Überwachungstechnik

VARIMETER Stromrelais MK 9053N

Original

Produktbeschreibung

Das Stromrelais MK 9053N der VARIMETER Serie überwacht 1-phasige Gleich- oder Wechselstromnetze. Die Geräteinstellung erfolgt einfach und bedienerfreundlich über Drehschalter an der Gerätefront. Das frühzeitige Erkennen und die präventive Wartung verhindern Ausfälle elektrischer Anlagen und garantieren damit eine höhere Betriebs- und Anlagensicherheit.

Schaltbilder 22 22 24 24 M8549 a 12 14 12 MK 9053N MK 9053N/1__

Anschlussklemmen

Klemmenbezeichnung	Signalbeschreibung
A1, A2	Hilfsspannung
i, k	Strom-Messeingang
11, 12, 14	1. Wechslerkontakt
21, 22, 24	2. Wechslerkontakt
Z1, Z2, Z3	Fernpoti für Einstellwert

Sicherheitshinweis

Zu beachten bei Anschluss eines Fernpotis beim MK 9053N/1_

Messkreis und Fernpoti sind nicht galvanisch getrennt. Die Spannung am Messkreis i, k / PE steht auch am Fernpoti an. Das Fernpoti ist erd- und potentialfrei anzuschließen!

Ihre Vorteile

- Präventive Wartung
- Für höhere Produktivität
- Schnellere Fehlerlokalisierung
- Präzise und zuverlässig

Merkmale

- Nach IEC/EN 60255-1, IEC/EN 60947-1
- Zur Überwachung von Gleich- und Wechselströmen
- Messbereiche von 2 mA bis 10 A
- Hohe Überlastbarkeit
- Messfrequenz bis 5 kHz
- Hilfskreis Messkreis galvanisch getrennt
- Mit Anlaufüberbrückung
- Mit Schaltverzögerung, wahlweise bis 100 s
- Wahlweise mit Fernpotianschluss zur Einstellung des Ansprechwertes
- Wahlweise mit Speicherverhalten
- Optional mit festen Einstellungen möglich
- LED-Anzeige für Betriebsbereitschaft und Kontaktstellung
- Wahlweise auch mit steckbaren Anschlussblöcken für schnellen Geräteaustausch, optional
- Mit Schraubklemmen
- Oder mit Federkraftklemmen
- 22,5 mm Baubreite

Zulassungen und Kennzeichen

1) Zulassung nicht für alle Varianten

Anwendungen

- Zur Überwachung der Stromaufnahme von elektrischen Verbrauchern
- Für Industrie- und Bahnanwendungen

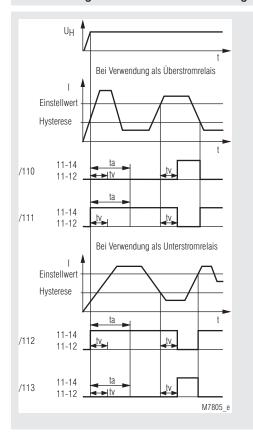
Aufbau und Wirkungsweise

Die Relais messen den arithmetischen Mittelwert des gleichgerichteten Messstromes, wobei die Geräte für sinusförmige Wechselströme in Effektivwert abgeglichen sind. An den Geräten kann sowohl der Ansprech- wie auch über die Hysterese der Rückfallwert eingestellt werden. Die Geräte arbeiten als Überstromrelais. Sie können auch als Unterstromrelais eingesetzt werden. Die Abhängigkeit der Hysterese vom Einstellwert ist zu beachten.

2 Schaltverzögerungen sind variantenspezifisch möglich.

Die Anlaufüberbrückung ta wirkt nur einmalig nach Anlegen der Hilfsspannung. Mit dieser kann z. B. ein Schaltvorgang, ausgelöst durch einen erhöhten Anlaufstrom eines Motors unterdrückt werden. Die Schaltverzögerung t verzögert das Schalten nach Überschreiten eines Schwellwertes

Bei Überstromrelais wirkt die Verzögerung nach Überschreiten des Einstellwertes, bei Unterstromrelais zweckmäßigerweise nach Unterschreiten des Hysteresewertes.


Geräteanzeigen

Grüne LED: Leuchtet bei anliegender Betriebsspannung

Gelbe LED:

Leuchtet bei aktiviertem Ausgangsrelais

Funktionsdiagramm mit Anlaufüberbrückung

Bei der Ausführung MK 9053N/6_ _ mit Fehlerspeicherung wird die Kontaktstellung nach erkanntem Fehler, bzw. nach Ablauf von t, gespeichert. Gelöscht wird die Speicherung durch Unterbrechnung der Hilfsspannung

Technische Daten

Eingang (i, k)

Messbereich1)	MK 9053N mit jeweils 1 Messbereich in AC <u>u n d</u> DC								
AC DC wider-stand Shunt) Geräte anein-ander gereiht Strom 3 s Ein, 100 s Aus 2 - 20 mA 1 ,8 - 18 mA 1,5 Ω 0,5 A 0,7 A 1 A 20 - 200 mA 18 - 180 mA 0,15 Ω 1,5 A 2 A 4 A	Mess	sbereich ¹⁾							
20 - 200 mA 18 - 180 mA 0,15 Ω 1,5 A 2 A 4 A	AC	DC	wider- stand	anein- ander	5 mm Luft-	Strom 3 s Ein,			
		· '	, -	,	'				
30 - 300 mA 27 - 270 mA 0,1 Ω 2 A 2,5 A 8 A	20 - 200 mA	18 - 180 mA	$0,15 \Omega$	1,5 A	2 A	4 A			
	30 - 300 mA	27 - 270 mA	0,1 Ω	2 A	2,5 A	8 A			
50 - 500 mA 45 - 450 mA 0,1 Ω 2 A 2,5 A 8 A	50 - 500 mA	45 - 450 mA	0,1 Ω	2 A	2,5 A	8 A			
$0,1-$ 1 A $0,09-$ 0,9 A $30 \text{ m}\Omega$ 3 A 4 A 8 A	0,1- 1 A	0,09 - 0,9 A	30 mΩ	3 A	4 A	8 A			
0,5- 5 A 0,45- 4,5 A 6 mΩ 8 A 11 A 20 A	0,5- 5 A	0,45 - 4,5 A	6 mΩ	8 A	11 A	20 A			
1 - 10 A 0,9 - 9 A 3 mΩ 12 A 15 A 20 A	1 - 10 A	0,9 - 9 A	3 mΩ	12 A	15 A	20 A			

Gleich- oder Wechselstrom 50 ... 5000 Hz (Andere Frequenzbereiche von 10 ... 5000 Hz, z. B. 16 ²/₃ Hz auf Anfrage)

Messbereichserweiterung:

Für Gleichströme, die über den größten Messbereich hinausgehen, können die Messbereiche 15 ... 150 mV oder 6 ... 60 mV vom BA 9054 und MK 9054N mit externem Shunt verwendet werden. Für Wechselströme, die über den größten Messbereich hinausgehen, verwendet man auch Stromwandler. Zum Beispiel mit Sekundärstrom von 1 A oder 5 A. Die Leistung des Wandlers

sollte ≥ 0,5 VA sein. Arithmetischer Mittelwert Messuna: Abgleich:

Die Wechselstromgeräte können auch

Gleichströme überwachen. Dabei ver schiebt sich die Skaleneichung

um den Formfaktor: (T= 0,90 I_{off})

< 0,05 % / K

Einstellbereiche

Temperatureinfluss:

Einstellung

Ansprechwert: Rückfallwert

Bei AC:

Bei DC:

Stufenlos 0,5 ... 0,98 des Ansprech-(Hysterese)wertes

Stufenlos 0,1 I_N ... 1 I_N Relativskala

stufenlos 0,5 ... 0,96 des Ansprech-

(Hysterese)wertes

0 + 8 %

- 10 + 8%

 $\leq \pm 0.5 \%$

Genauigkeit:

Ansprechwert bei

Drehschalter Rechtsanschlag

(max):

Drehschalter Linksanschlag

(min):

Wiederholgenauigkeit (konstante Parameter):

Wiederbereitschaftszeit Bei Geräten mit Speicherverhalten (Reset durch Unterbrechung der Hilfsspannung)

MK 9053N/6__:

Schaltverzögerung t,:

≤ 1 s

(Abhängig von Funktion und Hilfsspannung) Stufenlos an logarithmischer Skala

einstellbar von

0 ... 20 s, 0 ... 30 s, 0 ... 60 s, 0 ... 100 s Einstellung 0 s = ohne Schaltverzögerung 0,1 ... 20 s; 0,1 ... 60 s; 0,1 ... 100 s

Anlaufüberbrückung t.: Hilfsspannung U_H (A1, A2)

Nennspannung Spannungsbereich Frequenzbereich AC 18 ... 100 V 45 ... 400 Hz; DC 48 % W AC/DC 24 ... 80 V DC 18 ... 130 V W ≤ 5 % AC 40 ... 265 V 45 ... 400 Hz; DC 48 % W AC/DC 80 ... 230 V DC 40 ... 300 V W ≤ 5 %

Nennverbrauch:

4 VA; 1,5 W bei AC 230 V Rel. bestromt 1 W bei DC 80 V Rel. bestromt

2 20.03.23 de / 710A

Technische Daten

Ausgang

Kontaktbestückung: 2 Wechsler Thermischer Strom I,: 2 x 4 A

Schaltvermögen

nach AC 15: nach DC 13: 1,5 A / AC 230 V IEC/EN 60947-5-1 1 A / DC 24 V IEC/EN 60947-5-1

Elektrische Lebensdauer bei 2 A, AC 230 V $\cos \varphi = 1$:

10⁵ Schaltspiele Kurzschlussfestigkeit

max. Schmelzsicherung: 6 A gG / gL 20 x 10⁶ Schaltspiele IEC/EN 60947-5-1

Mechanische Lebensdauer:

Allgemeine Daten

Nennbetriebsart: Temperaturbereich Dauerbetrieb - 40 ... + 50°C

Betrieb: (höhere Temperaturen mit

Einschränkungen auf Anfrage)

- 40 ... + 70°C Lagerung: Betriebshöhe: \leq 2000 m

Luft- und Kriechstrecken Bemessungsstoßspannung/ Verschmutzungsgrad:

4 kV / 2 IEC 60664-1

EMV Statische Entladung (ESD): HF-Einstrahlung

8 kV (Luftentladung) IEC/EN 61000-4-2 20 V/m IEC/EN 61000-4-3

80 MHz ... 1 GHz: 1 GHz ... 2,7 GHz: Schnelle Transienten:

10 V/m IEC/EN 61000-4-3 4 kV IEC/EN 61000-4-4

Stoßspannungen (Surge) zwischen Versorgungsleitungen:

2 kV IEC/EN 61000-4-5 4 kV IEC/EN 61000-4-5 10 V IEC/EN 61000-4-6

EN 55011

Zwischen Leitung und Erde: HF-leitungsgeführt Funkentstörung: **Schutzart** Gehäuse:

Klemmen:

IP 40 IEC/EN 60529 IP 20 IEC/EN 60529

Grenzwert Klasse B

Thermoplast mit V0-Verhalten Gehäuse:

nach UL Subjekt 94 Rüttelfestigkeit: Amplitude 0,35 mm

Frequenz 10 ... 55 Hz, IEC/EN 60068-2-6 40 / 060 / 04 Klimafestigkeit IEC/EN 60068-1 Klemmenbezeichnung: **DIN EN 50005** DIN 46228-1/-2/-3/-4

Leiteranschlüsse Schraubklemmen (fest integriert):

1 x 4 mm² massiv oder 1 x 2,5 mm² Litze mit Hülse und Kunststoffkragen oder 2 x 1,5 mm2 Litze mit Hülse und

Kunststoffkragen oder 2 x 2,5 mm² massiv

Abisolierung der Leiter bzw. Hülsenlänge:

8 mm

Klemmenblöcke mit Schraubklemmen max. Anschlussquerschnitt:

1 x 2,5 mm² massiv oder 1 x 2,5 mm² Litze mit Hülse und

Kunststoffkragen

Abisolierung der Leiter bzw. Hülsenlänge: Klemmenblöcke

8 mm

mit Federkraftklemmen max. Anschlussquerschnitt:

1 x 4 mm² massiv oder 1 x 2,5 mm² Litze mit Hülse und Kunststoffkragen

min. Anschlussquerschnitt: Abisolierung der Leiter bzw. Hülsenlänge:

0,5 mm² 12 ±0,5 mm

unverlierbare Plus-Minus-Klemmen-Leiterbefestigung: schrauben M 3.5 Kastenklemmen mit selbstabhebendem Drahtschutz

oder Federkraftklemmen Abisolierlänge der Leiter: 10 mm

Anzugsdrehmoment: 0,8 Nm Schnellbefestigung: Hutschiene IEC/EN 60715

Nettogewicht: 150 g

Geräteabmessungen

Breite x Höhe x Tiefe 22,5 x 90 x 97 mm

CCC-Daten

Thermischer Strom I_m: 4 A

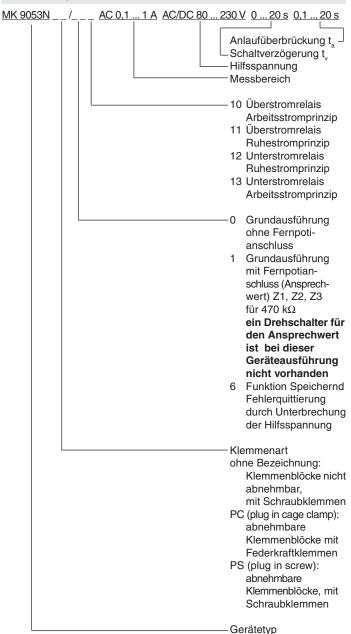
Schaltvermögen

nach AC 15: 1,5 A / AC 230 V IEC/EN 60 947-5-1 nach DC 13: 1 A / DC 24 V IEC/EN 60 947-5-1

Info

Fehlende technische Daten, die hier nicht explizit angegeben sind, sind aus den allgemein gültigen technischen Daten zu entnehmen.

Standardtype


MK 9053N.12/010 AC 0,5 ... 5 A AC/DC 80 ... 230 V t, 0 ... 20 s t, 0,1 ... 20 s Artikelnummer: 0063176

Für Überstromüberwachung

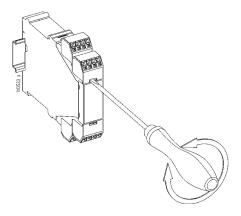
Messbereich: AC 0,5 ... 5 A Hilfsspannung U,: AC/DC 80 ... 230 V

Schaltverzögerung bei t.: 0 ... 20 s Anlaufüberbrückung t.: 0,1 ... 20 s Baubreite: 22,5 mm

Bestellbeispiel für Varianten

3 20.03.23 de / 710A

Anschlussoptionen mit steckbaren Anschlussblöcken


Schraubklemme (PS/plugin screw)

Federkraftklemme (PC/plugin cage clamp)

Hinweise

Demontage der steckbaren Klemmenblöcke (Stecker)

- 1. Gerät spannungsfrei schalten.
- Schraubendreher in die frontseitige Aussparung zwischen Stecker und Frontplatte hineinschieben.
- 3. Schraubendreher um seine Längsachse drehen.
- Beachten Sie bitte, dass die Klemmenblöcke nur auf dem zugehörigen Steckplatz montiert werden.

Zubehör

AD 3: Fernpoti 470 kΩ

Artikel-Nummer: 0050174

Geräteeinstellung

Beispiel:

Stromrelais AC 0,5 ... 5 A

AC gemäß Typenschildangabe:

d.h., das Gerät ist für Wechselstrom abgeglichen

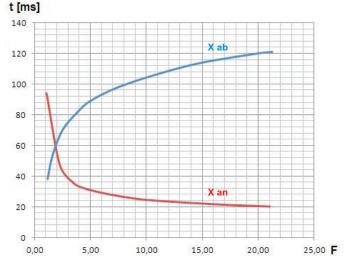
 $0,5 \dots 5 A = Messbereich$

Ansprechwert AC 3 A Rückfallwert AC 1,5 A

Einstellungen

Oberer Drehschalter: 0,6 $(0.6 \times 5 \text{ A} = 3 \text{ A})$ Unterer Drehschalter: 0,5 $(0.5 \times 3 \text{ A} = 1.5 \text{ A})$

Wechselstromgeräte sind auch für die Überwachung von Gleichströmen geeignet. Dabei verschiebt sich die Skaleneichung um den Formfaktor $\overline{l}=0.9$ x $l_{_{\rm eff}}$


AC 0,5 ... 5 A entspricht DC 0,45 ... 4,5 A

Ansprechwert DC 3 A Rückfallwert DC 1.5 A

Einstellungen

Oberer Drehschalter: 0,66 $(0,66 \times 4,5 \text{ A} = 3 \text{ A})$ Unterer Drehschalter: 0,5 $(0,5 \times 3 \text{ A} = 1,5 \text{ A})$

Kennlinie

M11503

Verzögerung t durch Messwertauswertung

Das Diagramm zeigt die typische Verzögerung eines Standard- Gerätes in Abhängigkeit von den Messgrößen "X an und X ab" bei plötzlichem Ansteigen oder Abfallen der Messgröße. Bei langsamer Änderung der Messgröße verringert sich die Verzögerung.

Das Diagramm zeigt eine mittlere Zeitverzögerung. Die Zeitverzögerung kann je nach Variante geringfügig abweichen.

Beispiel zu X an (Überstromüberwachung mit MK 9053N/010):

Eingestellt ist ein Schaltpunkt X an = 2A.

Durch Blockieren eines Motors steigt der Strom plötzlich auf 10 A.

$$= \frac{\text{Messwert (nach Messwertanstieg)}}{\text{Einstellwert}} = \frac{10 \text{ A}}{2 \text{ A}} = 5$$

Aus Diagramm:

Das Ausgangsrelais wird bei Einstellung t, = 0 nach ca. 31 ms aktiviert.

Beispiel zu X ab (Unterstromüberwachung mit MK 9053N/012):

Eingestellt ist ein Hystereseschaltpunkt von 10 A.

Der Strom fällt plötzlich von 23 A auf 0 A.

$$F = \frac{\text{Messwert (vor Messwertabfall)}}{\text{Einstellwert (Hystereseschaltpunkt)}} = \frac{23 \text{ A}}{10 \text{ A}} = 2,3$$

Aus Diagramm:

Das Ausgangsrelais wird bei Einstellung t = 0 nach ca. 70 ms deaktiviert.