cdot 20 \text{mA}} \approx 28,44\Omega$$

Für die Werte der externen Bauteile ergeben sich mit den Randbedingungen:

 $R_0 \approx 28,44\Omega$

 $R_5 = 39\Omega$

 $R_1 \approx 35,5 \text{k}\Omega$ $R_2 = 10 \text{k}\Omega$ $R_L = 0...600\Omega$ $C_1 = 2,2 \mu \text{F}$

Typische 2-Draht-Anwendung mit massebezogenem Eingangssignal

Im 2-Draht-Betrieb (vgl. Abbildung 8) wird die System-Versorgungspannung V_S an den Pin RS+ angeschlossen und der Pin VCC mit Pin RS- verbunden. Der Masseanschluß des IC (Pin GND) wird am Knotenpunkt zwischen dem Widerstand R_5 und dem Lastwiderstand R_L (Stromausgang I_{OUT}) kontaktiert. Damit ist die Masse des IC (GND) nicht gleich der Systemmasse (Ground)!!! Das Ausgangssignal wird über dem

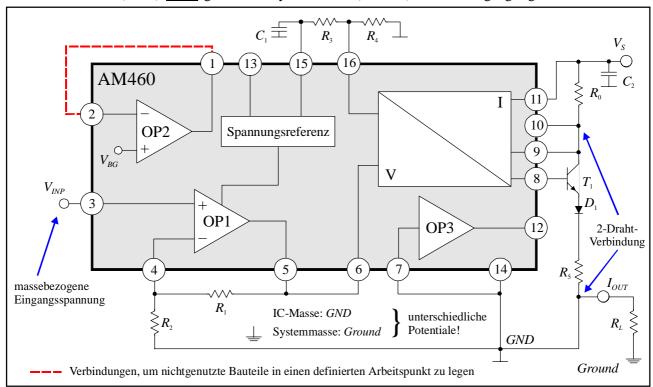


Abbildung 8: Typische 2-Draht-Anwendung für massebezogene Eingangssignale

Lastwiderstand R_L abgegriffen, der den Stromausgang I_{OUT} mit der Systemmasse verbindet.

Für den Ausgangsstrom I_{OUT} gilt nach Gleichung 3

$$I_{OUT} = V_{INP} \cdot \frac{G_I}{8R_0} + I_{SET} \text{ mit } G_I = G_{GAIN} = 1 + \frac{R_1}{R_2} \text{ und } I_{SET} = \frac{V_{REF}}{2R_0} \cdot \frac{R_4}{R_3 + R_4}$$

Beispiel 4:

Für ein Signal $V_{INP} = 0...1$ V am Eingang des OP1 sollen die externen Bauteile so dimensioniert werden, daß der Ausgangsstrombereich 4...20mA beträgt.

$$I_{OUT} = V_{INP} \cdot \frac{G_I}{8R_0} + I_{SET} = V_{INP} \cdot \frac{G_{GAIN}}{8R_0} + 4\text{mA}$$

Mit $R_0 = 27\Omega$ ergibt sich mit Gleichung 7

$$\frac{R_3}{R_4} = \frac{V_{REF}}{2R_0I_{SET}} - 1 = \frac{5V}{2.27\Omega \cdot 4\text{mA}} - 1 \approx 22,15$$

und damit für die einzustellende Verstärkung ein Wert von

$$G_{GAIN} = 8R_0 \frac{I_{OUT \text{ max}} - I_{SET}}{V_{INP}} = 8 \cdot 27\Omega \cdot \frac{16\text{mA}}{1\text{V}} = 3,456 \implies \frac{R_1}{R_2} = 3,456 - 1 = 2,456$$

Für die Werte der externen Bauteile ergeben sich mit den Randbedingungen:

$$R_1 \approx 24,56 \mathrm{k}\Omega$$

$$R_2 = 10 \mathrm{k}\Omega$$

$$R_3 \approx 44,3$$
k Ω

$$R_4 = 2k\Omega$$

$$R_0 = 27\Omega$$

$$R_5 = 39\Omega$$

$$R_L = 0...600\Omega$$

$$C_1 = 2.2 \mu F$$
 $C_2 = 100 n F$

$$C_2 = 100 \text{nF}$$

14/17

BLOCKSCHALTBILD UND PINOUT

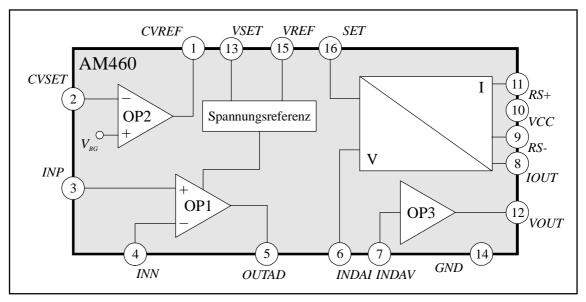


Abbildung 9: Blockschaltbild des AM460

CVREF 1	16 🗆 <i>SET</i>
CVSET □ 2	15 🗆 VREF
<i>INP</i> □ 3	14 🗌 <i>GND</i>
INN 🖂 4	13
OUTAD□ 5	12
INDAI ☐ 6	11 <i>RS</i> +
INDAV □ 7	10 ☐ <i>VCC</i>
<i>IOUT</i> □ 8	9

Abbildung 10: Pinout

PIN	NAME	BEDEUTUNG
1	CVREF	Strom-/Spannungsreferenz
2	CVSET	Einstellen Strom-/Spannungsreferenz
3	INP	Positiver Eingang
4	INN	Negativer Eingang
5	OUTAD	Ausgang Systemverstärkung
6	INDAI	Eingang für die Stromausgangsstufe
7	INDAV	Eingang für die Spannungsausgangsstufe
8	IOUT	Stromausgang
9	RS-	Senswiderstand –
10	VCC	Versorgungsspannung
11	RS+	Senswiderstand +
12	VOUT	Spannungsausgang
13	VSET	Einstellen Referenzspannungsquelle
14	GND	IC-Masse
15	VREF	Ausgang Referenzspannungsquelle
16	SET	Einstellen des Ausgangsoffsetstroms

Tabelle 1: Pinout des AM460

15/17

PRINZIPIELLE ANWENDUNGSBEISPIELE

• Aufbereitung von massebezogenen Signalen (geschützte Ausgangsstufe, Impedanzwandler usw.)

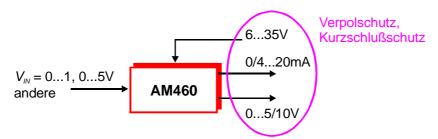


Abbildung 11: Anwendung für massebezogene Eingangssignale (geschützte Ausgangsstufe, Impedanzwandler usw.)

• Komplexe Schaltung als Prozessor-Peripherie-IC

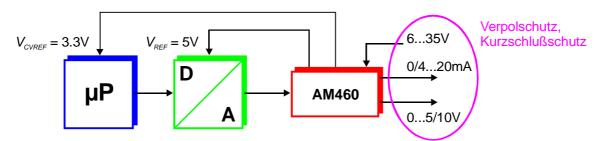


Abbildung 12: Komplexe Schaltung als Prozessor-Peripherie-IC

• Wandlung eines 0,5...4,5V-Sensorsignals

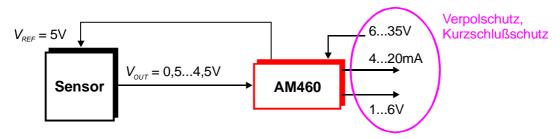


Abbildung 13: Wandlung eines 0,5...4,5V-Sensorsignals

AM460

LIEFERFORMEN

Der AM460 Wandler- und Schutz-IC ist lieferbar als:

- DIP16
- SO16(n) (maximale Verlustleistung $P_D = 300 \text{mW}$)
- Dice auf 5" Dehnfolie aufgespannt

WEITERFÜHRENDE LITERATUR

- [1] Konzept der Frame-ASICs: http://www.Frame-ASIC.de/
- [2] Homepage der Analog Microelectronics GmbH: http://www.analogmicro.de/

NOTIZEN

Analog Microelectronics behält sich Änderungen von Abmessungen, technischen Daten und sonstigen Angaben ohne vorherige Ankündigung vor.