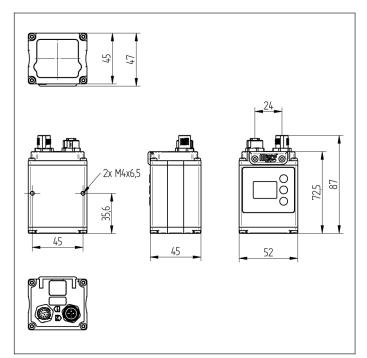

C50C100 weQubeDecode

- Lesung gedruckter und direktmarkierter 1D- und 2D-Codes
- MultiCore-Technologie

Der Scanner weQubeDecode basiert auf der wenglor-MultiCore-Technologie. Durch omnidirektionales Lesen können gedruckte, genadelte, gelaserte und geätzte Codes auf unterschiedlichsten Materialien in beliebiger Ausrichtung dekodiert werden. Auch bei schlechten Code-Eigenschaften werden gute Leseergebnisse erzielt. Neben den gängigen 1D-Codes eignet er sich zudem zum Lesen verschiedenster 2D-Codes. Eine Auflistung aller lesbaren Code-Arten finden Sie in der Bedienungsanleitung.

Ontische Daten	
Optische Daten Arbeitsbereich	≥ 20 mm
Auflösung	736 × 480 Pixel
Bildchip	monochrom
Lichtart (T	Weißlicht
Lebensdauer (Tu = +25 °C)	100000 h
Sichtfeld	siehe Tabelle 1
Min. Auflösung	0,1 mm
Barcode-Druckkontrast	> 15 %
Elektrische Daten	
Versorgungsspannung	1830 V DC
Stromaufnahme (Ub = 24 V)	< 200 mA
Scanrate	20 scans/s
Temperaturbereich	-2555 °C*
Anzahl Ein-/Ausgänge	6
Spannungsabfall Schaltausgang	< 2,5 V
Schaltstrom Schaltausgang	100 mA
Kurzschlussfest	ja
Verpolungssicher	ja
Schnittstelle	RS-232/Ethernet
Schutzklasse	III
Mechanische Daten	
Einstellart	Ethernet
Gehäusematerial	Aluminium
Schutzart	IP67
Anschlussart	M12 × 1; 12-polig
Anschlussart Ethernet	M12×1; 8-polig, X-coo
Sicherheitstechnische Daten	
MTTFd (EN ISO 13849-1)	227,7 a
Funktion	
1D- und 2D-Codelesung	ja
Webserver	ja
PNP/NPN/Gegentakt programmierbar	•
Öffner/Schließer umschaltbar	
Beleuchtungsausgang	
RS-232-Schnittstelle	
Ethernet	
PROFINET I/O, CC-A	Ŏ
EtherNet/IP™	Ŏ
Anschlussbild-Nr.	002 1008
Bedienfeld-Nr.	X2
	50 87
Passende Anschlusstechnik-Nr.	

Die Displayhelligkeit kann mit steigender Lebensdauer abnehmen. Die Sensorfunktion wird dadurch nicht beeinträchtigt.

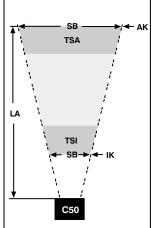

*-25°C: Umgebungsbedingungen sollte nicht kondensierend sein; Eisbildung an der Frontscheibe vermeiden!

55°C: Dauerlicht max 1% oder Blitzbetrieb 100% Beleuchtungshelligkeit bei einer Belichtungszeit <=5ms; Kann Einfluss auf die Produktlebensdauer haben.

Ergänzende Produkte

Erganzende Produkte						
	Beleuchtungstechnik					
	Lizenzupgrade weQubeOCR DNNL003					
	Lizenzupgrade weQubeVision DNNL001					
	Scheibe mit Polarisationsfilter ZNNG004					
	Schutzgehäuse ZNNS001, ZNNS002					
	Software					

Bedienfeld



20 = Enter-Taste

22 = Up-Taste

23 = Down-Taste

60 = Anzeige

Min. Au	flösung	Max. Sichtfeld		Tiefenschärfe		Leseabstand
1D	2D	IK	AK	TSI	TSA	Leseabstand
0,1 mm	_	22×14 mm	29×19 mm	1 mm	2 mm	20 mm bis 30 mm
0,13 mm	_	22×14 mm	54×36 mm	4 mm	8 mm	20 mm bis 65 mm
0,19 mm	_	22×14 mm	85×55 mm	6 mm	12 mm	20 mm bis 115 mm
0,38 mm	_	40×26 mm	177×115 mm	18 mm	60 mm	47 mm bis 251 mm
0,76 mm	_	78×51 mm	361×235 mm	80 mm	250 mm	105 mm bis 500 mm
_	0,15 mm	22×14 mm	29×19 mm	1 mm	2 mm	20 mm bis 30 mm
_	0,27 mm	22×14 mm	66×43 mm	7 mm	16 mm	20 mm bis 85 mm
_	0,49 mm	22×14 mm	131×85 mm	12 mm	58 mm	20 mm bis 180 mm
_	1,25 mm	24×15 mm	358×233 mm	35 mm	385 mm	27 mm bis 500 mm

IK = Innenkante LA = Leseabstand SB = Scanbreite TSA = Tiefenschärfe Außenkante TSI = Tiefenschärfe Innenkante

Tabelle 1

Arbeitsabstand	20 mm	200 mm	1000 mm
Sichtfeld	16 × 12 mm	120 × 90 mm	600 × 450 mm

