Emergency Stop Switches

X6 ${ }_{\text {series }}$

Excellent safety and design. The shortest depth behind the panel in its class.

- See website for details on approvals and standards.

Excellent safety

Third-generation
Reverse Energy Structure

IDEC's unique Reverse Energy Structure, achieved as a result of in-depth failure analysis of emergency stop switches, has resulted in this innovative emergency stop switch.
X6 series emergency stop switches provide the highest level of safety, because the unibody design eliminates the possibility of the contact bocks falling off the switch

Only 19.5 mm depth behind the panel

The short depth behind the panel reduces the required mounting space.
Depth: 30% reduction
Volume: 70% reduction
(Compared with conventional emergency stop switches)
Thus equipment and control panels can be made much smaller.

*1: Solder terminal.
Solder/tab terminal: 23.9 mm

Unparalleled design

The smooth button is ideal for applications that require utmost cleanliness, such as food processing machines or semiconductor manufacturing equipment. Also suitable for applications requiring a sleek design of emergency stop switches, such as medical equipment.

Prevents dust build-up

The smooth and ridge-less button surface prevents dust built-up, and is also easy to clean.

$ø 16 \mathrm{~mm}$ X6 Series

Conventional Operator

APEM
Switches \& Pilot Lights

Control Boxes Emergency
Stop Switches
Enabling Switches

Safety Products
Explosion Proof
Terminal Blocks
Relays \& Sockets
Circuit
Protectors
Power Supplies
LED Illumination

Controllers
Operator Interfaces

Sensors

AUTO-ID

Two ways to reset

Pull to reset

Turn to reset

Two connection methods

Solder Terminal

Solder/Tab Terminal \#110

©16 X6 series Emergency Stop Switches (Unibody)

Third-generation emergency stop switch with Reverse Energy Structure Smallest in its class

- Two button sizes— $\varnothing 30 \mathrm{~mm}$ and $ø 40 \mathrm{~mm}$
- Two ways of resetting -pulling and turning.
- Safety lock mechanism (IEC 60947-5-5; 6.2)
- Direct opening action (IEC 60947-5-5; 5.2, IEC 60947-5-1, Annex K)
- Degree of protection: IP65 (IEC60529)

Relays \& Sockets
Circuit
Protectors

Power Supplies
LED Illumination
Contact Ratings

Rated Insulation Voltage (Ui)				250 V		
Rated Thermal Current (lth)				5A		
Rated Operating Voltage (Ue)				30 V	125 V	250 V
든		AC	Resistive Load (AC-12)	-	5A	3A
$\begin{aligned} & \text { O } \\ & \text { Oㅡㅡ응 } \end{aligned}$		$50 / 60 \mathrm{~Hz}$	$\begin{aligned} & \text { Inductive Load } \\ & \text { (AC-15) } \end{aligned}$	-	1.5A	0.75A
등ㅇㅇ	$\begin{aligned} & 0 \\ & \text { B } \\ & \text { 드N } \end{aligned}$	DC	Resistive Load (DC-12)	2 A	0.4 A	0.2A
		DC	Inductive Load (DC-13)	1A	0.22A	0.1A

- Minimum applicable load: 5V AC/DC, 1 mA (reference value)
(May vary depending on the operating conditions and load)
- Operational current represents the classification by making and breaking currents (IEC 60947-5-1).

Note:

TÜV/CCC rating: \quad AC-15 0.75A/250V, DC-13 1A/30V
UL rating:
Standard Duty AC 0.75A/250V
Standard Duty DC 1A/30V

Specifications

Applicable Standards	IEC 60947-5-1, EN 60947-5-1 IEC 60947-5-5 (Note), EN 60947-5-5 (Note) JIS C8201-5-1, JIS C8201-5-5, UL508 CSA C22.2 No.14, GB14048.5
Operating Temperature	-25 to $+60^{\circ} \mathrm{C}$ (no freezing)
Operating Humidity	45 to 85\% RH (no condensation)
Storage Temperature	-45 to $+80^{\circ} \mathrm{C}$ (no freezing)
Operating Force	Push to lock: 10.5 N Pull to reset: 8.8 N Turn to reset: $0.17 \mathrm{~N} \cdot \mathrm{~m}$
Minimum Force Required for Direct Opening Action	40N
Minimum Operator Stroke Required for Direct Opening Action	4.5 mm
Maximum Operator Stroke	4.5 mm
Contact Resistance	$50 \mathrm{~m} \Omega$ maximum (initial value)
Insulation Resistance	$100 \mathrm{M} \Omega$ minimum (500V DC megger)
Overvoltage Category	II
Impulse Withstand Voltage	2.5 kV
Pollution Degree	3
Operation Frequency	900 operations/hour
Shock Resistance	Operation extremes: $150 \mathrm{~m} / \mathrm{s}^{2}$ Damage limits: $1000 \mathrm{~m} / \mathrm{s}^{2}$
Vibration Resistance	Operation extremes: 10 to 500 Hz amplitude 0.35 mm , acceleration $50 \mathrm{~m} / \mathrm{s}^{2}$ Damage limits: 10 to 500 Hz , amplitude 0.35 mm , acceleration $50 \mathrm{~m} / \mathrm{s}^{2}$
Mechanical Life	100,000 operations minimum
Electrical Life	100,000 operations minimum
Degree of Protection	IP65 (IEC 60529)
Short-circuit Protection	250V/10A fuse (Type aM IEC 60269-1/IEC 60269-2)
Conditional Short-circuit Current	1000A
Terminal Style	Solder terminal, Solder/tab terminal \#110
Recommended Tightening Torque for Locking Ring	$0.88 \mathrm{~N} \cdot \mathrm{~m}$
Applicable Wire Size	$1.25 \mathrm{~mm}^{2}$ maximum (AWG16 maximum)
Terminal Soldering Condition	310 to $350^{\circ} \mathrm{C}$, within 3 seconds
Weight (approx.)	ø30mm button: 13 g ø40mm button: 16 g

Pushlock Pull/Turn Reset Switch (Solder Terminal)

Unmarked

Pushlock Pull/Turn Reset Switch
Package quantity: 1

Shape	Main Contact (NC)	Part No.	
		Solder Terminal	Solder/tab Terminal \#110
$\emptyset 30 \mathrm{~mm}$ Mushroom	1NC	AB6E-3BV01PRH	AB6E-3BV01PTRH
	2NC	AB6E-3BV02PRH	AB6E-3BV02PTRH
ø40mm Mushroom	1NC	AB6E-4BV01PRH	AB6E-4BV01PTRH
	2NC	AB6E-4BV02PRH	AB6E-4BV02PTRH

- Pushlock pull/turn reset switches are locked when pressed, and reset when pulled or turned clockwise.

Arrow Marked

Pushlock Pull/Turn Reset Switch
Package quantity: 1

Shape	Main Contact (NC)	Part No.	
		Solder Terminal	Solder/tab Terminal \#110
$\emptyset 30 \mathrm{~mm}$ Mushroom	1NC	AB6E-3BV01PRM	AB6E-3BV01PTRM
	2NC	AB6E-3BV02PRM	AB6E-3BV02PTRM
ø40mm Mushroom	1NC	AB6E-4BV01PRM	AB6E-4BV01PTRM
	2NC	AB6E-4BV02PRM	AB6E-4BV02PTRM

Power Supplies
LED Illumination
Controllers
Operator Interfaces
Sensors
AUTO-ID

X6
XA
xw
XN
SEMI

- Pushlock pull/turn reset switches are locked when pressed, and reset when pulled or turned clockwise.

Dimensions

Mounting Hole Layout

The values shown on the left are the minimum dimensions for mounting with other $\varnothing 16 \mathrm{~mm}$ pushbuttons. For other control units of different sizes and styles, determine the values according to dimensions, operation, and wiring.

	X	Y
$\emptyset 30 \mathrm{~mm}$ Button	40 mm min.	40 mm min.
$\emptyset 40 \mathrm{~mm}$ Button	50 mm min.	50 mm min.

- See D-047 for accessories and replacement parts.

Instructions

Panel Mounting

Remove the locking ring from the operator and check that the rubber gasket is in place. Insert the operator from panel front into the panel hole. Face the side with the projection upward, and tighten the locking ring using the locking ring wrench MT-001.

Notes for Panel Mounting

Using the locking ring wrench MT-001, tighten the locking ring to a torque of $0.88 \mathrm{~N} \cdot \mathrm{~m}$. Do not use pliers. Do not apply excessive force, otherwise the locking ring will become damaged.

Wiring

1. Applicable wire size is $1.25 \mathrm{~mm}^{2}$ maximum.
2. Solder the terminals using a soldering iron at 310 to $350^{\circ} \mathrm{C}$ for 3 seconds maximum. Do not use flow or dip soldering. SnAgCu type lead-free solder is recommended. Make sure that the soldering iron touches the terminals only, not plastic parts. Do not apply external force such as bending the terminals or applying tensile force on the wires.
3. Use a non-corrosive rosin flux. To prevent the flux from entering the switch while soldering, face the terminals downward.

4. Because the terminal spacing is narrow, use protective tubes or heat shrinkable tubes to avoid burning the wire sheath or short circuit.
5. Apply force on the terminals in the vertical direction to the panel only, otherwise the terminals will be damaged.

- For wiring, use wires of proper size to meet the voltage and current requirements and solder properly. Improper soldering may cause overheating and create fire hazards.

APEM
Switches \& Pilot Lights

Control Boxes

