
Best Pneumatics

Related Products

Shock Absorber: RB······P.5.1-1	1	
Floating Joint: JP.5.2-1		
Auto Switch: DP.5.3-2		
Made to Order: -X······P.5.4-1		
Copper Free: 20P.5.5-1		
Technical Data		
Technical DataP.5.6-1		
		RB
		J
		D
		-X
	\rightarrow	20-
		Technical Data

Shock Absorber Series RB

Impact and noise absorption

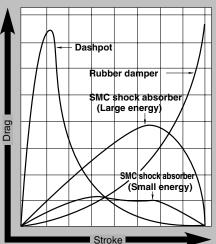
Dampening to meet the high speed requirements of the modern world.

Shock Absorber: Series RB Coolant Resistant: Series RBL

Usable without a stopper nut The strong body can be positioned directly.

Short Style Shock Absorber: Series RBQ

A compact style that has been shortened lengthwise


Allowable eccentric angle 5° Suitable for absorption of rotation energy.

Variations

Usable without a stopper nut The strong body can be positioned directly.

Automatic adjustment to the most appropriate absorption performance

Specially designed orifice can absorb energy comprehensively and most appropriately in many different applications. This ranges from high speed low loads, to low speed high loads; without requiring additional adjustment of the shock absorber.

Series RB Coolant resistant Series RBQ Series RBQ

Series RBQ

*2 lock nuts are attached for series

RB and standard models RBQ.

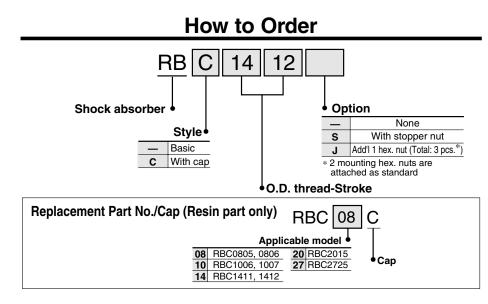
Foot bracket

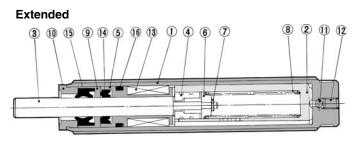
Page

5.1-2

5.1-7

SMC


Shock Absorber Series RB


Specifications

ope		Jano	15											
	-1 - 1	Basic	RB0805	RB0806	RB1006	RB1007	RB1411	RB1412	RB2015	RB2725				
Мо	aei	With cap	RBC0805	RBC0806	RBC1006	RBC1007	RBC1411	RBC1412	RBC2015	RBC2725				
Max. energy absorption (J)		0.98	2.94	3.92	5.88	14.7	19.6	58.8	147					
Stroke a	absorpt	ion (mm)	5	6	6	7	11	12	15	25				
Impact	spee	d (m/s)		0.05 to 5										
Max. ope	ration*	(cycle/min)	80	80	70	70	45	45	25	10				
Max. allow	able thru:	st energy (N)	245	245	422	422	814	814	1961	2942				
Allowable	e temp.	range (°C)	-10 to 80 (No freezing)											
Spring	g Ex	ktended	1.96	1.96	4.22	4.22	6.86	6.86	8.34	8.83				
force ((N) _C	ompressed	3.83	4.22	6.18	6.86	15.30	15.98	20.50	20.01				
Weight (g)			15	15	25	25	65	65	150	360				
0	Stoppe	er Basic	RB	08S	RB	10S	RB	14S	RB20S	RB27S				
Option	nut	With cap	RBC	08S	RBC	10S	RBC	14S	RBC20S	RBC27S				

* At max. energy absorption per cycle. Max. operation cycle/min can increase in proportion to energy absorption.

Construction

Compressed

nponent Parts		
Description	Material	Note
Outer tube	Rolled steel	Gray coated
Inner tube	Special steel	Heat treatment
Piston rod	Special steel	Hard chrome plated
Piston	Special steel	Heat treatment
Bearing	Special bearing material	
Spring guide	Rolled steel	Zinc chromated
Pushing nut	Steel for spring	
Return spring	Piano wire	Zinc chromated
Seal holder	Copper alloy	
Stopper	Carbon steel	Zinc chromated
Steal ball	Bearing steel	
Set screw	Special steel	
Accumulator	NBR	Foam rubber
Rod seal	NBR	
Scraper	NBR	
Gasket	NBR	
	Description Outer tube Inner tube Piston rod Piston Bearing Spring guide Pushing nut Return spring Seal holder Stopper Steal ball Set screw Accumulator Rod seal Scraper	DescriptionMaterialOuter tubeRolled steelInner tubeSpecial steelPiston rodSpecial steelPistonSpecial steelBearingSpecial bearing materialSpring guideRolled steelPushing nutSteel for springReturn springPiano wireSeal holderCopper alloyStopperCarbon steelSteal ballBearing steelSet screwSpecial steelAccumulatorNBRRod sealNBRScraperNBR

D -X 20-

Technical

RB

J

Series RB How to Select

Selection Procedure

1 Classification of impact

□Cylinder stroke at load (horizontal) □Cylinder stroke at load (downward) □Cylinder stroke at load (upward) □Conveyor stroke at load (horizontal) □Free horizontal impact

- □Free dropping impact
- □Rotation impact (with torque)

2 Details of applications

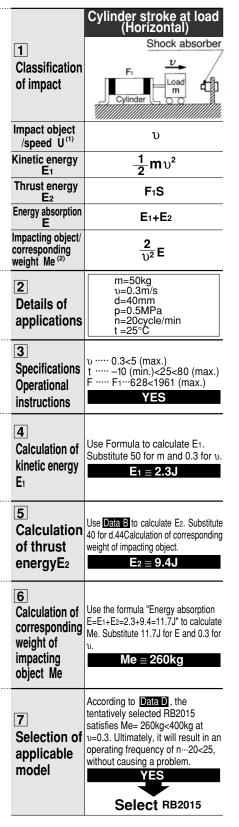
Condition of application	Unit									
Impacting object/weight	kg									
υ Impacting object/speed										
h Dropping height										
Angle/speed	rad/sec									
Distance between axis of cylinder and impact point	m									
Bore size	mm									
Cylinder operating pressure	MPa									
Thrust energy	N									
Torque	Nm									
Operation cycle	cycle/min									
Ambient temperature	°C									
Friction coefficient	-									
	Impacting object/weight Impacting object/speed Dropping height Angle/speed Distance between axis of cylinder and impact point Bore size Cylinder operating pressure Thrust energy Torque Operation cycle Ambient temperature									

- 3 Specifications and Operational instructions Ensure that the impact speed, thrust energy, operation cycle, ambient temperature and atmosphere fall within the specifications.
- *Be aware of the min. installation radius in the case of oscillating impacts.
- 4 Calculation of kinetic energy E1 Using the equation suitable for the classification of impact. In the case of cylinder stroke at load and

free horizontal impact, substitute respective figures for Data A in order to calculate E1.

- 5 Calculation of thrust energy E₂ Select any shock absorber as a provisional model.
- In the case of thrust energy of cylinder, substitute respective figures for Data B or C.

6 Calculation of corresponding weight of impacting object Me Energy absorption $E=E_{1+}E_{2}$ Corresponding weight of impacting object $Me=\frac{2}{v^{2}}E$ Substitute both energy absorption E and impacting

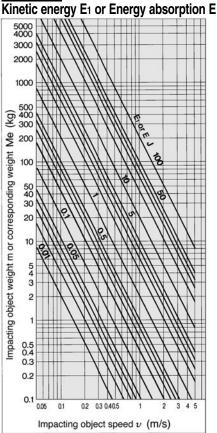

object speed V for **Data A** in order to calculate the corresponding weight of the impacting object.

Selection of applicable model Taking into consideration the corresponding weight of the impacting object Me, calculated using **Data D** and impacting object speed V, check provisional model compatibility with the condition of application. If this is satisfactory, then the said provisional model will be the applicable one.

Caution

To enable the shock absorber to operate accurately for long hours, it is necessary to select a model that is well-suited to your operating conditions. If the impact energy is smaller than 5% of the maximum absorption energy, select a model that is one class lower.

Example of Selection



1 Classification of Impact

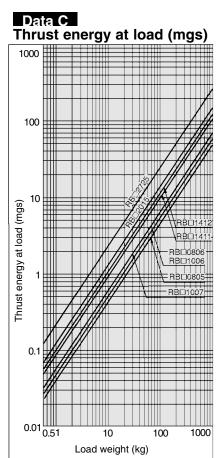
	(Downward)	
Classification of impact	Ft Cylinder	
Impact object /speed v ⁽¹⁾	υ	
Kinetic energy E1	<u>−</u> 12mυ²	
Thrust energy E ₂	F₁S+mgs	
Energy absorption E	E1+E2	
Impacting object/ (2) corresponding weight Me	$\frac{2}{\upsilon^2}E$	

Note 1) Impacting object speed is momentary velocity at which object is impacting against shock absorber.

Data A

(Upward)	Conveyor driving at load (Horizontal)	Free dropping impact	Rotation impact (With torque)
v Load m F₁ Cylinder			
υ	υ	$\sqrt{2gh}$	ω R
<u>1</u> 2mບ²	<u>1</u> 2 m ∪²	mgh	$\frac{1}{2}$ I ω^2
F1S-mgS	mgμS	mgS	T <u>S</u> R
 E1+E2	E1+E2	E1+E2	E1+E2
$\frac{2}{\upsilon^2}E$	$\frac{2}{\upsilon^2}E$	$\frac{2}{\upsilon^2}E$	$\frac{2}{v^2}E$

Note 2) An "Impact body equivalent weight" is the weight of an impact body without involving thrust, into which an object's total energy has been converted.

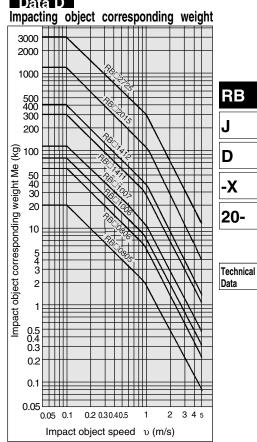

Note 3) Refer to the catalog of rotary actuator for the formula of moment of inertia (Kgm²).

Data B

Th	rust e	nergy	of c	ylinde	er F₁S	(Operatir	ig pressure	e 0.5MPa) Unit: J
N	lodel	RB□ 0805	RB⊒0806 RB⊒1006		RB□ 1411	RB□ 1412	RB□ 2015	RB□ 2725
abs	troke sorption (mm)	5	6 7		11	12	15	25
	6	0.071	0.085	0.099	0.156	0.170	0.212	0.353
	10	0.196	0.236	0.274	0.432	0.471	0.589	0.982
	15	0.442	0.530	0.619	0.972	1.06	1.33	2.21
	20	0.785	0.942	1.10	1.73	1.88	2.36	3.93
	25	1.23	1.47	1.72	2.70	2.95	3.68	6.14
	30	1.77	2.12	2.47	3.89	4.24	5.30	8.84
Ê	40	3.14	3.77	4.40	6.91	7.54	9.42	15.7
<u></u>	50	4.91	5.89	6.87	10.8	11.8	14.7	24.5
size d (mm)	63	7.79	9.35	10.9	17.1	18.7	23.4	39.0
e siz	80	12.6	15.1	17.6	27.6	30.2	37.7	62.8
Bore (100	19.6	23.6	27.5	43.2	47.1	58.9	98.2
ш	125	30.7	36.8	43.0	67.5	73.6	92.0	153
	140	38.5	46.2	53.9	84.7	92.4	115	192
	160	50.3	60.3	70.4	111	121	151	251
	180	63.6	76.3	89.1	140	153	191	318
	200	78.5	94.2	110	173	188	236	393
	250	123	147	172	270	295	368	614
	300	177	212	247	389	424	530	884

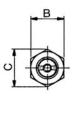
Operating pressure other than 0.5MPa: Multiply by the following coefficient

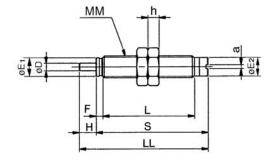
(MPa)						0.6			
Coefficient	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8

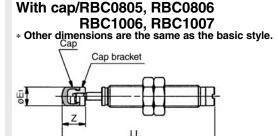


«Sym	bol table»	
Symbol	Specifications	Unit
d	Bore size	mm
Е	Energy absorption	J
E1	Kinetic energy	J
E2	Thrust energy	J
F1	Cylinder thrust	N
g	Acceleration of gravity	m/s ²
h	Dropping height	m
I ⁽³⁾	Moment of inertia around the center of gravify	kgm ²
n	Operation cycle	cycle/min
р	Cylinder operation pressure	MPa
R	Distance between axis of cylinder and impact point	m
S	Shock absorber stroke	m
Т	Torque	Nm
t	Ambient temperature	°C
υ	Impacting object speed	m/s
m	Impacting object weight	kg
Me	Corresponding weight of impacting object	kg
ω	Angle speed	rad/s

Friction coefficient

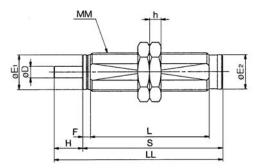

Data D

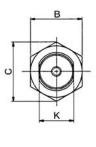

μ

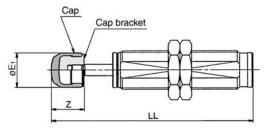


Dimensions

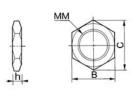
Basic/RB0805, RB0806, RB1006, RB1007






Mc	del		Basic									With cap*			Hexagon nut		
Basic	With cap	D	E1	E2	F	н	а	L	LL	MM	S	E1	LL	Z	В	С	h
RB0805	RBC0805	2.8	6.8	6.8	2.4	5	1.4	33.4	45.8	M8 X 1.0	40.8	6.8	54.3	8.5	12	13.9	4
RB0806	RBC0806	2.8	6.8	6.8	2.4	6	1.4	33.4	46.8	M8 X 1.0	40.8	6.8	55.3	8.5	12	13.9	4
RB1006	RBC1006	3	8.8	8.6	2.7	6	1.4	39	52.7	M10 X 1.0	46.7	8.7	62.7	10	14	16.2	4
RB1007	RBC1007	3	8.8	8.6	2.7	7	1.4	39	53.7	M10 X 1.0	46.7	8.7	63.7	10	14	16.2	4

Basic/RB1411, RB1412, RB2015, RB2725



With cap/RBC1411, RBC1412 RBC2015, RBC2725 * Other dimensions are the same as the basic style.

Мо	odel		Basic							With cap*			Hexagon nut				
Basic	With cap	D	E1	E2	F	н	K	L	LL	MM	S	E1	LL	Z	В	С	h
RB1411	RBC1411	5	12.2	12	3.5	11	12	58.8	78.3	M14 X 1.5	67.3	12	91.8	13.5	19	21.9	6
RB1412	RBC1412	5	12.2	12	3.5	12	12	58.8	79.3	M14 X 1.5	67.3	12	92.8	13.5	19	21.9	6
RB2015	RBC2015	6	18.2	18	4	15	18	62.2	88.2	M20 X 1.5	73.2	18	105.2	17	27	31.2	6
RB2725	RBC2725	8	25.2	25	5	25	25	86	124	M27 X 1.5	99	25	147	23	36	41.6	6

Hexagon Nut (2 pcs. as standard)

Part No.	D	imensi	ons	
Tarrio.	MM	h	В	С
RB08J	M8 X 1.0	4	12	13.9
RB10J	M10 X 1.0	4	14	16.2
RB14J	M14 X 1.5	6	19	21.9
RB20J	M20 X 1.5	6	27	31.2
RB27J	M27 X 1.5	6	36	41.6

Op Sto

Fo

h1

Part No.

Basic With cap

RB08S RBC08S

RB10S RBC10S

RB14S RBC14S

RB20S RBC20S

style

pø

d

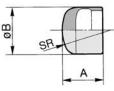
9

11

15 20

23 25

32 33


f

15

15

Cap These are the replacement parts for the cap style. Not available for the basic style.

Material: Polyurethane

	Watone	a. i oiya	Tothano						
Part No.	Di	Dimensions							
Fall NO.	Α	В	R1						
RBC08C	6.5	6.8	6						
RBC10C	9	8.7	7.5						
RBC14C	12.5	12	10						
RBC20C	16	18	20						
RBC27C	21	25	25						

	•		 		
pti	on				
opp	ber nu	t			
or ba	asic sty	/le		For	сар

MM

В С h1

12

14 16.2 8

19 21.9

27

RB27S RBC27S 36 41.6 22

h2

MM

M8 X 1.0

M10 X 1.0

M14 X 1.5

M20 X 1.5

M27 X 1.5

Dimensions

h2

23

23

31

51

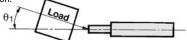
13.9

31.2 16 40

6.5

11

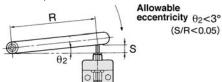
A Precautions


(mm)

Be sure to read before handling. Refer to Pages p.0-39 to 0-43 for Safety Instructions and common precautions.

Selection

🕂 Warning


The installation must be designed so that the impact body is perpendicular to the shock absorber's axial centre. An angle of deviation that exceeds 3° will place an excessive load on the bearings, leading to oil leaks within a short period of operation.

Allowable eccentricity 01<3°

(2)If oscillating impacts are involved, the installation must be designed so that the direction in which the load is applied is perpendicular to the shock absorber's axial center.

The allowable oscillating angle until the stroke end must be $\theta_2 < 3^\circ$. In this case, the minimum installation radius will be as shown in the table below. If the angle exceeds 3° , it could lead to oil leaks.

Installation conditions for rotation impact

Model	S (Stroke)	θ2 (Allowable rotation angle)	R (Min. installation radius)
RB 0805	5		96
RB□□0806	6		115
RB□□1006	6		115
RB□□1007	7	3°	134
RB□□1411	11		210
RB□□1412	12		229
RB□□2015	15		287
RB	25		478

3A guide is necessary if the impact body involves vibrations.

If the impact body involves vibrations and if a force that is perpendicular to the axis is applied to the piston rod, a secure guide must be provided for the impact body.

(A) The rigidity of the mounting frame must be taken into consideration.

If the mounting frame lacks rigidity, the shock absorber will vibrate after an impact, causing bearing wear and damage. Apply the following formula to calculate the force that is applied to the mounting frame:

Force applied to the mounting frame $N \cong 2$ \overline{E} (absorption energy J) S (stroke m)

▲ Caution

- ①The maximum absorption energy indicated in the specifications for both Series RB and RBL cannot be brought into full play unless the entire stroke is used.
- 2 The contact surface of the impact body with which the piston rod comes in contact must be highly rigid.

In the case without a cap, a high surface compression load is applied to the contact surface of the impact body with which the piston rod comes in contact. Therefore, the contact surface must be highly rigid(hardness of HRC35 or more).

3Be aware of the return force of the impact body.

If used in a conveyor drive, after the shock absorber has absorbed energy, it could be pushed back by the spring that is built in. Refer to the column for the spring force in the specifications (P.5.1-2).

Environment

🛆 Warning

- 1 Do not expose the shock absorber to machining oil, water, or dust.
- Series RB cannot be used under conditions in which fluids such as machining oil or water are present in atomized form or come in direct contact with the piston rod, or in which dust could adhere to the piston rod. Such conditions would cause malfunction.

ODo not operate the shock absorber in an environment that poses the risk

of corrosion.

Refer to the respective structural drawing for the type of material that is used in the shock absorbar.

③Do not use the shock absorber in a clean room, as it could contaminate the clean room.

Mounting

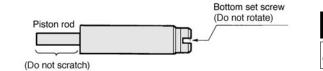
▲ Warning

①Before performing installation, removal, or stroke adjustment, make sure to cut the power supply to the equipment and verify that the equipment has stopped.

Caution

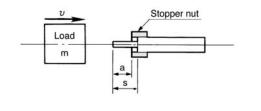
①Tightening torque of mounting nut should be as follows.

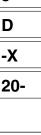
Model		RB□1006 RB□1007		RB□2015	RB□2725
O.D. thread (mm)	M8 X 1.0	M10 X 1.0	M14 X 1.5	M20 X 1.5	M27 X 1.5
Thread prepared bore (mm)	ø7.1 ^{+0.1}	ø9.1 ^{+0.1}	ø12.7 ^{+0.1}	ø18.7 ^{+0.1}	ø25.7 ^{+0.1}
Tightening torque (Nm)	1.67	3.14	10.8	23.5	62.8


If the tightening torque that is applied to the nut exceeds the value given above, the shock absorber itself could become damaged.

②Do not scratch the sliding portion of the piston rod or the outside

Failure to observe this precaution could scratch or gouge the sliding portion of the piston rod, or damage the seals, which could lead to oil leakage and malfunction. Furthermore, damage to outside threaded portion of the outer tube could prevent the shock absorber from being mounted onto the frame, or its internal components could deform, leading to a malfunction.


3 Never turn the screw on the bottom of the body


it is not an adjustment screw, as this will cause oil leakage.

④Adjust the stopping time through the use of the stopper nut, as follows:

Control the stopping time of the impact body by turning the stopper nut in or out (thus changing length "a"). After establishing the stopper nut position, use a hexagon nut to secure the stopper nut in place.

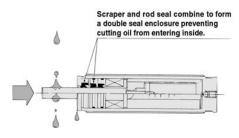
RB

Technical Data

Maintenance

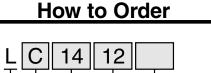
Caution

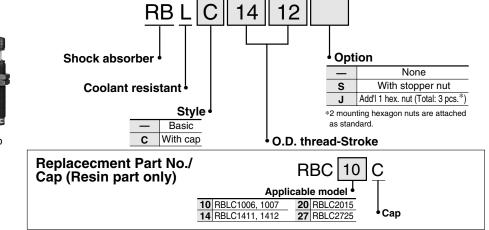
- ①Make sure that the retaining nut is not loose.
- The shock absorber could become damaged if it is used in a loose state.
- Pay attention to any abnormal impact sounds or vibrations. If the impact sounds or vibrations have become abnormally high, the shock absorber may have reached the end of its service life. If this is the case, replace the shock absorber. If use is continued in this state, it could lead to equipment damage.


3Inspect the cap for any cracks or wear.

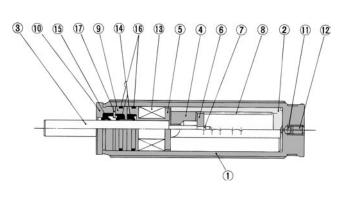
If the shock absorber comes with a cap, the cap could wear first. To prevent damage to the impact body, replace the cap often.

Coolant Resistant Shock Absorber Series **RBL**


Can be operated in an environment exposed to nonwater soluble cutting oil.

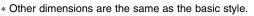


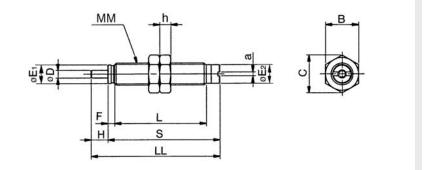
Specifications

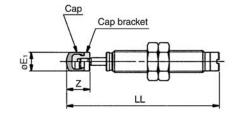

	dal	Basic	RBL1006	RBL1007	RBL1411	RBL1412	RBL2015	RBL2725				
IVIC	del	With cap	RBLC1006	RBLC1007	RBLC1411	RBLC1412	RBLC2015	RBLC2725				
Max. energy absorption (J)			3.92	5.88	14.7	19.6	58.8	147				
Stroke a	osorption	ı (mm)	6	7	11	12	15	25				
Impact s	peed (m/	′s)			0.05	to 5						
Max. oper	ration* (cy	/cle/min)	70	70	45	45	25	10				
Max. allowa	able thrust e	energy (N)	422	422	814	814	1961	2942				
Allowable te	emperature	range (°C)		-10 to 80								
Effective	atmosph	nere	Water-immiscible cutting oil									
Spring force	Exter	nded	4.22	4.22	8.73	8.73	11.57	22.16				
(N)	Compr	ressed	6.18	6.86	14.12	14.61	17.65	38.05				
Weight ((g)		25	25	65	65	150	360				
o .::	Stopper Basic		RB	10S	RB	14S	RB20S	RB27S				
Option	nut	With cap	RBC	:10S	RBC	C14S	RBC20S	RBC27S				
At max.	energy ab	sorption	per cycle. Ma:	x. operation c	/cle/min can ir	ncrease in pro	portion to ene	rgy absorptio				

Construction

Component Parts

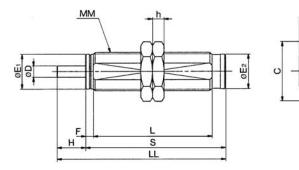

No.	Description	Material	Note
1	Outer tube	Rolled steel	Black coated
2	Inner tube	Special steel	Heat treatment
3	Piston rod	Special steel	Hard chrome plated
4	Piston	Special steel	Heat treatment
(5)	Bearing	Special bearing material	
6	Spring guide	Rolled steel	Zinc chromated
$\overline{\mathcal{O}}$	Pushing nut	Steel for spring	
8	Return spring	Piano wire	Zinc chromated
9	Seal holder	Copper alloy	
10	Stopper	Carbon steel	Zinc chromated
11	Steal ball	Bearing steel	
12	Set screw	Special steel	
(13)	Accumulator	NBR	Foam rubber
14)	Rod seal	NBR	
(15)	Scraper	NBR	
16	Gasket	NBR	
17	Spacer	Rolled steel	Zinc chromated

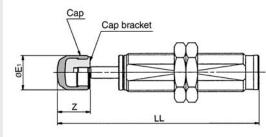



Dimensions

Basic/RBL1006, RBL1007

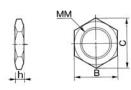
With Cap/RBLC1006, RBLC1007




Mc	odel	Basic									With cap*			Hexagon nut			
Basic	With Cap	D	E1	E2	F	н	а	L	LL	MM	S	E1	LL	Z	В	С	h
RBL1006	RBLC1006	3	8.8	8.6	2.7	6	1.4	43.8	57.5	M10 X 1.0	51.5	8.7	67.5	10	14	16.2	4
RBL1007	RBL1007 RBLC1007 3 8.8 8.6 2.7 7 1.4 43.8 58.5 M10 X 1.0 51.5 8.7 68.5 10 14 16.2 4										4						
Note) L, LL and S dimer	Note) L, LL and S dimensions of RBL(C)1007/1006 are different from those of RB(C)1007/1006.																

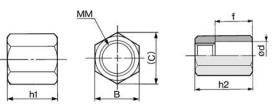
Basic/RBL1411, RBL1412, RBL2015, RBL2725

With Cap/RBLC1411, RBLC1412 RBLC2015, RBLC2725


* Other dimensions are the same as the basic style.

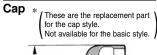
Мо	del		Basic									1	With ca	p*	Hexagon nut			Ľ
Basic	With Cap	D	E1	E2	F	Н	K	L	LL	MM	S	E1	LL	Z	В	C	h	
RBL1411	RBLC1411	5	12.2	12	3.5	11	12	63.6	83.1	M14 X 1.5	72.1	12	96.6	13.5	19	21.9	6	-)
RBL1412	RBLC1412	5	12.2	12	3.5	12	12	63.6	84.1	M14 X 1.5	72.1	12	97.6	13.5	19	21.9	6	
RBL2015	RBLC2015	6	18.2	18	4	15	18	62.2	88.2	M20 X 1.5	73.2	18	105.2	17	27	31.2	6	2
RBL2725	RBLC2725	8	25.2	25	5	25	25	91.5	129.5	M27 X 1.5	104.5	25	152.5	23	36	41.6	6	
Nata) I I and C diman	along of DDI (C)1007	1000	a diffaran	* ***			7/1000											

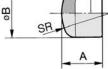
Note) L, LL and S dimensions of RBL(C)1007/1006 are different from those of RB(C)1007/1006.


Hexagon Nut (2 pcs. as standard)

Part No.	Dimensions						
Tarrio.	MM	h	В	С			
RB10J	M10 X 1.0	4	14	16.2			
RB14J	M14 X 1.5	6	19	21.9			
RB20J	M20 X 1.5	6	27	31.2			
RB27J	M27 X 1.5	6	36	41.6			

Option


Stopper Nut For basic style



For cap style

Par	t No.							
Basic	With Cap	В	С	h1	h2	MM	d	f
RB10S	RBC10S	14	16.2	8	23	M10 X 1.0	11	15
RB14S	RBC14S	19	21.9	11	31	M14 X 1.5	15	20
RB20S	RBC20S	27	31.2	16	40	M20 X 1.5	23	25
RB27S	RBC27S	36	41.6	22	51	M27 X 1.5	32	33

Replacement Part

	Material: Polyurethane										
Part No.	Dimensions										
Tarrino.	Α	В	SR								
RBC10C	9	8.7	7.5								
RBC14C	12.5 12 10										

18

25

16

21

RBC20C

RBC27C

Technical

Data

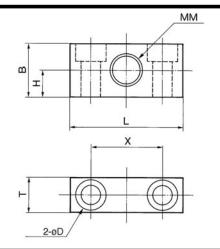
20

25

Series RB, RBL Made to Order Specifications

Contact SMC for the detailed dimensions, specifications and delivery.

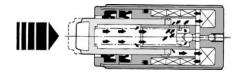
Foot Bracket for Shock Absorber


Available for the foot mounting bracket of series RB.

	Part No.	
	Part No.	Applicable absorber
	RB08-X331	RB□805, 0806
	RB10-X331	RB□1006, 1007
3	RB14-X331	RB□1411, 1412
	RB20-X331	RB□2015
	RB27-X331	RB□2725

*Order the foot bracket separately.

Dimensions



Part No.	В	D		L	MM	Т	Х	Mounting bolt
RB08-X331 15 4.5Drill, 8 Depth of counter bore4.4		7.5	32	M8 X 1.0	10	20	M4	
RB10-X331	19	5.5Drill, 9.5 Depth of counter bore5.4	9.5	40	M10 X1.0	12	25	M5
RB14-X331 25 9Drill, 14 Depth of counter bore8.6		12.5	54	M14 X 1.5	16	34	M8	
RB20-X331	38	11Drill, 17.5 Depth of counter bore10.8	19	70	M20 X 1.5	22	44	M10
RB27-X331	50	13.5Drill, 20 Depth of counter bore13	25	80	M27 X 1.5	34	52	M12

Shock Absorber Short Style Series **RBQ**

Allowable eccentric angle is 5°

Ideal for absorption of rotation energy

Specifications

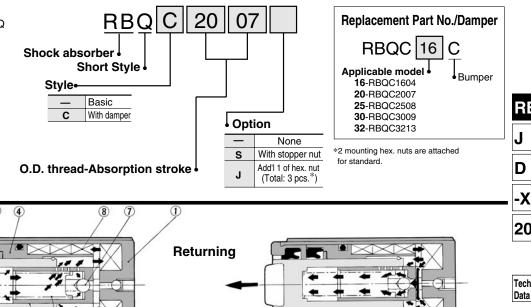
Mode		Basic	RBQ1604	RBQ2007	RBQ2508	RBQ3009	RBQ3213
		With damper	RBQC1604	RBQC2007	RBQC2508	RBQC3009	RBQC3213
Max. energy absorption (J)		orption (J)	1.96	11.8	19.6	33.3	49.0
Stroke abso	orption	n (mm)	4	7	8	8.5	13
Impact spee	ed (m/	s)			0.05 to 3		
Max. operat	tion* (cycle/min)	60	60	45	45	30
Max. allowa	able th	rust (N)	294	490	686	981	1177
Ambient ter	npera	ture (°C)	-10 to 80				
Spring	Exte	ended	6.08	12.75	15.69	21.57	24.52
force (kgf)	Corr	npressed	13.45	27.75	37.85	44.23	54.23
Weight (g)		28	60	110	182	240	
Option/Stopper nut		RBQ16S	RB20S	RBQ25S	RBQ30S	RBQ32S	

*At max. energy absorption per cycle. Max. operation cycle/min can increase in proportion to energy absorption. **Mounting nut: 2 pcs. (Standard).

How to Order

With bumper Series RBQC

Construction


Compressed

1

Basic Series RBQ

An impacting object that strikes against the piston rod end pressurizes oil inside the piston. Thus, pressurized oil jets out through the orifice inside the piston, thereby generating hydraulic resistance to absorb the energy of the impacting object. The oil jetted out through the orifice is collected inside the outer tube by means of the stretching action of the accumulator.

5 (3)

Component Parts

No.	Description	Material	Note
1	Outer tube	Rolled steel	Black nickel plated
2	Piston rod	Special steel	Heat treatment Hard chrome plated
3	Piston	Special steel	Heat treatment
(4)	Bearing	Special bearing material	
5	Return spring	Piano wire	Zinc chromated
6	Stopper	Carbon steel	Zinc chromated

When the impacting object is removed, the return spring pushes out the piston rod, and negative pressure, generated at the same time, opens the check ball to permit oil to return to the inside of the piston rod and the piston, thus making the shock absorber ready for the next impact.

No.	Description	Material	Note
$\overline{\mathcal{O}}$	Check ball	Bearing steel	
8	Accumulator	NBR	Foam rubber
9	Rod packed	NBR	
10	Scraper	NBR	
11	Bumper	Polyurethane	Only with bumper

RB J D -X 20-Technical

Series RBQ How to Select

Selection Procedure

1 Classification of impact

- □Cylinder stroke at load (Horizontal) □Cylinder stroke at load (Downward) □Cylinder stroke at load (Upward)
- Conveyor stroke at load (Horizontal)
- □Free dropping impact
- □Rotation impact (With torque)

2 Details of applications

OI Condition of application	Unit
Impacting object/weight	kgf
u Impacting object/speed	
Dropping height	m
Angle/speed	rad/sec
Distance between axis of cylinder and impact point	m
Bore size	mm
Cylinder operatina pressure	MPa
Thrust	kgf
Torque	Nm
Operation cycle	cycle/min
Ambient temperature	°C
Friction coefficient	_
	Ill Condition of application Impacting object/weight Impacting object/speed Impacting object/speed Dropping height Angle/speed Distance between axis of cylinder and impact point Bore size Cylinder operatina pressure Thrust Torque Operation cycle Ambient temperature

3 Specifications and Operational instructions Ensure that the impact speed, thrust, operation cycle, the ambient temperature and atmosphere fall within the specifications. *Be aware of the min. installation radius in the case of oscillating impacts. 4 Calculation of kinetic energy E1 Using the equation suitable for the classification of impact.

	•							
I	In the case of cylinder stroke at load and							
I	free horizontalimpact, substitute respective							
ł	In the case of cylinder stroke at load and free horizontalimpact, substitute respective figures for Data A in order to calculate E1.							
1	Oslaulation of the set on ones F							

4		-								
	Select any shock absorber as a provisional model.									
l	In the case of thrust energy of cylinder, substitute respective figures for Data B or C.									
V	substitute respective figures for Data B or C	ŀ								
-										

6 Calculation of corresponding weight of impacting object Me Energy absorption $E=E_1+E_2$ Corresponding weight of impacting object $Me=\frac{2}{v^2}E$ Substitute both energy absorption E and impacting

object speed U for Data A in order to calculate the corresponding weight of the impacting object.

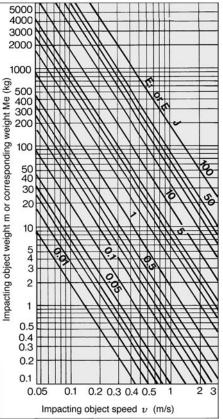
7 Selection of applicable model

Taking into consideration the corresponding weight of the impacting object Me, calculated using Data D and impacting object speed V, check provisional model compatibility with the condition of application. If this is satisfactory, then the said provisional model will be the applicable one.

Caution

To enable the shock absorber to operate accurately for long hours, it is necessary to select a model that is well suited to your operating conditions. If the impact energy is smaller than **5**% of the maximum absorption energy, select a model that is one class lower.

Example of Selection						
	Cylinder stroke at load (Horizontal)					
1 Classification of impact	Fi Load					
Impact object ⁽¹⁾ /speed U	υ					
Kinetic energy E1	$\frac{1}{2}$ mv ²					
Thrust energy E2	F₁S					
Energy absorption E	E1+E2					
Impacting object ⁽²⁾ /corresponding weight Me	$\frac{2}{v^2}E$					
2 Details of applications	m=20kg v=0.7m/s d=40mm p=0.5MPa n=30cycle/min t=25°C					
3 Specifications Operational instructions	υ ····· 0.7<3 (max.) t ····· −10 (min.)<25<80 (max.) F ····· F1···628<686 (max.) YES					
4 Calculation of kinetic energy E ₁	Use Formula to calculate E₁. Suitable 20 for m and 0.7 for υ. E1 ≅ 4.9J					
5 Calculation of thrust energyE ₂	Select RBQ2508 as provisional model. Use Data B to calculate E2. Substitute d for 40. E2 \cong 5.0J					
6 Calculation of corresponding weight of impacting object Me	Use the formula "Energy absorption E=E ₁ +E ₂ =4.9+5.0=9.9J" to calculate Me. Suitable 9.9J for E and 0.7 for v. Me \cong 40kg					
7 Selection of applicable model	According to Data D, the tentatively selected RBQ2508 satisfies Me=40 kg<60kg at v=0.7. Ultimately, it will result in an operating frequency of n30<45, without causing a problem.					


1 Classification of Impact

	(Downward)	
Classification of impact		
Impact object/ speed $\upsilon^{(1)}$	υ	
Kinetic energy E1	$\frac{1}{2}m_{\upsilon}^{2}$	
Thrust energy E ₂	F₁S +mgs	
Energy absorption E	E1+E2	
Impacting object/ (2) corresponding weight Me	$\frac{2}{v^2}E$	
Impact object/ speed $\upsilon^{(1)}$ Kinetic energy E1Thrust energy E2Energy absorption EImpacting object/	$\frac{1}{2}m_{\nu}^{2}$ F1S +mgs E1+E2 $\frac{2}{\nu^{2}}E$	

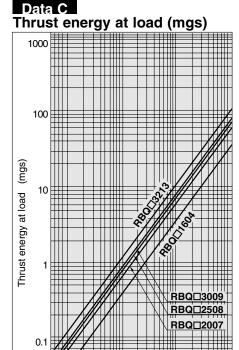
Note 1) Impacting object speed is momentary velocity at which object is impacting against shock absorber.

Data A

Kinetic energy E₁ or Energy absorption E

(Upward)	Conveyor stroke at load (Horizontal)	Free dropping impact	Rotation impact (Weight torque)
v Load m F₁ Cylinder			
υ	υ	$\sqrt{2gh}$	ω R
$\frac{1}{2}$ m v ²	¹ / ₂ mυ²	mgh	$\frac{1}{2}$ I ω^2
 F ₁ S–mgS	mgμS	mgS	T <u>S</u> R
 E1+E2	E1+E2	E1+E2	E1+E2
 $\frac{2}{\upsilon^2}E$	$\frac{2}{\upsilon^2}E$	$\frac{2}{\upsilon^2}E$	$\frac{2}{\upsilon^2}E$

Note 2) An "Impact body equivalent weight" is the weight of an impact body without involving thrust, into which an object's total energy has been converted. Hence, E = 1/2 Me v²


Note 3) Refer to the catalogue of rotary actuator for the formula of moment of inertia I (kgm²)

Data B

Thrust energy of cylinder F1S ^(Operating press. 0.5MPa) Unit: J							
_							
	tualia	1604	2007	2058	3009	3213	
abs	troke sorption mm	4	7	8	8.5	13	
	6	0.057	0.099	0.113	0.120	0.184	
	10	0.157	0.274	0.314	0.334	0.511	
	15	0.353	0.619	0.707	0.751	1.15	
	20	0.628	1.10	1.26	1.34	2.04	
۲	25	0.982	1.72	1.96	2.09	3.19	
d (mm)	30	1.41	2.47	2.83	3.00	4.59	
	40	2.51	4.40	5.03	5.34	8.17	
size	50	3.93	6.87	7.85	8.34	12.8	
Bore :	63	6.23	10.9	12.5	13.2	20.3	
ğ	80	10.1	17.6	20.1	21.4	32.7	
	100	15.7	27.5	31.4	33.4	51.1	
	125	24.5	43.0	49.1	52.2	79.8	
	140	30.8	53.9	61.6	65.4	100	
	160	40.2	70.4	80.4	85.5	131	
	180	50.9	89.1	102	108	165	
	200	62.8	110	126	134	204	
	250	98.2	172	196	209	319	
	300	141	247	283	300	459	

■Operating pressure other than 0.5MPa: Multiply by the following coefficient

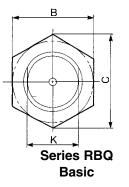
Operating pressure (MPa)	1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Coefficient	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8

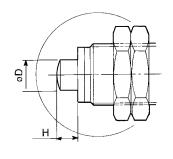
«Symbol table»

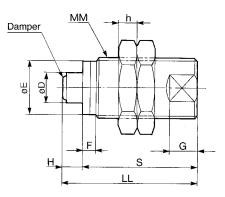
···•		
Symbol	Specifications	Unit
d	Bore size	mm
Е	Energy absorption	J
E1	Kinetic energy	J
E2	Thrust energy	J
F1	Cylinder thrust	N
g	Acceleration of gravity	m/s ²
h	Dropping height	m
I (3)	Moment of inertia around the centre of gravity	kgm ²
n	Operation cycle	cycle/min
р	Cylinder operation pressure	MPa
R	Distance between axis of cylinder and impact point	m
S	Shock absorber stroke	m
Т	Torque	Nm
t	Ambient temperature	°C
υ	Impacting object speed	m/s
m	Impacting object weight	kg
Me	Corresponding weight of impacting object	kg
ω	Angle speed	rad/s
μ	Friction coefficient	_

Data D

Impacting object corresponding weight Me RBOL 1000 RB 500 400 300 (kg) J 200 Me D 100 Impact object corresponding weight 50 40 30 -X 20 20-10 5 4 3 Technical Data 2 1 0.5 0.4 0.3 0.2 0.1 0.05 🗄 0.05 0.1 0.2 0.4 0.5 2 3 1 Impact object speed υ (m/s)

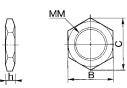

10


Load weight (kg)


100

1000

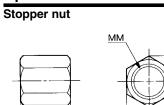
Dimensions



Series RBQC With damper

Mo	odel	Shock absorber						Hexagon nut					
Basic	With damper	D	E	F	Н	К	G	LL	MM	S	В	С	h
RBQ1604	RBQC1604	6	14.2	3.5	4	14	7	31	M16 X 1.5	27	22	25.4	6
RBQ2007	RBQC2007	10	18.2	4	7	18	9	44.5	M20 X 1.5	37.5	27	31.2	6
RBQ2508	RBQC2508	12	23.2	4	8	23	10	52	M25 X 1.5	44	32	37	6
RBQ3009	RBQC3009	16	28.2	5	8.5	28	12	61.5	M30 X 1.5	53	41	47.3	6
RBQ3213	RBQC3213	18	30.2	5	13	30	13	76	M32 X 1.5	63	41	47.3	6

Hexagon nut (2 pcs. as standard)



			U	nit: mm
Part No.	MM	h	В	С
RBQ16J	M16 X 1.5	6	22	25.4
RB20J ⁽¹⁾	M20 X 1.5	6	27	31.2
RBQ25J	M25 X 1.5	6	32	37
RBQ30J	M30 X 1.5	6	41	47.3
RBQ32J	M32 X 1.5	6	41	47.3

Note 1) In case of RB20J, RB and RBQ are common.

Option

h1

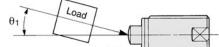
Material: Carbon steel									
Part No.	B C h1 MM								
RBQ16S	22	25.4	12	M16 X 1.5					
RB20S ⁽²⁾	27	31.2	16	M20 X 1.5					
RBQ25S	32	37	18	M25 X 1.5					
RBQ30S	41	47.3	20	M30 X 1.5					
RBQ32S	41	47.3	25	M32 X 1.5					

Note 2) In case of RB20S, RB and RBQ are common.

Replacement Part

Bumper

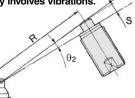
These are the replacement parts for the cap style. Not available for the basic style.


	Material: Polyurethan							
Part No.	A B C							
RBQC16C	3.5	4	4.7					
RBQC20C	4.5	8	8.3					
RBQC25C	5	8.3	9.3					
RBQC30C	6	11.3	12.4					
RBQC32C	6.6	13.1	14.4					

🕂 Warning

①Load should always be aligned with the axis of piston rod.

- An angle of deviation that exceeds 5° will place an excessive load on the bearings, leading to oil leaks within a short period of operation.
- 2 If oscillating impacts are involved, the installation must be designed so that the direction in which the load is applied is perpendicular to the



Allowable eccentricity $\theta_1 \leq 5^\circ$

shock absorber's axial centre.

The allowable oscillating angle until the stroke end must be $\theta_2 \leq 5^\circ$. In this case, the minimum installation radius will be as shown in the table below. If the angle exceeds 5°, it could lead to oil leaks.

3A guide is necessary if the impact body involves vibrations.

(mm)

Installation conditions for rotation impact

Model	S (Stroke)	θ2 (Allowable rotation angle)	R (Min. installation radius)		
RBQ□1604	4		46		
RBQ 2007	7		80		
RBQ □2508	8	5°	92		
RBQ□3009	8.5		98		
RBQ□3213	13		149		

If the impact body involves vibrations and if a force that is perpendicular to the axis is applied to the piston rod, a secure guide must be provided for the impact body.

(4) The rigidity of the mounting frame must be taken into consideration.

If the mounting frame lacks strength, the shock absorber will vibrate after an impact, causing bearing wear and damage.

Load on mounting plate can be calculated as follows.

Load on mounting plate N \cong 2 (Energy absorption) (Stroke m)

▲ Caution

- (1) The maximum absorption energy indicated in the specifications cannot be brought into full play unless the entire stroke is used.
- 2 The contact surface of the impact body with which the piston rod comes into contact must be highly rigid.

In the case without a cap, a high surface compression load is applied to the contact surface of the impact body with which the piston rod comes into contact. Therefore, the contact surface must be highly rigid (hardness of HRC35 or more).

3Be aware of the return force of the impact body.

If used in a conveyor drive, after the shock absorber has absorbed energy, it could be pushed back by the spring that is built in. For details on this return force, refer to the column for the spring force in the specifications (P.5.1-10).

Environment

🕂 Warning

1 Do not expose the shock absorber to machining oil, water, or dust.

Series RBQ cannot be used under conditions in which fluids such as machining oil or water are present in atomized form or come in direct contact with the piston rod, or in which dust could adhere to the piston rod. Such conditions would cause malfunction.

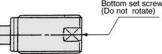
2 Do not operate the shock absorber in an environment that poses the risk of corrosion.

Refer to the respective structural drawing for the type of material that is used in the shock absorber.

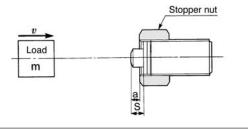
3 Do not use the shock absorber in a clean room, as it could contaminate the clean room.

\land Warning

1)Before performing installation, removal, or stroke adjustment, make sure to cut off the power supply to the equipment and verify that the equipment has stopped.


▲ Caution

Model	RBQ1604	RBQ2007	RBQ2508	RBQ3009	RBQ3213
O.D. thread (mm)	M16	M20	M30	M30	M32
Max. tightening torque (Nm)	14.7	23.5	34.3	78.5	88.3


- ①Tightening torque of mounting nut should be as follows.
- If the tightening torque that is applied to the nut exceeds the value given above the shock absorber itself could become damaged
- 2 Do not scratch the sliding portion of the piston rod or the outside threads of the outer tube.

Failure to observe this precaution could scratch or gouge the sliding portion of the piston rod, or damage the seals, which could lead to oil leakage and malfunction. Furthermore, damage to the outside threads of the outer tube could prevent the shock absorber from being mounted onto the frame, or its internal components could deform, leading to a malfunction.

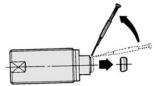
3 Never turn the screw on the bottom of the body (it is not an adjustment screw), as this will cause oil leakage.

④ Adjust the stopping time through the use of the stopper nut, as follows: Control the stopping time of the impact body by turning the stopper nut in or out (thus changing length "a"). After establishing the stopper nut position, use a hexagon nut to secure the stopper nut in place.

Maintenance

▲ Caution

①Make sure that the retaining nut is not loose.


The shock absorber could become damaged if it is used in a loose state. 2 Pay attention to any abnormal impact sounds or vibrations.

If the impact sounds or vibrations have become abnormally high, the shock absorber may have reached the end of its service life. If this is the case, replace the shock absorber. If use is continued in this state, it could lead to equipment damage.

3 Inspect the bumper for any cracks or wear.

If the shock absorber comes with a bumper, the damper could wear first. To prevent damage to the impact body, replace the bumper often.

The bumper inserted into the piston rod can be removed easily by a small screwdriver. When reassembling, push the smaller end of the bumper inside the piston.

Data

RB