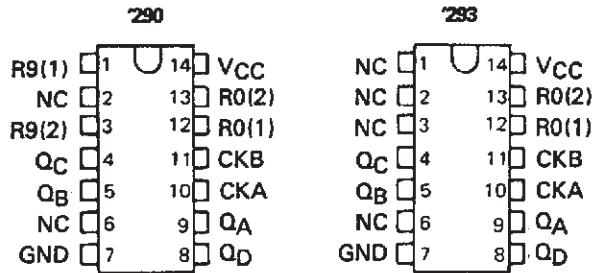


'290, 'LS290 . . . DECADE COUNTERS
'293, 'LS293 . . . 4-BIT BINARY COUNTERS

- GND and VCC on Corner Pins (Pins 7 and 14 Respectively)

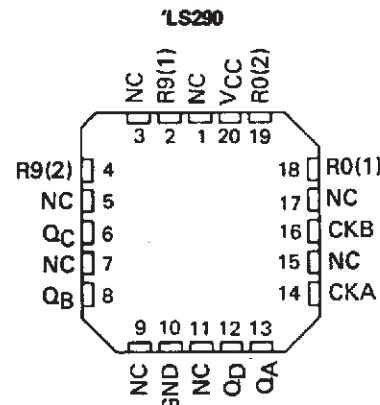
description

The SN54290/SN74290, SN54LS290/SN74LS290, SN54293/SN74293, and SN54LS293/SN74LS293 counters are electrically and functionally identical to the SN5490A/SN7490A, SN54LS90/SN74LS90, SN5493A/SN7493A, and SN54LS93/SN74LS93, respectively. Only the arrangement of the terminals has been changed for the '290, 'LS290, '293, and 'LS293.

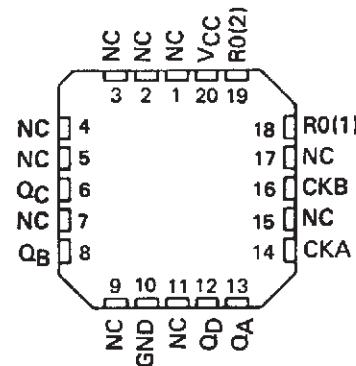

Each of these monolithic counters contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and a three-stage binary counter for which the count cycle length is divide-by-five for the '290 and 'LS290 and divide-by-eight for the '293 and 'LS293.

All of these counters have a gated zero reset and the '290 and 'LS290 also have gated set-to-nine inputs for use in BCD nine's complement applications.

To use the maximum count length (decade or four-bit binary) of these counters, the B input is connected to the Q_4 output. The input count pulses are applied to input A and the outputs are as described in the appropriate function table. A symmetrical divide-by-ten count can be obtained from the '290 and 'LS290 counters by connecting the Q_0 output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output Q_4 .


SN54290, SN54LS290, SN54293,
SN54LS293 . . . J OR W PACKAGE
SN74290, SN74293 . . . N PACKAGE
LS290, SN74LS293 . . . D OR N PACKAGE

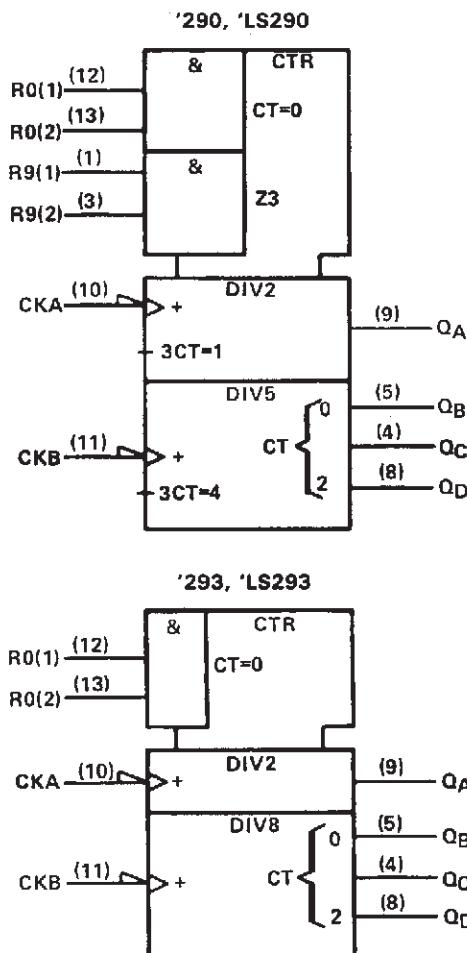
(TOP VIEW)



SN54LS290, SN54LS293 . . . FK PACKAGE

{TOP VIEW}

'LS293



NC - No internal connection

SN54290, SN54293, SN54LS290, SN54LS293
 SN74290, SN74293, SN74LS290, SN74LS293
DECADE AND 4-BIT BINARY COUNTERS

SDLS097 – MARCH 1974 – REVISED MARCH 1988

logic symbols[†]

[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
 Pin numbers shown are for D, J, N, and W packages.

SN54290, SN54293, SN54LS290, SN54LS293
 SN74290, SN74293, SN74LS290, SN74LS293
 DECADE AND 4-BIT BINARY COUNTERS

SDLS097 - MARCH 1974 - REVISED MARCH 1988

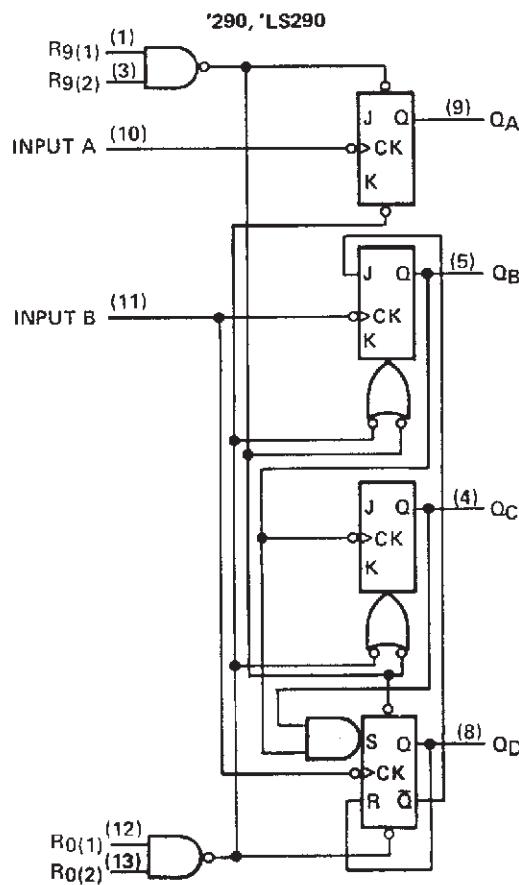
'290, 'LS290
 BCD COUNT SEQUENCE
 (See Note A)

COUNT	OUTPUT			
	Q _D	Q _C	Q _B	Q _A
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H

'290, 'LS290
 BI-QUINARY (5-2)
 (See Note B)

COUNT	OUTPUT			
	Q _D	Q _C	Q _B	Q _A
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	H	L	L	L
6	H	L	L	H
7	H	L	H	L
8	H	L	H	H
9	H	H	L	L

'290, 'LS290
 RESET/COUNT FUNCTION TABLE

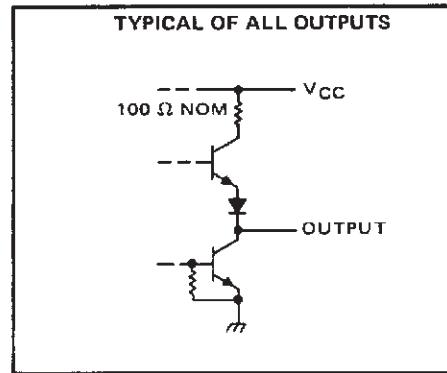
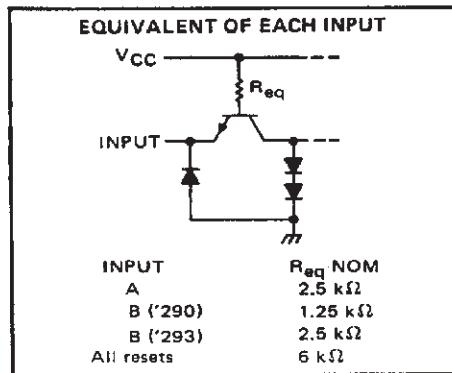


RESET INPUTS				OUTPUT			
R ₀₍₁₎	R ₀₍₂₎	R ₉₍₁₎	R ₉₍₂₎	Q _D	Q _C	Q _B	Q _A
H	H	L	L	L	L	L	L
H	X	L	L	L	L	L	L
X	X	H	H	H	L	L	H
X	L	X	L	COUNT			
L	X	L	X	COUNT			
L	X	X	L	COUNT			
X	L	L	X	COUNT			

'293, 'LS293
 COUNT SEQUENCE
 (See Note C)

COUNT	OUTPUT			
	Q _D	Q _C	Q _B	Q _A
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H
10	H	L	H	L
11	H	L	H	H
12	H	H	L	L
13	H	H	L	H
14	H	H	H	L
15	H	H	H	H

NOTES: A. Output Q_A is connected to input B for BCD count.
 B. Output Q_D is connected to input A for bi-quinary count.
 C. Output Q_A is connected to input B.
 D. H = high level, L = low level, X = irrelevant

logic diagrams (positive logic)



Pin numbers shown are for D, J, N, and W packages.

The J and K inputs shown without connection are for reference only and are functionally at a high level.

SN54290, SN54293, SN54LS290, SN54LS293 SN74290, SN74293, SN74LS290, SN74LS293 DECADE AND 4-BIT BINARY COUNTERS

SDLS097 – MARCH 1974 – REVISED MARCH 1988

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.
 2. This is the voltage between two emitters of a multiple-emitter transistor. For these circuits, this rating applies between the two R_9 inputs, and for the '290 circuit, it also applies between the two R_9 inputs.

recommended operating conditions

	SN54'			SN74'			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}			-800			-800	μA
Low-level output current, I_{OL}			16			16	mA
Count frequency, f_{count}	A input	0	32	0	32		MHz
	B input	0	16	0	16		
Pulse width, t_W	A input	15		15			ns
	B input	30		30			
	Reset inputs	15		15			
Reset inactive-state setup time, t_{su}	25		25				ns
Operating free-air temperature, T_A	-55	125	0	70			$^{\circ}C$

SN54290, SN54293, SN54LS290, SN54LS293
 SN74290, SN74293, SN74LS290, SN74LS293
 DECADE AND 4-BIT BINARY COUNTERS

SDLS097 - MARCH 1974 - REVISED MARCH 1988

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]	'290			'293			UNIT
		MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	
V _{IH} High-level input voltage		2			2			V
V _{IL} Low-level input voltage			0.8			0.8		V
V _{IK} Input clamp voltage	V _{CC} = MIN, I _I = -12 mA			-1.5			-1.5	V
V _{OH} High-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = -800 μ A	2.4	3.4		2.4	3.4		V
V _{OL} Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 16 mA [¶]		0.2	0.4		0.2	0.4	V
I _I Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V			1			1	mA
I _{IH} High-level input current	Any reset			40			40	μ A
	A input	V _{CC} = MAX, V _I = 2.4 V		80			80	
	B input			120			80	
I _{IL} Low-level input current	Any reset			-1.6			-1.6	mA
	A input	V _{CC} = MAX, V _I = 0.4 V		-3.2			-3.2	
	B input			-4.8			-3.2	
I _{OS} Short-circuit output current [§]	V _{CC} = MAX	SN54'	-20	-57	-20	-57		mA
		SN74'	-18	-57	-18	-57		
I _{CC} Supply current	V _{CC} = MAX, See Note 3		29	42		26	39	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

[§]Not more than one output should be shorted at a time.

[¶]Q_A outputs are tested at I_{OL} = 16 mA plus the limit value of I_{IL} for the B input. This permits driving the B input while maintaining full fan-out capability.

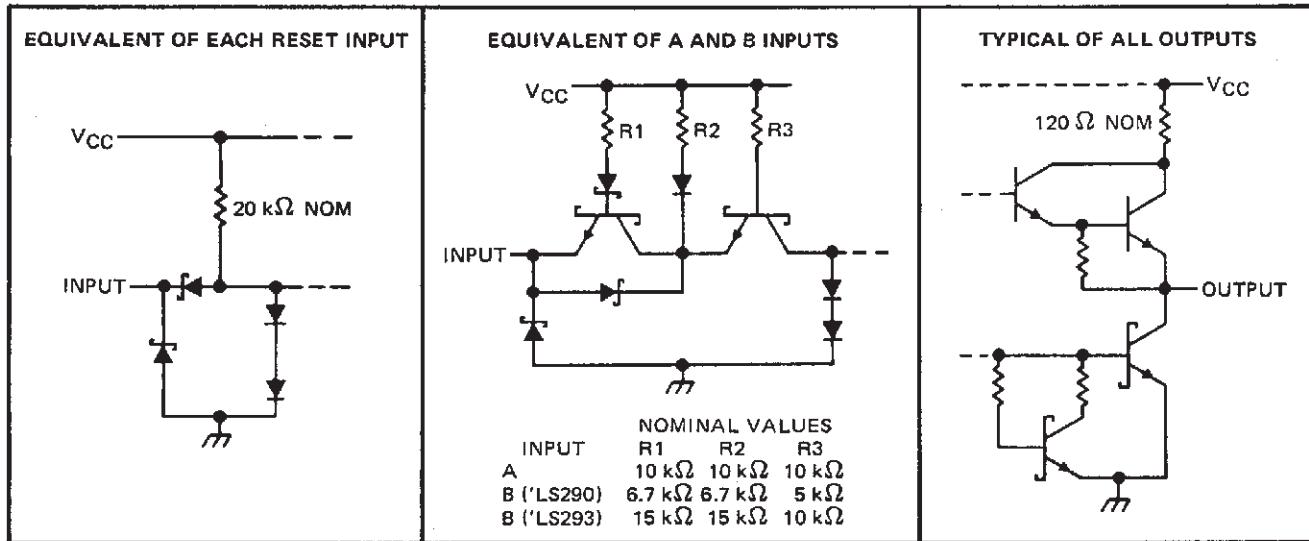
NOTE 3: I_{CC} is measured with all outputs open, both R_g inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.

switching characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER [#]	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	'290			'293			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
C _L = 15 pF, R _L = 400 Ω , See Note 4	f _{max}	A	Q _A	32	42		32	42		MHz
		B	Q _B	16		16				
	t _{PLH}	A	Q _A	10	16		10	16		ns
				12	18		12	18		
	t _{PHL}	A	Q _D	32	48		46	70		ns
				34	50		46	70		
	t _{PLH}	B	Q _B	10	16		10	16		ns
				14	21		14	21		
	t _{PHL}	B	Q _C	21	32		21	32		ns
				23	35		23	35		
	t _{PLH}	B	Q _D	21	32		34	51		ns
				23	35		34	51		
	t _{PHL}	Set-to-0	Any	26	40		26	40		ns
	t _{PLH}	Set-to-9	Q _A , Q _D	20	30					ns
			Q _B , Q _C	26	40					

#f_{max} = maximum count frequency

t_{PLH} = propagation delay time, low-to-high-level output


t_{PHL} = propagation delay time, high-to-low-level output

NOTE 4: Load circuits and voltage waveforms are shown in Section 1.

SN54290, SN54293, SN54LS290, SN54LS293 SN74290, SN74293, SN74LS290, SN74LS293 DECADE AND 4-BIT BINARY COUNTERS

SDLS097 – MARCH 1974 – REVISED MARCH 1988

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 5)	7 V
Input voltage: R inputs	7 V
A and B inputs	5.5 V
Operating free-air temperature range: SN54LS290, SN54LS293	-55°C to 125°C
SN74LS290, SN74LS293	0°C to 70°C
Storage temperature range	-65°C to 150°C

NOTE 5: Voltage values are with respect to network ground terminal.

recommended operating conditions

	SN54LS'			SN74LS'			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, I_{OH}			-400			-400	μA
Low-level output current, I_{OL}			4			8	mA
Count frequency, f_{count}	A input	0	32	0	32		MHz
	B input	0	16	0	16		
Pulse width, t_W	A input	15		15			ns
	B input	30		30			
	Reset inputs	30		30			
Reset inactive-state setup time, t_{SU}		25		25			ns
Operating free-air temperature, T_A	-55		125	0		70	$^{\circ}C$

SN54290, SN54293, SN54LS290, SN54LS293
 SN74290, SN74293, SN74LS290, SN74LS293
 DECADE AND 4-BIT BINARY COUNTERS

SDLS097 - MARCH 1974 - REVISED MARCH 1988

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]	SN54LS'			SN74LS'			UNIT
		MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	
V_{IH} High-level input voltage		2		2				V
V_{IL} Low-level input voltage				0.7			0.8	V
V_{IK} Input clamp voltage	$V_{CC} = \text{MIN}$, $I_I = -18 \text{ mA}$				-1.5		-1.5	V
V_{OH} High-level output voltage	$V_{CC} = \text{MIN}$, $V_{IH} = 2 \text{ V}$, $V_{IL} = V_{IL \text{ max}}$, $I_{OH} = -400 \mu\text{A}$	2.5	3.4		2.7	3.4		V
V_{OL} Low-level output voltage	$V_{CC} = \text{MIN}$, $V_{IH} = 2 \text{ V}$, $V_{IL} = V_{IL \text{ max}}$	$I_{OL} = 4 \text{ mA}$ $I_{OL} = 8 \text{ mA}$	0.25	0.4	0.25	0.4		V
							0.35	
I_I Input current at maximum input voltage	Any reset	$V_{CC} = \text{MAX}$, $V_I = 7 \text{ V}$			0.1		0.1	mA
	A input	$V_{CC} = \text{MAX}$, $V_I = 5.5 \text{ V}$			0.2		0.2	
	B of 'LS290				0.4		0.4	
	B of 'LS293				0.2		0.2	
I_{IH} High-level input current	Any reset	$V_{CC} = \text{MAX}$, $V_I = 2.7 \text{ V}$			20		20	μA
	A input				40		40	
	B of 'LS290				80		80	
	B of 'LS293				40		40	
I_{IL} Low-level input current	Any reset	$V_{CC} = \text{MAX}$, $V_I = 0.4 \text{ V}$			-0.4		-0.4	mA
	A input				-2.4		-2.4	
	B of 'LS290				-3.2		-3.2	
	B of 'LS293				-1.6		-1.6	
I_{OS} Short-circuit output current [§]	$V_{CC} = \text{MAX}$		-20	-100	-20	-100		mA
I_{CC} Supply current	$V_{CC} = \text{MAX}$, See Note 3	'LS290	9	15	9	15		mA
		'LS293	9	15	9	15		

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

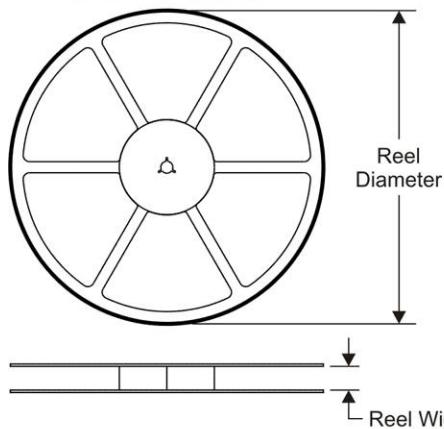
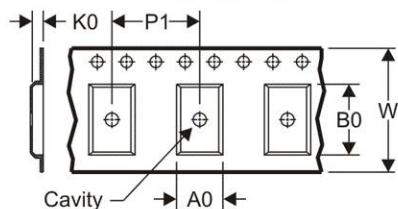
[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$.

[§]Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

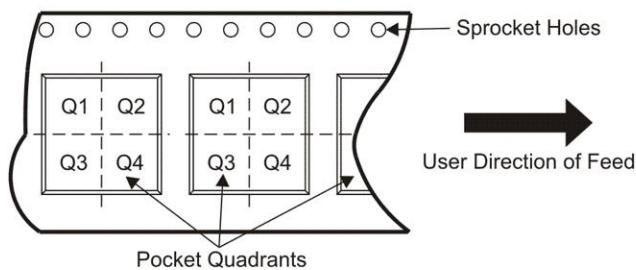
[¶] Q_A outputs are tested at specified I_{OL} plus the limit value of I_{IL} for the B input. This permits driving the B input while maintaining full fan-out capability.

NOTE 3: I_{CC} is measured with all outputs open, both R_O inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$



PARAMETER [#]	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	'LS290			'LS293			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
f_{max}	A	Q_A	$C_L = 15 \text{ pF}$, $R_L = 2 \text{ k}\Omega$, See Note 4	32	42		32	42		MHz
	B	Q_B		16		16				
t_{PLH}	A	Q_A		10	16		10	16		
				12	18		12	18		
t_{PHL}	A	Q_D		32	48		46	70		
				34	50		46	70		
t_{PLH}	B	Q_B		10	16		10	16		
				14	21		14	21		
t_{PHL}	B	Q_C		21	32		21	32		
				23	35		23	35		
t_{PLH}	B	Q_D		21	32		34	51		
				23	35		34	51		
t_{PHL}	Set-to-0	Any		26	40		26	40		
				20	30					
t_{PLH}	Set-to-9	Q_A, Q_D		26	40					
		Q_B, Q_C								

f_{max} = maximum count frequency

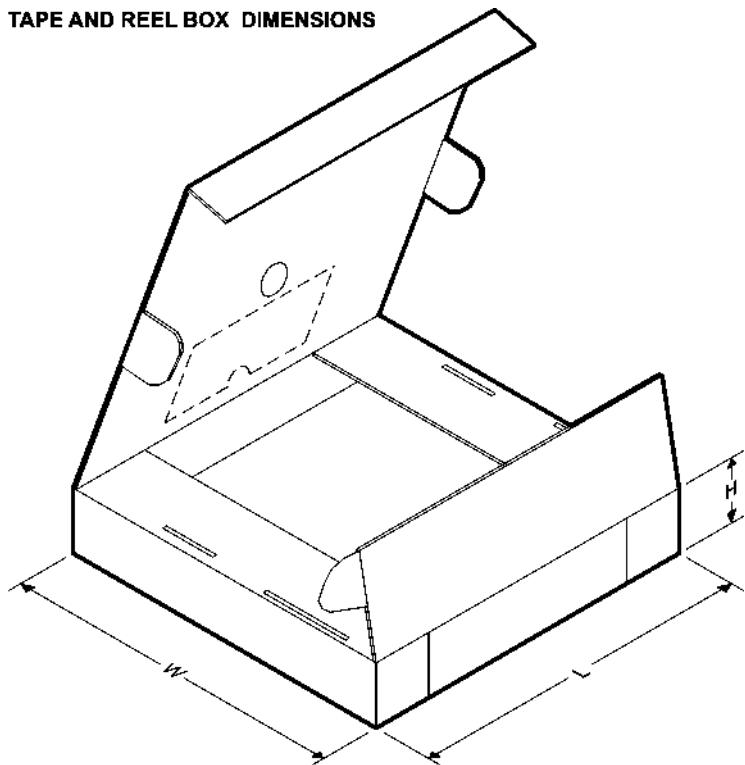

t_{PLH} = propagation delay time, low-to-high-level output

t_{PHL} = propagation delay time, high-to-low-level output

NOTE 4: Load circuits and voltage waveforms are shown in Section 1.

TAPE AND REEL INFORMATION
REEL DIMENSIONS

TAPE DIMENSIONS


A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS293DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS293DR	SOIC	D	14	2500	346.0	346.0	33.0

PACKAGING INFORMATION

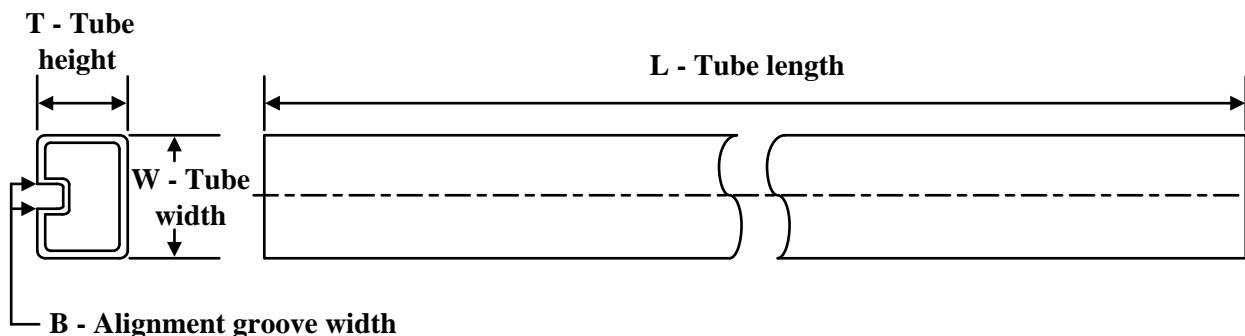
Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
SN74LS293D	Active	Production	SOIC (D) 14	50 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS293
SN74LS293D.A	Active	Production	SOIC (D) 14	50 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS293
SN74LS293N	Active	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN74LS293N
SN74LS293N.A	Active	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN74LS293N

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

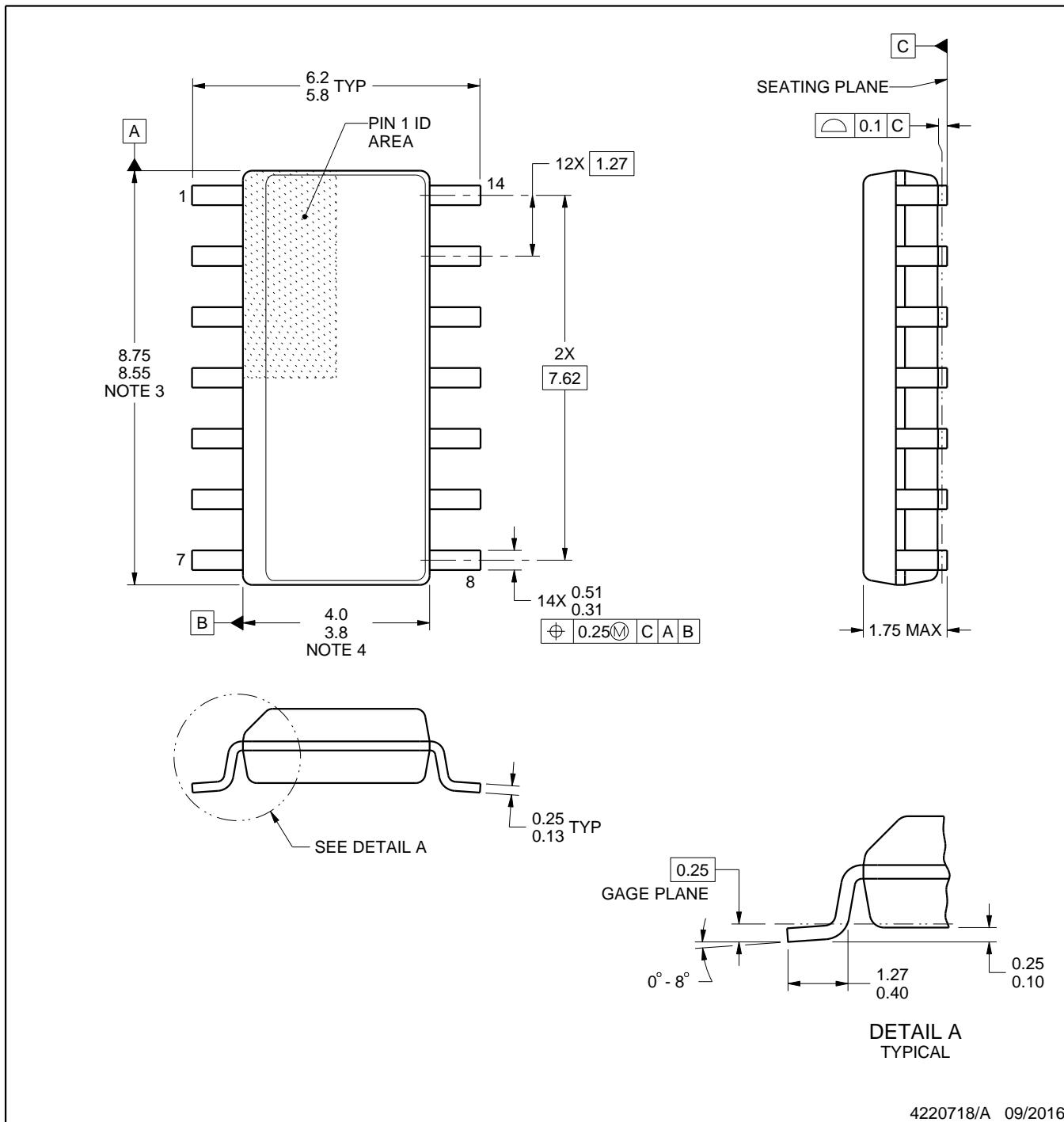
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TUBE

*All dimensions are nominal


Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (μm)	B (mm)
SN74LS293D	D	SOIC	14	50	506.6	8	3940	4.32
SN74LS293D.A	D	SOIC	14	50	506.6	8	3940	4.32
SN74LS293N	N	PDIP	14	25	506	13.97	11230	4.32
SN74LS293N	N	PDIP	14	25	506	13.97	11230	4.32
SN74LS293N.A	N	PDIP	14	25	506	13.97	11230	4.32
SN74LS293N.A	N	PDIP	14	25	506	13.97	11230	4.32

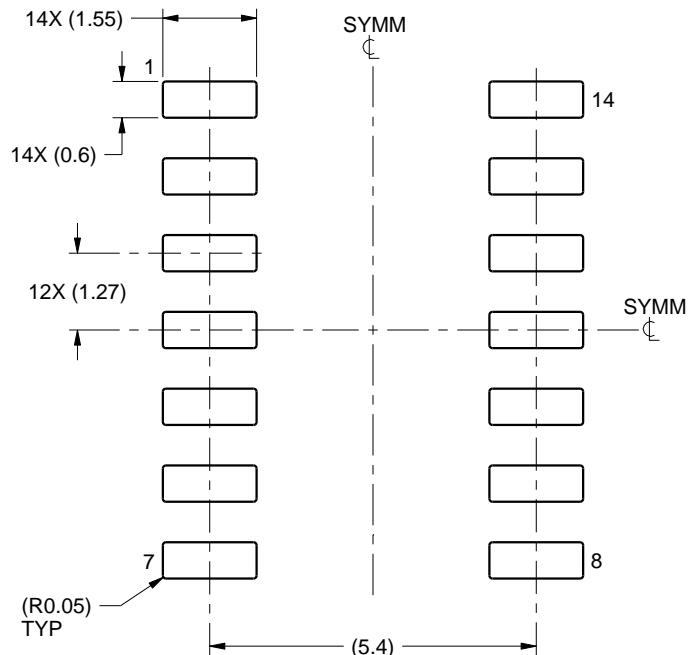
PACKAGE OUTLINE

D0014A

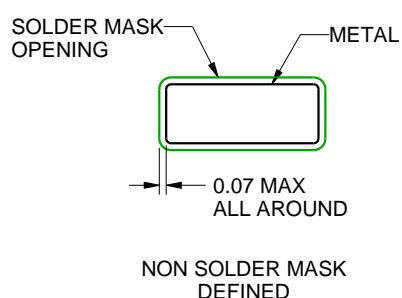
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

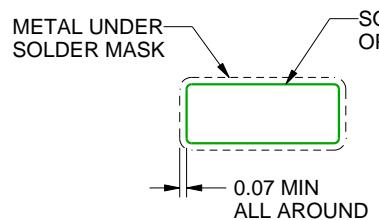
NOTES:


1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm, per side.
5. Reference JEDEC registration MS-012, variation AB.

EXAMPLE BOARD LAYOUT


D0014A

SOIC - 1.75 mm max height


SMALL OUTLINE INTEGRATED CIRCUIT

LAND PATTERN EXAMPLE
SCALE:8X

NON SOLDER MASK
DEFINED

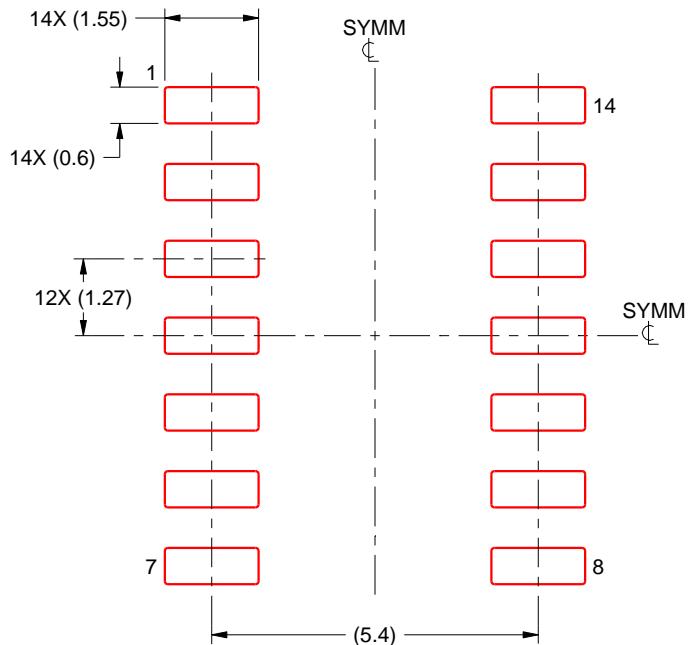
SOLDER MASK
DEFINED

SOLDER MASK DETAILS

4220718/A 09/2016

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.


7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

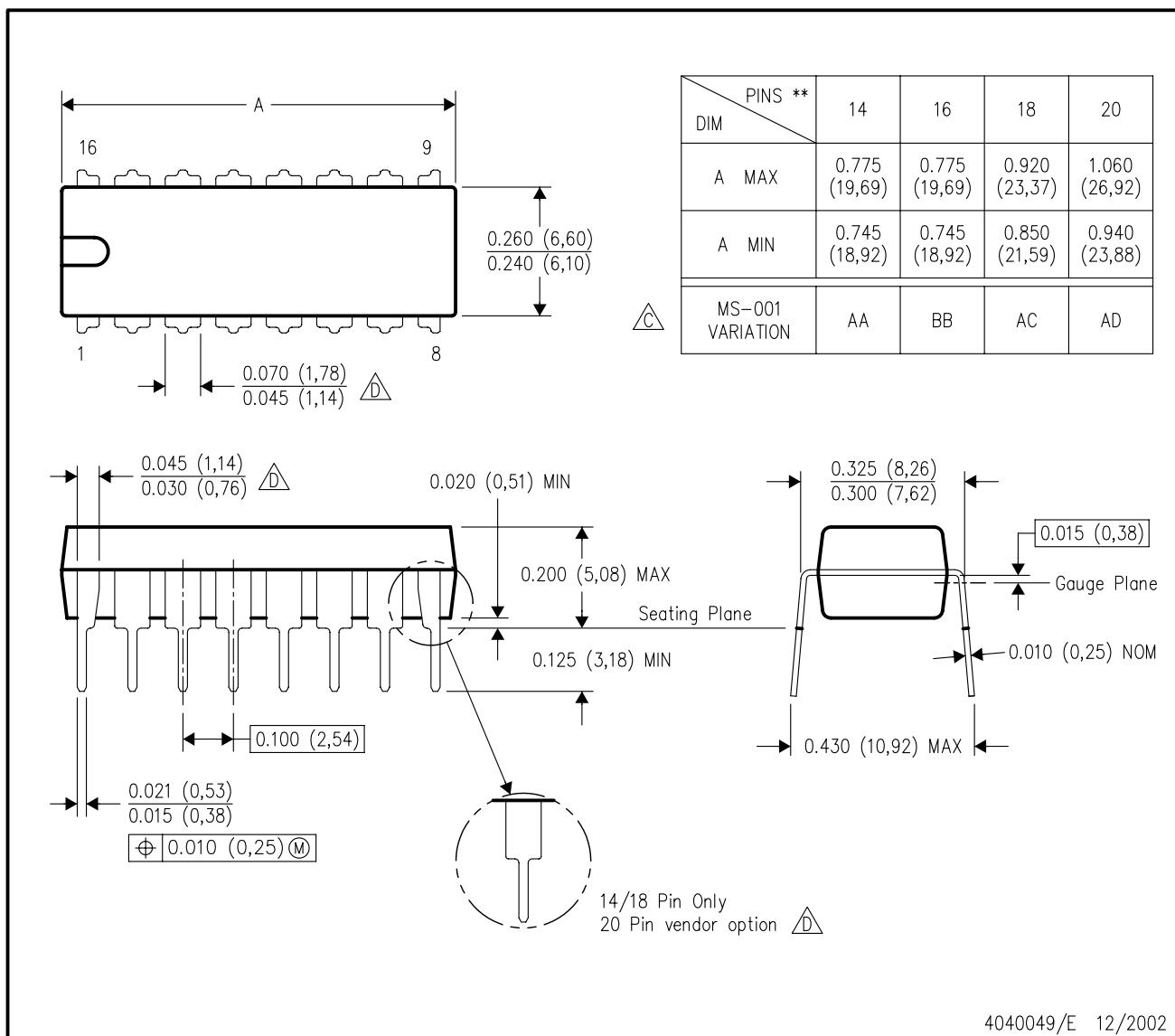
D0014A

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:8X

4220718/A 09/2016


NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

N (R-PDIP-T**)

16 PINS SHOWN

PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
 B. This drawing is subject to change without notice.

△ Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

△ The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#) or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated