DISPLAY Elektronik GmbH

DATA SHEET

LCD MODULE

DEM 40271 FGH-PW

Product Specification

Version: 3

GENERAL SPECIFICATION

MODULE NO.:

DEM 40271 FGH-PW

CUSTOMER P/N

VERSION NO.	CHANGE DESCRIPTION	DATE
0	ORIGINAL VERSION	09.10.2015
1	UPDATE SPEC.	14.10.2015
2	UPDATE SPEC.	15.10.2015
3	UPDATE SPEC.	16.02.2016

PREPARED BY: GJ DATE: 16.02.2016

APPROVED BY: MH DATE: 16.02.2016

CONTENTS

1. FUNCTIONS & FEATURES	2
2. MECHANICAL SPECIFICATIONS	2
3. BLOCK DIAGRAM	2
4. EXTERNAL DIMENSIONS	3
5. PIN ASSIGNMENT	4
6. PCB DRAWING AND DESCRIPTION.	5
7. BACKLIGHT VOLTAGE & CURRENT	6
8. MAXIMUM ABSOLUTE POWER RATINGS	7
9. ELECTRICAL CHARACTERISTICS	7
10. CONTROL AND DISPLAY COMMAND	10
11. STANDARD CHARACTER PATTERN (ST7066U-0A-B)	11
12. QUALITY DESCRIPTION	12
13. MODULE ACCEPT QUALITY LEVEL (AQL)	13
14. RELIABILITY TEST	13
15. LCD MODULES HAMDLING PRECAUTIONS	14
1/ OTHER	4.4

1. FUNCTIONS & FEATURES

MODULE NAME	LCD TYPE
DEM 40271 FGH-PW	FSTN Transflective Positive Mode
iewing Direction	: 6 O'clock

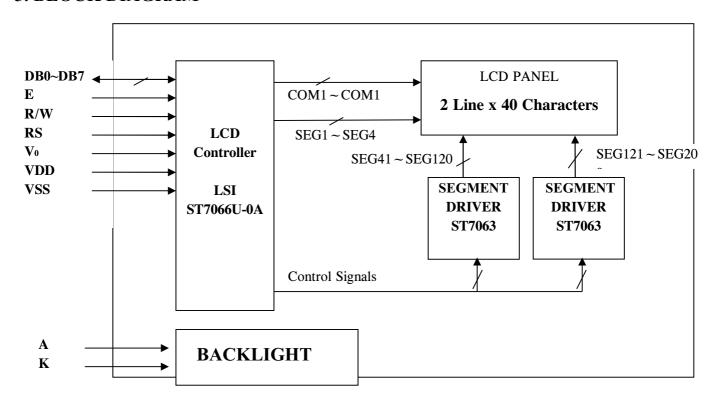
Viewing Direction

 Driving Scheme : 1/16 Duty Cycle, 1/5 Bias

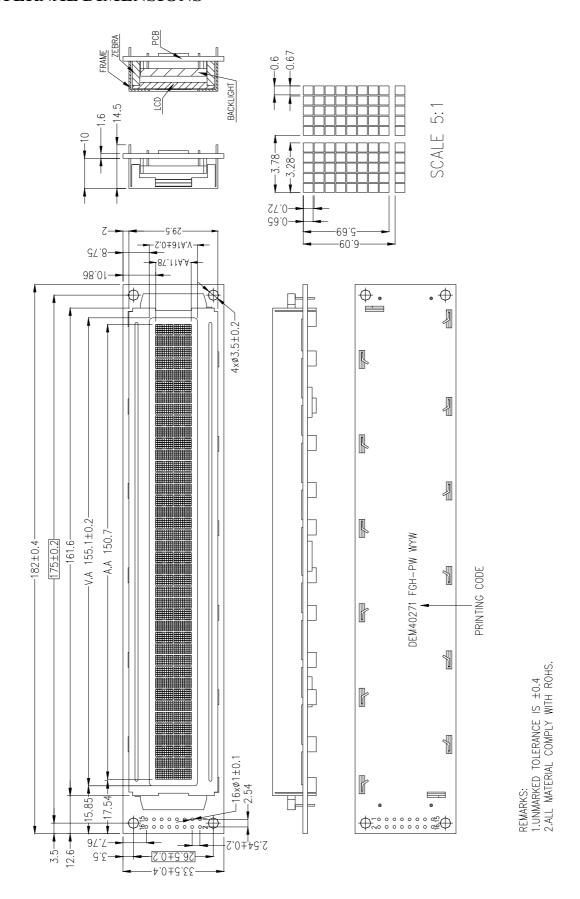
• Power Supply Voltage : 5.0 Volt (typ.) • VLCD Adjustable For Best Contrast : 4.6 Volt (typ.) Display Format : 40 x 2 Characters • Operation Temperature :-20°C to +70°C • Storage Temperature :- 30° C to $+80^{\circ}$ C Internal Memory : CGROM (10,080 bits)

> : CGRAM (64 x 8 bits) : DDRAM (80 x 8 bits)

CGROM : CGROM of the ST7066U-0A

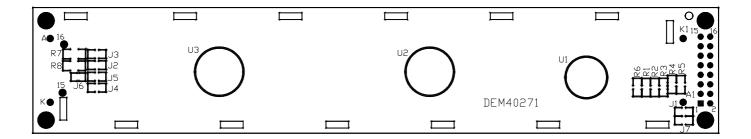

Interface : Easy Interface with 4-bit or 8-bit MPU

2. MECHANICAL SPECIFICATIONS


Module Size : 182.00 x 33.50 x 14.50 mm

Character Pitch : 3.78 x 6.09 mm : 3.28 x 5.69 mm Character Size Character Font : 5 x 8 Dots Dot Size : 0.60 x 0.65 mm Dot Pitch : 0.07 mm

3. BLOCK DIAGRAM


4. EXTERNAL DIMENSIONS

5. PIN ASSIGNMENT

Pin No.	Symbol	Function
1	Vss	Ground terminal of module.
2	V _{DD}	Power terminal of module 5.0V.
3	V ₀	Power Supply for liquid crystal drive.
4	RS	Register select RS = 0 (Instruction register) RS = 1 (Data register)
5	R/W	Read /Write R/W = 1 (Read) R/W = 0 (Write)
6	E	Read/Write Enable Signal
7	DB0	
8	DB1	
9	DB2	Bi-directional data bus, data transfer is performed once, thru DB0 to
10	DB3	DB7, in the case of interface data. Length is 8-bits; and twice, thru DB4
11	DB4	to DB7 in the case of interface data length is 4-bits. Upper four bits first
12	DB5	then lower four bits.
13	DB6	
14	DB7	
15	LED – (K)	Supply 5.0V for LED Backlight.Please also refer to 6. PCB drawing
16	LED + (A)	and description.

6. PCB DRAWING AND DESCRIPTION.

DESCRIPTION:

6-1-1. The polarity of the pin 15 and the pin 16:

12 15	12.14	LED Polarity				
J3,J5	J2,J4	15 Pin	16 Pin			
Each open	Each closed	Anode	Cathode			
Each closed	Each open	Cathode	Anode			

Note: In application, J3, J5 should be closed, and J2, J4 should be open.

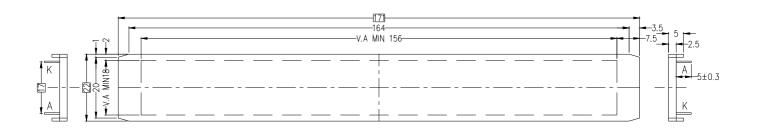
6-1-2. The metal-bezel is set be on ground when the J1 is closed.

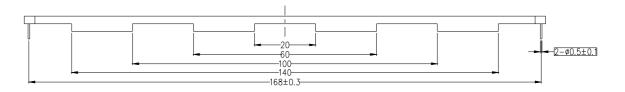
Note: In application, J1 should be closed.

6-1-3. The LED resistor should can be bridged when the J6 is closed.

Note: In application J6 should be opened.

6-1-4. The R7 and the R8 are the LED resistor.


Note: In application, R7=68 Ohm, R8=68 Ohm


6-1-5. The mounting hole is set to ground, when J7 is closed.

Note: In application J7 is closed.

7. BACKLIGHT VOLTAGE & CURRENT

ELECTRICAL-OPTICAL CHARACTERISTICS												
Item	Symbol	min.	typ.	max.	Unit	Condition						
Forward Voltage	Vf	2.8	3. 0	3. 2	V	If= 60 mA						
Power Dissipation	Pd	_	180	_	mW	If= 60 mA						
Luminous Uniformity	ΔLv	70			%	MIN/MAX*100%						
Luminance	Lv	400	600		cd/m ²							
Color Coordinate	X	0. 25		0.31		If= 60 mA						
coror coordinate	Y	0. 25		0.31		T=25° C						

- REMARKS:
 1. UNMARKED TOLERANCE IS ±0.3
 2. ALL MATERIAL COMPLY WITH ROHS
 3. LED LIFE TIME IS 50000h

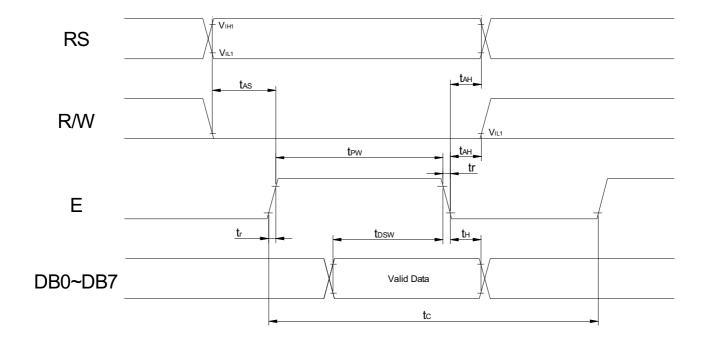
8. MAXIMUM ABSOLUTE POWER RATINGS

Item	Symbol	Standard value	Unit
Power Supply Voltage (1)	V _{DD}	-0.3~+7.0	V
Power Supply Voltage (2)	V ₀	V _{DD} -15.0~V _{DD} +0.3	V
Input Voltage	Vin	-0.3~V _{DD} +0.3	V
Operating Temperature	Topr	-20~+70	°C
Storage Temperature	T _{stg}	-30~+80	°C

^{*}Voltage greater than above may damage to the Circuit.

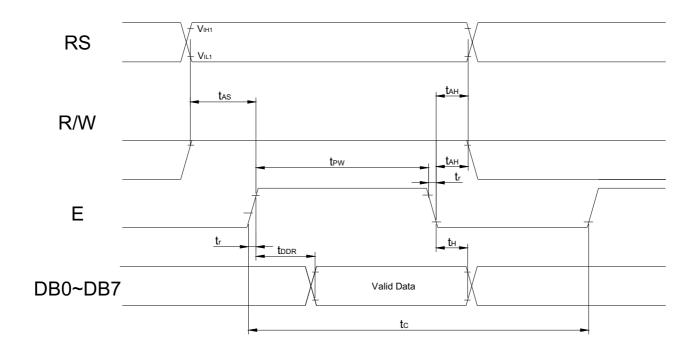
VDD>V1>V2>V3>V4>V5

9. ELECTRICAL CHARACTERISTICS


9-1 DC Characteristics (VDD=4.5V~5.5V, Ta=-20~+70°C)

Itom	Cromb al	Stan	dard Va	lue	Test	T Init
Item	Symbol	MIN	TYP	MAX	Condition	Unit
Operating Voltage	$V_{ m DD}$	2.7	5.0	5.5		V
Supply Current	I _{DD1}		0.35	0.6	V _{DD} =5V,fosc=270kHz	mA
LCD Driving Voltage	VLCD	4.3	4.6	4.9	VDD-V5 (1/5,1/4 Bias)	V

9-2 AC Characteristics (V_{DD}=4.5V~5.5V, Ta=-20~+70°C)


9-2-1. Write mode (writing data from MPU to Module)

Characteristic	Symbol	Min	Тур	Max	Unit	Test PIN
E Cycle Time	tc	1200			ns	E
E Rise Time	t _R			25	ns	E
E Fall Time	t _F			25	ns	E
E Pulse width (High, Low)	t _W	140			ns	E
R/W and RS Set-up Time	t _{SU1}	0			ns	R/W, RS
R/W and RS Hold Time	t _{H1}	10			ns	R/W, RS
Data Set-up Time	tsu2	40			ns	DB0~DB7
Data Hold Time	t _{H2}	10			ns	DB0~DB7

9-2-2. Read mode (Reading data from Module to MPU)

Characteristic	Symbol	Min	Тур	Max	Unit	Test PIN
E Cycle Time	tc	1200			ns	Е
E Rise Time	t _R			25	ns	Е
E Fall Time	t⊧			25	ns	Е
E Pulse width (High, Low)	tw	140			ns	Е
R/W and RS Set-up Time	tsu	0			ns	R/W, RS
R/W and RS Hold Time	tн	10			ns	R/W, RS
Data output Delay Time	t⊳			100	ns	DB0~DB7
Data Hold Time	t _{DH}	5			ns	DB0~DB7

10. CONTROL AND DISPLAY COMMAND

Command	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Execution time (fosc=270KHz)	Remark
Clear Display	0	0	0	0	0	0	0	0	0	1	1.52ms	Write"20H" to DDRAM. And set DDRAM address to "00H" from AC
Return home	0	0	0	0	0	0	0	0	1	X	1.52ms	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.
Entry mode Set	0	0	0	0	0	0	0	1	I/D	S	37us	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.
Display on/off control	0	0	0	0	0	0	1	D	C	В	37us	D=1: entire display on C=1: cursor on B=1: cursor position on
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	X	X	37us	Set cursor moving and display shift control bit, and the direction, without changing DDRAM data.
function Set	0	0	0	0	1	DL	N	F	x	X	37us	DL: interface data is 8/4 bits N: number of line is 2/1 F: font size is 5x11/5x8
Set CGRAM address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	37us	Set CGRAM address in address counter
Set DDRAM address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	37us	Set DDRAM address in address counter
Read busy flag& address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Ous	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.
Write data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	37us	Write data into internal RAM (DDRAM/CGRAM)
Read data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	37us	Read data from internal RAM (DDRAM / CGRAM)

Note:

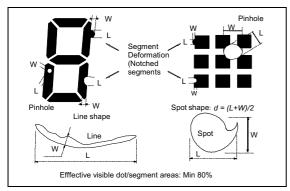
Be sure the ST7066U is not in the busy state (BF=00 before sending an instruction from the MPU to the ST7066U. If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction will take much longer than the instruction time itself. Refer to instruction table for the list of each instruction execution time.

11. STANDARD CHARACTER PATTERN (ST7066U-0A)

Upper(4bit)	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	10010	1011	1100	1101	1110	1111
Lowert(4bit) 0000	CG RAM (1)															
0001	(2)															
0010	(3)															
0011	(4)															
0100	(5)															
0101	(6)															
0110	(7)															
0111	(8)															
1000	(1)															
1001	(2)															
1010	(3)															
1011	(4)															
1100	(5)															
1101	(6)															
1110	(7)															
1111	(8)															

12. QUALITY DESCRIPTION

DEFECT SPECIFICATION:

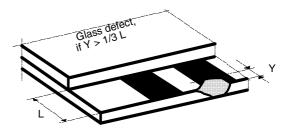

Specific type-related items are covered in this sheet.

a: Table for Cosmetic defects

(Note: nc = not counted).

Sizes and number of defects

(Max. Qty)


Examples/

Shapes

b: Glass defects

b1:Glass defects at contact ledge

Defect Type	Max. defect size [μm] d or L W	Max. Quantity.
Black or White Spots	d ≤ 100	nc
	$100 < d \le 200$	5
Black or White Lines	W ≤ 10	nc
	$L \le 5000 \qquad \qquad W \le 30$	3
	$L \le 2000 \qquad \qquad W \le 50$	2
Pinhole	$d \le 100$ $100 < d \le 200$	nc 1/segme nt
(Total	(5)	
Segment Deformation	W ≤ 100	nc
Bubble (e.g. under pola)	d ≤ 150	nc
	3	
	1	

b2:Glass chipping in other areas shall not be in conflict with the product's function.

13. MODULE ACCEPT QUALITY LEVEL (AQL).

13.1 AQL Standard Value: Fatal Defect =0.1, Major Defect=0.65; Minor Defect =2.5.

13.2 Curtailed Inspection Scheme

Туре	Batch Qty	inspection Qty	AQL value	pass	Reject
	350PCS<		0.1	0	1
	1000PCS	125pcs	0.65	2	3
			2.5	7	8
	200PCS<		0.1	0	1
module product	350PCS 80pcs	0.65	1	2	
			2.5	5	6
			0.1	0	1
	<200PCS 32pcs	32pcs	0.65	0	1
		•	2.5	4	5
Module	<200PCS	All			The sample will be reject when the
sample		inspected	/	/	fateful defect>2pcs or main
	>200PCS	125pcs			defect>5pcs.

Notes: 1). Batch QTY is the production amount that Production department ship to QA department.

- 2). All of product will be inspected if the batch QTY less than inspected QTY.
- 3). Each batch fixed to be 500pcs.

14. RELIABILITY TEST

Operating life time: Longer than 50000 hours (at room temperature without direct irradiation of sunlight) Reliability characteristics shall meet following requirements.

TEMPERATURE TESTS	NORMAL GRADE		
High temperature storage	+80 □ x 96hrs		
	(Without Polarizer)		
Low temperature storage	-30°C x 4hrs		
High temperature operation	+70°C x 96hrs		
Low temperature operation	-20°C x 4hrs		
High temperature, High humidity	+70 n 95% RH 96hrs		
	(Without Polarizer)		
	-20□ x 30 min		
Thermal shock	10s ↓5Cycles		
	+70°C x 30 min——		
Vibration test	Frequency x Swing x Time		
	40Hz x 4mm x 4hrs		
Drop test	Drop height x Times		
Drop test	1.0m x 6 times		

15. LCD MODULES HAMDLING PRECAUTIONS

- Please remove the protection foil of polarizer before using.
- The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- If the display panel is damaged and the liquid crystal substance inside it leaks out, do not get any in your mouth. If the substance come into contact with your skin or clothes promptly wash it off using soap and water.
- Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarize carefully.
- To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - -Be sure to ground the body when handling the LCD module.
 - -Tools required for assembly, such as soldering irons, must be properly grounded.
 - -To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
 - -The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.

Storage precautions

When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps. Keep the modules in bags designed to prevent static electricity charging under low temperature / normal humidity conditions (avoid high temperature / high humidity and low temperatures below 0° C). Whenever possible, the LCD modules should be stored in the same conditions in which they were shipped from our company.

16 OTHERS

- Liquid crystals solidify at low temperature (below the storage temperature range) leading to defective orientation of liquid crystal or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subjected to a strong shock at a low temperature.
- If the LCD modules have been operating for a long time showing the same display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. Abnormal operating status can be resumed to be normal condition by suspending use for some time. It should be noted that this phenomena does not adversely affect performance reliability.
- To minimize the performance degradation of the LCD modules resulting from caused by static electricity, etc. exercise care to avoid holding the following sections when handling the modules:
 - Exposed area of the printed circuit board
 - Terminal electrode sections