

CHARACTERISTICS

Ambient temperature	-20 ÷ 80 °C
Fluid	filtered air, with or without lubrication
Working pressure	1,5 ÷ 10 bar
End-caps	aluminium
Barrel	aluminium
Piston	die-cast aluminium
Guide slide	acetalic resin
Rack	stainless steel
Piston seal	NBR
Pinion	nitrided steel
Shock absorber seals	NBR
Cushionings	pneumatic adjustable (standard supplied)

CODIFICATION KEY

1 Series	2 Type	3 Bore (mm)	4 Angle of rotation	5 Magnetic
R = Ø 32÷125 mm	11 = Male pinion without adjustment	032 = Ø32	090 = 90°	M = Magnetic version
Pneumatic rotary	(degree of accuracy \pm 3°)	040 = Ø40	180 = 180°	5
actuators	12 = Male pinion with adjustment $\pm 5^{\circ}$	050 = Ø50	270 = 270°	
	13 = Female pinion without adjustment	063 = Ø63	360 = 360°	
	(degree of accuracy \pm 3°)	080 = Ø80		
	14 = Female pinion with adjustment $\pm 5^{\circ}$	100 = Ø100		
		125 = Ø125		

- 1. Cylinder barrel: extruded profile in aluminium alloy
- 2. Die-cast end-caps in aluminium alloy
- 3. Pneumatic adjustable cushionings
- 4. Shock absorber seals
- **5.** Die-cast piston in aluminium alloy and acetalic resin guide slide
- 6. Piston seals in nitrile rubber compound
- 7. Standards-based steel square rack

- $\textbf{8.} \ \ \mbox{Guide slide for rack with self-adjusting backlash recovery}$
- 9. Nitrided steel pinion
- 10. Ball bearings for pinion support
- 11. Anodized aluminium central body
- 12. Adjustment screws: angle of rotation $\pm 2,5^{\circ}$
- 13. DF series magnetic sensor
- 14. Screws for backlash recovery

The UNIVER rotary actuator incorporates several technology features which provide a higher degree of accuracy and reliability. The robust mechanical design expands application possibilities within modern day automation.

TECHNICAL CHARACTERISTICS

Working pressure: $1,5 \div 10$ bar Ambient temperature: $-20^{\circ} \div +80^{\circ}$ C Fluid: filtered air with or without lubrication Cylinder barrel: aluminium extrusion, internally and externally anodized 15 - 18 microns Rack backlash recovery Rotating pinion supported by ball bearings

Theoretical torque at 1 bar

Multiply the value in the table by the operating pressure

Cyl. Ø	32	40	50	63	80	100	125
Mt (Nm)	1,2	2,25	3,9	7,3	15,7	26,5	51

Maximum kinetic energy absorbable by cushioning

The adjustment of the rotation angle reduces the effect of cushioning (R12 - R14)

Cyl. Ø	32	40	50	63	80	100	125	
E₀ (Nm)	1,8	2,5	4,5	8	12	21	36	

Magnetic sensor DH- Series (Section accessories see page 2).

Static loads acceptable for the pinion

TYPES

- 11 Male pinion without adjustment (positional accuracy $\pm 3^{\circ}$)
- 12 Male pinion with adjustment $\pm 5^{\circ}$
- 13 Female pinion without adjustment (positional accuracy \pm 3°)
- 14 Female pinion with adjustment $\pm 5^{\circ}$

BORE 032 - 040 - 050 - 063 - 080 - 100 - 125 mm

ROTATION ANGLE 90° - 180° - 270° - 360°

0 - 180 - 270

OPTION

M = Magnetic version

Fr = Radial loads max (N) with Fa=0 based on L protrusion

Construction details

- (1) Cylinder barrel in extruded aluminium alloy with ribbed design for rigidity and without stagnation points. Internally and externally anodized up to 18 micron.
- (2) Light aluminium alloy die-cast end-caps are fixed to the body by means of tie rods and bushings.
- (3) Pneumatic adjustable cushioning provides an efficient piston deceleration.
- (4) Mechanical barrel/end-cap seal.
- (5) Aluminium alloy articulated piston and acetalic-resin slide with permanent plastoferrite magnetic ring (upon request).
- (6) Piston seals and cushions are made of a wear resistant nitrilic rubber compound, suitable for applications with or without lubrication, the double lip shape allows the constant wear recovery.
- Square rack made of stainless steel reduces backlash in the mechanism.
- (8) Rack guiding slide with self adjusting backlash.
- (9) Pinion of nitrided steel.
- Pinion supported by ball-race bearings (bronze/teflon bearing fitted to Ø 32 version).
- (11) Anodized aluminium body.
- (12) Rotation angle adjustment screw, with a rotation angle ±5° Series R12 - 14. (It is advisable not to make adjustments while the cylinder is under pressure)

Rotating cylinders with:

male pinion

Basic overall dimensions

Cyl. Ø	Α	В	C ±0,1	D	Е	F	G	н	I	к	м	N	Ρ	Q	R	S g 6	т	U	V M7	W	x	Y ±0,1	Z H7
32	48	M6	33	18	G1/8	50	25	46,5	16	71,5	51	50	30	25	5	14	25	16,3	5	25	M5	18	14
40	54	M6	40	22	G1/4	60	30	54,5	16	82	61	60	30	25	5	14	25	16,3	5	25	M5	22	14
50	67	M8	50	22	G1/4	70	32,5	60,5	21,5	94	66	65	40	35	6	19	30	21,8	6	30	M6	25	19
63	78	M8	60	25,5	G3/8	75	37	70,8	27	110	76	75	40	35	8	24	30	21,8	6	30	M8	35	19
80	97	M10	80	27	G3/8	99	50	93,5	31	142	100	99	50	45	8	28	45	27,3	8	45	M8	50	24
100	115	M10	80	27,5	G1/2	115	54	99	41	156,5	116	115	50	45	10	38	50	31,3	8	50	M10	60	28
125	140	M12	90	31,5	G1/2	125	60	118	41	188	141	140	50	45	10	38	60	31,3	8	60	M10	70	28

Overall dimensions $\text{L-L}_{\scriptscriptstyle 1}$ and weights with standard rotations

L : overall dimensions with stroke regulation (R12 - R14) L : overall dimensions without stroke regulation (R11 - R13)

	Rotation 90°					Rotation 180°				Rota	tion 270	0	Rotation 360°				
0.4			Mass	s (kg)		Mass (kg)					Mass	(kg)	Mass (kg)				
Ø	L1	L	Male pinion	Female pinion	L1	L	Male pinion	Female pinion	Lı	L	Male pinion	Female pinion	L1	L	Male pinion	Female pinion	
32	234	206	1,300	1,200	282	254	1,420	1,320	330	302	1,540	1,440	378	348	1,660	1,560	
40	278	246	2,010	1,900	336	304	2,210	2,900	394	360	2,390	2,280	450	418	2,580	2,470	
50	308	268	3,070	2,840	372	332	3,340	3,110	436	394	3,610	3,380	498	458	3,880	3,650	
63	356	310	4,990	4,640	432	386	5,500	5,170	508	460	6,010	5,700	582	536	6,520	6,230	
80	426	376	9,840	9,220	526	476	10,840	10,230	626	574	11,840	11,240	726	674	12,840	12,250	
100	456	404	13,650	12,680	564	512	14,860	13,870	672	618	16,070	15,060	778	726	17,280	16,250	
125	520	474	23,370	22,220	654	606	25,720	24,520	786	738	28,070	26,820	918	870	30,420	29,120	

Overall dimensions with intermediate rotations

Intermediate rotations can be obtained by reducing the length of the right-hand piston housing. For this purpose select the standard model having a rotation degree slightly higher than the one required.

The length dimensions L-L, are then reduced in accordance with the following table for each rotation degree.

Cylinders Ø	32	40	50	63	80	100	125							
Reduction mm	0,262	0,315	0,350	0,415	0,550	0,594	0,733							
The left-hand piston hou	The left-hand piston housing maintains standard dimensions $\left(\frac{L}{2}, \frac{L_1}{2}\right)$													