- Up to 3 kV stand-off
- 1 Form A, 2 Form A or 1 Form B configurations
- $3 \mathrm{~V}, 5 \mathrm{~V}$ \& 12 V coils with optional internal diode
- Insulation resistance $>1 \mathbf{0}^{12} \Omega$
- Switching up to 0.7 A, 10 W
- General Purpose \& Low Level switch options available
- Additional build options are available
- Many benefits compared to industry standard relays (see last page)

Switch Ratings - Dry Switches

1 Form \mathbf{A} (energize to make)	1 Form B (energize to break)	2 Form \mathbf{A} (energize to make)
Stand-off 1 kV , switching up to 1 kV	Stand-off 1 kV , switching up to 1 kV	Stand-off 1 kV , switching up to 1 kV
Stand-off 1.5 kV , switching up to 1 kV	Stand-off 1.5 kV , switching up to 1 kV	Stand-off 1.5 kV , switching up to 1 kV
Stand-off 2 kV , switching up to 1 kV	Stand-off 2 kV , switching up to 1 kV	
Stand-off 3 kV , switching up to 1 kV		

Series 119 switch ratings - contact ratings for each switch type

Switch No	Switch form	Power rating	Max. switch current		$\begin{aligned} & \text { Max. } \\ & \text { switching } \\ & \text { volts } \\ & \text { (see Note }{ }^{1} \text {) } \end{aligned}$	Min. stand-off volts	Life expectancy ops typical (see Note ${ }^{2}$)	Operate time inc bounce (max)	Release time	Special features
1 (L)	A or B	10W	0.7A	1.25 A	1000	1000	10^{8}	0.5 ms	0.2 ms	High voltage
1	A or B	10W	0.7A	1.25 A	1000	1500	10^{8}	0.5 ms	0.2 ms	High voltage
2 (L)	A	10W	0.7A	1.25 A	1000	1500	10^{8}	0.5 ms	0.2 ms	High voltage
2	A or B	10W	0.7A	1.25 A	1000	2000	10^{8}	0.5 ms	0.2 ms	High voltage
3	A	10W	0.7A	1.25 A	1000	3000	10^{8}	0.5 ms	0.2 ms	High voltage

Note': Switching Voltage

This high voltage rating is for RESISTIVE loads only. At these high voltages, even stray capacitance can generate very high current pulses, which can damage the contact plating causing welding of the reed switch. If there is capacitance in circuit, provision should be made to limit the surge, to within the current and power ratings of the relay.

Note ${ }^{2}$: Life Expectancy

The life of a reed relay depends upon the switch load and the end of life criteria. For example, for an 'end of life' contact resistance specification of 1Ω, switching low loads or when 'cold' switching, typical life is expected to be greater than 1×10^{8} ops. At higher voltages and the maximum load (resistive), typical life is $1 \times 10^{7} \mathrm{ops}$. In the event of abusive conditions, e.g. high currents due to capacitive inrushes, this figure reduces considerably. Pickering will be pleased to perform life testing with any particular load conditions.

Series 119 Life Test Data

Operating Voltages

Coil voltage - nominal	Must operate voltage - maximum at $25^{\circ} \mathrm{C}$	Must release voltage - minimum at $\mathbf{2 5 ^ { \circ }} \mathrm{C}$
3 V	2.25 V	0.3 V
5 V	3.75 V	0.5 V
12 V	9 V	1.2 V

Environmental Specification/Mechanical Characteristics

In the table below, the upper temperature limit can be extended to $+125^{\circ} \mathrm{C}$ if the coil drive voltage is increased to accommodate the resistance/temperature coefficient of the copper coil winding. This is approximately 0.4% per ${ }^{\circ} \mathrm{C}$. This means that at $125^{\circ} \mathrm{C}$ the coil drive voltage will need to be increased by approximately $40 \times 0.4=16 \%$ to maintain the required magnetic drive level. Please contact sales@pickeringrelay.com for assistance.

Operating Temperature Range	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-35^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Shock Resistance	50 g
Vibration Resistance $(10-2000 \mathrm{~Hz})$	20 g
Soldering Temperature (max) $(10 \mathrm{~s}$ max)	$270^{\circ} \mathrm{C}$
Washability (Proper drying process is recommended)	Fully Sealed

Contact Resistance

A characteristic of the switch used in this range is the contact resistance can increase over time if subjected to standoff voltages in the upper range of the specification. This does not affect the life expectancy but can result in contact resistances greater than 1 Ohm. In most high voltage applications this increase has no effect on performance but, in some mixed signal applications low and stable contact resistance is important.
For this reason, Pickering offer both a low-level and a general-purpose option for all package types, the low-level parts have a reduced high voltage standoff and are tested for extended contact resistance stability as part of the production testing. The low-level versions have 119L at the start of the part number.
For new applications or for further information please contact our Technical Department.

The technical information shown in this data sheet could contain inaccuracies or typographical errors. This information may be periodically changed or updated and these changes will be included in future versions of this data sheet.
For different values, latest specifications and product details, please contact your local Pickering sales office.

For FREE evaluation samples go to: pickeringrelay.com/samples

Coil Data and Type Numbers

Device Type	Type Number	Coil (V)	Coil resistance	Max. contact resistance (initial)	Insulation resistance (minimum at $25^{\circ} \mathrm{C}$) (see Note ${ }^{4}$)		Capacitance (typical) (see Note ${ }^{3}$)	
					Switch to coil	Across switch	Closed switch to coil	Across open switch
1 Form A (L) Switch No. 1 (1 kV) Package Type 1	119L-1-A-3/1D	3	100Ω	0.17Ω	$10^{12} \Omega$	$10^{12} \Omega$	2.5 pF	0.1 pF
	119L-1-A-5/1D	5	250Ω					
	119L-1-A-12/1D	12	750Ω					
1 Form A Switch No. 1 (1.5 kV) Package Type 1	119-1-A-3/1D	3	100Ω	0.17Ω	$10^{12} \Omega$	$10^{12} \Omega$	2.5 pF	0.1 pF
	119-1-A-5/1D	5	250Ω					
	119-1-A-12/1D	12	750Ω					
1 Form A (L) Switch No. $2(1.5 \mathrm{kV})$ Package Type 2	119L-1-A-3/2D	3	50Ω	0.17Ω	$10^{12} \Omega$	$10^{12} \Omega$	2.5 pF	0.1 pF
	119L-1-A-5/2D	5	125Ω					
	119L-1-A-12/2D	12	400Ω					
1 Form A Switch No. $2(2 \mathrm{kV}$) Package Type 2	119-1-A-3/2D	3	75Ω	0.17Ω	$10^{12} \Omega$	$10^{12} \Omega$	2.5 pF	0.1 pF
	119-1-A-5/2D	5	200Ω					
	119-1-A-12/2D	12	500Ω					
1 Form A Switch No. 3 (3 kV) Package Type 3	119-1-A-3/3D	3	50Ω	0.17Ω	$10^{12} \Omega$	$10^{12} \Omega$	2.0 pF	0.1 pF
	119-1-A-5/3D	5	125Ω					
	119-1-A-12/3D	12	400Ω					
2 Form A (L) Switch No. 1 (1 kV) Package Type 6	119L-2-A-3/1D	3	50Ω	0.17Ω	$10^{12} \Omega$	$10^{12} \Omega$	2.5 pF	0.1 pF
	119L-2-A-5/1D	5	100Ω					
	119L-2-A-12/1D	12	400Ω					
2 Form A Switch No. 1 (1.5 kV) Package Type 6	119-2-A-3/1D	3	50Ω	0.17Ω	$10^{12} \Omega$	$10^{12} \Omega$	2.5 pF	0.1 pF
	119-2-A-5/1D	5	100Ω					
	119-2-A-12/1D	12	400Ω					
1 Form B (L) Switch No. 1 (1 kV) Package Type 4	119L-1-B-3/1D	3	50Ω	0.17Ω	$10^{12} \Omega$	$10^{12} \Omega$	2.5 pF	0.1 pF
	119L-1-B-5/1D	5	100Ω					
	119L-1-B-12/1D	12	400Ω					
1 Form B Switch No. 1 (1.5 kV) Package Type 4	119-1-B-3/1D	3	50Ω	0.17Ω	$10^{12} \Omega$	$10^{12} \Omega$	2.5 pF	0.1 pF
	119-1-B-5/1D	5	100Ω					
	119-1-B-12/1D	12	400Ω					
1 Form B Switch No. 2 (2 kV) Package Type 5	119-1-B-3/2D	3	50Ω	0.17Ω	$10^{12} \Omega$	$10^{12} \Omega$	2.5 pF	0.1 pF
	119-1-B-5/2D	5	100Ω					
	119-1-B-12/2D	12	400Ω					

When an internal diode is required, the suffix D is added to the part number as shown in the table.

Note ${ }^{3}$: Capacitance across open switch

This is measured with all other component leads connected to the guard terminal of the measuring bridge.

Note ${ }^{4}$: Insulation resistance

Insulation resistance will reduce at higher temperatures. For more information on temperature effects click here, or contact Pickering for more in depth guidance.

Pin Configuration, Weights and Dimensional Data (dimensions in inches, millimeters in brackets)

Important: Where the optional internal diode is fitted or for all Form B types, the correct coil polarity must be observed, as shown by the + symbol on the schematics.
Note: A 1 cm space should be left between Form B types and other relays, as the magnetic field from the internal biasing magnet could slightly affect the sensitivity of the relay alongside.

Pin Configuration, Weights and Dimensional Data (dimensions in inches, millimeters in brackets)

Important: Where the optional internal diode is fitted or for all Form B types, the correct coil polarity must be observed, as shown by the + symbol on the schematics.
Note: A 1 cm space should be left between Form B types and other relays, as the magnetic field from the internal biasing magnet could slightly affect the sensitivity of the relay alongside.

Similar Relays Comparison

If the Series 119 is unsuitable for your application, Pickering also manufactures three other series of reed relays with similar characteristics, but in different package sizes.

Series Name	131L-1-A	131-1-A	119L	-1-A		119-1-A		119L-2-A	119-2-A	119L-1-B		
Physical Outline												
Depth	3.7 (0.145)		$3.7 \text { (0.145) }$									
Width $\quad \mathrm{mm}$	12.5 (0.49)		15.1 (0.595)				20.1 (0.79)			15.1 (0.595)		
Height	6.6 (0.26)		6.6 (0.26)					8.9 (0.35)				
Package Volume (mm^{3})	306		$\begin{array}{r} 1 \\ 369 \end{array}$	2 369	1 369	2 369	3 491	6 662	(6) 662	(4) 498	$\begin{aligned} & 4 \\ & 498 \end{aligned}$	5 498
Typical Weights (g)	0.58		0.67				0.74	1.06		0.89		
Contact Configuration	$\begin{gathered} 1-\mathrm{A} \\ \text { (SPST) } \end{gathered}$		$\begin{gathered} 1-\mathrm{A} \\ \text { (SPST) } \end{gathered}$					$\begin{gathered} \text { 2-A } \\ \text { (DPST) } \end{gathered}$		$\begin{gathered} 1-B \\ \text { (SPNC) } \end{gathered}$		
Reed Switch Type	Dry Low Level	Dry	Dry Low Level	Dry Low Level	Dry	Dry	Dry	Dry Low Level	Dry	Dry Low Level	Dry	Dry
Stand-off Voltage (V)	1000	1500	1000	1500	1500	2000	3000	1000	1500	1000	1500	2000
Switching Voltage (V)	1000		1000									
Switching Current (A)	0.7		0.7									
Carry Current (A)	1.25		1.25									
Switch Power (W)	10		10									

Series Name	104-1-A					104-1-B		104-2-A			100HV-1-A			100HV-1-B		100HV-2-A	
Physical Outline																	
$\underset{\text { (inches) }}{\mathrm{mm}}$	6.3 (0.245)										10.2 (0.40)			10.2 (0.40)		10.2 (0.40)	
	24.1 (0.95)					29 (1.14)					24.1 (0.95)			29 (1.14)		29 (1.14)	
	8.2 (0.32)					12.5 (0.49)					12.7 (0.50)			15.2 (0.60)		15.2 (0.60)	
Package Volume (mm^{3})	1245					2284					3122		3122	4496		4496	
Typical Weights (g)	2.06					3.75		3.7			6.99			8.75		8.75	
Contact Configuration	$\begin{gathered} \text { 1-A } \\ \text { (SPST) } \end{gathered}$					$\begin{gathered} 1-\mathrm{B} \\ \text { (SPNC) } \end{gathered}$		$\begin{gathered} \text { 2-A } \\ \text { (DPST) } \end{gathered}$			$\begin{gathered} \text { 1-A } \\ \text { (SPST) } \end{gathered}$			$\begin{gathered} 1-\mathrm{B} \\ \text { (SPNC) } \end{gathered}$		$\begin{gathered} \text { 2-A } \\ \text { (DPST) } \end{gathered}$	
Reed Switch Type	Dry	Dry	Mercury Wetted	Dry	Dry	Dry	Dry	Dry	Dry	Mercury Wetted	Dry						
Stand-off Voltage (V)	1500	2000	1500	3000	4000	1500	2000	1500	2000	1500	1500	2000	3000	1500	2000	1500	2000
Switching Voltage (V)	1000		500	1000		1000		1000		500	1000			1000		1000	
Switching Current (A)	1		2	1		1		1		2	1			1		1	
Carry Current (A)	1.5		3	1.	5	1.5		1.5		3	1.5			1.5		1.5	
Switch Power (W)	25		50	25	5	25		25		50	25			25		25	

Reed Relay Selection Tool

Because Pickering offer the largest range of high-quality reed relays, sometimes it can be difficult to find the right reed relay you require. That is why we created the Reed Relay Selector, this tool will help you narrow down our offering to get you the correct reed relay for your application. To try the tool today go to: pickeringrelay.com/reed-relay-selector-tool

Standard Build Options

The Series 119 Reed Relay is available with a number of standard build options to tailor it to your specific application. These options are detailed in the table below. If you decide to go ahead and specify one, or more, of these options you will be allocated a unique part number suffix.

Mechanical Build Options	Electrical Build Options
Special pin configurations or pin lengths	Different coil resistance
Special print with customer's own part number or logo	Very low capacitance possibility
Custom packaging possibility	Different stand-off or switching voltage
	Operate or de-operate time
	Pulse capability
	Enhanced specifications
	Non-standard coil voltages and resistance figures
	Special Life testing under customer's specific load
conditions	

Customization

If your specific requirements are not met by standard relay, or any of the standard build options, please speak to us to discuss producing a customized reed relay to service your specific application: pickeringrelay.com/contact

3D Models

Interactive 3D models of the complete range of Pickering relay products in STEP, IGS and SLDPRT formats can be downloaded from the website: pickeringrelay.com/3d-models

Help

If you need any technical advice or other help, please do not hesitate to contact our Technical Sales Department. We will always be pleased to discuss Pickering relays with you. email: techsales@pickeringrelay.com

Contact Us

UK Headquarters - email: sales@pickeringrelay.com Tel. +44 1255428141
USA - email: ussales@pickeringrelay.com| Tel. +1 7818971710
Germany - email:desales@pickeringtest.com Tel. +4989125953160
France - email: frsales@pickeringtest.com| Tel. +33972587700
Nordic - email: ndsales@pickeringtest.com | Tel. +46 340690669
Czech Republic: czsales@pickeringtest.com | Tel. +420 558-987-613
China - email: chinasales@pickeringtest.com | Tel. +86 4008799765
For a full list of agents, distributors and representatives visit: pickeringrelay.com/agents

10 Key Benefits of Pickering Reed Relays

Key Benefit	Pickering Reed Relays	Typical Industry Reed Relays	
1 Instrumentation Grade Reed Switches	Instrumentation Grade Reed Switches with vacuum sputtered Ruthenium plating to ensure stable, long life up to 5×10 E9 operations.	Often low grade Reed Switches with electroplated Rhodium plating resulting in higher, less stable contact resistance.	0
(2) Formerless Coil Construction	Formerless coil construction increases the coil winding volume, maximizing magnetic efficiency, allowing the use of less sensitive reed switches resulting in optimal switching action and extended lifetime at operational extremes.	Use of bobbins decreases the coil winding volume, resulting in having less magnetic drive and a need to use more sensitive reed switches which are inherently less stable with greatly reduced restoring forces.	
3 Magnetic Screening	Mu-metal magnetic screening (either external or internal), enables ultra-high PCB side-by-side packing densities with minimal magnetic interaction, saving significant cost and space. Pickering Mu-Metal magnetic screen - interaction approx. 5\%	Lower cost reed relays have minimal or no magnetic screening, resulting in magnetic interaction issues causing changes in operating and release voltages, timing and contact resistance, causing switches to not operate at their nominal voltages. Typical industry screen - interaction approx. 30\%	
4 SoftCenter ${ }^{\text {TM }}$ Technology	SoftCenter ${ }^{\text {TM }}$ technology, provides maximum cushioned protection of the reed switch, minimising internal lifetime stresses and extending the working life and contact stability.	Transfer moulded reed relays (produced using high temperature/pressure), result in significant stresses to the glass reed switch which can cause the switch blades to deflect or misalign leading to changes in the operating characteristics, contact resistance stability and operating lifetime.	
5 100\% Dynamic Testing	100% testing for all operating parameters including dynamic contact wave-shape analysis with full data scrutiny to maintain consistency.	Simple dc testing or just batch testing which may result in non-operational devices being supplied.	Dynamic Contact Resistance Test
(6) 100\% Inspection at Every Stage of Manufacturing	Inspection at every stage of manufacturing maintaining high levels of quality.	Often limited batch inspection.	
7 100\% Thermal Cycling	Stress testing of the manufacturing processes, from $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$, repeated 3 times.	Rarely included resulting in field failures.	
8 Flexible Manufacturing Process	Flexible manufacturing processes allow quick-turn manufacturing of small batches.	Mass production: Usually large batch sizes and with no quick-turn manufacturing.	
9 Custom Reed Relays	Our reed relays can be customized easily, e.g. special pin configurations, enhanced specifications, non-standard coil or resistance figures, special life testing, low capacitance, and more.	Limited ability to customize.	
10 Product Longevity	Pickering are committed to product longevity; our reed relays are manufactured and supported for more than 25 years from introduction, typically much longer.	Most other manufacturers discontinue parts when they reach a low sales threshold; costing purchasing and R\&D a great deal of unnecessary time and money to redesign and maintain supply.	$\begin{gathered} \text { Product } \\ 25+\text { Years } \\ \text { Longevity } \end{gathered}$

